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Liang, Fuhrman and Somogyi (PSB98, 18-29, 1998) have described an algorithm

for inferring genetic network architectures from state transition tables which corre-

spond to time series of gene expression patterns, using the Boolean network model.

Their results of computational experiments suggested that a small number of state

transition (INPUT/OUTPUT) pairs are su�cient in order to infer the original

Boolean network correctly. This paper gives a mathematical proof for their ob-

servation. Precisely, this paper devises a much simpler algorithm for the same

problem and proves that, if the indegree of each node (i.e., the number of input

nodes to each node) is bounded by a constant, only O(logn) state transition pairs

(from 2n pairs) are necessary and su�cient to identify the original Boolean network

of n nodes correctly with high probability. We made computational experiments

in order to expose the constant factor involved in O(logn) notation. The compu-

tational results show that the Boolean network of size 100,000 can be identi�ed by

our algorithm from about 100 INPUT/OUTPUT pairs if the maximum indegree is

bounded by 2. It is also a merit of our algorithm that the algorithm is conceptually

so simple that it is extensible for more realistic network models.

1 Introduction

Inference of gene regulation mechanism from time series of gene expression

patterns is getting more important especially due to the invent of DNA mi-

croarray technology3;9;11. Expression pro�les of several thousands of genes are

now being produced for further analyses.

Some methods have been proposed for the inference of gene regulation

mechanism from time series of gene expression patterns. Arkin, Shen and

Ross 2 proposed a statistical method using correlation matrices to infer chem-

ical reaction networks from time series of measured concentration of species.

Although they treated chemical reaction networks, they also suggested that

their method might be applied to genetic networks. However, it seems di�cult

to apply their method to the inference of large scale networks. DeRisi, Iyer

and Brown 3 inferred a metabolic pathway from gene expression patterns of
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Saccharomyces cerevisiae obtained by using DNA microarrays. Yuh, Bolouri

and Davidson 11 constructed a network model similar to the Boolean network

model from time series of expression patterns relating to a sea urchin gene.

However, their inference methods are not systematic or automatic.

On the other hand, some studies have been done on the inference of genetic

networks from state transition data using the Boolean network model 7;10 and

its variants 1;8. In particular, Liang, Fuhrman and Somogyi 5 proposed an

algorithm named REVEAL for inference of Boolean networks (corresponding

to genetic networks) from state transition tables (corresponding to time series

of gene expression patterns). REVEAL used information theoretic principles in

oder to reduce the search space. They made some computational experiments

on REVEAL. The results suggested that only a small number of state transition

pairs (100 pairs from 1015) were su�cient for inferring Boolean networks with

50 nodes (genes) whose indegree (the number of input nodes to a node) was

bounded by 3.

Independently, we have investigated strategies for identifying genetic net-

works from gene expression patterns derived by gene disruptions and gene

overexpressions using a Boolean network-like model 1. In Akutsu et al. 1, we

proved mathematically a lower bound and an upper bound of the number of

expression patterns required to identify the network correctly. We have not

assumed that time series of expression patterns are observable in the paper 1

and thus the derived bounds on experimental complexity are too high to be

practical if it would be applied directly. However, the recent progress 3;9;11 of

biotechnology is making it possible to observe time series of gene expression

patterns. Therefore, in this paper, we mathematically study the number of

gene expression patterns required to identify the genetic network using the

Boolean network model.

The contribution of this paper is a simple algorithm for identifying the orig-

inal Boolean network from the state transition pairs (i.e., INPUT/OUTPUT

expression pattern pairs) and its mathematical analysis. Its usefulness in prac-

tice is also veri�ed by computational experiments.

Our algorithm is much simpler than REVEAL 5 although the e�ciency of

time and memory space of our algorithm may be worse than REVEAL. The

simplicity of this algorithm makes its mathematical analysis possible. More-

over, this algorithm can be modi�ed for counting or enumerating the networks

consistent with given examples (i.e., state transition pairs). We prove mathe-

matically that O(log n) (precisely, �(log n)) transition pairs are necessary and

su�cient for our algorithm to identify the original Boolean network of n nodes

with a high probability if the maximum indegree is bounded by a constant and

transition pairs are given uniformly randomly from 2n possible pairs, where
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log x means log2 x throughout this paper. Note that, although a lot of stud-

ies have been done on the number of examples required to identify Boolean

functions in Computational Learning Theory 4, such results do not seem to be

directly applicable to the identi�cation of the Boolean network.

In order to expose the constant factor involved in O(log n) notation, we

made computational experiments on our algorithm. The computational ex-

periments reveal that the constant hidden in O(log n) notation is practically

small. For example, Boolean networks of bounded indegree 2 with 100; 000

nodes can be identi�ed from only 100 random state transition pairs. In order

to investigate more practical situations, we made computational experiments

where state transition pairs are generated from attractors 7. Although the

number of pairs required for identi�cation is increased, it is still proportional

to log n.

Although the real genetic networks are di�erent from the Boolean net-

works, the theoretical and practical results in this paper may be extended

for more realistic models. Since the proposed algorithm is conceptually very

simple, it is highly extensible for various situations. Possible extensions are

discussed in the �nal section.

2 Boolean Network and Its Identi�cation

2.1 Boolean Network

A Boolean network G(V; F ) consists of a set V = fv1; : : : ; vng of nodes repre-

senting genes and a list F = (f1; : : : ; fn) of Boolean functions, where a Boolean

function fi(vi1 ; : : : ; vik) with inputs from speci�ed nodes vi1 ; : : : ; vik is assigned

to each node vi. For a subset U � V , an expression pattern  of U is a function

from U to f0; 1g. An expression pattern of V is also called a state of a Boolean

network. That is,  represents the states of nodes (genes), where each node is

assumed to take either 0 (not-express) or 1 (express) as its state value. If it

does not cause confusion, we omit  . For example, we write vi = 1 for denoting

 (vi) = 1. In a Boolean network, the expression pattern  t+1 at time t+ 1 is

determined by Boolean functions F from the expression pattern  t at time t

(i.e.,  t+1(vi) = fi( t(vi1); : : : ;  t(vik))).

It is convenient to consider a wiring diagram 5;7 G0(V 0; F 0) of a Boolean

network G(V; F ) (see Fig. 1). For each node vi in V , let vi1 ; : : : ; vik be input

nodes to vi in G(V; F ). Then we consider an additional node v0

i, and we

construct an edge from vij to v0

i for each 1 � j � k. Let G0(V 0; F 0) the

network with nodes v1; : : : ; vn; v
0

1; : : : ; v
0

n constructed in this way. Then, the

expression pattern of the set fv0

1; : : : ; v
0

ng is determined by v
0

i = fi(vi1 ; : : : ; vik).

Pacific Symposium on Biocomputing 4:17-28 (1999) 



That is, the expression pattern of fv1; : : : ; vng corresponds to one at time t

and the expression pattern of fv0

1; : : : ; v
0

ng corresponds to one at time t + 1.

Moreover, it is convenient to consider the expression pattern of fv1; : : : ; vng as

the INPUT, and the expression pattern of fv0

1; : : : ; v
0

ng as the OUTPUT.

G(V,F) G’(V’,F’)
v1

v3v2

AND

v’3 = NOT v1v’2 = v1 v3ANDv’1 = v2

v’1 v’2 v’3

v1 v2 v3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
1 0 1
1 0 1
0 0 0
0 1 0
1 0 0
1 1 0

v1 v2 v3 v’1 v’2 v’3

INPUT OUTPUT

Figure 1: A Boolean network G(V; F ) and its wiring diagram G0(V 0; F 0). In the (state

transition) table, the INPUT column corresponds to the expression pattern (state) at time

t and the OUTPUT column corresponds to the expression pattern (state) at time t+ 1.

2.2 Identi�cation Problem

Next we formally de�ne the identi�cation problem. Relating to the identi�-

cation problem, we also de�ne the consistency problem, the counting problem

and the enumeration problem.

Let (Ij ; Oj) be a pair of expression patterns of fv1; : : : ; vng, where Ij cor-

responds to the INPUT and Oj corresponds to the OUTPUT. We call the pair

(Ij ; Oj) an example.

We say that a node vi in a Boolean network G(V; F ) is consistent with

an example (Ij ; Oj) if Oj(vi) = fi(Ij(vi1); : : : ; Ij(vik)) holds. We say that a

Boolean network G(V; F ) is consistent with (Ij ; Oj) if all nodes are consistent

with (Ij ; Oj). For a set of examples EX = f(I1; O1); (I2; O2); : : : ; (Im; Om)g,

we say that G(V; F ) (resp. node vi) is consistent with EX if G(V; F ) (resp.

node vi) is consistent with all (Ij ; Oj) for 1 � j � m. Then, the problems are

de�ned as follows (see also Fig. 2): CONSISTENCY: Given n (the num-

ber of nodes) and EX , decide whether or not there exists a Boolean network

consistent with EX and output one if it exists; COUNTING: Given n and

EX, count the number of Boolean networks consistent with EX ; ENUMER-

ATION: Given n and EX, output all the Boolean networks consistent with

EX; IDENTIFICATION: Given n and EX, decide whether or not there

exists a unique Boolean network consistent with EX and output it if it exists.
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v’1 =

v’2 AND= v3
NOT( )

v’3 NOT=

v2

v3

v3

1 0 0

0 1 0

0 1 1

v1 v2 v3 v’1 v’2 v’3

I3

I1

I2

0 0 1

0 1 1

1 0 0

O1

O2

O3

v’1 =

v’2 = v3

v’3 =

v2 XOR

OR v3

v3

v1

Figure 2: INPUT/OUTPUT expression patterns and Boolean networks. Boolean network

G1 is consistent with examples, while Boolean network G2 is not consistent with the ex-

amples since node v3 (in G2) is not consistent with (I3; O3). In this case, the consistent

Boolean network is not determined uniquely since we can obtain another consistent network

by replacing v0

2
= v2 AND (NOT v3) in G1 with v0

2
= v2 XOR v3.

3 Identi�cation Algorithm

In this section, we only consider the Boolean network in which the indegree

(i.e., the number of input nodes) of each node is bounded by a constant K,

because it has been proved that exponentially many examples are required in

order to identify input nodes to a high indegree node 1. The importance of the

constraint on the indegree is also pointed out in several papers 5;7.

Although we assume that the maximum indegree is bounded by K, the

proposed algorithms can be applied to Boolean networks whose maximum in-

degree is not bounded. In such a case, the algorithms correctly identify (or

�nd) Boolean functions assigned to all nodes whose indegrees are at most K.

3.1 Algorithms

In this subsection, for simplicity, we only show algorithms for the case ofK = 2.

But, they can be generalized to any K in a straightforward way.

First we show an algorithm for the consistency problem (see also Fig. 2).

The algorithm below is natural and conceptually very simple since it simply

outputs Boolean functions consistent with given examples.

(1) For each node vi 2 V , execute STEP (2).

(2) If there exists a triplet (fi; vk; vh) satisfying Oj(vi) = fi(Ij(vk); Ij(vh)) for

all j = 1; : : : ;m, output fi as a Boolean function assigned to vi and

output vk; vh as input nodes to vi.

In order to �nd a triplet (fi; vk; vh), we use a simple exhaustive search: for

each pair of nodes (vk; vh) (k < h) and for each Boolean function f , we check

whether or not Oj(vi) = f(Ij(vk); Ij(vh)) holds for all j. For example, we

consider the case of Fig. 2. In this case, for each v0

i, we check all combinations
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of 22
2

= 16 Boolean functions f(x; y) (x AND y, x OR y, x AND (NOT y),

� � �) and 3 pairs of nodes ((v1; v2); (v1; v3); (v2; v3)).

The above algorithm can be modi�ed for other problems. For the enumer-

ation problem, we replace STEP (2) with the following:

(2') Enumerate all triplets (fi; vk; vh) satisfying Oj(vi) = fi(Ij(vk); Ij(vh)) for

all j = 1; : : : ;m.

Then, any combination of triplets ((f1; vk1 ; vh1); (f2; vk2 ; vh2); : : : ; (fn; vkn ; vhn))

can represent a consistent Boolean network. Of course, we carefully enumer-

ate triplets since there exists more than two triplets which represent the same

Boolean function (such as vk ^ vh and vh ^ vk).

For the counting problem, we simply multiply the number of triplets con-

sistent with each node.

For the identi�cation problem, we replace STEP (2) with the following:

(2") If there exists only one triplet (fi; vk; vh) satisfying Oj(vi) = fi(Ij(vk);

Ij(vh)) for all j = 1; : : : ;m, output fi as a Boolean function assigned to

vi and output vk; vh as input nodes to vi.

3.2 Analysis

First we consider the time complexity of the algorithm for the consistency

problem. There are 22
K

Boolean functions with K input variables 7. There

are
�
n
K

�
(possible) combinations of input nodes per node. Therefore, for each

node, O(22
K

� nK) triplets are examined in the algorithm. For each triplets,

m examples are examined. Therefore, O(22
K

� nK � n � m) pairs of Boolean

functions and examples are examined in total. In order to examine one pair,

O(K) time is required. Therefore, the algorithm works in O(K �22
K

�nK+1 �m)

time. Thus, the algorithm works in polynomial time for �xed K.

Similarly, we can show that the algorithms for the counting problem and

the identi�cation problem work in polynomial time for �xed K.

Theorem 1. The consistency problem, the counting problem and the identi-

�cation problem can be solved in polynomial time for Boolean networks whose

maximum indegrees are bounded by a constant.

Note that the enumeration problem can not be solved in polynomial time

because the number of consistent Boolean networks may become exponential.

Next we analyze the number of INPUT/OUTPUT pairs required to iden-

tify the Boolean network uniquely. The following proposition was obtained

directly from Theorem 3.2 in our previous paper 1 (see also Fig. 3).

Pacific Symposium on Biocomputing 4:17-28 (1999) 



Proposition 1. If all assignments (i.e., 22K assignments) of Boolean values to

all subsets of V with 2K nodes (i.e.,
�
n
2K

�
subsets) appear in INPUT expression

patterns, the Boolean function together with input nodes for each node is

determined uniquely, if it exists.

Next we prove the main theorem.

Theorem 2. If O(22K � (2K+�) � log n) INPUT expression patterns are given

uniformly randomly, the following holds with probability at least 1� 1

n�
: there

exists at most one Boolean network of n nodes with maximum indegree � K

which is consistent with given INPUT/OUTPUT pairs.

(Proof) We derive the number of INPUT expression patterns satisfying the

condition of Proposition 1. For that purpose, we consider the probability that

the condition is not satis�ed when m random INPUT expression patterns are

given.

For any �xed set of nodes fvi1 ; : : : ; vi2Kg, the probability that a sub-

assignment vi1 = vi2 = � � � = vi2K = 1 does not appear in one random INPUT

expression pattern is 1�
1

22K
. Thus, the probability that vi1 = � � � = vi2K = 1

does not appear in any ofm random INPUT expression patterns is (1�
1

22K
)m.

Since the number of combinations of 2K nodes is less than n2K , the proba-

bility that there exists a combination of 2K nodes for which an assignment

vi1 = � � � = vi2K = 1 does not appear in any of m random INPUT expression

patterns is at most n2K � (1�
1

22K
)m. Since there are 22K possible assign-

ments to 2K variables, the probability that the condition of Proposition 1 is

not satis�ed is at most 22K � n2K � (1�
1

22K
)m. It is not di�cult to see that

22K � n2K � (1�
1

22K
)m < p holds form > ln 2 � 22K � (2K + 2K log n + log

1

p
).

Letting p = 1

n�
, we obtain the theorem. 2

0 1 1

v1 v2 v3

I3

I1

I2

v4

1

1 0 1 1

1 1 0 1

1 1 1 0

0 0 0 0I5

I4

EX 1 EX 2

v1 v2 v3 v4

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 1 1 1

Figure 3: Let n = 4 and K = 1. The condition of Proposition 1 is satis�ed by EX1, but not

satis�ed by EX2 because a sub-assignment hv2 = 0; v3 = 0i does not appear in EX2.
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Note that the probability of Theorem 2 is computed amongst all possible

INPUT expression patterns, not amongst all Boolean networks. Therefore,

for any Boolean network of �xed K, O(log n) INPUT/OUTPUT pairs are

su�cient with high probability.

Theorem 2 seems surprising because only O(log n) INPUT/OUTPUT pairs

are su�cient for the identi�cation (for �xed K) although there are 2n di�erent

INPUT expression patterns for a Boolean network. We can also prove that,

in the average, O(log n) expression patterns are su�cient, where we omit the

proof here.

3.3 Information Theoretic Lower Bound

Next we show an information theoretic lower bound on the number of IN-

PUT/OUTPUT pairs required to identify the Boolean network uniquely.

Theorem 3. 
(2K + K log n) INPUT/OUTPUT pairs are necessary in the

worst case to identify the Boolean network of maximum indegree � K.

(Proof)We consider the number of mutually distinct Boolean networks. Since

there are 
(nK) possible combinations of input nodes and 22
K

possible Boolean

functions per node, there are 
((22
K

� nK)n) Boolean networks whose maxi-

mum indegree is at most K. Therefore, 
(2Kn + nK log n) bits are required

to represent a Boolean network. On the other hand, information quantity ob-

tained from one INPUT/OUTPUT pair is n bits. Therefore, 
(2K +K log n)

INPUT/OUTPUT pairs are required in the worst case. 2

4 Computational Experiments

In Section 3, we proved a lower bound and an upper bound of the number of

INPUT/OUTPUT pairs required to identify the Boolean networks. However,

regarding to a constant factor depending on K, there is still a gap between

them. Thus, in order to clarify the constant factor in a practical case, we have

made computational experiments. We made a computer program using C

language on SUN ULTRA ENTERPRISE-10000 with 64 processors and 16GB

memory.

4.1 Random Expression Patterns

We �rst examine cases of K = 2 and K = 3 using randomly generated Boolean

networks and randomly generated INPUT expression patterns.

For each n and eachK, we randomly generate 10 Boolean networks, where

each network is generated by, for each node, randomly choosing two input
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nodes and a Boolean function from 22
K

possible ones. INPUT expression

patterns are generated randomly by independently assigning 1 to each node

with probability 0:5. For each INPUT, OUTPUT is computed according to

the Boolean functions assigned to the nodes. For each generated network,

we generate INPUT/OUTPUT pairs until the network is identi�ed uniquely

and we count the number of INPUT/OUTPUT pairs. Since we use randomly

generated INPUT expression patterns, we take the average number of 10 trials.

10 20 40 80 160 320 640

20

40

60

80

100

K=2

K=3

#examples

#nodes

Figure 4: Results of computational experiments on the number of INPUT/OUTPUT pairs

required to identify the Boolean networks of maximum indegree K = 2; 3. Note that X-axis

is log-scaled and thus this graph shows that the number is proportional to log n.

The results are shown in Fig. 4. In each case, it is seen that the number

of INPUT/OUTPUT pairs is proportional to log n. For the result of K = 2,

it is seen that only less than 50 pairs are required to identify the network with

320 nodes. Since the number is proportional to log n, this result suggests only

100 pairs are required to identify the network with 100; 000 (� 3202) nodes in

the case of K = 2. Even for K = 3, we can see that the number is not so large

(< 300 pairs). From these results, it is seen that the constant factor on log n

is not close to either the upper bound (ln 2 � 2K � 22K) or the lower bound (K).

It seems that the constant factor is near to K � 2K .

As for the CPU time for identi�cation, it took less than 1 sec. for small

n (e.g., n � 40), whereas it took more than 1 min. for large n (e.g., n � 160

and K = 3). So, we could not achieve enough computational experiments to

derive the average number for the case of n = 320 and K = 3.

4.2 Expression Patterns Generated from Attractors

In the above, we use randomly generated INPUT/OUTPUT pairs. However,

in real biological experiments, we observe expression patterns in a consecutive

time sequence. In such a case, an output expression pattern at time t corre-
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sponds to an input expression pattern for the next time step (i.e., It+1 = Ot),

and thus INPUT expression patterns can not be considered as random expres-

sion patterns.

Thus, in this experiment, we used only one randomly generated INPUT

expression pattern I1 and we used INPUT expression patterns generated by

Ij+1 = Oj for I2; I3; : : : However, in this case, we could not identify the Boolean

network uniquely because the INPUT expression pattern sequence fell into an

attractor7;10 and only a small number of di�erent expression patterns appeared.

We can not identify a Boolean function whose value does not change in an

attractor cycle.

The above phenomenon is reasonable from a biological point of view. At-

tractors are considered as the target areas of an organism 5;7, e.g. cell types

at the end of development, repaired tissue following a response to injury, or

adaptation of metabolic gene expression following a change in nutrient envi-

ronment in bacteria. Usually, it is not considered that all genes are always

active. Indeed, there are some genes which are active only under some special

environment (such as cell division or heat-shock). We can not discover the

regulation mechanism for a gene whose expression pattern does not change in

one environment. In such a case, we should observe gene expression patterns

under other environments (or in other types of cells).

Thus, we generate another attractors if the network is not identi�ed uniquely

from expression patterns in one attractor. We use the following procedure to

generate expression patterns: (1) Generate random expression pattern I1, and

generate INPUT expression patterns by Ij+1 = Oj until the same INPUT

expression pattern as the previous INPUT expression pattern appears; (2) If

the network is not identi�ed uniquely from previous INPUT/OUTPUT pairs,

generate a new random expression pattern I1 (which corresponds to a new

attractor cycle) and repeat STEP (1) and STEP (2).

The result of a computational experiment is summarized in Fig. 5. Note

that, in this experiment, 10 random networks of K = 2 are generated for each

n, and average numbers (over 10 trials) of attractors and INPUT/OUTPUT

pairs, which are required to identify the network uniquely, are computed. From

Fig. 5, although it is seen that the number of INPUT/OUTPUT pairs becomes

much larger than one in the case of Fig. 4, the growth rates of both the number

of attractors and the number of INPUT/OUTPUT pairs are still proportional

to log n. From Fig. 5, it is suggested under the Boolean network model of

low K that, if we observe time series of gene expression patterns in several

tens of di�erent environments (or di�erent types of cells), we can identify

the network. Of course, further studies must be done in order to verify this

statement, especially for real biological systems.
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Figure 5: Results of computational experiments on the number of INPUT/OUTPUT pairs

and the number of attractors required to identify the Boolean networks of K = 2.

5 Discussions

We have proved that O(log n) INPUT/OUTPUT pairs are necessary and suf-

�cient for the identi�cation of the Boolean networks of bounded indegree. For

that purpose, we proposed a simple algorithm. Moreover, in oder to clarify a

constant factor on log n, we made computational experiments.

Of course, real biological systems are di�erent from Boolean networks:

nodes in a Boolean network take binary values which are updated synchronously,

whereas quantities of gene expressions in real cells are not binary and are

changing continuously in time. However, owing to its simplicity, the proposed

algorithm can be extended in various way. It can be extended for networks in

which the following conditions are satis�ed: (1) There is a procedure for enu-

merating (possible) functions assigned to each node; (2) There is a procedure

for testing whether or not a function assigned to each node is consistent with

examples.

Moreover if the above procedures work in polynomial time, the whole

algorithm also works in polynomial time. For example, we can extend the

algorithm for the networks consisting of functions which depend not only on

expression patterns of time t but also on expression patterns of time t� 1; t�

2; : : : ; t�N for some constant N . We can extend for functions which take not

0/1 but some discrete values. Mathematical analysis would also be extended

for such cases.

The algorithm may also be extended for the identi�cation of networks or

systems in which continuous functions are used. As in the case of REVEAL
5, the algorithm can be extended for such systems if continuous behaviors can

be approximated by discrete systems.

The drawback of the proposed algorithm is that it is not e�cient: it works

in O(n3m) time even for K = 2, and it works in O(n4m) time for K = 3.
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Although the idea used in REVEAL may be useful, the e�ciency of REVEAL is

not enough (for higherK) as Liang et al. 5 pointed out. Therefore, development

of faster algorithms is an important future work.

Finally, we believe that our theoretical results, along with the experimental

results5 by Liang et al., encourage the attempts to discover the gene regulation

mechanism from time series of gene expression patterns.
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