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Abstract

We present a global search technique for �nding the global minimal

conformation of a sequence in Dill's HP-lattice model5;6. The HP-lattice

model is a simpli�ed model of proteins, that has become a major tool

for investigating general properties of protein folding.

The search technique uses constraint programming for e�ciently prun-

ing the search tree. We state the problem of structure prediction in the

HP-lattice model and describe our implementation using the Oz-system7.

1 Introduction

The protein folding problem is one of the major unsolved problems in com-

putational biology. For this reason, simpli�ed models have been introduced,

which have become a major tool for investigating general properties of protein

folding.

An important class of simpli�ed models are the so-called lattice models.

The simpli�cations used in this class of models are (1) monomers (or residues)

are represented using a uni�ed size (2) bond length is uni�ed (3) the positions

of the monomers are restricted to positions in a regular lattice. Thus, every

conformation of a lattice protein is a self-avoiding walk in Z2 or Z3 (depending

on whether one considers two-dimensional or three-dimensional lattice models).

A discussion of lattice proteins can be found in Dill et al. 2.

The most predominant representative of lattice models is the HP-model,

which was introduced by Lau and Dill5;6. In this model, the 20 letter alphabet

of amino acids (and the corresponding manifoldness of forces between them) is

reduced to a two letter alphabet, namely H and P . H represents hydrophobic

amino acids, whereas P represent polar or hydrophilic amino acids. The energy

function for the HP-model is given by the matrix
H P

H -1 0

P 0 0
which simply states that the energy contribution of a contact between two

monomers is �1 if both are H-monomers, and 0 otherwise. Two monomers
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form a contact in some speci�c conformation if they are not connected via

a bond, but occupy neighboring positions in the conformation (i.e., the dis-

tance vector between their positions in the conformation is a unit vector). A

conformation with minimal energy (in the following called optimal conforma-

tion) is just a conformation with the maximal number of contacts between

H-monomers. Figure 1 shows a conformation for the sequence PHPPHHPH in

the 2-dimensional lattice whose energy is -2.
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Figure 1: Sample conformation for PHPPHHPH. The white beads represent P, the black

ones H monomers. The two contacts are indicated via dashed lines.

2 Previous Work

In the literature, there were several algorithms proposed for the HP-model.

E.g., there are heuristic approaches such as the hydrophobic zipper 3, the ge-

netic algorithm by Unger and Moult 9 and the chain growth algorithm by

Bornberg-Bauer 1. Another example is an approximation algorithm as de-

scribed in Hart and Istrail 4, which in linear time produces a conformation

whose energy is know to be at least 3
8
of the optimal energy (which, on the

other hand, is not an approximation ratio that can be used in an application).

And there is an exact algorithm, namely the CHCC of Yue and Dill 10, which

�nds all optimal conformations.

Our algorithm is motivated by the CHCC-algorithm 10. The main idea

of CHCC is that the surface area of the hydrophobic core is more easily to

estimate (given partial information about the �nal conformation) than the

number of HH-contacts, and that the core surface area and the number of

contacts are related one-to-one. Using this observation, in a �rst step, CHCC

enumerates all possible shapes of the region containing all H-monomers of

the given sequence (i.e., all core shapes). This enumeration is done in a way

such that core shapes with a smaller surface area are enumerated before core

shapes with a larger surface area. For every core shape, CHCC enumerates
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all positions of the monomers that �t into the given core shape. CHCC uses

some conditions (or constraints) to reduce the size of the search tree. The

motivation behind CHCC was to provide an algorithm which encounters all

optimal conformations of a sequence.

We had a di�erent motivation for our algorithm. The �rst motivation was

to provide a fast algorithm to �nd the minimal energy for a given sequence (see

the results section for some sample run times). In this case, it is better not

to enumerate the explicit core shapes before enumerating the conformations.

The reason is that di�erent core shapes share many sub conformation, which

means that part of an optimal conformation is enumerated several times in

the CHCC algorithm. This makes no di�erence if one wants to enumerate all

optimal conformations, but causes an overhead if one searches for only one

optimal conformation. The second, and equally important motivation, was to

provide an algorithm, which allows to investigate di�erent search strategies.

Here, again enumerating the core shapes directly is a disadvantage.

3 Constraint Programming

Constraint Programming is a relatively new programming technique, which al-

lows to combine a declarative de�nition of a problem (like in PROLOG) with

a precise de�nition of the operational behavior of the program. It may not

be mistaken for constraint logic programming, although constraint program-

ming has some of its roots in constraint logic programming. Constraint logic

programming is usually a sequential form of programming with a �xed builtin

search strategy. (Concurrent) Constraint Programming is an inherently con-

current programming paradigm, since all constraints are handled in parallel,

which causes a mutual reinforcements of the constraints. Furthermore, the

search strategy is not �xed, and in the case of the Oz-System 8;7 we are using,

the search strategy can easily be programmed. Note that the word constraint

is often used without using the programming paradigm underlying constraint

programming. Thus, although CHCC means Constrained Hydrophobic Core

Construction, it does not use the techniques of constraint programming.

4 Description of the algorithm

4.1 Surface and Energy

A sequence is an element in fH;Pg�. With si we denote the i� th element of

s. A conformation c of a sequence s is a function

c : [1::jsj]! Z
d
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(where d = 2 or d = 3 depending on whether we consider 2-dimensional or

3-dimensional lattice) such that

1. 81 � i < jsj : jjc(i) � c(i + 1)jj = 1 (where jj � jj is the euclidic norm on

Z
d)

2. and 8i 6= j : c(i) 6= c(j).

The �rst condition is imposed by the lattice constraint and implies that the

distance vector between to successive elements must be unit-vectors (or neg-

ative unit-vectors) in every admissible conformation. The second condition is

the constraint that the conformation must be self-avoiding.

Given a conformation c of a sequence s, the number of contacts Contacts(c)

in c is de�ned as the number of pairs (i; j) with i+ 1 < j such that

si = H ^ sj = H ^ jjc(i)� c(j)jj = 1

(in other words, the number of pairs of H-monomers that have distance 1 in

the conformation c, but are not successive in the sequence s). The energy

of c is just �Contacts(c). The surface Surfs(c) is de�ned as the number of

neighbor positions of all c(i) with si is a H-monomer that are not occupied by

other H-monomers.

Now Yue and Dill 10 made the observation that there is a simple linear

equation relating surface and energy. This equation uses the fact that every

monomer has 2 � d neighbors in the Zd, each of which is in any conformation

either �lled with either a H-monomer, a P -monomer, or left free. Let nsH be

the number of H-monomers (resp. P-monomers) in s, and then we have for

every conformation c that

2 � d � nsH = 2 � [Contacts(c) +HHBonds(s)] + Surfs(c) (1)

where HHBonds(s) is the number of bonds between H-monomers (i.e., the

number of H-monomers whose successor in s is also a H-monomer). Since

HHBonds(s) is constant for all conformation c of s, this implies that mini-

mizing the surface is the same as maximizing the number of contacts.

4.2 Overall Search Structure

Our algorithm is a combination of a Branch-and-Bound search together with

a constrain-and-generate principle, as it is usual for constraint optimization.

We minimize the variable Surface, which has a �nite domain associated.

Our algorithm works as follows. Initially, all constraint are set up. Then,

in a generate step, a variable var is selected whose value is not yet determined,
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and a corresponding value val out of the associated range is chosen. Then the

variable is set to this value in the �rst branch (i.e., the constraint var=:val

is added). In the second branch, which is visited after the �rst branch is

completed, the constraint var 6=:val is added. In both cases, after the gener-

ate step, the constraint programming system evaluates the e�ected variables

according to the constraints, which results in an association of smaller value

ranges to some (or many) variables and thus prune the search tree by removing

inconsistent conformations.

At every step of the search, we call the set of �nite domains associated

to the variables and the set of determined variables and their associated value

the con�guration at that step. The con�guration re
ects a set of possible

conformation that are compatible with this con�guration. The �nite domain

associated with Surface re
ects the range of surfaces of the conformations

compatible with the con�guration. Thus, the lower bound of Surface is the

lower bound used for pruning the search tree in the branch-and-bound search.

The generate-and-constraint steps are iterated until all variables are de-

termined (which implies, that a valid conformation is found). If we have found

a valid conformation c, then the constraints will guarantee that Surface is de-

termined and the associated value is Surfs(c). Then the additional constraint

Surface < Surfs(c) (2)

is added, and the search is continued in order to �nd the next conformation,

which must have a smaller surface due to (2). This implies that the algo-

rithm �nally �nds a conformation with minimal surface (and henceforth with

maximal number of contacts by Equation (1 ).

4.3 The Variables

In the �rst step, the frame of the optimal conformation is calculated using

the approach of 10. Given a conformation, the frame of the conformation is

the minimal rectangular box that contains all H-monomers of the sequence. A

frame is uniquely determined by its dimension in x, y and z-direction. Yue

and Dill 10 provided a method to calculate a lower bound on the surface when

all H-monomers are packed within a speci�c frame. Thus, there are usually

a few frames to be searched through to �nd the optimal conformation, since

often bigger frames have a higher lower bound for the surface than an optimal

sequence found in a smaller frame. For all examples in 10, there is even only

one frame that has to be searched through. The assumption of a frame that

contains all H-monomers is an e�cient way of excluding many non-optimal

conformations. Note that also some of the P-monomers must be included
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within this frame, namely those P-monomers whose left and right neighbor

in chain is a H-monomer. The reason is just that one cannot include the

surrounding H-monomers into the core without also including the middle P-

monomer. These P-monomers are called P-singlets (see 10 for a more detailed

description of P-singlets).

Our constraint problem consists of di�erent variables, which have all a

�nite domain associated. Given a speci�c sequence s, the variables of our

constraint problem are listed in Figure 2.

Frx, Fry, Frz dimension of the frame

Xi, Yi, Zi x-,y-, and z-coordinate of the ith monomer

(where 1 � i � length(s))

Ej.seh, Ej.soh number of even and odd H-monomers of the jth

x-plane (or x-layer) in the frame, respectively

(where 1 � j � Frx);

Ej.sep, Ej.sop number of even and odd P-singlets of the jth

x-layer in the frame, respectively

Pk.ctp type of the kth position of the frame (where

1 � k � Frx � Fry � Frz); the core type Pk.ctp

of the kth position is either 1, if it is occupied

by a H-monomer, and 0 otherwise

Oki for every position k of the frame and every

monomer i; Oki has boolean value (i.e., 0 or 1),

and is 1 i� monomer i occupies the kth position

of the frame.

Surflk surface contribution between neighbour posi-

tions k and l under the condition, that k is

occupied by a H-monomer. Thus, k must be

within the frame, and l can be within the frame

or outside the frame with distance 1 from the

frame boundaries

Surface complete surface of the conformation

Figure 2: The variables and their description

Initially, all the variables are undetermined, i.e., there is no �xed value but

a range of values associated to each variable (e.g., the range for the variables

Xi, Yi, and Zi is 1 : : : (2�length(s))). A solution of this constraint problem is an

assignment of values to all variables, which respects all constraints we will list
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below. Although the Xi, Yi, and Zi are su�cient to describe a conformation,

we need the other variables for e�ciently pruning the search tree.

4.4 Constraints and Search Strategy

The basic constraints, which describe basic properties of self-avoiding walks,

are the following. The self-avoidingness is just

(Xi; Yi; Zi) 6= (Xj ; Yj ; Zj) for i 6= j:a

Next, we have to express that the distance between two successive monomers is

1. For this purpose, we introduce for every monomer i with 1 � i < length(s)

three variables Xdiffi, Ydiffi and Zdiffi, which all have the value range

0 : : : 1 associated. Then we can express the unit-vector distance constraint by

Xdiffi =: Abs(Xi � Xi+1)

Ydiffi =: Abs(Yi � Yi+1)

Zdiffi =: Abs(Zi � Zi+1)

Sum[Xdiffi; Ydiffi; Zdiffi] =: 1 (3)

Both Abs and Sum are builtin functions of the constraint programming

language Oz. The important property of these builtin functions is that they

allow constraint propagation on undetermined variables (i.e., variables where

only a range of values is associated).

The other constraints are as follows. Clearly, we must have

FrxX

j=1

Ej.soh = number of odd H-monomers in s (4)

FrxX

j=1

Ej.seh = number of even H-monomers in s

FrxX

j=1

Ej.sop = number of odd P-singlets in s

FrxX

j=1

Ej.sep = number of even P-singlets in s

aThis cannot be directly encoded in Oz, but we reduce this constraints to di�erence

constraints on integers
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Furthermore, we have for every layer j that

Ej.soh+ Ej.seh+ Ej.sop+ Ej.sep � Fry � Frz (5)

We write Elemij = 1 if the ith monomer is an element of the jth layer in

x-direction. Then Elemij can be de�ned by

Elemij = 1 , Xi = j + x-coordinate of starting point of frame.

Furthermore, we can state that whenever two monomers i and i+3 are in the

same layer, then i+1 and i+2 must also be in one layer due to the condition

that we must fold into a lattice conformation. I.e., for every 1 � j � Frx we

have

Elemij = 1 ^ Elemi+3
j = 1 ) Xi+1 = Xi+2

Furthermore, there is a special treatment of P-singlets, which may not be

buried into the core (forming a caveat) in order to achieve an optimal confor-

mation (Yue and Dill 10 have a similar strategy for avoiding caveats; they have

calculated that this strategy is in almost all cases correct for sequences with

length < 70). Thus we can state for every P-singlet i that

Elemij = 1 ^ Elem
i+1
j = 0 ) Elem

i�1
j = 1

Elemij = 1 ^ Elemi�1j = 0 ) Elemi+1
j = 1:

At some stage of the search we have to assign monomers to frame positions.

A monomer i is assigned the position k by setting Oki to 1 in one branch (which

has just the e�ect that yi and zi is set to the y- and z-coordinate of the position

k), and 0 in the other. Self-avoidingness is achieved by

Sum[Ok1; : : : O
k
length(s)] =<: 1

But there are additional constraints which restricts the core type and the

monomers that can be placed at some position. If at some stage we know that

no monomers can be placed at some position k, then we know that the core

type must be 0. This is implemented by the constraint

(Sum[Oki1 ; : : : ; O
k
in
] =: 0) () (Pk.ctp =: 0);

where i1; : : : ; in are all H-monomers in s. This kind of constraint is called

a rei�ed constraint, and can directly be stated this way in the language Oz.

There are other constraints which relates the core types of di�erent positions,

but we do not state them here for simplicity reasons.
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Finally, we have constraints relating core types of positions and surface

contributions:

Surface =:
X

k;l

Surflk

If l is a position outside the frame (i.e., if its x,y or z-coordinate is outside the

frame), then

(Surflk =: 1) () (Pk.ctp =: 1)

Otherwise we have (Surflk =: 1)() (Pk.ctp =: 1) ^ (Pl.ctp =: 0)

Search Strategy Our search strategy is as follows. We select the variables

according to the following order (from left to right)

Frx

Fry

Frz

<

Ej.seh

Ej.soh

Ej.sep

Ej.sop

< Oki <

Xi

Yi

Zi

That means, in the �rst round, the frame dimensions are select for the

search. After the frame dimensions have been chosen, the number of even

and odd H-monomers and P-singlets are assigned to the di�erent layers in

x-direction. Constraints that prune the search tree at that point are clearly

(4) and (5). But there are additional constraints which allows us to give a

more precise lower bound on the surface and thus prune the search tree more

e�ciently. The basis for these constraints are two observations. The �rst

one, made in 10, is that the surface of conformation in some speci�c layer

depends only on the minimal rectangular box that can be drawn around the

H-monomers in this layer. The second, to our knowledge �rst stated in4, is the

observation that in regular lattice models, contacts can only be formed between

monomers whose sequence numbers have di�erent parity (i.e., monomers whose

sequence index is even can have only contacts with those whose index is odd,

and vice versa). Using the second observation we were able to calculate the

minimal rectangular box that can contain the Ej.soh odd and Ej.seh even H-

monomers in layer j (see 3). From this we get the minimal surface contribution

in y- and z-direction. The minimal surface in x-direction (for every layer j) is

just

jEj.soh� Ej+1.sehj+ jEj.seh� Ej+1.sohj:

Both together yields a lower bound for the surface and is used to prune the

search tree.
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by even monomers

even odd

MinBox dimension: <2,2>

Surface >= 8Surface >= 6

MinBox dimension: <2,1>

Ej.seh = 0     Ej.soh = 2

odd

Positions can

Ej.seh = 1     Ej.soh = 1

only be occupied

Figure 3: Minimal enclosing box for di�erent assignments of Ej.soh and Ej.seh.

In the following step, we assign H-monomers and P-singlets to the di�erent

layers according to Ej.seh; Ej.soh; Ej.sep and Ej.sop. If all H-monomers and

P-singlets are assigned to layers, we search for the positions of these monomers

within the frame. The �nal step consists of assigning x-, y- and z-values to all

monomers which are neither an H-monomer nor a P-singlet.

5 Results

We have tested the program on all sequences presented in 10. For all we found

an optimal conformation. In table 1, we have listed the test sequences together

with the found optimal conformation, the sequence length and the optimal

surface.

In table 2, we have listed

1. the number of steps to �nd a �rst conformation,

2. the number of steps to �nd the optimal conformation, if the �rst was not

optimal (which was only the case for the sequence L2),

3. the total number of steps required to prove that the found conformation

is an optimal conformation,

bYue and Dill 10 have stated that the optimal surface is 16, but this is a typo since the

conformation they have shown for this sequence has a surface of 32.
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Sequence and Sample Conformation Length Optimal Surface

L1 HPPPPHHHHPPHPHPHHHPHPPHHPPH 27 40

RFDBLLFRFUBULBDFLUBLDRDDFU

L2 HPPPHHHHPHPHHPPPHPHHPHPPPHP 27 38

RFDLLBUURFDLLBBRURDDFDBLUB

L3 HPHHPPHHPPHHHHPPPHPPPHHHPPH 27 38

RFLDLUBBUFFFDFURBUBBDFRFDL

L4 HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH 31 52

RRFDBLDRFLLBUFLURFDDRFUBBUFRDD

L5 PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP 36 32b

RFDBDRUFUBRBLULDLDRDRURBLDLULURBRFR

Table 1: Test sequences. Below every sequence, we list an optimal confor-

mation. Every conformation is represented as a sequence of bond direction

(R=right,L=left,F=forward,B=backward,U=up and D=down).

4. and the total runtime on a Pentium 180 Pro.

Seq. 1st Conf. 2nd Conf. total # Steps Runtime

# Steps Surface # Steps Surface

L1 914 40 (opt.) | | 921 3.85 sec

L2 1322 40 1345 38 (opt.) 5372 1 min 35 sec

L3 1396 38 (opt.) | | 1404 4.09 sec

L4 35 52 (opt.) | | 38 0.68 sec

L5 1081 32 (opt.) | | 1081 4.32 sec

Table 2: Search time and Number of Search Steps for the sample sequences.

It is hard to relate these results with the results given in10. Due to the fact

that we do not explicitly enumerate the form of the core, our algorithm is better

suited for �nding one best conformation instead of all best conformations.

Not enumerating the core form has the e�ect, that every sub conformation

is only enumerated once. On the other hand, Yue and Dill's algorithm is

especially designed for �nding all conformations, which clearly results in longer

runtime. Using this approach, enumerating the core form is a good strategy

since it allows to introduce additional constraints. The negative side e�ect

of enumerating sub conformations several times has no implication if one is

interested in all optimal conformation. The runtime (on a Sun4) for all optimal

conformations in 10 are 1 h 38 min for L1, 1 h 14 min for L2, 5 h 19 min for
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L3, 5 h 19 min for L4 and 20 min for L5, respectively. There is a newer,

more e�cient version of this algorithm reported in 11, but there are no explicit

runtime given for these or others sequences.
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