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Redox properties of yeast cytochrome c are estimated using molecular dynam-

ics combined with a simple linear response approximation, as well as a hybrid
continuum{molecular dynamics (COMD) approach. In both approaches, the free

energy associated with an electrostatic perturbation (a redox electron) is separated
into its relaxation and static (non-relaxation) components. The static component
is calculated from the molecular dynamics simulation. The relaxation component

is then calculated with a linear response approximation, either from the molecular
dynamics, or from a separate continuum calculation. This latter hybrid approach

exploits the relative robustness of continuummodels for dealing with large pertur-
bations, while avoiding some of their limitations. It is quite general, and could be

applied for example to pKa calculations.

1 Introduction

Electrostatic and dielectric properties of proteins are central to their stability
and activity [1]. This is especially obvious in the case of redox and electron
transfer proteins, which harvest and orchestrate the ow of much of the energy
in the biosphere. A very challenging area is the study of charge screening in
these complex, inhomogeneous systems. Various experimental techniques have
been used, such as measurements of redox potential shifts [2], pKa shifts [3], or
changes in stability [4], upon mutating charged and polar groups. These tech-
niques provide only indirect information on the protein properties themselves,
since they contain a large contribution from solvent relaxation. Dielectric dis-
persion by dry protein powders [5], and measurements of gas phase basicities
of protein ions [6], probe the protein properties directly, but in non-aqueous
environments. The presence of a spectroscopic probe can provide a sensitive
window into local details of a protein medium. Thus Stark e�ect measure-
ments have been used to study both the equilibrium electric �eld [7], and
local polarizability [8] at speci�c protein sites. Time-dependent Stokes shifts
of a die complexed with apomyoglobin [9] provide a direct measurement of
time-dependent dielectric relaxation. Finally, computer simulations provide a
powerful approach, which becomes increasingly attractive as force �elds, elec-
trostatic treatments, and computer resources steadily improve [10,11].

Cytochrome c has served for many years as a model electron transfer pro-



tein, and a large body of experimental and simulation data has been accu-
mulated. We have carried out molecular dynamics simulations of yeast cy-
tochrome c in solution in its oxidized and reduced forms, and we have re-
ported recently detailed analyses of its macroscopic and microscopic dielectric
properties [12{14]. We report here further calculations of redox properties,
using two novel continuum and molecular dynamics methods. The �rst is a
simple linear response approximation, proposed recently by Simonson et al.

and Levy et al. [15{17]. It is used in conjunction with molecular dynamics
simulations to calculate the reorganization free energy associated with heme
oxidation and reduction, and compared to more rigorous free energy pertur-
bation calculations. This approximation has already been applied to several
problems [12{20]. However applications to proteins have been limited, and it
is therefore useful to explore its limits further here.

The second method is a new, hybrid, continuum{molecular dynamics (COMD)
method for the calculation of electrostatic properties. In this method, the per-
turbation free energy associated with, say, heme oxidation is decomposed into
two components: a relaxation free energy, and a static free energy [21]. The
static free energy is calculated from a molecular dynamics simulation, while
the relaxation free energy is obtained from a continuum model. The COMD
method is quite general, and can be applied to many electrostatic calculations,
including pKa calculations. As a preliminary test, the method is applied here
to the calculation of the redox potential of cytochrome c. Additional applica-
tions are underway.

2 Methods

2.1 Linear response approximation

When a set of perturbing charges qi (such as a redox electron) is introduced
into the vicinity of a protein, the perturbation free energy has the well-known
expression [22]

�G = �kT lnhexp(�U=kT )i0; (1)

where U is the perturbation energy, and the brackets indicate an ensemble
average over the unperturbed ensemble. If the perturbation consists of a single
redox electron, for example, �G is the redox potential. Expanding the above
expression in powers of U=kT gives

�G = hU i0 �
1

2kT
(hU2

i0 � hU i
2

0
) + O([U=kT ]3)

= G1 + G2 + Gnl (2)



The �rst term G1 represents the static component of the perturbation free
energy, while the remaining terms G2 and Gnl represent the relaxation free
energy [13,21]. If the perturbation consists of a redox electron, the relaxation
free energy is identical to the reorganization free energy of electron transfer
theory [23]. The linear response approximation truncates the free energy ex-
pansion after the second order term G2, giving a quadratic free energy with
respect to the perturbing charges. The remaining Gnl is the `non-linear' com-
ponent. This truncation is equivalent [17] to assuming a gaussian probability
distribution of the perturbing potential (over the unperturbed ensemble). The
relaxation free energy can also be written

�G�G1 = Grlx = �kT lnhexp(��U=kT )i0; (3)

where �U is the deviation of U from its mean. The ensemble averaging is
normally done using a microscopic simulation technique|molecular dynamics
in the present work.

2.2 COMD: a hybrid continuum{molecular dynamics model

The decomposition of the perturbation free energy into static and relaxation
components (above) can be made in continuum models as well as molecular
dynamics. It is easy to show (e.g. [13, 15]) that the relaxation free energy is
identical to the self-energy of the perturbing charges. Thus for a redox electron,
for example, the relaxation free energy for reduction is the free energy to
insert the perturbing electron, with all the protein permanent charges removed.
Proton self-energies are routinely calculated as a part of pKa calculations.

We propose here a novel, hybrid, method, termed COMD, in which the
relaxation component of the perturbation free energy is calculated from a con-
tinuum model, while the static component (hU i0) is calculated from a molec-
ular dynamics simulation. This additional complexity aims to exploit optimal
features of each method. Thus, the molecular dynamics model should pro-
vide a reasonably accurate estimate of the static component of the free energy,
obtained by simply averaging the perturbation over the simulation. While
this procedure is known to have signi�cant statistical uncertainty, it is never-
theless free from the more serious approximations of continuum models; the
neglect of speci�c ordering of discrete water moleules for example. On the
other hand, the continuum model provides a simple and robust approach to
relaxation free energies, which has been tested speci�cally for this purpose in
some detail [13]. Microscopic free energy calculations, either using the linear
approximation or the full exponential form (1), are limited with respect to the
size of the perturbation that can be tackled (see below, as well as e.g. [18,12]),



precisely because of lack of convergence of the relaxation free energy. The
continuum model, while approximate, is known to be more robust in this re-
spect. It is also completely independent, in this context, of any choice of
permanent charge distribution, since the self-energy is calculated without any
protein permanent charges; and it is fairly robust with respect to the choice
of atomic radii. It does require an assumption for the protein dielectric. Here,
the COMD method exploits an important feature of proteins: the optimal di-
electric constant to describe relaxation properties is normally di�erent from
the low value (1{2) used to describe equilibrium properties [24{26]. This is
physically fairly obvious, but has been neglected in most applications of con-
tinuum models. By explicitly separating out the relaxation part of the free
energy, the COMD method relies clearly on the Fr�ohlich-Kirkwood dielectric
constant, which is unambiguously de�ned as a linear response coe�cient. The
Fr�ohlich-Kirkwood dielectric constants of eight proteins have been calculated
recently from molecular dynamics simulations [27, 12, 26]. It was found that
while the overall values are surprisingly large (ranging from 11 to 35), values in
the protein interior are much lower, ranging from 2 to 4, consistent with earlier
empirical estimates [24] as well as powder experiments [5]. For cytochrome c,
in particular, the polarizability in the heme vicinity is low [12,13].

At �rst glance, the self-energy calculation with the continuummodel would
appear to require an assumption for the radius of the perturbing charges. This
could introduce strong artefacts into the calculation. However in practice, one
transfers the perturbing charges from a reference compound, such as a heme
in solution, to the compound of interest|the protein-bound heme. In that
case there is a systematic cancellation of the radius-dependent part of the free
energy.

2.3 Simulations

Two molecular dynamics simulations were performed, of yeast ferro- and ferri-
cytochrome c (abbreviated 1YCC and 2YCC respectively), solvated by 1400
TIP3P waters [28], at 293 K, starting from the crystal structures [29], lasting
one nanosecond each. Electrostatic interactions were truncated beyond 12 �A
(1 �A = 0.1 nm). The Charmm/Param19 empirical force-�eld was used [30].
A soft spherical boundary potential of radius 24 �A was used to con�ne the
system. Simulations were done with the program X-PLOR [31].

Continuumcalculations were performed with the programDelphi [32] using
the protein crystal structure.

In the redox calculations, the redox electron is assumed to be distributed
equally on the four nitrogen atoms that bind the heme iron.



3 Results

3.1 Heme oxido-reduction: linear response free energy calculations

Free energies to oxidize reduced cytochrome c (1YCC), and to reduce oxidized
cytochrome c (2YCC), are reported in Table 1. The free energies are decom-
posed into the �rst-order term G1, the second-order term G2, and higher-order
terms Gnl (eq. 2). By averaging over these `forward' and `backward' free energy
estimates, we obtain another estimate of the 1YCC oxidation free energy. This
estimation is equivalent to performing the oxidation in two steps, i.e. through
a half-oxidation of 1YCC and a half-reduction of 2YCC. This two-step protocol
is closer to a full-edged free energy calculation, and should be more accurate.

We �rst observe the performance of the linear response approximation.
The quality of the linear response approximation is measured by the magni-
tude of the non-linear terms, which are signi�cant for the full reduction of
1YCC, but negligible for the half-oxidation and half-reduction. Thus the lin-
ear response approximation to the relaxation free energy is accurate, in this
case, for a perturbation as large as a half-electronic charge; it is inaccurate for
perturbation by a full electronic charge

Second, we can analyze further the accuracy of the relaxation free energy
by assuming that the probability distribution of the equilibrium electrostatic
potential is gaussian on the heme. This was shown to be the case at all the C�

positions in cytochrome c, over the thermally accessible range of conformations
[13]. It has also been observed in the active site of histidyl tRNA synthetase
(T. Simonson, unpublished). The analysis goes as follows. Calculation of Grlx

(eq. 3) involves integrating the product of exp(��U=kT ) by the probability
distribution p(�U ), which we are assuming to be gaussian. This product is
another gaussian, w(�U ), displaced with respect to p(�U ) by ��2=kT , where
� is the standard deviation of U . In order to calculate the integral accurately,
the peaks of p and w must overlap su�ciently. In other words, our simulation
must sample the regions that contribute most to the integral. This will be the
case if the shift �2=kT is not much larger than the width � of p. Thus the
condition to reliably integrate is

� � kT: (4)

If on the contrary the uctuations of �U are much larger than kT , we cannot be
sure of the accuracy of a single step calculation of the relaxation free energy; the
unperturbed ensemble does not su�ciently sample the tails of the probability
distribution p(�U ). This does not necessarily mean that linear response is
inaccurate. Its accuracy appears in several cases to hold up beyond the region



where � � kT [18]. Thus we �nd empirically that we can calculate Grlx in a
single step with linear response, even in cases when the simulation data would
not by itself give us con�dence to do so. Indeed, this empirical robustness is
precisely what makes linear response useful.

For the present data, � = 1 kcal/mol for the 1YCC simulation (consid-
ering the perturbation to 2YCC, i.e. �q = 1). Thus the integration of the
exponential in (1) should be moderately accurate, and we can compare the
total relaxation free energy to the linear response approximation with some
con�dence. Therefore the deviation from linear response seen in this case is
probably signi�cant, even though the statistical error in G1 is of the same
magnitude.

Our third observation is that the average perturbation energies, or G1,
appear to be quite noisy, as has been seen in other studies. Thus our `forward'
and `backward' free energy estimates (lines 1 and 2 in Table 1) agree closely
for their relaxation components, but disagree completely for the static compo-
nents. The `two-step' estimate (line 5) is e�ectively the average of the previous
two. The real uncertainty in G1 is therefore at least �5 kcal/mol, despite the
small apparent statistical error.

Our estimate of the oxidation free energy of 1YCC is thus 9�5 kcal/mol.
Our estimate of the relaxation, or reorganization free energy is much more pre-
cise: Grlx = -0.80�0.02 kcal/mol. This low reorganization free energy reects
the low polarizability of the protein matrix around the heme, and the absence
of nearby solvent. Indeed, recall that this relaxation free energy includes the
contribution of explicit solvent. Bulk solvent is not present however in our
simulations, since we simulated the protein in 24 �A water droplets, surrounded
by vacuum. A simple Born estimate of the bulk solvent contribution to the
relaxation free energy is -7 kcal/mol, giving a total of Grlx = -7.8 kcal/mol,
including now the e�ect of bulk solvent.

In classical electron transfer theory, this reorganization free energy is di-
rectly related to the activation free energy G� for transfering an electron from
ferro-cytochrome c to ferri-cytochrome c: �2Grlx = 4G�. Thus G� = �Grlx=2
= 3.9 kcal/mol. In contrast, the free energy to introduce a negative charge into
a heme-sized cavity in bulk water would be on the order of -80 kcal/mol, giving
an activation free energy of 40 kcal/mol. Thus the low polarizability of the
protein matrix around the heme has a dramatic e�ect on the electron transfer
kinetics; we expect that qualitatively similar results would hold for electron
transfer between cytochrome c and its physiological partners cytochrome c ox-
idase and reductase. Similar results were obtained by Warshel and coworkers
with a Protein Dipole Langevin Dipole model [33].



Table 1: Heme oxido-reduction: linear response results
�qe G1 G2 Gnl �G

1YCCa ! 2YCCb -1 4.7 (4) -0.8 (2) -0.15 3.8 (4)
2YCC ! 1YCC 1 -13.6 (4) -0.8 (2) 0.14 -14.3 (4)

1YCC ! 1/2YCCc -0.5 2.4 (2) -0.2 (1) -0.02 2.1 (2)
2YCC ! 1/2YCC +0.5 -6.8 (2) -0.2 (1) -0.01 -7.0 (2)

1YCC ! 1/2YCC ! 2YCC -1 9.1d (3)

Results are in kcal/mol. Uncertainties on the last digits in parentheses. aFerri-

cytochrome c. bFerro-cytochrome c. cHalf-oxidized, half-reduced intermediate

state. dObtained by adding together the two previous half steps. eMagnitude of

perturbing charge.

3.2 COMD hybrid methodology

We now adopt the hybrid COMD viewpoint to attack the same problem: cal-
culation of the free energy to transfer an electron from ferro-cytochrome c to
ferri-cytochrome c. We therefore retain the molecular dynamics estimate of
the static component of the free energy, but use a continuum model to cal-
culate the relaxation component. We just saw how well the linear response
approximation and the molecular dynamics approach appears to work for this
calculation, so that a continuum model would not actually present any prac-
tical advantage here. We perform the calculation merely as an illustration of
the hybrid methodology; other applications will be presented in the future.

We consider separately the radius-dependent contribution to the self-energy,
and the remaining contribution, as discussed above (Methods). The radius-
dependent contribution is in fact the Born free energy to embed the perturbing
charge in a homogeneous, in�nite medium having the dielectric constant of the
protein (see [13] for details). In ordinary applications, as pointed out above,
the radius-dependent contribution would systematically cancel when a refer-

ence compound is considered. In the present application, there is no reference
compound, and we will actually explicitly calculate the radius-dependent part,
keeping in mind its arti�cial character. For the protein dielectric constant �p we
assume various values between one and two, based on theoretical calculations
of the dielectric constant in the heme region [12].

With �p = 1 we obtain Grlx = -16.9 kcal/mol. The radius-dependent part
of the self-energy is obviously zero (�p=1), so only the surrounding solvent con-
tributes to the relaxation free energy. This result can be compared with the
molecular-dynamics-plus-Born-correction result of -7.8 kcal/mol, which con-
tains however a contribution from the protein medium itself.

With �p = 2, the self-energy is -8.3 kcal/mol, not including the radius-
dependent term. If we incude the radius-dependent term, the total self-energy



is much too large. To reproduce the molecular dynamics result, we require �p
smaller than 2. Assuming �p = 1.2, we obtain agreement with a radius of 4 �A.
This low protein dielectric is not unreasonable, when comparing to molecular
dynamics results, which do not contain explicit electronic polarizability. A
cavity radius of 4 �A is close to values used in continuum treatments of charged
perturbations (photoexcitation) on an indole ring [34].

4 CONCLUSION

We have presented an application of a simple linear response method, proposed
earlier [15{17], to calculate electrostatic perturbation free energies in proteins.
The linear response approximation appears to be accurate for a perturbing
charge inserted on the heme group of cytochrome c. The low polarizability
seen here for the heme environment is of obvious functional relevance.

We have also proposed a novel hybrid continuum{molecular dynamics ap-
proach for electrostatic free energies. While the application considered was
somewhat arti�cial, the method is quite general, and should be useful for pKa

calculations in particular. It has two advantages in principle: �rst, it should be
able to exploit the robustness of continuum models for handling rather large
perturbations, while still allowing the inclusion of important discrete water
molecules through the static free energy term, where they are likely to con-
tribute most. Second, it incorporates automatically the distinction between
the static and relaxation free energies: it has been pointed out in the past and
recently [24, 13, 25] that these two components should probably not be calcu-
lated with a single dielectric model, but should each have a speci�c treatment,
as in the present approach.
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