
Enumerating Suboptimal Alignments of Multiple Biological

Sequences E�ciently

Tetsuo SHIBUYA, Hiroshi IMAI

Department of Information Science, Faculty of Science, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

The multiple sequence alignment problem is very applicable and important in vari-
ous �elds in molecular biology. Because the optimal alignment that maximizes the
score is not always biologically most signi�cant, providing many suboptimal align-
ments as alternatives for the optimal one is very useful. As for the alignment of two
sequences, this suboptimal problem is well-studied6;9;12, but for the alignment of
multiple sequences, it has been considered impossible to investigate such subopti-
mal alignments because of the enormous size of the problem. The optimal multiple
alignment can be obtained with A� algorithm4;5, and an e�cient algorithm for the
k shortest paths problem on general graphs is discovered recently1. We extend
these algorithms for computation of set of all aligned groups of residues in opti-
mal and suboptimal alignments, and for enumeration of suboptimal alignments.
The suboptimal alignments are numerous. Thus we discuss what kind of subop-
timal alignment is unnecessary to enumerate, and propose an e�cient technique
to enumerate only necessary alignments. The practicality of these algorithms are
demonstrated through experiments. Moreover, the property of suboptimal align-
ments of multiple sequences are also examined through experiments.

1 Introduction

The multiple alignment is a problem to obtain the alignment of multiple se-
quences with the highest score based on some given scoring criterion between
characters. This problem appears in various �elds of molecular biology such
as the prediction of three dimensional structures of proteins and the inference
of phylogenetic tree.

The method using dynamic programming (DP) is well-known for the align-
ment problems. This method needs O(nd) time and space for d sequences of
length at most n. This method can be applied when n is not so large and
d is 2 or 3, but for larger problems, it is impractical. The A� algorithm is a
well-known algorithm for the general optimization and search problems. This
algorithm can reduce the search space dramatically if a powerful estimator
is used. Thus the A� algorithm with upper bounding operation is proposed
recently for computing the optimal alignment of multiple sequences4;5.

A suboptimal alignment is an alignment whose score is close to the optimal
one. The optimal alignment based on the scoring criterion is not always the
biologically most signi�cant alignment, and such candidates as suboptimal
alignments for the best alignment are often required. In fact, in case of aligning
two sequences, the suboptimal alignments problem are well-studied6;9;12 and
used for many applications such as predicting protein structure and so on7;8;11.



REAFSQAIWRATFAQVPESRSLFKR==

ADFLV-ALF-EKFPDSANFFADFKGKS

KNG-S-LLFGLLFKTYPDTKKHFKHFD

LAAVF-TAYPDIQARFPQFAGK-DVAS

GSGVE-ILY-FFLNKFPGNFPMFKKLG

(a) The optimal alignment

REAFSQAIWRATFAQVPESRS LF KR==

ADFLV-ALF-EKFPDSANFFA DF KGKS

KNG-S-LLFGLLFKTYPDTKK HF KHFD

LAAVF-TAYPDIQARFPQFAG -K DVAS

GSGVE-ILY-FFLNKFPGNFP MF KKLG

(c) Another suboptimal alignment

REA FSQ AIWRATFAQVPESRSLFKR==

ADF LV- ALF-EKFPDSANFFADFKGKS

KNG -S- LLFGLLFKTYPDTKKHFKHFD

LAA -VF TAYPDIQARFPQFAGK-DVAS

GSG -VE ILY-FFLNKFPGNFPMFKKLG

(b) A suboptimal alignment

REA FSQ AIWRATFAQVPESRS LF KR==

ADF LV- ALF-EKFPDSANFFA DF KGKS

KNG -S- LLFGLLFKTYPDTKK HF KHFD

LAA -VF TAYPDIQARFPQFAG -K DVAS

GSG -VE ILY-FFLNKFPGNFP MF KKLG

(d) Unnecessary alignment to check

Figure 1: Examples of suboptimal alignments of multiple protein sequences

In multiple alignment problem, with these methods for only two sequences, we
can see suboptimal alignments of each pair of sequences12, but these are not
the accurate suboptimal alignments of all the sequences.

Enumeration of the suboptimal alignments had not been considered as
very practical even in the case of aligning two sequences6;12. But such enumer-
ation becomes easier because a new e�cient algorithm for the k shortest paths
problem is proposed by Eppstein1;10. This algorithm enumerates the k shortest
paths in O(k + n + m) time and space after having constructed the shortest
path tree from the source or the destination for any graph with non-negative
m edges and n vertices.

In this paper, we �rst discuss the method to obtain E�, which represents
all aligned groups of residues in optimal and suboptimal alignments which are
at most � worse than the optimal, by extending the A� algorithm, and based
on this extended A� algorithm and the Eppstein algorithm, we go on to discuss
the methods for the enumeration problem. Figure 1 shows some examples of
suboptimal multiple alignments of protein fragments. (a) is the optimal align-
ment, and (b), (c) and (d) are suboptimal alignments. The regions bounded by
boxes are the regions which are di�erent from the optimal alignment. (b) and
(c) have only one such region. On the other hand, (d) has two, both of which
appear also in (b) or (c). Thus, if we check suboptimal alignments one by
one, examining (d) may be of no use: we can reconstruct (d) from (b) and (c).
Thus we propose a new enumeration algorithm which does not enumerate such
unnecessary alignment as (d) based on the algorithms above. We further show
the e�ciency and practicality of these algorithms and the property of these
suboptimal alignments through experiments on groups of protein sequences.
In the experiments, we will show that both the number of the alignments and
the enumeration time are drastically reduced by ignoring such unnecessary
alignments.



2 Computation of a Subgraph Related to Suboptimal Alignments

E� is a set of vertices which are used by the s-t path whose length is at
most � longer than the shortest path. In this section, we �rst introduce A�

algorithm4;5, and then extends it to compute E� e�ciently.

2.1 A� Algorithm for Multiple Sequence Alignment

The multiple alignment problem can be easily transformed to the shortest path
problem on some grid-like directed acyclic graph with no negative edges. Let
Sk be the kth sequence of d sequences to be aligned, and nk = O(n) be the
length of Sk. Then suppose a directed acyclic graph G = (V;E) such that V =
f(x1; . . . ; xd)jxi = 0; 1; . . . ; nig and E = f(v; v + e)jv 2 V; e 2 [0; 1]d; e 6= 0g.
In this graph, a path from s = (0; . . . ; 0) to t = (n1; . . . ; nd) corresponds to an
alignment of the sequences.

In the alignment problem of two sequences, the length of an edge is de�ned
from the score table between characters, and the length of a path from s

to t equals the score of the corresponding alignment. In multiple alignment
problem, the sum of all the scores for alignments of pairwise sequences is
generally used as the score. Thus the score of the alignment equals the length
of the corresponding path, de�ning length of each edge as the sum of the lengths
of the corresponding edges in the graphs of pairwise alignments. This longest
path problem can be easily transformed to the shortest path problem4;5.

The A� algorithm will not search the whole graph in �nding the shortest
path if a good estimate for the shortest path length from each vertex to t can
be used. Ikeda and Imai4 show the following estimator is very useful in case
d > 2. Let Gij be the corresponding graph to the alignment of Si and Sj ,
vij be the corresponding vertex in Gij to v in G, and L�(u; v) be the shortest
path length from u to v. Then h(v) =

P
1�i<j�d

L�(uij ; vij) can be used as

a powerful estimator for the multiple alignment problem. This estimator is
easily be shown to be dual feasible, i.e. l(u; v) + h(v) � h(u). Hence the A�

algorithm can be applied as following.

1. For each of i and j (1 � i < j � d), apply DP to graph Gij from tij to
calculate L�(vij ; tij) for each vij in Vij .

2. Modify the length of edge (u; v) in G as follows, using h(v) above, and
compute the shortest path with Dijkstra method.

l0(u; v) = l(u; v) + h(v)� h(u) (1)

Note that the time and space used for the DP is negligible, if d is large. A
vertex in the graph for alignment has 2d � 1 edges going out from it, and the
A� algorithm examines all the descendant vertices and keeps in a heap the
information about all of them. If an upper bound L+(s; t) for the s-t shortest



path, which corresponds to the lower bound of the score of the alignment, is
given, the necessary space for the heap can be reduced4;5 and the computing
time is also reduced: we can ignore w such that L�(s; v) + l(v; w) > L+(s; t),
when we examine the descendant vertices of v. This is called the enhanced A�

algorithm.

2.2 Upper Bounding Technique for Computing E�

E� is a set of vertices which are used by the s-t paths whose lengths are at
most � longer than the shortest path, and it corresponds to all aligned groups
of residues in optimal and suboptimal alignments in original problem. This
problem is well-studied5;6;9;12, and computing this set E� with A� algorithm
is not so complicated. For any path p from s to t, the modi�ed path length by
the expression (1) is only h(t)�h(s) longer than the original length. This value
is not relevant to p, thus E� on the modi�ed graph is same as the original one.
Hence, �rst we modify the edge lengths, and then we can obtain E� with the
Dijkstra method as follows5.

1. Search from s by the Dijkstra method until the shortest path from s to
t is discovered.

2. Search successively until a vertex v, to which the shortest path from s is
more than � longer than the s-t shortest path, is discovered.

3. Modify the length of each edge (u; v) to �(u; v) as follows:

�(u; v) = l(u; v) + L�(s; u)� L�(s; v) (2)

Then apply the Dijkstra method from t until a vertex from which the
shortest path to t is longer than � is discovered in this modi�ed graph.
E� is the set of vertices searched in this step.

A vertex in the graph for the multiple alignment has 2d � 1 edges going
out from it, and the Dijkstra algorithm examines all the descendant vertices
and keeps the information about all of them. If an upper bound L+(s; t) for
the s-t shortest path is given, we can also reduce the necessary space for heap
as in the case of computing the optimal solution with enhanced A� algorithm:
we can ignore w such that L�(s; v) + l(v; w) > L+(s; t) +�, when we examine
the descendant vertices of v.

In general, such kind of an upper bound is di�cult to obtain. However,
we can use the actual shortest path length obtained in step 1 for the upper
bound in step 2: we can ignore w such that L�(s; v) + l(v; w) > L�(s; t) + �.

3 Enumeration of Suboptimal Alignments

In this section, we �rst introduce Eppstein algorithm1 briey, and then extend
it for the alignment problem. Moreover, we propose a new enumeration method
to avoid unnecessary alignments in enumeration.



3.1 Eppstein Algorithm

Eppstein1 proposed an algorithm which �nds implicitly the k shortest paths
for the graph G with non-negative m edges and n vertices regardless of cycles,
in O(m + n + k) time after the shortest path tree is constructed. Eppstein1

also proposed an easier algorithm of O(m+ n log n+ k) time.
In the algorithm, we use �(u; v) for the edge (u; v) as in equation (2). This

�(u; v) denotes how much longer the path will be using the edge (u; v) than
the optimal path by way of v, and therefore this value is always non-negative.

If an edge (u; v) is on the shortest path tree, �(u; v) is zero, otherwise, it
is called a sidetrack and �(u; v) may not be zero. If we go along an s-t path
p other than the shortest path, there must be sidetracks on the path, and we
de�ne sidetrack(p) as the nearest sidetrack from s within them.

Let (tail(p); head(p)) be sidetrack(p). Then we can suppose a heap, in
which the parent of a path p is a path which is same as p from head(p) to t,
but go along the shortest path from s to head(p) instead of using sidetrack(p).
We de�ne this parent of p as parent(p) and we call p a child of parent(p). The
root of the heap is the shortest path, and all the paths from s to t appear in
the heap once. In this heap, p is �(sidetrack(p)) longer than parent(p).

The basic concept of the Eppstein algorithm is to modify this path heap to
4-heap. From this heap, we can obtain the k shortest paths in O(k) time2, or
O(k log k) time in sorted form. The following is the outline of this algorithm:

1. Construct the shortest path tree from s to all the other vertices.

2. For each vertex v, construct HG(v), that is, a 3-heap of sidetracks (u
0; u),

such that u is on the shortest path from s to v, ordered by �(u0; u). Let the
length from the root of HG(v) to a node n be �(u; v), where n represents
sidetrack (u; v).

3. For each v in G, make an edge from each node in HG(v) which represents
a sidetrack (u0; u) to the root of HG(u

0), and de�ne the length of this
new edge as the value of the root.

4. Make a new node for each v in G, and make an edge from this node to
the root of HG(v). Let the length of this edge be � of the root. Let this
new graph be P (G).

Then we can �nd a heap Hv(G) in P (G) for any v, considering the root as
the node made in step 4 for v, and the value of a node as the length from the
root to the node. There is a one-to-one correspondence between the nodes in
Hv(G) and the paths from v to t in G, and the k smallest nodes in this virtual
heap Hv(G) correspond to the k shortest path. Moreover, we can easily restore
the path from the node of the heap, which can be done in O(n0) time where
n0 is the size of the output alignment. For more details, see the paper1.

Note that the shortest path tree in step 1 is constructed generally by the
Dijkstra method, but for problems such as the alignment problem, we can also



use DP. Eppstein showed the step 2 can be done in O(n +m) time, but this
is a complicated algorithm and takes much time in practice, and we use a far
more easier algorithm that can be done in O(n log n+m) time, which is also
proposed by Eppstein1: we make HG(v) one by one from s to the other vertices
along the shortest path tree, sharing as many nodes as possible.

3.2 Extending Eppstein Algorithm to Reduce Memory Space

In this subsection, we discuss our approach for enumeration of all the subop-
timal alignments whose scores are at most � lower than the optimal one. The
original Eppstein algorithm requires searching all over the graph, and requires
much memory. But it is evident that we only have to apply the Eppstein al-
gorithm in the subset E� after computing E� as in the previous section, and
then search the Eppstein's heap structure with the depth �rst method.

However, if we use the easier O(n log n +m) algorithm in step 2 of Epp-
stein algorithm, we do not have to compute E� additionally. First, we must
take the step 1 and 2 in the subsection 2.2, using upper bounding technique.
These procedures cannot be skipped. After these procedures, we implement
the Eppstein algorithm as follows:

1. Construct the Eppstein's heap structure only on the shortest path.

2. Search for suboptimal solutions which are at most � worse than the
optimal (root) from the root of Hs(G) with depth �rst search method.
If we encounter HG(v) which has not been constructed yet, we construct
the heap structures of vertices on the shortest path from s to v for which
we have not constructed heaps yet.

With this method, when we �nish enumerating all the suboptimal align-
ments, the set of vertices for which we constructed the Eppstein heap is also
E�. Thus we do not have to compute E� additionally. Notice that this tech-
nique can be used in general graphs other than the graphs for alignments.

3.3 Avoiding Unnecessary Alignments

As we will show in the next section, the suboptimal alignments of multiple
sequences are numerous. In examining the suboptimal alignments one by one,
we should select alignments worth taking time to see. For this requirement,
we introduce a notion of alignment class Di as follows:
De�nition 1 Di is a class of alignments which have i regions, which are sets

of consecutive columns in the alignment, di�erent from the alignment in D0.

There is only one alignment in D0, and the alignment in D0 is one of the

optimal alignments which is arbitrary chosen.

In Figure 1, the optimal alignment (a) is in D0 (and none of the others are
in this class), suboptimal alignments (b) and (c) are in D1, and suboptimal



root = the optimal alignmenta

b

c

a

b

c

d

d

Conceptual path heap

e

e

all of these alignments have two or more
different regions with the optimal alignment

Figure 2: An example of a conceptual path heap. We can easily construct a heap which does
not contain unnecessary alignments such as c and its all descendants.

alignment (d) is in D2. We can easily construct alignments in Di (i � 2) and
their scores from alignments in D0 and D1. Thus alignments in Di (i � 2) are
unnecessary to enumerate in many cases.

The technique to avoid such alignments in Di (i � 2) in enumeration of
suboptimal alignments is rather simple: when we search the Eppstein's heap
structure, if head(p) of s-t path p is on the s-t shortest path and parent(p)
is not the shortest path, ignore p and its children (de�ned in subsection 3.1).
Note that it is possible to construct a heap structure for enumerating only
alignments in class D1. Accordingly we can e�ciently enumerate only the
alignments in class D1. Moreover, notice that we can extend this algorithm
for enumerating alignments in class Di (i < d) for any d.

3.4 Extracting Knowledge from Eppstein Heap

As mentioned by Eppstein1, the Eppstein heap has a good feature: some of
numerical values for each suboptimal solutions can be obtained in O(1) time
with some simple pre-process of O(jE�j) time. In the case of multiple align-
ment problem, these can be obtained in such an e�cient way for example: the
number of aligned groups in which all residues are same, the number of indels,
the score computed with another score table di�erent from the table used in
computing the optimal solution, the length of the alignment, and so on.

4 Experimental Results

In this section, we examine the e�ciency of our approach and investigate the
properties of suboptimal alignments through experiments. In the experiment,



we used the PAM-250 matrix, and linear gap penalty bx where x is the gap
length and b is the minimum value in the PAM-250 matrix, �8. All the
experiments are done on Sun Ultra 1 with 128 megabyte memory.

4.1 Case with High Similarity

We �rst did experiments on a group of 8 sequences with high similarity in
Table 1. According to it, the average scores per amino pair of these pairwise
alignments are about 2:5 to 4. Add to this, the optimal score of multiple
alignment of all these 8 sequences is 33129 and its length is 456, thus the
average score per amino pair of this alignment is 33129

456�(8
2
)
� 2:59 (Table 2).

These are higher than in the experiment in the next subsection.

Table 1: Sequences of EF-TU and EF-1� to be aligned and their scores of pairwise sequence
alignments. We use the top d sequences in this table in the experiments.

Sequences Pairwise Scores
Species Protein Length Met Tha Thc Sul Ent Pla Sty

Halobacterium marismortui (Hal) EF-TU 421 1329 1314 1221 1109 1099 1000 971
Methanococcus vannielii (Met) EF-TU 428 1336 1247 1150 1176 1087 1045

Thermoplasma acidophilum(Tha) EF-1� 424 1311 1261 1233 1063 1072
Thermococcus celer (Thc) EF-1� 428 1132 1130 1049 991

Sulfolobus acidocaldarius (Sul) EF-1� 435 1192 1131 1099
Entamoeba histolytica (Ent) EF-1� 430 1584 1551
Plasmodium falciparum (Pla) EF-1� 443 1636
Stylonychia lemnae (Sty) EF-1� 446

As for computing alignments of less than 8 sequences, we could apply the
simple A� algorithm. However, for alignment of the 8 sequences, we used
the upper bounding technique (enhanced A�) because 128 megabyte memory
is not enough for computing with the simple A� algorithm: we used in the
experiment the optimal solution as the upper bound to see the best e�ciency
of this enhanced algorithm. In any case, we used the upper bounding technique
after the optimal solution is obtained.

According to Table 2, the DP takes a lot of time compared with the A�

algorithm when d is small, but it is negligible when d is large. This table also
shows that, the additional searching time required for computing suboptimal
solutions is not so much as long as � is not much larger than in these experi-
ments: it requires at most twice the time in total as in the case of computing
only the optimal alignment in these experiments if � � 40.

Figure 3, Table 3 and Table 4 show the results of enumerating the sub-
optimal alignments. Figure 3(a) shows that there are enormous number of
suboptimal alignments, and the number increases exponentially as � increas-
es. However, in Figure 3(b), we can see the number of suboptimal solutions is
dramatically reduced by ignoring alignments in class Di (i � 2). The number
of the alignments enumerated in this way is only 0.0003% (d = 4) to 0.4%
(d = 8) of all the alignments in case � = 30 (see Table 4): it seems di�cult to



Table 2: Searching time (sec) by the A� algorithm in the experiment on the d sequences of
EF-TU and EF-1�. In case d = 8, the enhanced A� utilizing the optimal score is used. Note

that only DP is used in case d = 2.

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

best score 1329 3970 7709 12314 18101 24912 33129
Pre-process DP 0.32 1.00 4.30 7.23 11.1 16.0 20.5
Search (optimal) - 0.18 0.52 3.35 19.6 426 5427
Search (� = 10) - 0.18 0.60 3.63 20.9 439 5686
Search (� = 20) - 0.22 0.73 4.17 23.1 462 6735
Search (� = 30) - 0.27 0.93 5.00 26.9 498 8027
Search (� = 40) - 0.33 1.23 6.22 31.5 552 9623

Table 3: Size of E� and Eppstein's heap structure in the experiments on d sequences of
EF-TU and EF-1�. The heap size in the table does not include the number of nodes made

in step 4 of Eppstein algorithm, which is same as jE�j.

� d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

10
jE10j 503 485 513 553 534 579 540

heap size 437 277 411 503 454 674 404

20
jE20j 1101 595 609 689 691 799 784

heap size 7184 1010 1266 1701 1750 2604 2672

30
jE30j 1447 946 817 901 864 1246 1316

heap size 12983 4949 3417 3997 3594 7552 8539

40
jE40j 2011 2528 1170 1249 1156 1973 2254

heap size 17934 25861 8648 10036 7785 18407 23973

check signi�cance of all the suboptimal alignments at most 10 worse than the
optimal, but in our method, we can do it. Accordingly, the enumeration time
is also reduced drastically(see Table 4).

Observing Figure 3(a), the number of the suboptimal alignments seems to
be similar and irrelevant to d. It is an interesting fact, but this comparison
is unfair. The number must be compared between the cases which have same
value of �

(d2)
: we must consider � per amino pair. For example, it is all right

to compare the case � = 28 (d = 8) and the case � = 10 (d = 5). In this case,
the number of suboptimal alignments in the former case is 7168718

16112
� 444:9

times as that of the latter case.

Table 4: Enumerating time (sec) when � = 30 in the experiment on the d sequences EF-
TU and EF-1�. (a) is the case enumerating all the suboptimal alignments, and (b) is the
case enumerating alignments in class D0 (optimal) and D1. The time of constructing the

Eppstein's heap structure is included in the time below.

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

(a)
#alignments 38047513 8804702 327522816 85923864 20689104 49633652 13857237

time (sec) 152.87 54.98 1830.18 510.63 124.55 292.50 109.00

(b)
#alignments 6968 1695 1117 2176 1659 41791 60589
time (sec) 0.23 0.13 0.32 0.95 2.10 9.83 29.62



 d = 2

 d = 3

 d = 4

 d = 5

 d = 6

 d = 7

 d = 8

#solutions

Delta
0 10 20 30

1

10

100

1000

10000

100000

1000000

10000000

100000000

(a)

 d = 2

 d = 3

 d = 4

 d = 5

 d = 6

 d = 7

 d = 8

#solutions

Delta
0 10 20 30 40

1

10

100

1000

10000

100000

1000000

10000000

100000000

(b)

Figure 3: Number of the suboptimal alignments of d sequences of EF-TU and EF-1� whose
scores are at most � worse than the optimal. (a) is the case enumerating all the alignments.
(0 � � � 30) (b) is the case enumerating alignments in classes D0 and D1. (0 � � � 40)

According to Table 3, jE�j and the size of Eppstein heap for this size of
� is not so large. Thus, the enumeration time in Table 4(b) is small, though
it includes times for constructing the heap. In Figure 3(b), the number of
suboptimal alignments in class D1 increases much when d = 2; 7; 8 compared
with other cases. The reason of this is seen in Table 3. The jE�j in cases
d = 2; 7; 8 is larger than the others: there may be many alignments which have
a large region di�erent from the optimal. On the other hand, in Figure 3(a),
the number of the alignments in case d = 4 is large compared with others, but
much of these must be combinations of small number of `necessary' alignments.

4.2 Case with Low Similarity

We next did experiments on 5 globin sequences as in Table 5. According to
Table 5, the average scores per amino acid pair of pairwise alignments of them
are about 0:2 to 1:3. The score of the optimal multiple alignment of these 5
sequences is 543 and its length is 165, thus the average score per amid acid
pair of this alignment is 543

165�(5
2
)
� 0:33, which is lower than the previous case.

Figure 4 and Table 6 show the result of the experiments. According to
Table 6(a), the searching time by simple A� algorithm is far longer than in the
previous experiments for same d, though the length is short. It is because the
estimator of the A� algorithm is not so powerful in case with low similarity.

According to Figure 4, the number of alignments in this experiment is
also drastically reduced as in the experiments in the previous subsection by
ignoring alignments in class Di (i � 2): the number of alignments in D1 is only



Table 5: Globin sequences to be aligned and their scores of pairwise sequence alignments.

globin Length Apl Bus Ct7 Ct3

Lumbricus terrestris - AIII (Lum) 157 29 15 35 41
Aplysia limacina (Apl) 146 126 177 140

Busycon canaliculatum (Bus) 147 111 64
Chironomus thummi thummi - VIIA (Ct7) 145 191
Chironomus thummi thummi - IIIa (Ct3) 151

Table 6: (a) Searching time (sec) by simple A� algorithm, (b) the best score and the size of
E� in the experiment on the d globin sequences.

(a) (b)

d = 2 d = 3 d = 4 d = 5

Pre-Process DP 0.05 0.27 0.52 0.83

Search (optimal) - 0.73 7.40 837
Search (� = 10) - 0.85 8.13 865
Search (� = 20) - 0.93 9.43 909
Search (� = 30) - 1.22 11.22 964
Search (� = 40) - 1.63 14.13 1080

d = 2 d = 3 d = 4 d = 5

best score 29 103 354 543

jE10j 357 508 380 554
jE20j 776 1184 866 1159
jE30j 1149 2403 1575 2448
jE40j 1544 3839 2669 4569

0:004% of that of all the suboptimal alignments in case d = 5 and � = 20.
As mentioned by Zuker12, the alignments with low score are not always

insigni�cant. In general, if the lengths of sequences to be aligned are short, the
size of E� will be small. However, the size of E� is larger than in the previous
experiments for same d and �. Hence we can conclude that sequences we use
in this experiment is not so signi�cant as in the previous experiment. In this
way, we can use the size of E� as a factor of the signi�cance of the alignment.

5 Concluding Remarks

We investigated suboptimal multiple sequence alignments problem. Based on
A� algorithm and Eppstein algorithm, we showed that the suboptimal multiple
alignments can be enumerated in practical time. We also proposed a new
e�cient enumeration method. This method enumerates only the alignments
which has only one region di�erent from the optimal solution. The suboptimal
alignments enumerated in this way are far fewer than by normal enumeration.

Our technique used with some approximate methods is also useful in many
cases. Our algorithm can also be applied to many other optimization prob-
lems in molecular biology, such as tree-based alignment problem, gene �nding
problem, and so on. These remain as future works.

Acknowledgement

This work was supported in part by the Grant-in-Aid for Scienti�c Research on
Priority Areas, \Genome Science", from the Ministry of Education, Science,



 d = 2

 d = 3

 d = 4

 d = 5

#solutions

Delta0 10 20

1

10

100

1000

10000

100000

1000000

10000000

100000000

(a)

 d = 2

 d = 3

 d = 4

 d = 5

#solutions

Delta0 10 20 30 40
1

10

100

1000

10000

100000

1000000

10000000

100000000

(b)

Figure 4: Number of the suboptimal alignments of d globin sequences whose scores are at
most � worse than the optimal alignment. (a) is the case enumerating all the alignments.
(0 � � � 20) (b) is the case enumerating alignments in classes D0 and D1. (0 � � � 40)

Sports and Culture of Japan.

References

1. D. Eppstein, Proc. IEEE Foundation of Computer Science, 35: pp.154-
165, 1994.

2. G. N. Frederickson, Information and Computation, 104: pp.197-214,
1993.

3. J. Gracy, et al., Protein Eng. 6: pp.821-829, 1993.
4. T. Ikeda, and H. Imai, Proc. Genome Informatics Workshop V, pp.90-99,

1994.
5. T. Ikeda, Master's Thesis, Dept. of Info. Sci., Univ. of Tokyo, 1995.
6. D. Naor and D. Brutlag, Proc. 4th Symp. Combinatorial Pattern Match-

ing, pp.179-196. Springer-Verlag LNCS 684, 1993.
7. M. A. Saqi and M. J. Sternberg, J. Mol. Biol. 219: pp.727-732, 1991.
8. M. A. Saqi, et al., Protein Eng. 5: pp.305-311, 1992.
9. G. Shibayama, and H. Imai, Proc. Genome Informatics Workshop IV,

pp.120-129, 1993.
10. T. Shibuya, et al., Proc. 2nd Intelligent Transportation Systems,

pp.2031-2036, 1995.
11. M. S. Waterman and M. Eggert, J. Mol. Biol. 197: pp.723-728, 1987.
12. M. Zuker, J. Mol. Biol. 221: pp.403-420, 1991.


