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A novel approach for discovery of knowledge from genome data, which has been
recently watched with interest in the research area of database, is applied to find-
ing unified rules spreading over sequence, structure, and function of protein. As
the result of experiments using data extracted from PDB, SWISS-PROT, and
PROSITE, some association rules stating sequential/structural/functional aspects
of two kinds of endopeptidases were found.

1 Introduction

Intelligent management of huge amounts and heterogeneous genome data is one
of the important research areas in bioinformatics. Advanced technology in Al
and database are highly needed to achieve the goal, that is, providing molecular
biologists with a powerful and comfortable genome analysis environment. In
this research area, we studied the application of deductive database technolo-
gies to the analysis of protein structural data, and developed a database system
named PACADE 322 One of the results of the study was that a structural simi-
larity search mechanism was devised and implemented on PACADE?! Through
the similarity search function, a user can retrieve protein substructures similar
to a substructure specified by the user from a viewpoint of distance, angle, and
length of secondary structures?°

As a step to go further beyond database search which inevitably requires
a user to describe query and a set of rules, we planned to study an approach
which is reversal in the sense that a system generates rules from data. This
direction of research meets an emerging research area in computer science,
which is called Data mining (Knowledge Discovery) from Databases and aiming
at the extraction of knowledge from a large amount of data in databases. As to
genome data, Inductive Logic Programming (ILP)is actively applied from this



area. According to results reported by Muggleton et al., ILP seems promising,
especially in some kind of prediction problems!* However, in case the target
concept to be learned is not well-defined, another type of machine learning
should be used because we can not give positive and/or negative examples.
An attractive problem of data mining called “Discovery of association
rules” was first posed in 1993 by Agrawal et all The simplicity of its basic
framework, robustness against a large amount of data, and intuitive read-
ability on the semantics of the resulting association rules imply its potential
applicability to many real-world problems. Therefore, it has been actively
studied in both of the theory and application sides. Nevertheless, there are
still few application studies on extraction of association rules from genome
data in spite of its suitability for this research area. In this study, we tried to
discover association rules concerned with the amino acid sequence, structure,
and function of protein from heterogeneous genome database. As a result of
these experiments using public genome database concerned with protein, some
association rules stating sequential /structural/functional aspects were found.

2 Associating Large and Various Genome Information

As 1s commonly known, three kinds of information about protein, that is,
sequence, structure, and function, are said to be closely related. However,
though discovery of unified rules through this information has been actively
studied for a long time, it has been solved only partly up to now because it
is a large and complicated problem. Prediction of protein structure can be
regarded as verification of such rules as a working hypothesis. Since estab-
lishing prediction methodology with high precision means not only knowing
the principles of protein folding but also designing new proteins with a de-
sired function, there have been many studies on protein structure prediction
with various approaches. For example, molecular dynamics, 3D-1Df thread-
ing, AT approaches including neural net® decision tree over regular pattern2*
etc. However, in spite of these attempts, even precision of secondary structure
prediction is still not at a satisfactory level. In addition to rules associating
sequence with structure, it is more important to find rules related to the func-
tion of protein. As to prediction of function from sequence, motif finding using
homology search, multiple alignment, and machine learning techniques is one
of the major approaches!' However, since the definition of protein function is
obscure, there is still room for trying a new approach.

When an attempt to use such a prediction comes up against a brick wall,
there may be important but unnoticed viewpoints spreading over various levels
of information. Therefore, a knowledge discovery system which can point out



unnoticed association buried under large and various genome data is needed
to make a breakthrough. Moreover, it also needed to pigeonhole and grasp
large and complicated problems like correlation among sequence, structure,
and the function of protein. These are the motivations of this study in which
a data mining approach, recently watched with interest, is applied to finding
association rules concerned with sequence, structure, and function of protein
from heterogeneous genome database.

3 Assoclation Rules

3.1 Terminology

The basic framework for discovery of association rules was first shown in the
context of customer transaction database gathered by retail sellers! Suppose
that the data about a set of items are stored in a database as follows:

| trans_id | bread | butter | rice | milk | soy sauce |

1 1 1 0 1 0
2 0 1 0 0

3 1 0 0 0 1
4 1 1 0 1 1
5 1 1 1 0 0

In this database, binary data for five items mean whether they were bought or
not, in a transaction trans_id. From such a database, sets of items called large
itemsets, whose elements tend to be frequently bought together, are retrieved in
the first step. There is a user-defined threshold value called minimum support
on the frequency of retrieved large itemsets. For example, {bread, butter,
milk} is retrieved under the condition minimum support = 1 because its sup-
port is 2. Then in the second step, large itemsets are processed into associ-
ation rules which have head and body in both sides of the implication. In
this step, another threshold value called minimum confidence is used to delete
inaccurate rules. This value is computed by dividing the support of the head
(= frequency of head item) by the support of the body itemset. For exam-
ple, an association rule bread, butter = milk survives under the condition
minimum confidence = 60% because it is 66.6% confident.

3.2 Related Works

The research topics of association rules can be roughly classified into the fol-
lowing 4 types:



[Performance improvement] From the beginning, it has been pointed out
that the naive algorithm for finding large itemsets is inefficient! Houtsma et
al. mapped the problem of finding large itemsets into operation of relational
database through SQIL queries and named the algorithm SETM!? Agrawal
et al. proposed an excellent pruning method named Apriori algorithm for
eliminating useless candidate itemsets which must not be large itemsets. On
the other hand, Agrawal et al. and Shintani et al. separately proposed parallel
algorithms and reported results on a shared-nothing parallel computer 2:2°

[Postprocessing of association rules] There exist apparently redundant or
insignificant association rules from some viewpoints, i.e. statistic or user-
defined. Corresponding to the terminology for “data mining”, elimination
of such rules can be called “refinement” | which has been actively studied!? 726
Visualization of resulting rules is another type of postprocessing having the
same objective!?7

[Application] Since the basic framework is not dependent on the initial appli-
cation problem, it has a wide applicability in nature. An example is analysis
of telecommunication network alarm databases® Another example is an appli-
cation to the retrieval of closely-related pages from WWW data resources!®

where the weighted association rule is used for associating keywords. Con-

cerning genome data, we tried to discover association rules from signals in
mammalian promoter sequences?3

[Semantic extension of association rules] The semantics of the association
rule bread, butter = milk is limited to a propositional one. To make asso-
ciation rules richer, efforts to extend its semantics are needed. Srikant et al.
tackled the problem of handling (interval of) numerical value, and proposed
a sophisticated framework for finding quantitative association rules including

numerical values 26

3.3 Comparison with ILP

Obviously, discovery of association rules is not a conflicting one with ILP,
rather a complementing one because the latter is classified as learning from
examples, and the former needs no examples. An ILP system like GOLEM !4
and FOIL'7 generates a logic program with first-order syntax and semantics,
which is not achieved in association rules.

On the other hand, the framework for finding association rules has some
good points:

e The cost of computation is lower comparing with ILP. This means a
robustness against a large amount of data.

e The value of association rules can be estimated in intuitive measures.



3.4 Heterogeneous Data

In the example shown in subsection 3.1, there were no explicit classifications
among the items and they were homogeneous in a sense. However, the simplic-
ity of the basic framework of discovering association rules allows heterogeneous
sets of items to occur in the attributes. Figure 1 illustrates our aim in this
study:

protein | sequence | sequence | structure| functioni | function2
name featurel | feature2 | featurel

namel 1 0 1 0 1
name2 0 0 1 1 0
name3 1 0 0 1 0
name4 1 0 1 1 1
nameb 1 1 1 0 0

U Data Mining
sequence featurel, structure featurel => function2
(support=2, confidence=66.6Y)

Figure 1: Sketch of Data Mining on Heterogeneous Genome Data.

4 Methods and Materials

4.1 Data for Mining

Before performing the data mining illustrated in figure 1, proteins have to be
characterized from sequential, structural, and functional viewpoints. In this
study, we chose the following four data sources, which are related to each other
by using PDB?® entry names as keys:

[Sequential feature] PROSITE* is a dictionary of protein sites and patterns.
If a PROSITE pattern matches to a SWISS-PROT? entry, there is a description
of the pattern in the entry.

[Similar substructures as a structural feature] Using PDB as data source,
PACADE can perform some kinds of structural similarity searches over the
data of secondary structures. The similarity searches are roughly classified
based on the following two points:

Rule set
If a user is interested in a specific structure, e.g. a supersecondary struc-



ture like Greek key, jelly roll, and meander, he can use a rule set for
the structure. If he does not want to stick to any specific structure, he
can use a rule set for any structure that consists of continuous secondary
structures including a-helices, 3-strands, and/or random coils.

In such a rule set, there are some parameters defining structural sim-
ilarity, which are related to distance, angle, and length of a-helix and
J-strand. By tuning these parameters, a user can specify his preference
about error ranges of similarity. In this study, we set 60 degrees for
angle, 6 angstrom for distance, and 15,40,50 residues for length of
[J-strands, a-helices, and random coils, respectively.

Direct or indirect similarity

PACADE can compute indirect similarity relationships as well as direct
ones!® In the former case, starting from a specific substructure in a
specific protein, the system iteratively performs a direct similarity search
until no indirectly similar structures are found.

In this study, first we computed all the directly similar substructures that
consisted of continuous three a-helices or -strands allowing random coils be-
tween two of them (we call such a substructure 3-stranded). An example of
the answers which PACADE returned is below.

structure(2,6,"1lya") is similar to structure(19,23,"1aaj")

structure(2,6,"inpc") is similar to structure(19,23,"1aaj")

structure(2,6,"2cdv") is similar to structure(16,20,"9wga")

The first and the second argument of the predicate structure represent the
sequential numbers of starting and ending secondary structures in the protein
represented by the third argument. Then, the 3-stranded substructures in the
answers are mapped to integers.

1772 is similar to 1622

1779 is similar to 1622

1818 is similar to 1306

After that, 3-stranded substructures are classified into closures of indirectly
similar ones. Sequential numbers are also assigned to the closures.
closure sequential number of it
{1622, 1772, 1779, ...} 21
{1306, 1818, ...} 23




Finally, from these data, we generated the following data, each of which states
“some of substructures in a closure num occur somewhere in a protein pdbcode”.

laaj 21
1lya 21
inpc 21
2cdv 23

9wga 23

To keep the database consistent, we eliminated the entries such as the
entries of DNA/RNA, the entries which have no SEQRES records, and the
entries whose ATOM records have no data of residues. As a result of this
filtering, 187 PDB entries as source data were selected and used to generate
the above data for mining. Moreover, Kabsh and Sander’s method was used
to make up for the mistakes and inconsistencies in secondary structure data in
PDB. We think these filtering and refining for PDB data are enough to keep
the quality of the structural data for mining.

The reason why we did not take already published protein structure sets
(SCOP!5 FSSP?) is as follows:

e These structure sets only states structural similarity from a viewpoint
of the whole protein or the whole chain of amino acid. Therefore, if
these structure sets are used instead of search results of PACADE, the
data mining system can not discover any associations concerned about
characteristic substructures buried under the whole structure of protein.

[EC number as function] Enzymes are classified, based on their functions, in
four levels of hierarchy, which are represented as EC numbers. SWISS-PROT
entries for enzymes have descriptions of their EC numbers. To characterize
proteins, we used part of the EC number in two ways, that is, the number of
the 1st-2nd level and the number of the 1st-2nd-3rd level.

[SWISS-PROT keyword as function] Keywords in a SWISS-PROT entry
include functional, structural, or other categorical characterization.

Part of the above four kinds of data could not be related to each other
because of key mismatch. For instance, a protein 1aec in PDB had no cor-
responding entry in SWISS-PROT. Starting from the 187 PDB entries, 181
out of the 187 had corresponding SWISS-PROT entries; 137 had matching
PROSITE motifs; and 114 were enzymes with EC numbers. Of course, the
181 proteins had some keywords in corresponding SWISS-PROT entries. The
following table illustrates these data assembled for mining.



pdb [ {1187,...,699} | SPPR=UBIQUITIN] EC3= | EC2= | SPKW=
code CONJUGAT 6.3.2| 4.2 | SIGNAL
laaj | O 0 1 0 1

laak | 1 1 0 0 0

labe | 1 0 0 0 0

In this table, SPPR means PROSITE motif, and SPKW means keyword. These
were extracted from SWISS-PROT entries. {1187,...,699} is an abbrevia-
tion of a set of 39 indirectly similar substructures including two substructures,
1187 and 699.

4.2 System

In this study, we adopted SETM algorithm and implemented it as Perl scripts
and Sybase RDBMS on Sun 690MP. Only two threshold values, that is, min-
imum support (=5) and minimum confidence (=65%) were used. Since we
did not use maximum support, some inconvenience about generation of a large
amount of useless association rules was conjectured. For example, SPKW=3D-STR
UCTURE marks too high support (=181) because this keyword means that there
is a corresponding entry in PDB. Instead of using maximum support, we post-
processed the resulting association rules to delete the rules which include items
of too high supports.

Besides items of high supports, there was one more conjectured inconve-
nience. Since the items EC2 and EC3 are apparently related to each other,
useless rules such as EC3=1.2.3 => EC2=1.2 will be generated. Such rules
were also deleted in the postprocessing phase.

5 Experimental Results

As the result of the mining, 182388 association rules were generated. After the
postprocessing phase, it was decreased to 586 when the maximum support was
set to 50. In the case of a maximum support 30, it was furthermore decreased
to 381. The following 2 long rules are examples out of the 381 rules.

{1161, ...,865}, SPKW=SERINE PROTEASE, SPKW=ZYMOGEN,
SPPR=TRYPSIN_HIS, SPPR=TRYPSIN_SER => EC3=3.4.21 (100%, 6 sp.)

{4356, ...,808}, SPKW=ZYMOGEN, SPKW=ASPARTYL PROTEASE,
SPPR=ASP_PROTEASE => EC3=3.4.23 (100%, 6 sp.)

In this section, we analyze and discuss focusing on the 381 rules.



5.1 Classification based on EC Numbers

234 out of the 381 rules included a description of EC number. The following
two tables show the breakdown.

EC number | the number EC number | the number
of rules
5 of rules
Eg;:;'i ) EC3=1.1.1 4
E02:2'7 ) EC3=3.2.1 2
E02:3'1 s EC3=3.4.21 171
EC2=3.9 9 EC3=3.4.23 46

We can say that most of such rules are concerned with only two kinds of
EC numbers, that is, EC3=3.4.21 and EC3=3.4.23. Other rules were not
interesting since only the EC numbers and a few SPKW occurred in them like
the following example rules.

SPKW=GLYCOSIDASE => EC2=3.2 (83%, 10 sp.)
SPKW=NUCLEASE, SPKW=ENDONUCLEASE => EC2=3.1 (85%, 6 sp.)

5.2 Serine Endopeptidases and Aspartic Endopeptidases

Rules related to EC3=3.4.21 and EC3=3.4.23 represent associations in serine
endopeptidases and aspartic endopeptidases, respectively. These 171446 rules
consisted of items in the following tables.

items related to serine sp-

endopeptidases items related to aspartic sp-
[1161,...,865] 2% endopeptidases

{1299, ...,4355} 6 {4356, . ..,808} 7
SPPR=TRYPSIN_HIS 9 SPPR=ASP_PROTEASE 7
SPPR=TRYPSIN_SER 9 EC3=3.4.23 7
EC3=3.4.21 13 SPKW=ASPARTYL PROTEASE 7
SPKW=SERINE PROTEASE | 13 SPKW=ZYMOGEN 21
SPKW=ZYMOGEN 21

Only the item SPKW=ZYMOGEN occurred in both of the two kinds of rules. The
occurrence of other items in the rules agree with known biological knowledge.



[1ppf] [2cgal [2pka]

Human Leukocyte Elas- Chymotrypsinogen *A Kallikrein A
tase (HLE) (Neutrophil (EC 3.4.21.1) (EC 3.4.21.8)
Elastase (HNE)) (EC

3.4.21.37)

[3est] [3rp2] [4ptp]
Native Elastase Mast Cell Protease IT Beta Trypsin
(EC 3.4.21.11) Precursor (EC 3.4.21.-) (EC 3.4.21.4)

Figure 2: Graphical display of six serine endopeptidases.

Figure 2 shows the six serine endopeptidases which have similar substruc-
tures included in {1299, ...,4355}, where the substructures are emphasized
as dark and wide ribbons. Even if the substructure seems to be unrelated to
the active site of these enzymes, it illustrates that the data mining method
can be used to find substructures common to proteins which have the same
function.

5.3 Discussion

There may be two reasons why almost all rules were concerned with serine and
aspartic endopeptidases.

e Since these two enzyme families are among the most frequently found
ones in the 187 proteins used here, this result may be biased.



e It is known that, according to experimental results on structural classifi-
cation of proteins, these two enzyme families have distinctive structures
compared with other proteins.

However, as to structure-structure association, there should be more associ-
ation rules unrelated to serine and aspartic endopeptidases. We think that
this result is caused by the loose definition of structural similarity mentioned
in 4.1. Loose definition makes the resolution of classification low, which forces
some of clusters to merge together. Since such a set of substructures with too
high support are eliminated in the postprocessing phase, it does not occur in
the resulting 381 rules focused in this section.

6 Concluding Remarks

In this study, we tried to find hidden association rules buried under large and
various genome data. The experimental results were encouraging, but some
problems came to the surface. For instance, background knowledge about
propositionalization of source data should be used to eliminate uninterest-
ing rules like EC3=1.2.3 => EC2=1.2. Moreover, visualization must also be
needed to grasp a huge amount of association rules when we extend this ex-
periment to more and various genome data.
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