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We present two new sets of energy functions for protein structure recognition. The first set
of potentials is based on the positions of alpha- and the second on positions of beta-carbon
atoms of amino acid residues. The potentials are derived using a theory of Boltzmann-like
statistics of protein structure by Finkelsteinet al1. The energy terms incorporate both
long-range interactions between residues remote along a chain and short-range interactions
between near neighbors. Distance-dependence is approximated by a piecewise constant
function defined on intervals of equal size. The size of this interval is optimized. A data-
base of 222 non-homologous proteins was used both for the derivation of the potentials,
and for the “threading” test originally suggested by Hendlichet al2. For threading, we
used 102 non-homologous protein chains of 60 to 200 residues. The energy of each of the
native structures was compared with the energy of 45 to 20 thousand alternative structures
generated by threading. Of these 102 native structures 94 have the lowest energy with
alpha-carbon-based potentials, and even more, 100 of these 102 structures, have the lowest
energy with the beta-carbon-based potentials.

1 INTRODUCTION
The possibility of predicting protein structure from amino acid sequence is lim-
ited by errors in the energy parameters3 and the combinatorial complexity of the
problem. Prediction is a feasible task only with energy functions that allow fast
and efficient sorting over many conformations. To this end, a residue-residue
approximation is usually used which attributes all atomic interactions to single
points placed one per residue.

 Physically, such potentials should come as the result of averaging over all
interactions at the atomic level between amino acid residues, and between resi-
dues and solvent molecules. However, direct calculations of such mean-force
potentials are not currently possible both because of methodological difficulties
and the lack of reliable atomic energy functions. Therefore, there is significant
interest in finding alternative ways to derive simplified energy functions.

There have been several attempts to derive energy functions from structural
data on proteins. Initially such potentials were used to predict secondary
structure4-6; now with the rapidly increasing protein database, there are many



attempts to derive potentials for estimating the energy of the tertiary structure
(see for review Refs. 9-14).

 Most of the approaches exploit Boltzmann’s principle: that frequently
observed states correspond to low energy states7-15. However, the physical ori-
gin of Boltzmann-like statistics in proteins, which form unique 3D structures
rather than ergodic ensembles of separate residues, was analyzed only recently1.

 In this study we apply the results of that analysis to derive energy functions
from known protein structures. Our approach is similar to the one originally used
by Sippl8. We derive pairwise, distance-dependent, “mean-force” potentials,
treating separately long-range and short-range interactions. However, our
method of choosing the reference state for long-range interactions and our treat-
ment of short-range interactions differ from the approach used by Sippl.

2 METHODS
Our task is to estimate the energy of interaction,εαβ(r), for a pair of residuesα
and β (α, β = Gly, Ala,...), where the inter-residue distancer is defined from
positions of the Cα (or Cβ) atoms. Our estimates ofεαβ(r) follow from the the-
ory of Boltzmann-like statistics of protein structures1. This theory shows that
the requirement for overall thermodynamic stability of unique protein folds
results in the observed Boltzmann-like statistics of their elements.

Let us consider a large database of protein structures, and define  as the
number of allαβ−pairs occupying positions  along a chain (  is any posi-
tion); and  as the number of these pairs at a distance .

According to Ref.1, the expected value of  is:

(1)

Here  is a distance- and residue-independent normalization constant;
 is the probability of finding  residues at a distance  in the total set

of globular folds, (i.e.  is proportional to the number of folds where resi-
dues  are at a distance ),  is the characteristic temperature of freezing
of native folds (~ ),  is the gas constant, and is the effective
interaction energy:

, (2)

where  is the energy of direct interaction between residuesα andβ at a
distance , and  is the mean (averaged over all the possible environ-
ments of the pairαβ in stable protein structures) energy of indirect interaction
of α andβ, i.e. the interaction mediated by all the surrounding residues.

   Thus,

, (3)
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which corresponds to Eq.10 of Ref.1 where the term∆E therein would now
include , while , which depends on the pos-
sible amino acid environment of theαβ pair, would contribute to both∆E and
∆σ/2RTc terms.

The direct residue-to-residue interaction energy can be estimated as

(4)

2.1 Long-range interactions
When residues are remote in the chain ( ), so that they can be at a dis-
tance where they do not interact, the precise value of  is not important. More
over, the order of residues in a pair (αβ or βα) is also not important. Then the
value of  for the long-range interactions can be estimated as

(5)

Here  are the number of cases where the remote (separated by more
than s0 chain residues)αβ and βα pairs occur at a distance  (or rather in an
interval ; the value of the resolution interval∆ will be optimized below);

 is the minimal distance where direct interactions between any pair of resi-

dues is absent, i.e. ;  are the number of cases when

 or (more precisely, , for a given resolution );  is the

total number of the remoteαβ andβα pairs; and  are the proba-

bilities of finding the remote residue pairs at the distances  (or rather from

 to ) and , respectively, in the total set of globular folds.

The term  is the average energy of the indirect interactions at ;

because of the averaging over the distances , this term is small and can be

neglected. The term  can be neglected at small distances  where a

direct interaction of two residues is strong.

   Thus,
(6)

where
; (7)
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here the ratio of probabilities  is approximated by the ratio of
the total number of all remote residue pairs found at a distance , to the total
number of all residue pairs at all the distances ; (sums are taken over all
the  kinds of residue pairs).

In formula (5),  represents the pairwise distribution, which depends
on the energy of interaction between residues α and β; represents the
pairwise distribution extrapolated to the distances of inter-residue interactions
from the non-interaction region. Thus, equation (5) is a potential of mean-force
as it is defined in statistical physics16.

2.2 Short-range interactions depending on distance between residues
In this study, short-range interactions are defined as the ones between residues
occupying positions “i,i+2”, “i,i+3”, “i,i+4” along a chain, that corresponds to

 (see Fig.1a).
.

To estimate these interactions, we simply neglect the distance-independent
term, , and the energy of indirect interactions, , in equation (3) to
obtain:

(8)

where

,s=2,3,4 (9)

M r( ) M
0
( R≥ c)⁄

r
r Rc≥

20 20 1+( )⋅ 2⁄ 210=
Nαβ

1
r( )

Nαβ
*1

r( )

s0 4=

i+1

i+2i

i+3i

i+4i

i

i-1 i+1

i-1 i+1

i i+1

a b
r r

r

r

r

α

α

α

β

β

β

α

α β
δ γ

δ γ

Fig. 1: A scheme of short range interactions; residues for which potentials are derived are shown by
filled circles. (a) SR-interactions depending on inter-residues distances; (b) SR-interac-
tions depending on chain bending.
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The value  is calculated as a number ofαβ pairs having positions
 in a chain and the distance between  to  in space in the total

set of globular folds.
The definition of potentials given in (6) and (8) are different in two ways:

the reference state for short-range interactions is chosen as the average energy of
an interacting pair rather than a state where interaction is absent (the latter is not
possible for neighbor residues); also for short-range interactions we distinguish
between pairsαβ andβα.

2.3 Short-range interactions depending on chain bending
The distance between two residues in positions  also depends on residues
which occupy intervening positions (see Fig1b): these residues determine the
local chain stiffness.

 To take into account these interactions we introduce two “bending-energy”
terms:

 and (10)

where
(11)

(12)

and
(13)

(14)

In formulae (12)-(13)  and  are the numbers of cases for
which a residueα or, correspondingly, a residue pairαβ intervenes in aδγ-pair at
distances r-∆/2 to r+∆/2, see Fig.1b; (index  shows a separation betweenδ and
γ);  and  are the total numbers of cases for which a residueα or, cor-
respondingly, a residue pairαβ occurs in intervening positions. Thus, the same
δαγ fragment contributes to both  and  potentials. However, the
correlation between these potentials is negligible since the number of different
amino acid types, 20, is great.

      All the potentials (the chain-bending potentials, the short-range distant-
dependent potentials, and the long-range potentials) have the form of a piecewise
constant function of the distance. The optimal size of the resolution intervals∆
of these functions is established below.
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3 RESULTS AND DISCUSSIONS
In order to study the accuracy of our potentials we repeated the test done by
Sippl and coworkers2. In this test 101 proteins of different sizes and structural
classes were used to derive potentials and to evaluate their accuracy using the
“threading” method. Among the 101 proteins, 65 of length less than 200 resi-
dues were chosen; for each of these proteins, potentials were derived using the
remaining 100 original proteins. Then, for any selected protein of length L, all
the segments of length L from the 100 protein set were used as alternative struc-
tures. Energies of these structures were estimated with the corresponding poten-
tials.

 We repeated this test with our energy functions (Eqs.6,8,10) using the same
set of proteins. Potentials were derived for both Cβ and for Cα atoms (for the
threading test with Cβ potentials, absent Cβ atom positions in Gly-residues were
replaced by positions of corresponding Cα atoms).

The cut-off distance  was chosen. Below  one can expect a
direct interaction of long side chains. Above this distance, any direct interaction
is absent. The maximal distance between the residues participating in short-
range interactions (4 residues along a chain) is in concordance with the interac-
tion cut-off .

Positions of the native conformations in the energy-sorted list for 65 pro-
teins obtained with different potentials are given in Table 1:
Table 1: Position of the native conformation in the energy-sorted list for 65 proteins

obtained with different potentials.
PDB code Cβ2a Cβ2b Cα2b Cβ1b Cα1b

1ins.A 423 207 1994 96 23
1mlt.A 54 363 303 1 494

1gcn 2267 1992 547 2481 188
1ins.B 173 263 881 845 341

1ppt 39 96 571 43 643
1rhv.4 30 7 109 19 6

1bds 1 1 1 1 1
1crn 14 1 1 1 1
5rxn 2414 1 278 1 44
1fdx 28 1 5 1 2

1ovo.A 1 1 1 1 3
4pti 1 1 2 1 1

2mt2 1 1 66 1 26
2ebx 1cse.I 1 1 1 1 1

1sn3 10 1 1 1 1
1ctf 1 1 1 1 1

1hoe 25 1 151 1 20
2abx.A 71 2 1 2 2

3icb 3 1 1 1 1
2pka.A 1 1 1 1 1

351c 2 1 2 1 1
1cc5 12 1 1 1 1
2b5c 1 1 1 1 1
1hip 6 1 1 1 1
2gn5 35 15 113 322 66

Rc 14A°= 14A°

Rc 14A°=



One can see from the Table 1 that for short non-globular chains (hormones
1ppt, 1gcn; the individual insulin chains 1ins.A and 1ins.B; the membrane
attacking peptide 1mlt and a small component of the rhinovirus protein coat
2rhv.4), whose conformations are probably stabilized by interactions within
molecular complexes, neither of the approaches give satisfactory ranking; for
larger proteins the new potentials show significantly better accuracy than those
used by Sippl and coworkers in the previous work2.

In Table 2 we compare contributions of different energy terms into protein
structure recognition. For long-range (LR) energy terms we also considered the
alternative definition of the reference state used in the Refs. 2 and 8.

The results in Table 2 show that long-range energies derived with the refer-
ence state of eq.(7) are significantly more accurate than the ones derived with the
reference state of the Ref. 2. One can also see that the main contribution in pro-
tein structure recognition is achieved with only four energy terms (long-range,
[eq.6], and three short-range ones, [eq.(8), s=2,3,4]). This could be another rea-
son for improvement of the native structure ranking in comparison to the Ref.2,
where fifteen energy terms were used, since the more energy functions derived
from the limited database, the bigger the statistical error.

One can also see that the accuracy of potentials derived from a particular set
of proteins depends on the size of the resolution∆, and that Cβ based potentials
are always more accurate, than Cα based ones.

a. Cβ atom based potentials derived in2 at the resolution interval of 2Å.
b. Cβ atom and Cα atom based potentials derived according to Eqs. (6), (8) and (10) at the resolutions
of 2Å and 1Å, respectively.

c. Average position is defined as the mean geometrical:  wherePi is the po-
sition of a proteini.

3fxc 1 1 1 1 1
1hvp.A 3 1 4 1 1

1pcy 1wrp.R 1 1 1 1 1
4cyt.R 1 1 1 1 2

2ssi 1 1 1 1 1
2cdv 18 1 9 1 1

1rei.A 1acx 1cpv 2c2c 1hmq.A 1 1 1 1 1
2pab.A 1paz 1 1 1 1 1

155c 2 1 2 1 2
1pp2.R 1bp2 1rn3 1 1 1 1 1

2ccy.A 5 1 1 1 1
2aza.A 1lz1 3fxn 2hhb.A 2pka.B 1 1 1 1 1

2hhb.B 2lhb 2sod.O 1mbd 1lh4 1 1 1 1 1
 4dfr.A 2lzm 2sga 3wga.A 4dfr.A 1 1 1 1 1

2alp 1gcr 1 1 1 1 1
1hmg.B 14 1 1 1 1

2stv 3adk 4sbv.A 1 1 1 1 1

Avr:c 3.0 1.7 2.7 1.6 2.1

PDB code Cβ2a Cβ2b Cα2b Cβ1b Cα1b

P〈 〉
Pi( )ln

65
-----------------

i 0=

65
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Table 2: Average positions of the native conformation in the energy sorted list of 65
proteins obtained with different combinations of Cβ based potentials.

§The reference state of the work2 is calculated as: , compare to the
definition of Eq.(7).

The accuracy of the statistics-derived potentials must also depend on the
size of the database. The database used in the Ref.2 was relatively small, so it
was of-interest to see the results obtained by using a larger one. For this purpose
we used a list of low-homology (less than 25%) proteins provided by Hobohm
and Sander17.

Table 3: List of PDB codes of 222 non-homologous proteins used in the threading tests.

Cβ basedpotentials Resolution in (Å)
2.0 1.0

used in the work2  3.0 -
derived by Eqs. (6),(8),(10) 1.7 1.6

LR§ derived with the reference state of the work2 5.4  4.1
LR derived by Eqs.(6), (7) 2.6  2.8

SR distance-dependent only derived by Eq.(8) 8.8 7.5
SR bending energy only derived by Eq.(10) 44.5 28.4

SR derived by Eqs.(8) and (10) 5.8  4.4
LR and SR distance-dependent of Eqs.(6) and (8)  1.7 1.6
LR and SR bending energy of Eqs.(6) and (10) 2.0 2.1

131l 153l 1abr.B 1add 1amg 1amp 1aor.A 1aoz.A 1arb 1ars
1ash 1atp.E 1aya.A 1bam 1bet 1bnh 1bp2 1buc.A 1cau.A 1cau.B
1ccr 1cew.I 1cfb 1chm.A 1cks.B 1clc 1cmb.A 1cpc.A 1cpc.B 1crl

1cse.I 1csh 1ctn 1ctt 1cus 1cyg 1cyo 1dhr 1dlc 1dpb
1dsb.A 1dyn.A 1eca 1ede 1eft 1fnc 1fru.A 1fxi.A 1gky 1gmf.A

1gof 1gpb 1gpr 1grj 1hdc.A 1hdg.O 1hjr.A 1hlb 1hle.A 1hmt
1hsl.A 1htm.D 1htp 1huc.B 1hur.A 1hvd 1iae 1inp 1irk 1isc.A

1ivd 1knb 1lba 1ldm 1lga.A 1lis 1lki 1lpb.B 1lpe 1lts.A
1lts.D 1mat 1min.B 1mld.A 1mls 1mmo.B 1mmo.D 1mmo.G 1mnc 1mol.A
1mpp 1mrj 1msc 1mup 1nar 1nba.A 1nch.A 1ndh 1nfp 1nhk.l
1omp 1osa 1oyc 1pbe 1pbp 1pbx.A 1pfk.A 1pgs 1phg 1pii
1plq 1poc 1pox.A 1ppi 1ppn 1ptx 1pya.B 1qor.A 1rcb 1rcf

1rib.A 1rsy 1rtm.1 1rtp.1 1rva.A 1sac.A 1sbp 1scs 1scu.A 1scu.B
1ses.A 1snc 1sxc.A 1tca 1tgx.A 1thv 1tie 1tph.1 1trk.A 1tss.A
1ttb.A 1wht.B 1wsy.B 1xyl.A 1ypt.B 1ytb.A 1zaa.C 256b.A 2acg 2acq

2alp 2aza.A 2bbk.H 2blt.A 2cba 2ccy.A 2cdv 2chs.A 2cpl 2ctc
2dkb 2dnj.A 2dri 2ebn 2end 2er7.E 2fal 2fd2 2gbp 2gst.A
2hbg 2hhm.A 2hpd.A 2hpe.A 2kau.B 2kau.C 2liv 2mad.l 2mnr 2mta.C

2nac.A 2pf1 2pgd 2pia 2pol.A 2por 2prk 2rn2 2rsl.B 2sas
2scp.A 2sil 2tgi 2tmd.A 3aah.A 3cd4 3chy 3est 3gap.B 3gly

3grs 3pga.1 3sdh.A 3sic.I 3tgl 4blm.A 4enl 4fgf 4fxn 4gcr
4mt2 6taa 7icd 7pcy 7rsa 8abp 8acn 8atc.A 8atc.B 8cat.A

8tln.E 9rnt

N
*1

αβ r( ) Nαβ
0

( R≤ c)
M r( )

M
0
( R≤ c)

------------------------=



From this list of 472 proteins we chose those with resolution better than
2.5Å and with no structural defects (chain gaps, significant distortions of bond
lengths, missing residues), resulting in a database of 222 non-homologous pro-
teins (see Table 3).

For threading we chose those having from 60 to 200 residues, resulting in
102 sequences. For each of these sequences we extracted potentials from the
remaining 221 proteins and then used structural backbones of these proteins as
alternative conformations for threading.

The results of these threading tests are presented in Tables 4 and 5. A com-
parison of Tables 4and 1 shows thataccuracy of the potentials improves with the
database size. Besides, Table 4 shows that the most accurate potentials are derived
at an optimal resolution interval,∆, used for approximating energy functions: a
bigger interval will resolve fewer details of the potential, a smaller one will yield
poorer statistics, and therefore larger errors.

The average ranking as well as average relative deviation of the native struc-
ture energy from the mean energy of alternative structures (“Z”-score, see the
definition in legend to Table 4) are optimal when∆=1.0-0.5Å for both Cα and Cβ
atom based potentials.

Table 4: Average characteristics of the threading test obtained for Cα and Cβ atoms
based potentials at different resolutions∆.

T, LR, SR stand for average position of the native structure for the total, the long range and the short-
range energies; the average position of 102 native structures is found by the formula given in Table 1;
the Z-score is defined as (Eavr - Enat)/σ, where Eavr is the average energy, Enat is the native structure
energy andσ is the standard deviation of energies of alternative structures from Eavr.

For both types of potentials, long-range interactions give approximately two
thirds of the total energy of the native structure. They provide equal accuracy in
all the range of∆ from 3 to 0.25Å. Short-range interactions give virtually the
same contribution in recognition of the native structure, but only at the resolu-
tion ∆ of 1Å. When∆ is bigger than 1Å, the details of the short-range potentials
are poorly resolved; when∆ is smaller than 1Å, statistical errors increase and
become a limiting factor for precision of the complete energy function.

Resolu- Positions Z-score Positions Z-score

tion T LR SR T LR SR T LR SR T LR SR

(in Å) Cα atom based potentials Cβ atom based potentials

3.0 1.5 2.5 24.1 5.2 4.5 2.9 1.13 1.5 2.6 6.7 5.5 4.3

2.0 1.3 2.4 4.7 5.5 4.5 3.6 1.08 1.5 1.9 6.9 5.5 4.8

1.0 1.16 2.4 2.4 5.7 4.6 4.1 1.06 1.5 1.3 7.2 5.6 5.3

0.5 1.18 2.4 2.1 5.9 4.6 4.4 1.09 1.4 1.4 7.4 5.6 5.5

0.25 1.18 2.4 2.8 5.8 4.5 4.3 1.08 1.4 1.8 7.3 5.5 5.3



The Cβ atom-based potentials are more accurate than the Cα ones because
they better approximate the relative positions of centers of residues.

 Table 5 gives the details of the threading experiment for 102 proteins with
Cα and Cβ based potentials, derived at the resolution interval of 1.0A.

Table 5: Characteristics of the native conformation position in the energy sorted list for
102 proteins obtained for Cα and Cβ based potentials derived at 1.0Å
resolution.

The potentials successfully recognize the native structure: only 8 proteins
for Cα atom based potentials and only 2 for Cβ ones are not in the lowest energy
for their native structures. It is important to note the large “Z-scores”: the bigger

a. Position of the native conformation’s energy in the energy sorted list.

b. Z-score defined as (Eavr - Enat)/σ, where Eavr is the average energy, Enat is the native structure’s energy
andσ is the standard deviations of energies of alternative structures.
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Cβ
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Cβ
poten-

tial
PDB
code

Thread
-ings

Cα
poten-

tial

Cβ
poten-

tial

Pa Zb Pa Zb Pa Zb Pa Zb Pa Zb Pa Zb

1tgx 45359 1 3.8 11 3.5 2mad 31907 1 5.8 1 6.6 1mls 26760 1 5.9 1 8.8
4mt2 45137 13 3.8 1 6.0 4fgf 31907 1 4.6 1 6.1 2rn2 26605 1 5.7 1 6.6
1cse 44696 1 4.3 1 6.1 7rsa 31907 1 6.0 1 6.6 1hlb 26298 1 5.4 1 7.7
1ptx 44476 2 5.0 1 6.7 2acg 31718 1 9.2 1 12.0 1mup 26298 1 4.9 1 6.7
1cks 41423 1 4.3 1 4.8 1ttb 31347 1 6.0 1 6.5 1gpr 26145 1 6.5 1 8.5
1zaa 39903 714 2.0 29 2.9 2ccy 31347 1 4.5 1 6.2 1hjr 26145 1 6.8 1 9.2
1cyo 39254 1 4.9 1 5.5 3chy 31162 1 6.0 1 8.7 1mnc 26145 1 6.3 1 8.5
1mol 37963 2 3.3 1 5.1 1msc 30979 1 4.3 1 4.7 131l 25550 1 6.5 1 8.2
1fxi 37534 1 5.2 1 6.3 1rcb 30979 1 5.4 1 7.2 1cpc 25550 1 6.3 1 9.0
1nch 37107 1 3.9 1 6.4 2aza 30979 1 6.1 1 7.8 1mmo 25550 1 4.1 1 5.9
7pcy 37107 1 6.5 1 8.5 1hmt 30618 1 5.4 1 6.0 2cpl 25257 1 6.9 1 8.1
2hpe 36894 1 5.9 1 7.8 1htp 30618 1 4.7 1 5.8 1tie 24968 1 7.0 1 7.2
1aya 36473 1 6.1 1 7.1 1lis 30618 1 6.0 1 7.6 1rcf 24538 1 7.1 1 8.8
2kau 36473 1 4.5 1 6.2 1poc 30087 1 5.3 1 6.8 1cpc 24111 1 6.9 1 9.7
1lts 36055 1 5.7 1 6.3 1rsy 29911 1 4.2 1 5.9 1lki 24111 1 7.6 1 9.7

1cmb 35847 19 3.0 1 3.7 1snc 29911 1 4.2 1 5.3 2scp 23829 1 5.8 1 8.1
9rnt 35847 1 4.5 1 6.8 1eca 29736 1 5.9 1 9.0 4gcr 23829 1 8.7 1 9.3
256b 35435 1 3.9 1 5.3 2end 29563 1 5.9 1 7.1 3cd4 23275 1 5.1 1 6.0
2fd2 35435 1 6.7 1 7.8 4fxn 29391 1 7.9 1 9.2 1hur 23000 1 7.2 1 8.9
1bet 35230 1 5.6 1 5.9 1pbx 28710 1 6.1 1 9.3 1ytb 23000 1 7.6 1 8.9
2cdv 35230 1 3.6 1 4.2 1nhk 28540 1 6.2 1 7.8 1cau 22863 1 4.9 1 6.9
3sic 35230 1 6.4 1 9.4 1lpe 28371 1 4.5 1 6.7 1cau 22460 1 4.8 1 6.4
1cew 35027 2 4.8 1 5.6 3sdh 28203 1 5.6 1 8.1 153l 22326 1 4.9 1 7.1
1rtp 34827 1 4.3 1 6.8 1lba 28036 1 7.0 1 8.5 1lts 22326 1 6.7 1 7.9
1ccr 34430 2 3.7 1 5.3 2fal 28036 1 6.7 1 9.2 2sas 22326 1 6.1 1 8.1
2tgi 34232 1 5.3 1 6.6 8atc 28036 1 6.6 1 8.3 1gky 22193 1 8.2 1 8.5
1dyn 34035 1 3.5 1 5.3 1ash 27870 1 5.7 1 7.3 1knb 22193 1 6.5 1 8.0
2chs 33839 1 5.2 1 6.4 2hbg 27870 1 6.9 1 10.8 1dsb 21935 1 6.5 1 8.4
2hmz 33840 1 4.2 1 5.9 2mta 27870 1 6.4 1 7.8 1isc 21426 1 8.2 1 10.7
1gmf 32868 1 5.4 1 6.9 1osa 27707 1 6.1 1 7.4 1tss 21173 1 4.6 1 5.6
2rsl 32674 1 6.1 1 7.8 1rtm 27547 1 6.1 1 7.3 1cus 20797 1 8.9 1 10.5
2pf1 32481 2 3.7 1 5.5 1grj 27230 1 5.3 1 6.7 2alp 20672 1 7.2 1 9.6
1bp2 32098 1 5.4 1 5.8 1sxc 27230 1 7.1 1 9.0 1bam 20425 1 7.5 1 7.9
1htm 32098 1 3.4 1 4.1 1wht 26916 1 5.0 1 4.9 1iae 20425 1 7.3 1 8.6



the relative deviation of the native energy from the mean energy, the higher
probability that the native structure will have the lowest energy among any other
competing conformations. We have also checked if the results of threading are
biased by the fact that potentials are extracted from the same protein set which is
subsequently used as a source of templates for threading: the set of set of 222
proteins was divided in half. The first 111 proteins (set A) was used to extract the
potentials; the second set of 111 proteins (set B) was used for threading experi-
ments with these potentials. The obtained ranking of native structures is essen-
tially the same as reported in Table 5.

4 CONCLUSION
In this work we have developed a consistent approach to derive phenomenolog-
ical energy functions using the theory of Boltzman-like statistics of protein
structure.

 We have tested the approach to derive pairwise, distance-dependent poten-
tials using the positions of Cα or Cβ atoms. The energy function includes both
long-range interactions between residues which are remote along a chain, and
short-range ones between near chain neighbors. The distance dependence of the
energy functions is approximated by a piecewise constant function defined on
intervals of equal size. The size of this interval is optimized to preserve as much
detail as possible without introducing excessive error due to limited statistics.

Results of these tests demonstrate that our new approach to derive potentials
performs better than the previous one used by Sippl and co-workes8,2. Our’s is
more accurate in treatment of some important details of both short- and long-
range potentials and therefore performs better. It is noteworthy that a similar
improvement of performance has been obtained by Sippl15 at the cost of adding
of a “surface” term in the energy function and atomic description of residues, i.e.
for the cost of inclusion of many additional statistical information.

The ability of our potentials to recognize protein structure was also checked
on 102 non-homologous proteins 60 to 200 residues in length. Each of the
sequences had to choose among a corresponding set of alternative structures
obtained by threading the sequence through the backbones of 222 proteins. Most
of the 102 protein sequences (94 for Cα-atom based potentials and 100 for Cβ-
ones) recognized their native structures.

Our studies also show that long-range and short-range interactions are
equally important in protein structure recognition. As the statistics of short-range
interactions are poorer than those of long-range ones, short-range interactions
become the “bottle-neck” for improving the accuracy of statistical potential
functions.

In our tests the best ranking of native structures was achieved for potentials
approximated at a resolution of 1Å, which is obviously far from a detailed repre-



sentation of the actual energy functions. We can further improve the potentials
by enlarging the database.

In estimating the role of simplified pairwise potentials for the protein fold-
ing problem, one should not expect to explain all of the details of protein struc-
ture. However, these potentials can be useful for efficient discrimination of a
small number of the favorable conformations from a vast number of unfavorable
ones.
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