
Using Tcl for Molecular Visualization and Analysis

Andrew Dalke and Klaus Schulten

Beckman Institute, 405 N. Mathews,

Urbana, IL 61801, USA

Reading and manipulating molecular structure data is a standard task in every

molecular visualization and analysis program, but is rarely available in a form

readily accessible to the user. Instead, the development of new methods for analy-

sis, display, and interaction is often achieved by writing a new program, rather

than building on pre-existing software. We present the Tcl-based script language
used in our molecular modeling program, VMD, and show how it can access infor-

mation about the molecular structure, perform analysis, and graphically display

and animate the results. The commands are available to the user and make VMD

a useful environment for studying biomolecules.

Introduction

There are many programs for molecular visualization (RasMol [1], Quanta [2],

GRASP [3], SETOR [4]) and analysis (Naomi [5], Modeller [6], MD Toolchest

[7], STRIDE [8]). They all perform many of the same basic tasks: they read

in molecular structure data, perform some analysis, and display the results.

Visualization programs usually analyze the data to display some aspects of

it, while programs for analysis often return their results as detailed textual

information.

As visualization and analysis tasks become more complex and the expec-

tations for programs continues to rise, it becomes harder to build new software

from scratch. Fortunately reusable code libraries like PDBlib++ [9] and the

MMDB-API [10] have simpli�ed program development. However, such libraries

do not provide much assistance to the user, who often wants a high degree of

interactivity and the ability to implement new features or combine existing

features in new and novel ways without altering the underlying program code.

To address this problem, many programs implement script languages which

allow the user to execute various commands and analysis routines. Some of

the best known script languages are found in X-PLOR [11] , NAOMI [5] and

SETOR [4] . Because the languages were developed ad hoc, they are rather

incomplete, and do not handle some common programming abstractions. An

alternate method is to extend one of the many embeddable scripting languages,

such as Tcl [12] , Python [13] or Perl [14] . Over the last few years as scripting

languages have matured and people have become more experienced in using

them, a new generation of modeling tools have been developed based on them,

e.g. Molviewer-ogl [15] , gOpenMol [16] and Chimera [17] .

We have developed several ways to use one such language, Tcl, in our mole-

cular graphics and analysis program, VMD [18] . Originally written to display

molecular dynamics trajectories and support interactive molecular dynamics,

VMD now includes Tcl language extensions for controlling the graphics dis-

play, accessing the internal database of molecular information, analyzing atom

selections, displaying user-de�ned 3D graphics, and acting on speci�ed events.

Combined with the base scripting language, these extensions provide a power-

ful environment for molecular modeling and suggest interesting directions for

future developments.

Tcl

Tcl [12] is one of the most popular scripting languages. It is freely available

and contains many of the standard language features such as variables, control

loops, and procedures as well as more advanced utilities, including �le I/O,

process spawning, and exception handling. The most interesting aspect of

its design, at least from the aspect of software development, is its use as an

embeddable and extensible controller.

Embedding Tcl in another program is done through a C library interface.

The library contains the interpreter and the core set of Tcl commands. Text

commands are passed to the library, which evaluates the string and calls the

appropriate functions. The language is extended by adding new functions,

either through a Tcl procedure de�nition or by adding a call-back to a C

function. Figure 1 shows how the components are arranged. Because of its

popularity and ease of extensibility, many extensions have been built for Tcl

(Tk, expect, Dp, Extend). The only thing that connects the di�erent pieces

together is the interpreter, which is why Tcl is often called a \glue" language.

VMD Extensions to Tcl

The VMD scripting language uses Tcl along with two of the common exten-

sions, Tcl-Extend (which adds many generally useful functions) and Tcl-Dp

(for network communications), and adds many molecular modeling speci�c ex-

tensions. Since the rest of this paper describes the various extensions, it is

helpful here to elaborate more on extensions and some of the issues concerning

them.

One of the simplest Tcl extensions in VMD is a set of commands for ma-

nipulating vectors and 4x4 matrices. Structural analysis often involves vector

VMD Text User
Interface

Extensions
written in Tcl

Extensions
written in C++

VMD extensions Tcl library functions Other Tcl extensions

Tcl-X

Tcl-Dp

Command
interpreter

Core Tcl
commands

Figure 1: Organization of the Tcl interpreter, basic command library and extensions

algebra, but Tcl is a string-based language with limited provision for mathe-

matical operations and no commands for manipulating vectors and matrices.

Thus, the new commands include methods for vector addition and subtraction,

dot and cross product evaluation, matrix multiplication, and various methods

to construct speci�c types of matrix transformations.

The commands were originally developed as a set of procedures imple-

mented in Tcl, but the constant interpretation and conversion from Tcl strings

to numbers and back to strings made many of the more commonly used com-

mands quite slow. This is especially noticeable in routines like vecadd which

are likely to be in inner loops. As Tcl can use functions written in C or C++

just as easily as ones in Tcl, several of the most heavily used functions were

converted into C, resulting in performance increases ranging from 5- to 40-fold.

Atom Selections

All of the molecular analysis routines in VMD depend on an atom selection,

which is both a reference to the atoms which match a given selection text and

a way to access the data associated with those atoms. A selection contains a

selection text, the molecule from which the selection derives, and a list of atoms

meeting the selection criteria. Since a molecule may have multiple animation

Selection Text Selected Atoms

name N CA C O backbone atoms in proteins

hydrophobic protein backbone

x > 0 and y > 0 and z > 0 atoms in the �rst octant

segname == \PRO1" same as \segname PRO1"

same residue as name \S.*" all residues containing an atom

name starting with S

resid 5 to 10 residues with index between 5 and 10

sqr(x-1)+sqr(y+2.3)+sqr(z) < sqr(6) atoms within 6 �A of (1, -2.3, 0)

helix within 5 of resname HEME atoms on an alpha helix within 5 �A

of the heme

Table 1: Examples of atom selection text

frames, the selection also contains a reference to the speci�c frame to use.

The text used to make a selection consists of four main types of primitives.

These can be combined with boolean operators to formmore complex selections

(see Table 1 for examples). The simplest primitive is of the form \keyword,"

as in \backbone." An atom is selected if it has the given attribute. The next

simplest is of the form \keyword value1 value2" If the value of the attribute

for an atom matching any of the values in the list, it is selected. Comparison

expressions are allowed, so the nonsense selection \mass * cos(x) / 5.0 <

sqrt(abs(charge))" is acceptable. The operators are the same as those used

in the Perl scripting language so the somewhat more useful \name =~ `H.*'"

is also acceptable; in this case it �nds atoms whose name matches the regular

expression which says the �rst character must be an \H," e.g., hydrogen and

mercury atoms. The fourth set of selection primitives include specialized forms

for distance searches and set relations.

The selection text parsing is done at the C++ level and uses a keyword

symbol table and a lex/yacc grammar. The constructed parse tree is evaluated

to produce a boolean array of
ags indicating which atoms were selected. The

most interesting of these is the symbol table which contains a list of the various

keyword terms recognized in a selection. Each element of the table consists of

a display string, a regular expression, and accessor function pointers to \get"

and \set" the keyword attribute values. The table is used in every stage of the

selection evaluation; the graphical browser uses the display string, the lexer

uses the regular expression to identify keywords in the selection text, and the

evaluation step calls the gettor function to check attribute information. New

keywords can be readily added because the symbol table is dynamically built

(a)

set dna_sel [atomselect $molecule_id {segname DNA}]

set total_mass 0.0

foreach mass [$dna_sel get mass] {

set total_mass [expr $total_mass + $mass]

}

puts "The total mass is: $mass"

(b)

proc total_mass_proc {selection} {

eval "vecadd [$selection get mass]"

}

puts "The total mass is: [total_mass_proc [atomselect 0 \

{segname DNA}]]"

Figure 2: (a) Script to compute the molecular weight of a segment; (b) rewritten as a function

from function pointers added when the program is run.

The di�erent parts of the evaluation are encapsulated in the VMD script

language by the atomselect command, which takes as arguments the molecule

number, selection text, and optional animation frame number, calls the C++

functions, and creates a new Tcl function. Using one function to construct

another one dynamically is one way in Tcl to implement object-oriented pro-

gramming. The newly created function is speci�c to the selection and can be

called with various parameters to get information about it, such as the original

selection text, a list of selected atom indices, and the current frame. More im-

portant for analysis, the atom selection object can call the accessor functions

from the keyword symbol table to get and set information about the selected

atoms, making all the data attributes available to a script.

Analysis of Atom Selections

A major bene�t of the VMD script language is that the details of reading

the structure data and evaluating its contents are left to the program and the

results are made available to the user in a form amenable to analysis. With

the atom selections and the standard Tcl commands, a wide range of routines

can easily be implemented. As a simple example, Figure 2 (a) computes the

molecular weight of the segment named DNA by adding all the mass terms

returned by the atom selection. The evaluation of the mass can be written as

a function for general use, as shown in Figure 2 (b), though in this case the

function was simpli�ed by means of the vecadd command.

Several of the more common analysis routines are already built into VMD,

such as �nding the center of mass of a selection or the RMS deviation between

two selections. We plan to include other routines for analysis more speci�c to

molecular modeling, such as �nding hydrogen bonds and computing surface

and volume terms. Since many specialized analysis programs are developed

and made available by other groups, we have found it often easier to use Tcl

to communicate with an external process than to rewrite the program. The

secondary structure determination used in VMD, for example, is actually per-

formed by calling the program STRIDE [8] . In the future, with the run-time

loading feature of Tcl, it will even be possible to add new, compiled routines

without recompiling VMD.

User-de�ned Graphics

The analysis commands described in the previous section use the standard

Tcl commands to create text output. Another possibility in VMD is to take

advantage of the 3D graphics commands to position various simple geometric

primitives such as lines, spheres, cylinders, and triangles in the same display as

the visualized molecules. This option was originally included for adding arrows

and text to a scene for making images for publication, and as such has been

used to draw the unit cell, highlight hinge motions, and display speci�c bonding

patterns. Because of the dynamic versatility of Tcl, the graphics commands

have also been used to display the output of other programs including the

results of MDToolchest analysis and the surface generated from MS [19] .

When combined with atom selections and the analysis routines, the graph-

ics commands add an exceptionally useful means to test and visualize molecular

data in ways not directly implemented in VMD. One proposed visualization

method, prototyped using the code in Figure 3 , draws a sphere for each residue

with the sphere centered at the residue's center of mass with radius equal to

the residue's radius of gyration. The sphere is colored with the color assigned

to the residue name.

The combination of routines described have even been used to draw 2D

plots. Figure 4 shows the protein bacteriorhodopsin above a C�-C� distance

plot. The solid protein structure, computations and plot were done in VMD.

Event Call-Backs

Saying that VMD uses a script language is somewhat of a misnomer. Scripts

are usually thought of as a sequence of commands which are executed one after

another, but Tcl can be used to call functions based on asynchronous events,

such as using the mouse to pick an atom. There are two ways to implement

these actions in Tcl; we chose to use the trace command, which associates a

function call-back with speci�ed Tcl variable being read, modi�ed, or deleted.

For example, every time an animation frame changes for a molecule the Tcl

variable \vmd frame($molecule id)" is set to the new frame number, where the

molecule identi�er is denoted by $molecule id. The interpreter looks up the

functions to be called when that array element changes, and executes each of

them.

This type of call-back is used in viewing trajectories where the user-de�ned

graphics may change during the course of the playback. A notable example

computes and draws the best-�t line through each of two protein helices that

move during a molecular dynamics simulation. A new call-back function was

set up so that when the animation frame changed, the best-�t lines were up-

dated, and the angle between the two printed. In that way, the researcher could

see that the calculations were correct, visualize the motions of the helices, and

get an analytical value for each time step.

Another trace variable, and the only event directly related to the graphical

user interface, occurs when an atom is selected with the mouse. Two variables

are set, which de�ne the atom index and molecule identi�er of the selected

atom. The associated user function can act on the event, for instance, by

printing extra information about the selected atom, computing some property

of the molecule, or modifying the secondary structure of the residue. It has

even be used to develop hyperlinks in a molecule: a group of atoms can be

associated with a URL, and when one of the atoms is selected, a web browser

will be updated accordingly.

Program Availability

The complete, documented source code for VMD and a precompiled binary

for IRIX 5.x is available via anonymous ftp from ftp.ks.uiuc.edu. A detailed

User's Guide is also available as is a Programmer's Guide for those interested

in modifying the code. Please see the VMD home page at

http://www.ks.uiuc.edu/Research/vmd/ for more information.

Conclusion

Molecular modeling software can require the use of many di�erent types of

features. Since it is impossible to predict all the combinations of options a user

may want, the dynamic nature of an embedded scripting language like Tcl is a

useful way to increase the utility and interactivity of a program. Complex code

and functions that demand intensive calculations can be written in C or C++

and organized by Tcl so components which are orthogonal in design, such as

making atom selections and adding graphical primitives, are tied together to

form a synergistic combination.

More importantly, the
exible nature of Tcl along with the modeling exten-

sions added by VMD has provided a way for users to implement new features

that were not considered when VMD was developed. With commands to ac-

cess the internal structure database, new analysis routines are easier to write,

especially since the details of reading and determining the inital structure are

automatically performed. The results can be presented as text, or displayed as

3D graphics; allowing a wide range of new display methods to be constructed

and even animated.

The next stage in VMD development will add more analysis routines, pro-

vide support for viewing kinemage �les and electron density maps, and develop

methods for user interactions. One of the most popular Tcl extensions is the

Tk library for writing graphical menus, and adding Tk to VMD will allow

others to design menus to handle new tasks, such as graphically modifying

the secondary structure de�nitions. The mouse controls will be expanded to

allow for selecting user-de�ned objects in the graphics display. A major goal of

VMD is to develop methods for interactive molecular dynamics, where VMD is

used to visualize and alter a system undergoing simulation. The basic interface

exists, but there are very few de�nite ideas on how it should be expanded so

the highly extensible and con�gurable nature of VMD will play a key role in

testing the various possibilities.

Acknowledgments

We thank Bill Humphrey for his original design and development of VMD, and

everyone else in the Theoretical Biophysics group for o�ering suggestions and

testing out new features. This work is supported by the National Institutes

of Health (grant number PHS 5 P41 RR05969-04), and the National Science

Foundation (grant number BIR-9318159).

References

1. Roger A. Sayle and E. J. Milner-White. RasMol: Biomolecular graphics

for all, TIBS 20(Sept):374-376 (1995).

http://www.umass.edu/microbio/rasmol/

2. Quanta, Polygen Corporation. Waltham, MA.

http://www.msi.com/marketing/life/ls software.html#Quanta

3. A. Nicholls, K. A. Sharp and B. Honig. Protein Folding and Association:

Insights From the Interfacial and Thermodynamic Properties of Hydro-

carbons, Proteins: Structure, Function and Genetics 11:282-290 (1991).

http://tincan.bioc.columbia.edu/grasp/

4. Stephen Evans. SETOR: Hardware-lighted three-dimensional solid model

representations of macromolecules, J. Mol. Graph. 11:134-138(1993).

5. Simon M. Brocklehurst and Richard N. Perham. Protein Science 2:626-

639 (1993).

http://www.ocms.ox.ac.uk/~smb/Software/N details/naomi.html

6. A. Sali and T. L. Blundell. Comparative protein modelling by satisfaction

of spatial restraints, J. Mol. Biol. 234:779-815 (1993).

http://guitar.rockefeller.edu/modeller/modeller.html

7. G. Ravishankar and David L. Beveridge. Molecular Dynamics Analysis

Toolchest, Department of Chemistry, Wesleyan University.

8. Dmitri Frishman and Patrick Argos. Knowledge-based secondary struc-

ture assignment, Proteins: structure, function and genetics, 23:566-579

(1995). http://www.embl-heidelberg.de/stride/stride info.html

9. W. Chang, I. N. Shindyalov, C. Pu, and P. E. Bourne. Design and

Application of PDBlib, a C++ Macromolecular Class Library, CABIOS

10(6):575-586 (1994).

http://www.sdsc.edu/CompSci/pb/pdblib/pdblib.html

10. Christopher W. V. Hogue, Hitomi Ohkawa, and Stephen H. Bryant. A

dynamic look at structures: WWW-Entrez and the Molecular Modeling

Database, TIBS 21: 226-229 (1996). See

ftp://ncbi.nlm.nih.gov/pub/mmdb/README for API information.

11. Axel Br�unger. X-PLOR, Version 3.1, A System for X-ray Crys-

tallography and NMR, Yale University (1992).

http://xplor.csb.yale.edu/xplor-info/xplor-info.html

12. John Ousterhout. Tcl and the Tk Toolkit, Addison-Wesley (1994).

http://www.sunlabs.com/research/tcl/

13. The Python home page is at http://www.python.org/

14. The Perl home page is at http://www.perl.org/perl/

15. Molviewer-ogl is described at http://www.yorvic.york.ac.uk/

~mjh/molviewer-ogl/about-molviewer-ogl.html

16. gOpenMol is described at

http://laaksonen.csc.�/gopenmol/gopenmol.htmls

17. Chimera is described at

http://www.cgl.ucsf.edu/home/chimera/introduction/

18. W. F. Humphrey, A. Dalke and K. Schulten. VMD { Visual Molecular

Dynamics, J. Molec. Graphics 14(1):33-38 (1996).

http://www.ks.uiuc.edu/Research/vmd/

19. M. L. Connolly. Analytical Molecular Surface Calculation, J. Appl. Crys-

tal. 16:548-558 (1983).

proc find_rgyr {sel} {

get the center of mass

set com [measure center $sel weight mass]

compute the numerator

set I 0 ; set M 0

foreach m [$sel get mass] pos [$sel get {x y z}] {

set I [expr $I + $m * [veclength2 [vecsub $pos $com]]]

set M [expr $M + $m]

}

compute and return the radius of gyration

return [expr sqrt($I/$M)]

}

find the sphere parameters for every residue except waters

set sel [atomselect top "not water"]

set molid [$sel molindex]

foreach residue [luniq [$sel get residue]] {

set ressel [atomselect $molid "residue $residue"]

find the center of mass and radius of gyration

set com [measure center $ressel weight mass]

set radius [find_rgyr $ressel]

draw the sphere with the correct color assigned to the residue

lassign [$ressel get resname] resname

draw color [colorinfo category Resname $resname]

draw sphere $com radius $radius

}

Figure 3: VMD script to compute the radius of gyration for a given atom selection. Rgyr =

(
P

all atoms
mass(i) � k~r(i) � ~rcomk2)=total mass)

Figure 4: C�-C� distance plot of the bacteriorhodopsin protein. The protein visualization,

distance calculations, and 2D plot were made in VMD

