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PACIFIC SYMPOSIUM ON BIOCOMPUTING 2025 

2025 marks the 30th Pacific Symposium on Biocomputing (PSB)!  As always, we gather on 
the Big Island to share the latest progress and challenges in biocomputing.   In honor of the 30th 
PSB, we are excited to present a session reviewing the history and scientific impact of the 
meeting—and the field.  We hope you will agree that PSB has impact far beyond what might be 
expected of a relatively small annual meeting.  There has been some suggestion that the rise of 
Artificial Intelligence (AI) in the last few years may be “hype” and that the promise and impact 
of AI is overstated.  We agree that it is true that in some areas the discussions of AI’s promise and 
impact may be hyperbolic.  However, there seems to be little doubt that the impact of AI on 
science and engineering is profound and has already accelerated discovery in clear ways.  One 
needs to look no further than the 2024 Nobel Prizes where laureates were rewarded for their 
pioneering work in AI.  In Physics, Geoffrey Hinton and John Hopfield were recognized “for 
foundational discoveries and inventions that enable machine learning with artificial neural 
networks.”  In Chemistry, David Baker was recognized “for computational protein design” while 
Demis Hassibis and John Jumper were recognized “for protein structure prediction.”  Of course, 
the awards rightly go to the scientists, but the awards also illustrate the power and impact that AI 
is having on science.  And the transformation of capabilities is not limited to chemistry and physics 
but extends to all areas of science and engineering.  Every field is taking advantage of tools that 
can find patterns in data that are not obvious to humans and can generate novel outputs based on 
deep statistical models of the latent relationships within large datasets.  The PSB community 
celebrates this exciting period of accelerated capabilities.  A quick review of the sessions at this 
year’s meeting shows that important uses of AI and machine learning in precision medicine, 
medical communications, genomics, imaging and health equity are catalyzing progress in these 
critical areas.  Our community has not engaged in hype, but in the responsible use of amazing 
power tools that allow us to continue addressing the most pressing problems facing biology and 
medicine.   The next thirty years promises to be as amazing as the previous thirty! 

In addition to being published by World Scientific and indexed in PubMed, the proceedings 
from all PSB meetings are available online at http://psb.stanford.edu/psb-online/.  Since 
1996, all PSB papers are indexed in PubMed.  These papers are routinely cited in archival  
journal articles and rout ine ly  represent important early contributions in new subfields—
many times before there is an established literature in more traditional journals; for this reason, 
many papers have garnered hundreds of citations.  

The social media handle f o r  PSB is @PacSymBiocomp and the hashtag for PSB 2025 is 
#PSB25. 

The efforts of a dedicated group of session organizers have produced an outstanding program. 
The sessions of PSB 2025 and their hard-working organizers are as follows: 

AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at 
the Human-Machine Interface 
Organizers: Jonathan Chen, Roxana Daneshjou, Dokyoon Kim, Joseph D. Romano, Fateme 
Nateghi Haredasht, Geoff Tison 
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Precision Medicine: Multi-modal and multi-scale methods to promote mechanistic 
understanding of disease 
Organizers: Yana Bromberg, Steven E. Brenner, Hannah Carter 

Translating Big Data Imaging Genomics Findings to the Individual: Prediction of Risks 
and Outcomes in Neuropsychiatric Illnesses 
Organizers: Peter Kochunov, Li Shen, Paul M. Thompson, Zhongming Zhao 

Overcoming Health Disparities in Precision Medicine 
Organizers: Kathleen Barnes, Harris Bland, Francisco De La Vega, Todd L. Edwards, Keolu 
Fox, Alexander Ioannidis, Eimear Kenny, Rasika Mattias, Bogdan Pasaniuc, Jada Benn 
Torres, Digna R Velez Edwards 

We are excited to present four workshops in which investigators with a common interest 
come together to exchange results and new ideas in a format that is more informal than the 
peer-reviewed sessions. For this year, the workshops and their organizers are: 

All Together Now: Data Work to Advance Privacy, Science, and Health in the Age of 
Synthetic Data 
Organizers: Lindsay Fernandez-Rhodes, Jennifer K. Wagner 

Command Line to PipeLine: Cross-Biobank Analyses with Nextflow 
Organizers: Anurag Verma, Lindsay Guare, Katie Cardone, Christopher Carson, Zachary 
Rodriguez 

Leveraging Foundational Models in Computational Biology: Validation, 
Understanding, and Innovation 
Organizers: Steven Brenner, Brett Beaulieu-Jones 

Opportunities and Pitfalls with Large Language Models for Biomedical Annotation 
Organizers: Fabio Rinaldi, Jin-Dong Kim, Zhiyong Lu, Cecilia Arighi 

Finally, we are pleased to have a hybrid session/workshop (with some features of both a 
session and a workshop):  

Earth Friendly Computation: Applying Indigenous Data Lifecycles in Medical and 
Sovereign AI 
Organizers: Keolu Fox, Krystal Tsosie, Kaja Wasik, Alec Calac, Alexander Ioannidis, Eric 
T. Dawson

The PSB 2025 keynote speakers are Kevin B. Johnson (Science keynote) and Sharon F. Terry 
(Ethical, Legal and Social Implications keynote). 
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Tiffany Murray has managed the peer review process and assembly of the proceedings since 
2001 and plays a key role in many aspects of the meeting. We are grateful for the long-time 
support of the National Institutes of Health1, ISCB, and Cleveland Institute for Computational 
Biology. PSB 2025 is thankful for the support of Khosla Ventures and PGxAI. This year, the 
co-chairs are pleased to provide financial support for the opening reception, to thank the 
community for thirty years of support for PSB. The Research Parasite Awards benefit from 
support from GigaScience, Jeff Stibel, Mr. and Mrs. Stephen Canon, and Drs. Casey and Anna 
Greene. The Research Symbiont Awards benefit from support from the Wellcome Trust and the 
DragonMaster Foundation.   

In honor of the 30th Anniversary of PSB, we are pleased to support the local Waikaloa Dry 
Forest (https://www.waikoloadryforest.org/) dedicated to the preservation of the wiliwili tress in 
some of the roughest terrain in Hawai’i. 

We are particularly grateful to the PSB staff Tiffany Murray, Al Conde, Paul Murray, Mark 
Woon, Liam Mulhall, Randy Soares, Zach Ritchie, BJ Morrison McKay, Cynthia Paulazzo, 
Victoria Soares, Jackson Miller, Heather Miller, and Meghann Risell for their assistance. We 
also acknowledge the many busy researchers who reviewed the submitted manuscripts on a 
very tight schedule. The partial list following this preface does not include many who wished 
to remain anonymous, and of course we apologize to any who may have been left out by 
mistake. 

We look forward to a great meeting and to seeing you on the Big Island. Aloha! 

Pacific Symposium on Biocomputing Co-Chairs, 
October 9, 2024 

Russ B. Altman 
Departments of Bioengineering, Genetics, Medicine & Biomedical Data Science, Stanford 
University 

Lawrence Hunter 
Department of Pharmacology, University of Colorado Health Sciences Center 

Marylyn D. Ritchie 
Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania 

Teri E. Klein 
Departments of Biomedical Data Science, Medicine & Genetics, Stanford University 



Pacific Symposium on Biocomputing 2025 

xiv

  

Thanks to the reviewers… 
Finally, we wish to thank the scores of reviewers. PSB aims for every paper in this volume 
to be reviewed by three independent referees. Since there is a large volume of submitted 
papers, paper reviews require a great deal of work from many people. We are grateful to all 
of you listed below and to anyone whose name we may have accidentally omitted or who 
wished to remain anonymous. 
 
Bhim Adhikari 
Giuseppe Albi 
Tiffany Amariutta 
Fatemeh Amrollahi 
Pooya Ashtari 
Shamini Ayyadhury 
Berardino Barile 
Oliver Bear Don't Walk IV 
Mike Beer 
Jada Benn Torres 
Erik Bergstrom 
Harris Bland 
Carly Bobak 
Mayla Boguslav 
Mary Regina Boland 
Aritra Bose 
Joeseph Breeyear 
Yana Bromberg 
Emidio Capriotti 
Carlos Cardenas-Iniguez 
Hannah Carter 
Andrea Castro   
Jui-Hsuan Chang 
Kewei Chen 
Li Chen 
Jianlin Cheng 
Tishya Chhabra 
Dana Crawford 
Matteo d'Antonio 
olivia daigle 
Roxana Daneshjou 
Jishnu Das 
Conor Davenport 
Francisco De la Vega 
Klest Dedja 
David Dorr 
Duy Duong-Tran 
Hyrum Eddington 
Rachel Edgar 

Todd Edwards 
Rob Gallo 
Si Gao 
Emily Getzen 
Pedram Golnari 
Bryan Gopal 
Carsten Görg 
Ben Greenbaum 
François Grolleau 
Lindsay Guare 
Melissa Gymrek 
Paige Haffener 
Steven Hart 
Lifang He 
Dominik Heider 
Jacklyn Hellwege 
Josiah Hester 
William Hou 
Yidi Huang 
Maui Hudson 
Pedro Ilídio 
Alex Ioannidis 
Elizabeth Jasper 
Brian Johnson 
Linda Kachuri 
Nicole Karcher 
Monica Keith 
Nikhil Khankari 
Jaesik Kim 
Mansu Kim 
Adam Klie 
Alice Kochunov 
Peter Kochunov 
Kuldeep Kumar 
Rachit Kumar 
Bill La Cava 
David Laub 
Jonghyun Lee 
Ko-han Lee 

Jake Leiby 
Joshua Levy 
Xi Li 
Jia Liu 
Jingyu Liu 
Zheng Liu 
Ivan Lopez 
Stephen Ma 
Tianzhou (Charles) Ma 
Yizhou Ma 
Yizhou Ma 
Pranav Mani 
Nick Marshall 
Graham McVicker 
Michelle Mello 
Doug Meyer 
Nigreisy Montalbo 
Daniel Mas Montserrat 
Keith Morse 
Shizhuo Mu 
Felipe Nakano 
Xia Ning 
Fabricio Olivetti di Franca 
Joseph Orr 
Kivil Ozturk 
Guarav Pandey 
Laxmi Parida 
Bogdan Pasaniuc 
Bogdan Pasaniuc 
Margaret Pearce 
Minoli Perera 
Karl Pichotta 
Malvika Pillai 
Arturo Pineda 
Delaram Pouyabahar  
R. Prabakaran 
Katrina Prantzalos 
Gang Qu 
Consuelo Quinto 



Pacific Symposium on Biocomputing 2025 

xv

  

Predrag Radivojac 
Ojas Ramwala 
Antonio Raussel  
Brooke Rhead 
Barak Richman 
Nuno Rocha Nene 
Rany Salem 
Fateme Samea 
Sriram Sankararaman 
Tom Savage 
TJ Sears 
Shefali Setia Verma 
Lauren Severance 
Amir Shamaei 
Supreeth Shashikumar 
Ruhollah Shemirani 
Megan Shuey 
Pankhuri Singhal 

Beckett Sterner 
Quan Sun 
Riley Taitingfong 
Ha Tang 
Kekoa Taparra 
Kira Taylor 
Fasil Tekola Ayele 
Emel Timucin 
Dipak Upadhyaya 
Ryan Urbanowicz 
Eli Van Allen 
Digna R. Velez Edwards 
Marijana Vujkovic 
Ugrucan Vurgun 
Cameron T. Waller 
Hanyin Wang 
Jing Wang 
Lei Wang 

Peter Washington 
Zhi Wei 
Qiutin Wen 
Alex Wenzel  
Jason Williams 
Scott Williams 
Fang Xiang Wu 
Guangzhi Xiong 
Shu Yang 
Xiaohui Yao 
Alaa Youssef 
Dominic Yurk 
Simone Zaccaria 
Cyril Zakka 
Aiying Zhang 
Zhongming Zhao 
Rui Zhu 

 
 

 

 

 

1Funding for this conference was made possible (in part) by R13LM006766 from the National 
Library of Medicine. The views expressed in written conference materials or publications and by 
speakers and moderators do not necessarily reflect the official policies of the Department of 
Health and Human Services; nor does mention by trade names, commercial practices, or 
organizations imply endorsement by the U.S. Government. 
 





A Comprehensive Bibliometric Analysis: Celebrating the Thirtieth Anniversary of the 
Pacific Symposium on Biocomputing 

Rachit Kumar1, Rasika Venkatesh1, David Y. Zhang1, Teri E. Klein2, Marylyn D. Ritchie3† 
1Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA 

2Department of Biomedical Data Science, Medicine (BMIR) and Genetics (by courtesy), Stanford 
University, Stanford, CA, USA 

3Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA 
Email: marylyn@pennmedicine.upenn.edu 

The 2025 Pacific Symposium on Biocomputing (PSB) represents a remarkable milestone, as it is 
the thirtieth anniversary of PSB. We use this opportunity to analyze the bibliometric output of 30 
years of PSB publications in a wide range of analyses with a focus on various eras that represent 
important disruptive breakpoints in the field of bioinformatics and biocomputing. These include an 
analysis of paper topics and keywords, flight emissions produced by travel to PSB by authors, 
citation and co-authorship networks and metrics, and a broad assessment of diversity and 
representation in PSB authors. We use the results of these analyses to identify insights that we can 
carry forward to the upcoming decades of PSB. 

Keywords: Bibliometry; PSB Proceedings. 

1. Introduction

1.1.  Overview 

The Pacific Symposium on Biocomputing (PSB) is an international conference where presentation 
and discussion of current research in the theory and application of computational methods in 
problems of biological significance take place. PSB has been held annually since 1996. PSB 2025 
marks the 30th anniversary of this conference, a milestone that represents a critical opportunity to 
evaluate the impact the conference has had on the field of biocomputing, including the scientists in 
the field, and to find opportunities for growth for the future of PSB and other related conferences. 
This project was inspired by a similar initiative in 2015 that sought to commemorate the 20th 
anniversary of PSB1. 

We make use of bibliometric data available on all PSB proceedings from 1996 to 2024, which 
includes 1402 published papers, all of which are indexed on PubMed. Using these citations, we 
performed a variety of analyses, each focused on a different perspective or lens by which we 
reviewed the data. These analyses were inspired by the 20th anniversary review of the PSB 
proceedings1 as well as some of the session topics for the PSB 2025 conference, as both a framework 
for the methodology as well as the topic of many of these analyses.  

The session topics for PSB 2025 include: 
• AI and Machine Learning in Clinical Medicine
• Earth Friendly Computation
• Precision Medicine: Multi-modal and multi-scale methods

† Corresponding author. 

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License.
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• Translating Big Data Imaging Genomics Findings to the Individual
• Overcoming health disparities in precision medicine
In the following sections, we discuss how we took inspiration from some of these session topics

to formulate and perform a variety of analyses on the bibliometric data available from all previous 
PSB publications.  

1.2.  Session Topics and Mapping to Analyses 

1.2.1.  AI and Machine Learning in Clinical Medicine 

For this session topic, we used keyword analysis to explore how the topics of PSB publications have 
shifted from year to year along certain breakpoints or eras of PSB. This is described in more detail 
as the “Keywords and Topics Analysis” in Methods. It is worth noting that many of our other 
analyses as described below also indirectly make use of machine learning models. 

1.2.2.  Earth Friendly Computation 

For this session topic, we sought to estimate the environmental impact of PSB in the form of carbon 
emissions, given that PSB is a conference that has been held in Hawaii every year (with the sole 
exception of PSB 2021, which was held virtually due to the COVID-19 pandemic). This is described 
as the “Emissions Analysis”. 

1.2.3.  Precision Medicine: Multi-modal and multi-scale methods 

For this session topic, we took inspiration from the idea of multiscale analyses in other fields such 
as social network analysis and applied them to citation analysis, where we look at the relationships 
of PSB papers and authors over time. We present this information in the form of a multimodal 
network that includes papers and authors as well as a co-authorship network. We further perform 
more traditional citation analyses. This is described as the “Citation and Authorship Analysis”. 

1.2.4.  Overcoming health disparities in precision medicine 

For this session topic, we wanted to perform analyses that are parallel to the growing understanding 
that health disparities are critical to acknowledge and address in precision medicine, specifically in 
the form of acknowledging the value of diverse perspectives in science and scientific discourse. 
Specifically, we explored the diversity of authors on PSB proceedings papers by exploring changes 
in representation and diversity along the axes of race and gender. This is described as the “Diversity 
Analysis”. 

2. Methods

2.1.  Common Methods 

We acquired from PubMed the initial list of 1402 papers by using the search term “ "Pac Symp 
Biocomput"[jour] ” (outer quotes not included) and then exported a CSV of the results, which 
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contained information on paper titles, publication year, PMID, and authors (first initial and last 
names only). We spot-checked randomly-selected papers in this list against the online published 
conference proceedings to confirm concordance of papers and authors2.  

We then used the NCBI Entrez tools via Biopython3 with each of the paper PMIDs to further 
acquire additional information from PubMed on citation PMIDs (only those to or from papers 
indexed in PubMed), author affiliations, paper abstract text, and full author names (where available). 
Notably, for papers from 1996-2004, a substantial number of authors only had first initials available.  

Subsequently, we acquired dimensions.ai4 data on PSB papers as of June 2024 to acquire overall 
citation counts, recent citation counts, and a machine-learning-based determination of the Australian 
and New Zealand Standard Research Classification 2020 Fields of Research (ANZSRC 2020 FoR)5, 
which includes a hierarchical system that identifies broad categories such as “Health Sciences” 
(category #42) as well as more nuanced categories such as “Machine Learning” (category #4611). 
Papers can be assigned to multiple categories. Dimensions contained relevant information for 1367 
papers out of 1402.  

The analyses performed with this data are summarized in visual form in Figure 1 below and are 
further described in the subsequent sections. 
 

 
Figure 1: A graphical summary of the bibliometric analyses performed in this paper on PSB papers from 1996 to 

2024, including: evaluation of keywords and topics; estimation of conference attendance emission costs; generation of 
author and citation co-networks; and review of author diversity. 

2.2.  Keyword and Topics Analysis 

We used the assigned dimensions.ai ANZSRC 2020 FoR classifications as described in the Common 
Methods section as overarching paper topics. Additionally, we used KeyBERT, a tool that uses deep 
neural networks in the form of transformers6. KeyBERT generates BERT embeddings of papers and 
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keywords, and it then subsequently identifies the most relevant keywords for each paper. 
Specifically, we provide the abstract of each paper, and keywords are extracted with KeyBERT 
using the underlying “all-MiniLM-L6-v2” sentence transformer model. Each paper was given five 
keywords in this fashion, with an additional constraint added to try to make the keywords as distinct 
as possible using KeyBERT’s MMR diversity parameter with a value of 0.7. 

To interpret this information, we subdivided the papers in PSB into “eras” relating to various 
important milestones in the field as breakpoints:  

• 1996-2003 (before the completion of the Human Genome Project7) 
• 2004-2016 (before the spike in popularity of deep learning in biomedicine, particularly 

transformers and LLMs) 
• 2017-2024 (during the current era of an “AI” boom in biomedicine, including breakthroughs 

such as AlphaFold8) 
For each topic, the proportion of papers in each era as described above assigned to that topic 

was computed, and a bar plot was made showing the proportions for each era. Relevant topics were 
selected for presentation based on which topics were most nonredundant and had a critical number 
of papers assigned to them.  

Separately, for each era, the keywords for papers in that era were lemmatized to combine 
singular and plural versions of the same word and then collated together to produce a word cloud 
using the `word_cloud` Python package9 for each of the eras as a visualization of the most relevant 
keywords as aggregated across papers for each era. 

2.3.  Emissions Analysis 

Using the PubMed information on author affiliations, we performed an analysis of the CO2 
equivalents that were produced as a result of flying to PSB. Specifically, we used the affiliations of 
the first authors of every paper and used the Google Maps Geocoding API10 to programmatically 
and automatically identify the most likely latitude and longitude for each affiliation. We then used 
a set of data from OurAirports, an open-source and curated repository of airports around the world 
and their latitude and longitudes11, to map each individual to their nearest “medium-sized” or “large-
sized” airport (observing that “small-sized” airports tended to be regional or private airports) by 
calculating the Haversine distance12 of each airport to each affiliation and identifying the closest 
such airport for each affiliation.  

Once each affiliation was mapped to an airport, the Haversine distance of those airports to the 
Hawaii Kona airport (KOA) was computed to get a putative shortest-path flight distance. This 
distance was then multiplied by a constant scale factor of 0.148 kg CO2e per passenger-kilometer 
(as reported by the UK Government’s Department for Energy Security and Net Zero) to compute 
the carbon emissions of each flight (matched to each paper)13,14. 

In this analysis, we made several assumptions, some of which we recognize as unlikely (see 
discussion below): only the first authors fly to PSB (and they travel alone), authors fly from their 
closest (mapped) airport to their reported affiliation, all flights are direct to the KOA airport, all 
flights in the past have the same carbon efficiency as flights today, all flights take the shortest 
possible path according to the Haversine distance between airports, and the radius of the Earth is 
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generally constant at 6371 km for the purposes of computing the Haversine distance (modeling the 
Earth as a perfect sphere). Notably, PSB 2021 was online due to the COVID-19 pandemic, so 
emissions for that year were artificially zeroed out after the calculations above.  

2.4.  Citation and Authorship Analysis 

Using the PubMed and dimensions.ai-acquired information on all PSB proceedings papers, we 
computed a variety of statistics for each paper and author in PSB as well as PSB-wide statistics. 
Additionally, we created an interactive network of papers and authors as well as an interactive 
network of coauthors. The paper-author network has edges connecting authors to the papers that 
they have written as well as edges connecting papers that have cited each other and has interactive 
nodes that allow one to see various statistics for each paper and author. This includes metrics such 
as the number of citations or the keywords of a paper, and the first year an author published in PSB 
or the total number of papers an author has published in PSB.  

The coauthor network is a multigraph of nodes representing every author at PSB and edges 
representing their co-authorship in the three different eras of PSB as mentioned in the “Keywords 
and Topics Analysis” Methods section above. We identified authors uniquely by using their first 
initial and their last name due to limitations in the data from 1996 to 2004 (where only first initials 
were available). We performed some simple network analyses on the co-authorship graph: we used 
Louvain community detection15,16 to identify communities of co-authors in each era; we used 
PageRank17 to identify the most “central” authors for each era; we computed the “density” of “co-
authorship ties” defined as a proportion of the number of co-authorship links for each era over the 
total number of possible links for that era (based on the authors in that era).  

2.5.  Diversity Analysis 

Using the PubMed information on author first and last names, we performed an analysis of the likely 
genders and races of all authors to assess how the diversity of PSB has changed over time. In each 
of the below analyses, authors were not deduplicated within a given year or between years, as we 
sought to assess the overall diversity of published authors in PSB. For the gender analysis 
specifically, we took inspiration from prior work by Teich et al.18; however, they used a paid API 
that has since changed methodology to determine genders. To make our methodology more 
reproducible and to minimize costs, we used United States Social Security Administration data 
instead. 

To identify gender probabilities for each name, we used available data from the United States 
Social Security Administration (SSA) on first names for children from 1900 to 202319 and the 
assigned gender at birth of those children, calculating a ratio of male/female for each name across 
all of those years. The proportions of gender probabilities for each author's first name were averaged 
across years and plotted, with first names not being present in the SSA data (representing names 
that occurred less than 5 times in every year) being dropped. Notably, PubMed and the original PSB 
proceedings are missing information on authors’ first names for all years up to 2004 (with 100% of 
authors missing first names in every year up to 2004 except for 2002 and 2003, which are each 
missing over 50% of first names). As such, all data from the years prior to 2005 were dropped.  
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 To identify race probabilities for each full name, we used a Python package called ethnicolr220, 
which uses deep learning models (long short-term memory models) trained on first and last names 
from a database of Florida voters in the United States to predict the likelihood of each name 
belonging to someone identifying as one of five categories: “Asian”, “Hispanic”, “Non-Hispanic 
Black”, “Non-Hispanic White”, and “Other”21. The proportions of race probabilities for each 
author’s full name were averaged across years and plotted. 

3. Results

3.1.  Keyword and Topics Analysis 

Figure 2 shows three bar plots, one for each of the broad ANZSRC 2020 FoR topics of “Biological 
Sciences”, “Biomedical and Clinical Sciences”, and “Information and Computing Sciences”. We 
can see that the proportion of papers tagged as “Biological Sciences” decreased from ~73% in the 
first two eras to 60.6% in the third, the proportion of papers tagged as “Biomedical and Clinical 
Sciences” increased era-over-era from 3% of papers in the first era to 13.1% of papers in the second 
era and 24% of papers in the third, and the proportion of papers tagged as “Information and 
Computing Sciences” is 27.9% in the first era, 22.1% in the second era, and 33.1% in the third era. 

Figure 2: Proportion of papers in each of the three eras that were given the ANZSRC 2020 FoR broad categories of 
“Biological Sciences” (left), “Biomedical and Clinical Sciences” (middle), and “Information and Computing 

Sciences” (right). 

 Similarly to Figure 2, Figure 3 shows three bar plots for select ANZSRC subcategories - that is, 
categories one level lower than the broad topics as in Figure 2. The three categories shown are 
“Bioinformatics and Computational Biology”, “Oncology and Carcinogenesis”, and “Machine 
Learning”, which are each (in order) a subcategory of the respective broad categories from above. 
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Figure 3: Proportion of papers in each of the three eras that were given the ANZSRC 2020 FoR subcategories of 
“Bioinformatics and Computational Biology” (left), “Oncology and Carcinogenesis” (middle), and “Machine 

Learning” (right). 



Figure 4 shows the word clouds, one for each of the three eras. Notably, all three word clouds 
show many words related to genetics, genomics, and related topics with high prominence, such as 
“gene”, “genomic”, and “genome”. Outside of these words, the first era word cloud shows a 
prominence of terms such as “alignment” and “sequence”. The second era word cloud shows an 
increase in the prominence of “phenotype” and “annotation”. The third era word cloud shows 
increased representation of research described by the words “neural” and “predicting”. Also of note, 
the word “protein” was prominent in the first two word clouds, but significantly reduced in the most 
recent era. 

Figure 4: Word clouds for 1996-2003 (left), 2004-2016 (middle), and 2017-2024 (right). 

3.2.  Emissions Analysis 

Given the assumptions and approach above, Figure 5 shows the estimated flight emissions for each 
year of PSB, showing the calculated average emissions per paper and the total emissions (across all 
papers). The total emissions for all 29 analyzed years of PSB was ~2,832,005 kg CO2e (~2832 
metric tons of CO2e). Disregarding data from 2021 due to the online nature of PSB that year, this 
led to a computed average of ~2100 kg CO2e per paper (~2.1 metric tons of CO2e per paper) and an 
average of ~101 metric tons CO2e per year of PSB. 
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Figure 5: Emissions for each year of PSB from 1996 to 2024. (Left) The per-paper mean emissions for each year. 
(Right) The total emissions for each year. 2021 was held virtually due to the COVID-19 pandemic and as such had no 

estimated flight emissions. 



3.3.  Citation and Authorship Analysis 

As of June 2024, 1367 papers out of 1402 in the PSB proceedings had citation information in 
dimensions.ai. The average number of citations across these papers was 20.91 (standard deviation 
50.95; total 28579) with a median of 7.0 (max: 680). When normalizing by the number of years that 
a paper has been available up to 2025 (getting the number of times cited per year), the average is 
1.42 citations/year, with a median of 0.54 citations/year. 1229 papers out of 1367 papers with 
citation data (~90%) published in PSB have been cited at least once. 

Papers in PSB were cited, collectively, 3943 times in the past two years, with papers in the last 
decade receiving a larger proportion of those citations (Figure 6). PSB has, as of 2024, an h-index 
of 76 - that is, 76 papers have been published that received at least 76 citations. For papers in just 
the last 5 years (from 2020-2024), the corresponding h5-index is 13.  

Figure 6: (Left) Average number of recent citations (in the past two years) for each paper per year of PSB from 1996 
to 2024. (Right) Violin plot of the total number of citations for each year. 

The interactive paper-author graph and the co-authorship graph are both available online here: 
https://ritchielab.org/publications/supplementary-data/psb-2025/psb-bibliometry. The best way to 
search for papers or authors is to select (1) “edge” (2) “from” (3) [PAPER/AUTHOR NAME] from 
the filter dropdowns, respectively. 

From the co-authorship analysis done over eras, we find that the average size of communities of 
coauthors was 4.3 in 1996-2003, 7.8 in 2004-2016, and 12.2 in 2017-2024. For the same eras, the 
number of unique authors was 1065, 1815, and 1510, respectively. Across all years of PSB, we 
identified 4013 unique authors. 
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Based on PageRank centrality, the top 10 authors for each era are listed in Table 1: 

3.4.  Diversity Analysis 

 Figure 7 has two line graphs, one for gender proportion and one for race and ethnicity proportions, 
for each year of PSB. For the gender analysis, ~32.5% of all listed authors across all years of PSB 
were estimated to be female. When taking the rolling mean of these proportions on a 5-year basis, 
we see that the earliest years of PSB of 1996-2000 had a gender proportion of ~25% while the most 
recent years of 2020-2024 had a gender proportion of ~35%.  

For the race and ethnicity analysis, across all years of PSB, ~55.3% of all authors were estimated 
to be Non-Hispanic White, ~26.4% Asian, ~6.8% Non-Hispanic Black, ~5.3% Hispanic, and ~6.2% 
Other. When taking the rolling mean in a similar fashion to the gender analysis, we note the 
following changes (in the form of the mean proportion from 1996-2000 -> the mean proportion from 
2020-2024): Non-Hispanic White ~62% -> ~51%; Asian ~22% -> ~30%; Non-Hispanic Black 
~6.1% -> 6.5%; Hispanic ~3.4% -> 5.8%; and Other 5.7% -> 7.0%. 

 

 
Figure 7: Line graphs of the estimated proportion of female authors (left) and the estimated proportion of authors 

belonging to one of the five indicated race and ethnic categories (Asian, Hispanic, Non-Hispanic Black, Non-Hispanic 
White, and Other). 

Table 1.  Top 10 authors for each era of PSB based on PageRank centrality of the co-
authorship network. 

1996-2003 2004-2016 2017-2024 
Miyano, S Altman, RB Moore, JH 

Altman, RB Ritchie, MD Crawford, DC 
Takagi, T Crawford, DC Ritchie, MD 
Hunter, L Moore, JH Zou, J 

Dunker, AK Cohen, KB Tintle, N 
Godzik, A Liu, Y Brenner, SE 

Kohane, IS Butte, AJ Thompson, PM 
Kitano, H Chen, L Chen, Y 
Zimmer, R Hartemink, AJ Wall, DP 
Huang, CC Pendergrass, RA Altman, RB 
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4.  Discussion 

4.1.  Keyword and Topics Analysis 

As can be seen from the ANZSRC analysis in Figure 2, we see broad patterns across the eras in 
paper-broad topic assignments that align with the eras themselves. For example, we see a decrease 
in the number of papers identified as “Biological Sciences”, which per the ANZSRC definitions 
includes more basic science and lab research with some focus on data analysis of wet-lab data22. 
This represents PSB’s overall shift to more computational and big data approaches, as corroborated 
by the word clouds of keywords shifting slightly away from molecular data such as proteins, amino 
acids, and related, in favor of data and datasets. Similarly, we see an increase in research identified 
as “Biomedical and Clinical Sciences”, which represents an increased tonal shift towards clinical 
data (as opposed to wet-lab or molecular data) over the years in the field of biocomputing (which 
encompasses computational biology, bioinformatics, biomedical informatics, and data science).  

Interestingly, we see a slight decrease in the proportion of papers identified as “Information and 
Computing Science” from the first era to the second era, and then an increase from the second to 
the third era. This may reflect that, in the earliest iterations of PSB, there was a larger focus on 
developing methods to analyze sequencing data, as reflected in the keywords from the first word 
cloud showing “sequence”, “amino”, “alignment”, and “algorithm” prominently. With the release 
of the Human Genome Project, such focuses became less critical and a shift occurred to more 
methodological applications such as genome-wide association studies (GWAS) and annotation 
analyses (which fall outside the realm of this topic, per ANZSRC), as reflected in the word cloud 
showing a disappearance of the aforementioned terms and the emergency of terms such as 
“phenotype” and “annotation”. After the resurgence of machine learning and AI in biomedicine, a 
development of new approaches that leveraged these fields and made use of existing data became a 
larger focus once more - indicated in the word cloud by terms such as “data”, “neural”, “predicting”, 
and “embedding” becoming more prominent. 

These shifts are further reflected in the papers’ subcategories assignments, as shown in Figure 
3, where each plot is a subcategory of the broader categories from Figure 2, respectively. There is a 
consistent decrease in the number of papers described as “Bioinformatics and Computational 
Biology”, which is curious at first for a Biocomputing conference until one recognizes that 
biomedical informatics is considered a distinct field that is included in the broad scope of 
Biocomputing. Similarly, there is an increase in clinical-adjacent research in the form of “Oncology 
and Carcinogenesis”, which matches the broad trend of an increase in cancer research as we better 
understood phenotype data and with the emergence of GWAS, and these trends expectedly match 
the trends of their parent categories.  

The final subcategory of “Machine Learning” has shown dramatic increases that align strongly 
with the defined eras, going from being a topic of less than 2% of papers in either of the first two 
eras to 13.6% of papers in the third era, reflecting the period of time in which machine learning and 
AI became much more strongly incorporated in biomedical research, as well as the transition of 
authors at PSB to more biomedical and clinical informatics research where big data allows for the 
training and application of more advanced and complex models.  
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4.2.  Emissions Analysis 

It is important to note that the assumptions that were made for the emissions analysis, as described 
in the methods, all lead to a likely underestimate of the true emissions produced. For example, most 
authors do not have access to airports that offer direct flights to Hawaii, and flights back in the 1990s 
produced more emissions per-passenger than flights today23. Additionally, PSB regularly sees 
approximately 200+ attendees per year, while this analysis only accounts for roughly ~40-50 of 
those attendees (the first authors of each accepted paper). 

Despite these limitations, this analysis does highlight the fact that PSB does have a relatively 
high carbon footprint with an average total emission attributable to flights by just first authors of 
over 100 tons of CO2e per year. Interestingly, PSB’s average flight emissions per year has been 
decreasing, despite no notable change in the number of papers or attendees used in these 
calculations, which may indicate a consolidation in the number of traveling authors or an increase 
in the proportion of authors nearer to Hawaii. Over the years, PSB has contributed to the Hawaiian 
Legacy Reforestation Initiative24 which plants koa and sandalwood trees. This is a step toward 
providing an offset for the carbon footprint25. 

4.3.  Citation and Authorship Analysis 

Overall, from a citation and research output perspective, PSB has been consistently impactful. With 
a total recorded citation count of 28579 and 90% of papers being cited at least once, PSB has 
contributed significantly to the body of scientific literature over the past 30 years, and continues to 
do so. With an h-index of 76 and an h5-index of 13, PSB remains competitive as a conference for 
biocomputing. 

For example, the top papers by citations (Figure 6, right) are concentrated in the first decade of 
PSB, indicating that they have had a long and lasting impact over the years. However, the papers 
that have received the most citations in the last two years (Figure 6, left) are largely concentrated 
within the last decade of PSB, indicating PSB’s consistency as a top conference in the field as time 
goes on, as well as its ability to best attract the cutting-edge ideas in the field of biocomputing. 

Furthermore, we find that PSB has encouraged collaborations, with co-authorship networks 
increasing from 4.3 in its earliest years to 7.8 in the second decade and up to 12.2 in more recent 
years, indicating that larger groups of authors are working together in PSB. This increase occurs 
seemingly independently of the number of unique authors (going from 1065 to 1815 and then 1510), 
indicating that PSB fosters collaborations within its author network.  

4.4.  Diversity Analysis 

It is important to note that this information cannot be considered definitive at any non-aggregate 
scale (that is, any individual level information) due to the use of computed probabilities based on 
machine learning models, and we recognize that the categories used do not conform to definitions 
outside or even inside of the USA (for race) or to nonbinary definitions (for gender). Furthermore, 
transgender individuals may not identify as the gender that they were assigned at birth (which is the 
information available from the SSA statistics used), and individuals can identify as members of 
multiple racial or ethnic groups. As such, we demur from drawing strong conclusions about any 
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individual authors and instead look primarily at population-level trends only with the caveat that 
this analysis is highly limited at best.  

. With these considerations in mind, we do note a trend of an apparent increase in the estimated 
proportion of published authors that are female from ~25% in some of the first years of PSB to 
~35% in recent years. This trend is relatively consistent with proportions of female authorship in 
other medical journals, with PSB having a slightly higher estimated representation of female authors 
overall26–29, and PSB’s apparent gender proportion aligns with the proportion of investigators 
funded by the NIH that identify as female (37% as of 2024)30. 

We note an apparent increase in the estimated proportion of authors that are one of Asian, 
Hispanic, Non-Hispanic Black, or Other. Correspondingly, we note an apparent decrease in the 
estimated proportion of authors that are Non-Hispanic White. When compared to the racial and 
ethnic makeup of NIH-funded investigators as of 2024, PSB has a recent estimated proportion of 
authors in the two subgroups that have been identified as underrepresented minorities by the NIH31 
that is similar or higher: Hispanic (NIH ~6.1%, PSB ~5.8%) and Non-Hispanic Black (NIH ~3.6%, 
PSB ~6.5%)32.  

5.  Conclusion 

Overall, PSB is a conference in the field of biocomputing that presents cutting edge research 
(Keyword and Topics Analysis) that is highly impactful and fosters collaboration (Citation and 
Authorship Analysis). Furthermore, PSB publishes papers from authors who represent a diverse 
range of perspectives and has improved in this regard over the years (Diversity Analysis). PSB 
remains committed to improving representation from a wider range of groups. We also recognize 
that these positive aspects of PSB do not come without an environmental cost in the form of flight 
emissions to travel to PSB (Emissions Analysis); however, the conference has made contributions 
back to the islands in the form of planting trees to offset this carbon footprint. These insights are 
useful as we continue to plan for PSB in coming years. 

 In conclusion, this paper highlights PSB’s remarkable record as a leader in Biocomputing over 
the past thirty years, and we look forward to the future of PSB in fostering collaboration, publishing 
cutting edge research, and providing an avenue for continued discussions about how to best improve 
the landscape of biomedical research. 
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1.   Introduction 
The Pacific Symposium on Biocomputing (PSB) was co-founded in 1996 by Dr. Teri Klein, Dr. 
Lawrence Hunter, and Sharon Surles, originating from the Biotechnology Computing Tracks at the 
Hawaiian International Conference on System Sciences 1–5. Initially, PSB aimed to provide a 
platform for pioneering work in databases, algorithms, interfaces, visualization, modeling, and other 
computational methods applied to the challenges of molecular biology. As an annual 
multidisciplinary scientific conference held in Hawaii, it has continuously fostered international 
collaboration in computational biology. 
     Over the past 30 years, PSB has undergone significant evolution. Each year, the conference 
themes are curated to address emerging and critical issues in biocomputing, driven by proposals 
from leading researchers in new areas. This dynamic approach, unique among scientific gatherings, 
makes PSB an ideal subject for examining the progression of research themes over time, thereby 
reflecting the evolving landscape of computational biology. 
     Attending PSB offers significant opportunities for career advancement, professional 
development, and networking. These conferences are essential for discussing cutting-edge scientific 
themes and acquiring new knowledge 6,7. Beyond immediate academic and professional benefits, 
attendees gain exposure to new technologies and methodologies that can be implemented in their 
own practices and institutions. Therefore, understanding the academic impact of such conferences 
is crucial for appreciating their role in advancing science and practice. 
     Over the past thirty years, PSB has witnessed transformative changes in biocomputing. This 
period has seen the rise of artificial intelligence in medicine 8, the sequencing of the human genome, 
and advancements in precision health. Innovations such as multimodal, single-cell 9, and spatial 
analyses, along with vast bioimaging datasets, have revolutionized our approach to biological data. 
Concurrent advancements in computing speed, storage capacity, GPUs, and internet connectivity 
have further enabled these scientific breakthroughs. 
     In 1996, PSB manuscripts and presentations focused on the foundational aspects of 
computational biology 4. In contrast, by 2024, the focus has shifted towards leveraging complex 
integrations of multimodal data and advanced computational techniques 2. The upcoming 30th 
anniversary of PSB presents a prime opportunity to reflect on the evolution of research themes, 
highlighting the growth in collaboration and scientific impact within the community. 
     To comprehensively understand these developments, we have conducted a quantitative 
retrospective analysis of the entire history of PSB proceedings. This study spans numerous articles 
and abstracts presented at PSB, providing insights into the dynamic nature of biocomputing as a 
field. By employing advanced computational tools for this meta-analysis, we aim to elucidate the 
intricate patterns of research evolution, collaboration networks, and thematic shifts over the 
conference's history. This analysis not only underscores the importance of PSB in shaping the field 
but also demonstrates the power of computational methods in understanding scientific progress. 
 
2.   Methods 

2.1.   Overview 

Inspired by a similar work analyzing conference themes and impact over 30 years 10, our analysis 
utilizes topic modeling, large language models (LLM) and network analysis to map out: 
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1. Topic Modeling: The main themes of PSB, their prevalence and evolution over time. 
2. Evolving Co-Authorship Networks: The personal impact of participation in the 

symposium, examining how PSB has spurred the formation of new, transdisciplinary 
collaborations. 

3. Citation Networks: The scientific impact of PSB themes, as evidenced by citation metrics, 
broken down by topic and reported independently. 

4. Interactive Dashboard for Perusing Prior Proceedings: The development of a Retrieval 
Augmented Generation (RAG) tool as an interactive research tool for rapid access of past 
proceedings. 

Readers can find the code used for data preprocessing and analysis as well as instructions for 
deploying our interactive PSB dashboard at the following GitHub repositories:  
https://github.com/Leahie/PSBmodel  

2.2.   Examining Evolving PSB Themes through Count-Based and Neural Topic Modeling 

2.2.1.   Extraction of Proceedings Text 

We used the Beautiful Soup package to web scrape PDFs of all PSB conference proceedings, 
available at https://psb.stanford.edu/psb-online/ 11,12. Each year’s proceedings included documents 
ranging from session introductions, short abstracts, workshops, and full peer reviewed papers. Only 
peer reviewed papers, from the years 1996-2024, with viable linked PDF files were downloaded and 
parsed. Due to inconsistencies in web formatting, separate web scrapers were developed for years 
1996, 1997, 1998-2001, and 2002-2024. Document parsing for all proceedings led to the extraction 
of information such as the link of the pdf, title of authors, for each manuscript.  
 
2.2.2.   Text Preprocessing 

After the PDFs were downloaded, pdfplumber was used to extract the text from each manuscript 13. 
A custom text processor was developed to remove accents, special figures, numbers, stopwords, 
extra whitespace, and words less than 2 letters. After this step, contractions were expanded, and text 
was converted to lowercase.  
     Further text processing enhanced the readability of the documents. The appearance of section 
numbers and words such as “abstract”, “introduction”, “references” — words typically found in 
conference proceedings and part of the PSB manuscript template — helped filter PDFs that were 
poorly converted to text– these same subsections were used to divide the document into three 
components which were subsequently saved: 1)  abstract, 2) main body, and 3) references. The main 
body of the document included all text between the “Introduction” and “Reference” headers.  

2.2.3.   Topic Modeling with LDA, BERTopic, and DTM 

After preprocessing the text, we employed three primary methods to identify and model emerging 
themes: Latent Dirichlet Allocation (LDA), Dynamic Topic Modeling (DTM) and BERTopic 14–16. 
These techniques focused exclusively on the main body of texts spanning from 1996 to 2024, 
allowing for a precise analysis of words and phrases that characterize the themes and topics of the 
documents. By applying these methods, we were able to ascertain the prevalence of each topic across 
various manuscripts and authors at specific time points. This approach facilitated a detailed 
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exploration of the evolving landscape of themes throughout the study period, offering insights into 
the dynamics of topic popularity and relevance over time.  
     LDA is a generative probabilistic model designed to identify latent topics within a corpus of text 
documents. LDA assumes that each document is a mixture of topics, and each topic is a distribution 
of words. By using Dirichlet distributions to guide the selection of topics for each document and 
words from topics, LDA can effectively capture the prevalence of topics across documents and the 
frequency of words within topics. The model achieves this by estimating three key components: (1) 
the topic distribution within each document, (2) the word distribution within each topic, and (3) the 
topic assignment for each word in the documents. We use the python package Tomotopy for our 
LDA implementation which uses Collapsed Gibbs Sampling, a Markov Chain Monte Carlo 
(MCMC) method which iteratively samples the conditional distributions of latent variables allowing 
the model to estimate the posterior distribution of topics within the corpus17.  
     For LDA, words within each topic were initially ranked by the estimated Dirichlet parameters, 
{"! 	for	' = 1,2, … , -|∑"! = 1}. The Dirichlet parameters in our topic modeling methods do not 
account for the ubiquity of words, which often leads to an oversaturation by commonly used terms. 
To address this issue, we implemented a re-ranking strategy for these words based on their saliency 
and relevance, both of which reweight the importance of words by considering their document 
frequency. Saliency quantifies a word’s relative importance by measuring how significantly it 
contributes to the uniqueness of a topic. Relevance, on the other hand, evaluates a word based on 
both its probability within a topic and its frequency across documents. This dual metric ensures a 
balanced assessment that enhances topic interpretability. 
     Term frequencies were normalized, which served as a foundation for calculating saliency and 
relevance for each topic. The formulas for calculating Salience, Relevance, and Frequency 
Normalization are outlined below 18–20: 

1",$ = 2",$ log 5
2",$
6$%

7 

8",$ = 9 log:2",$; + (1 − 9) log 5
2",$
6$%

7 

6$% =
6$

∑ 6$$
 

     Dynamic topic models were utilized alongside standard LDA in our dataset. Unlike LDA, which 
assumes static topics, dynamic topic models incorporate changes over time by using topic priors 
from previous time steps to inform the topic distributions at subsequent time steps. This approach 
allows for the detection of emerging or evolving topics that might otherwise be overlooked by 
LDA’s time-averaged methodology. 
     BERTopic, proposed by Maarten Grootendorst, is another topic modeling technique that 
integrates state-of-the-art transformer models such as Bidirectional Encoder Representations from 
Transformers (BERT). Our BERTopic implementation generates dense sentence-level embeddings 
which were aggregated across each manuscript to form document-level embeddings which were 
subsequently clustered to derive coherent topics across documents 16. By using transformer models 
like BERT, these contrived embeddings encapsulate contextual relationships between words 
offering a rich semantic representation of the documents, addressing the limitations of traditional 
topic modeling which often approaches these texts as a bag of words.  
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     Generated high dimensionality embedding produced by these transformer models are reduced in 
dimensionality with techniques such as Uniform Manifold Approximation and Projection (UMAP) 
21 and subsequently clustered using Hierarchical Density-Based Spatial Clustering of Applications 
with Noise (HDBSCAN) 22 which identifies dense regions in the embeddings space and groups 
documents together without a need for a preset amount of clusters. After clustering the embeddings, 
BERTopic extracts the most representative words for each cluster by ranking them using the Class 
Based Term Frequency-Inverse Document Frequency (c-TF-IDF). C-TF-IDF is calculated by taking 
the logarithm of one plus the average number of words per class divided by the frequency of word 
across all classes. The term frequency emphasizes words that are more frequent and the inverse 
document frequency captures rarely used but still important words.  

@&,' = ABC&,'A + log 51 +
D
C&
7 

The optimal number of topics for each topic modeling method was determined using the coherence 
metric 23, which measures the semantic similarity between high scoring words within each topic. 
This metric helps ensure that the topics generated are meaningful and interpretable. We utilized the 
coherence scores to select the number of topics that provided the highest level of interpretability 
while maintaining a balance with model complexity.  

2.2.4.   Characterizing Topic Prevalence over Time 

To streamline the interpretation process, we opted to restrict our analysis to LDA models which did 
not initially account for the temporal dynamics of each topic’s evolution. This approach simplifies 
the initial modeling by focusing solely on prevalence of thematic content without the additional 
complexity of temporal variation in topic content. After training, we extracted document-topic 
distributions for each paper, which represent the proportion of each topic within each document. 
These distributions were then aligned with the corresponding dates of publication or timestamps. 
To capture temporal trends, we computed the average topic distribution for each defined time period.  
    To identify overarching patterns in the evolution of topic prevalence over time, we employed K-
Means clustering via the tslearn python package 24. This method utilized a dynamic time warping 
(DTW) distance matrix of the time series data 25. DTW is particularly adept at capturing similarities 
in temporal sequences, even when there are shifts or timing differences among the sequences. By 
applying K-Means clustering to this DTW distance matrix 26, we were able to discern and illustrate 
the predominant trends and shifts in topic prevalence throughout the corpus. 
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2.3.   Evaluating the Influence of Collaborative Networks at PSB on Research Themes 

2.3.1.   Extraction and Fuzzy Matching of Author Names 

Author names for each manuscript were extracted from the proceedings website for each year, 
and a database of these titles and names was established. To ensure unique identification, we 
employed a combination of citation analysis and relied on the Scopus database of authors. Each 
paper was mapped to its unique DOI and PubMed ID using CrossRef’s REST API 
(https://api.crossref.org/swagger-ui/index.html) and MetaPub 
(https://pypi.org/project/metapub/) 27,28. Then, each identifier was looked up using 
Pybliometrics, a python-based wrapper for the Scopus API 29. Using Pybliometrics, each paper 
was mapped to its authors and each author was mapped to their Scopus ID, a unique identifier 
assigned to them by Scopus. This approach allowed us to account for variations in spelling and 
other inconsistencies that commonly occur in author name listings. By using citation data, we 
were able to link each paper to a unique identifier and link variations of a name to a single author.  

2.3.2.   Development of Collaborative Networks over Time 

Collaborative networks were constructed annually based on co-authorships (edges) within articles 
published that year 30. The attributes of each node (representing an author) were defined by the 
average topic distribution from Latent Dirichlet Allocation (LDA), specifically averaged across the 
manuscripts the authors contributed to within PSB that year. Each network represented a cross-
sectional snapshot at a specific point in time, typically characterized by sparse connections due to 
its annual limitation. 
    To gain a deeper understanding of the evolving collaborative landscape, we extended our analysis 
to include cumulative networks. In this approach, nodes and edges from previous years were 
incorporated into the current year’s network. This method allowed us to observe not only isolated 
annual interactions but also the development and persistence of collaborative ties over time. 

2.3.3.   Overall Measures of Interdisciplinarity and Collaboration 

    In our study, we focused on characterizing authors’ topical areas of interest by analyzing their 
cumulative topic distributions. These distributions were derived from the topic-document matrices 
of all their prior publications at PSB up to but not including the current evaluation point. We 
hypothesized that alignment in these topical areas might influence the likelihood of future 
collaborations, and that this influence could vary over time. 
    To empirically test this hypothesis, we calculated the cosine similarity between the topical 
distributions of two authors, each aggregated from prior years. Cosine similarity measures the cosine 
of the angle between two vectors in a multidimensional space, serving as an indicator of how aligned 
two authors are in their prior topics of interest. To assess the potential for these authors to form a 
collaborative connection (or ‘edge’), we employed a logistic regression model that includes an 
interaction term with time, using R v4.3:    

logit:"!(; = β) + β* × similarity:M! , M(; + β+ × B + β, × :similarity:M! , M(; × B; 
where  "!(  is the probability of forming an edge between authors i and j, similarity:M! , M(; is the 
cosine similarity score between their prior topic distributions, and t represents the year of the 

Pacific Symposium on Biocomputing 2025

21

https://api.crossref.org/swagger-ui/index.html
https://pypi.org/project/metapub/


 
 
 

 

collaboration relative to the study period. This model not only quantifies the relationship between 
topical alignment and formation of collaborative links but also how this relationship evolves over 
time, permitting a dynamic analysis of factors influencing collaboration within the PSB community. 
Results were also stratified by the number of prior joint publications within a co-author dyad. 
     Furthermore, each author’s ability to bridge across diverse topics was quantified using an entropy 
score, calculated at each timepoint, reflecting the variety and distribution of topics in their 
publications to that point. This score served as an indicator of an author’s interdisciplinarity, 
suggesting their potential to contribute to and collaborate across various thematic areas.  
     Finally, an author’s influence at each timepoint was quantified using various network centrality 
measures, including degree centrality, eigenvector centrality, and betweenness centrality 31. Degree 
centrality measures the number of direct connections an author has, indicating their immediate 
influence within the network. Eigenvector centrality accounts for the influence of an author’s 
connections, reflecting how connected they are to other highly connected authors. Betweenness 
centrality highlights authors who serve as bridges between different clusters or groups within the 
network, showcasing their role in facilitating information flow. Centrality measures were 
normalized based on the size of the connected component (subgraph) to which each node belongs. 
     As a descriptor of overall network dynamics, the final cumulative network for 2024 was analyzed 
using the Leiden algorithm 32. This approach partitions the network into clusters based on the 
strength of the connections, ensuring that clusters are more connected internally than with other 
parts of the network. Each cluster was then labeled based on averaged topic distribution to that point, 
providing a thematic summary that reflects the predominant scholarly interests of each subgroup. 

2.4.   Measuring Scholastic Impact through Citations 

Finally, the impact of PSB papers was characterized by analyzing the number of citations each paper 
received. For each topic identified by LDA analysis, now assigned to individual papers, we 
calculated the average number of citations both overall and across different time periods. This 
approach enabled us to determine which topics garnered the most attention and influence within the 
scholarly community, while accounting for the publication dates of the articles. Measures of 
interdisciplinarity and collaboration (2.3.3) were correlated with citation counts (independent 
variable) using linear regression modeling, adjusting for time as a covariate. The analysis was 
restricted to the 2005-2019 period to allow sufficient time for collaborations/topics to develop and 
to mitigate potential biases from lower citation counts associated with more recent publications. 

2.5.   Developing Interactive Dashboard to Facilitate Review of Papers 

2.5.1.   Developing Retrieval Augmented Generation Approach 

Retrieval Augmented Generation (RAG) enhances the capabilities of large language models (LLMs) 
by incorporating a preliminary reference to a knowledge base before generating responses. This 
method is particularly beneficial when applying LLMs to specialized or highly specific domains 
that are not well-represented in the model’s initial training data 33. For efficient querying of PSB 
manuscripts, this involves augmenting the user query with a relevancy search within a vector 
database that contains embeddings of the knowledge base, addressing common issues such as 
inaccuracies or the generation of irrelevant content by the LLM. 
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     Our RAG setup for analyzing PSB documents was implemented using LangChain 34. Initially, 
papers were downloaded in PDF format and segmented into chunks of approximately 1000 words 
each. These segments were then transformed into vector embeddings using OpenAI’s “text-
embedding-3-small” model and stored within a vector database managed by Chroma. For each user 
query, the LangChain Merger Retriever searches this database to find and retrieve the most relevant 
embeddings, which are then provided as context to the LLM through the RunnablePassThrough 
function. This process ensures that the generated responses are both accurate and contextually 
relevant to the specific queries related to PSB documents.  

2.5.2.   Web Application and Availability 

To facilitate user interaction with our RAG setup, we developed a web application using Streamlit 
35. This application provides a user-friendly interface for querying the PSB document database and 
viewing the augmented responses. The web application is accessible at https://psb-rag.streamlit.app, 
and the complete codebase for the RAG workflow and further reference to the application is 
available for public review and use on our GitHub repository. To utilize the site, users will need to 
provide an OpenAI API key. 

 
Figure 1: Topic and Citation Dynamics at PSB, 1996 to 2024: A) Prevalence of topics over time, highlighting 
evolving interests in specific research areas, grouped into four clusters to enhance readability. B) tracks the total 
cumulative citations of PSB publications broken down by uear, with a notable peak in the early 2000s. C) Proportion 
of yearly citations by select topics, indicating shifts in the impact of various research themes over three decades.  
 

3.   Results 

3.1.   Topic Modeling Results 

Topic modeling was optimized using coherence metrics to ascertain the most interpretable number 
of topics for Latent Dirichlet Allocation (LDA), BERTopic, and dynamic topic models (DTM). This 
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LDA BERTopic 
Topic Words Topic Words 
1 cancer cell tumor pathway samples cells survival pathways sub breast 1 protein proteins structure residues sequence structures binding set function 

two 
2 drug drugs harm disease knowledge diseases relationships sources target 

meta 
2 snps snp disease genetic population plo association gene genotype allele 

3 reads peak rate sites posterior peaks read site likelihood mass 3 terms gene information ontology text system term used one database 
4 sequences rna dna regions mutation mutations genome disordered base 

disorder 
4 gene genes expression regulatory transcription network set binding motif 

time 
5 interactions interaction proteins functional cluster clusters similarity 

clustering networks ppi 
5 patient patients health clinical medical features set models using time 

6 features performance learning training feature prediction classification fier 
trained models 

6 cancer gene genes mutations sub tumor expression cell drug samples 

7 snp snps plo genotype population allele variants populations locus genetic 7 network networks time graph that system state nodes are pathway 
8 algorithm tree problem size optimal matrix probability proceedings trim let 8 tree trees taxa species number distance gene genomes two algorithm 
9 text terms ontology query database relations system name language concepts 9 drug drugs target similarity compounds targets network based set chemical 
10 this from which can each all have not our die 10 imaging brain features age subjects cognitive disease mci poe feature 
11 residues binding structure structures energy residue motif amino motifs 

surface 
11 sequence dna sequences coding length domain reads genome system gene 

12 state reactions reaction activity compounds metabolic enzyme transcription 
molecules metabolites 

12 cell cells immune spatial expression seq gene single crna tumor 

13 clinical patients risk age health patient phenotypes causal cohort was 13 cancer features set mirna layer genes feature gene samples cluster 
14 user software flow work visualization tools field file environment science 14 virus cov viral sequences protein human hiv sars proteins host 

15 drug harm gene relationships drugs xml genes heritable text ontology 
16 rac species rrna biome communities micro microbial diversity subgroup coa 
17 rna rnas sequence structure secondary sequences reads alignments base 

sci 
18 peptide mass spectra peak peaks peptides spectrum ion teo intensity 
19 alignment alignments sequences scoring score gap optimal length sequence 

path 

Topic 1996: Words 2010: Words 2024: Words 
1 proton system proteins structure length molecular you time algorithm sub interactions system class well different performance samples sub models cancer drug 
2 structure sequences molecular given site proteins 

solvent 
problem algorithm shown networks different 
interactions function 

table clustering cell patients disease samples values 

3 time structure system molecular class structures 
points 

graph size patterns algorithm different state are values samples features patients models data disease 

4 function sequences points course table system time binding clustering sub different class algorithm rna samples different use cell models values transcript 
5 tree surface however sequences structure different 

proton 
interactions clustering time structure table state 
algorithm 

learning clinical data features predicted performance 
brain 

6 would system surface proteins point sequences pair possible however structure different nodes given time data models drug age patients brain learning 
7 structure system given information distance students 

tree 
well clustering state base time algorithm harm across patients use disease studies models graph 

8 surface system sequences points structure given time different class state size algorithm base function data patients table features learning cell values 
9 given system molecular grape die residues proteins nodes different algorithm structure table state states learning time drug transcript use data values 

10 algorithm point database structure molecular system 
given 

first drug use sub time class are age effect features studies performance models brain 

feature individuals performance ancestry samples 
spatial models 
clinical table ancestry patients age across training 

11 points structure time students system point sequences interactions shown time drug size algorithm different 

12 system would site second point die pair nodes size class sub algorithm time samples 
13 site system you tree value time could drug hee different rna residues off rees samples clinical table disease patients across clustering 

approach identified 14 distinct topics using LDA, 13 with DTM, and 19 with BERTopic. Detailed 
topic-word distributions for all models are available in the supplementary materials hosted on our 
GitHub repository. These results (including LDA relevance metrics) are summarized in Tables 1 
and 2, providing a direct comparison of the outputs from the topic modeling techniques, with 
complete parameters found in the supplementary. LDA topics were clustered based on their 
prevalence over time (Figure 1). While both LDA and BERTopic underwent thorough analysis, the 
LDA results demonstrated higher coherence, with less overlap between topics compared to 
BERTopic, where topics tended to show more redundancy. As a result, discussions in our main text 
have primarily focused on the LDA topics.  
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Figure 2: Analysis of Collaboration Dynamics: A) Growth of the largest connected component within the PSB 
collaboration network from 1996 to 2024, B) Visualization of the final 2024 collaborative network, with authors 
labeled by assigned community via the Leiden algorithm, C) Cumulative distribution of topics within each 
community, reflecting the thematic focus areas that have emerged among collaborators, D) Increasing 
interdisciplinary nature of co-authorships over time as denoted through maximal entropy of prior years’ topic 
distribution within subsequent co-author dyads; E) Declining trend in cosine similarity of prior publication topics 
among subsequent co-author dyads; F) Analyzes the relationship between the frequency of co-authorship and topic 
similarity, showing that more frequent collaborators tend to share more similar research interests from prior years’ 
topic similarity, while first-time collaborators often engage from more diverse thematic backgrounds with 
collaborators 

3.2.   Collaboration Network Results 

Our analysis mapped the growth of the largest connected component in the collaboration network 
over time as an indicator of collaboration intensity (Figure 2A). Initially, in 1996, the largest group 
comprised of 9 co-authors. By 2003, this number had grown to 45. Significant growth occurred in 
2011 and 2015, with the largest connected components increasing from 79 to 123 in 2011, and from 
136 to 278 in 2015, respectively. By 2019, the component had expanded to 632 members, reaching 
1147 by 2024—nearly one-third of the entire network size of 3932 PSB authors. 
    The resulting network was divided into 9 distinct communities, reflecting unique topical focuses 
as determined by average topic-document distributions among community members (Figure 2B,C). 
    Our analysis highlighted substantial shifts in the nature of collaborative ties within the PSB 
network. To quantify the diversity of topics present within collaborations, we calculated entropy 
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measurements for each co-author based on their topic distributions prior to the year of publication. 
These entropy values provided a numerical representation of the thematic diversity within each 
collaboration, illustrating the broadening scope of interdisciplinary interaction over time (Figure 
2D). There was a gradual increase in the diversity of topics involved in collaborations, with entropy 
values rising steadily from the year 2000 onwards (β=0.01, p<0.001). This suggests that researchers 
are increasingly engaging in collaborations that cross traditional disciplinary boundaries. 
    Cosine similarity was used to assess the thematic alignment between collaborating authors over 
time based on prior years’ aggregate topic distributions. Initially high similarity scores in the early 
years of the symposium have gradually decreased, suggesting that over time, collaborators are less 
likely to share a common research focus before co-authoring together (β=-2.8e-3, p<0.001). This 
trend is pronounced among new collaborations, where cosine similarity scores dropped by nearly 
20% from 2000 to 2024, reflecting a broadening of interdisciplinary interaction (Figure 2E,F). 
Despite the decrease over time in topic alignment, prior years’ topic alignment was positively 
associated with the likelihood of co-authorship (OR=1.8e6, p<0.001) and co-authors who continued 
to publish together maintained higher levels of topic alignment (β=0.03, p<0.001). 
     Centrality measures were computed yearly to identify key individuals within the final 2024 
cumulative PSB collaboration network. These measures pinpointed those who were central in 
connecting larger subnetworks, reflecting their pivotal roles in fostering collaboration (Table 3). 
 

Table 3: Key Influencers in the PSB Network Across Different Years, influence determined using weighted 
eigenvector, betweenness and degree centrality 

Timepoint Eigenvector Betweenness Degree 
1999 Toshihisa Takagi Subramanian Subbiah Satoru Kuhara 

Satoru Kuhara A. Keith Dunker Toshihisa Takagi 
Emiko Furuichi Satoru Kuhara Adam Godzik 

2004 Satoru Miyano Satoru Miyano Satoru Miyano 
David C. Kulp Philip E. Bourne Satoru Kuhara 
Conrad C. Huang Adam Godzik William Stafford Noble 

2009 Bart L.R. de Moor Satoru Miyano Russ B. Altman 
Conrad C. Huang Russ B. Altman Philip E. Bourne 
Thomas E. Ferrin Philip E. Bourne William Stafford Noble 

2014 Russ B. Altman Marylyn D. Ritchie Adam Godzik 
Philip E. Bourne Russ B. Altman Russ B. Altman 
Zoubin Ghahramani Satoru Miyano Philip E. Bourne 

2019 Marylyn D. Ritchie Marylyn D. Ritchie Russ B. Altman 
Sarah A. Pendergrass Sarah A. Pendergrass Atul Janardhan Butte 
Shefali Setia Verma Russ B. Altman Jason H. Moore 

2024 Marylyn D. Ritchie Marylyn D. Ritchie Russ B. Altman 
Shefali Setia Verma Russ B. Altman Lawrence E. Hunter 
Sarah A. Pendergrass Shefali Setia Verma Joel T. Dudley 

 

3.3.   Citation Results 

The manuscripts published in the yearly PSB proceedings have significantly varied in their impact 
over time, with a notable peak in citations during the early 2000s. As illustrated in Figure 1B, the 
today’s citation count for these papers shows a substantial rise around this period, followed by a 
gradual decline. This figure traces the number of current citations received by papers based on their 
publication year and does not normalize by passing time– manuscripts published earlier are more 
likely to have more citations. After adjusting for time, we found that articles with a higher entropy 
score (indicating interdisciplinarity; t=3.33, p=0.001) and lower cosine similarity (indicating 
formation of interdisciplinary relationship; t=-3.06, p=0.002) were associated with higher citation 
count. Figure 1C delineates the proportion of yearly citations attributable to specific topics, 
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assigning each manuscript the topic with the highest document-topic score. This analysis reveals 
that certain topics have gained or lost prominence in terms of citation impact over the years. 
 
4.   Discussion 

4.1.   Topic Modeling Interpretation and Discussion 

The topics derived from BERTopic shared some commonalities with those from LDA, including 
areas such as pathway analysis, drug-drug polypharmacy interactions, CHIP-seq peak calling, SNPs, 
sequence alignment, protein-protein interactions, and biomedical ontologies. However, BERTopic 
covered a broader array of topics, including network analysis, COVID-19, microbiome analysis, 
brain imaging, spatial transcriptomics, and temporal features, showcasing its expansive thematic 
reach (Table 1). Conversely, LDA uniquely captured topics related to machine learning and residue 
binding, which were not present in the BERTopic set. Notably, the exclusion of rapidly emerging 
fields such as multimodal analysis in BERTopic was also observed, highlighting some limitations 
in its topic coverage. Dynamic topic models provided an evolutionary view of these topics, which 
were initially based on themes from 1996. Over time, these topics have notably shifted from 
focusing primarily on biomolecular structures and sequences to more complex areas such as clinical 
prediction models that integrate spatial data and RNA sequencing prediction models. 
     Cluster 3 highlights a marked increase in topics such as residue binding and machine learning 
(specifically topics 5, 6, and 7) (Figure 1A). The surge in these topics aligns with the rise of deep 
learning and sophisticated protein folding algorithms, which gained prominence nearly a decade ago 
36. This trend underscores the impact of technological advancements on driving research focus areas 
within bioinformatics, particularly those that leverage computational innovations. 
     In contrast, Cluster 2, which includes topics 1, 3, and 9, pertains to pathway analysis and 
biomedical ontologies. Notably, pathway analysis (topic 1) was a central theme in sessions as far 
back as 1996, with titles like “Genome, Pathway and Interaction Bioinformatics” and “Computation 
in Biological Pathways” in 1997 37,38. Despite their current popularity, these topics are long-
established in the field rather than emerging areas. Over time, the prevalence of these foundational 
themes has seen a relative decrease, suggesting a shift in research focus toward newer computational 
techniques and applications. 

4.2.   Collaborative Network Discussion and Interpretation 

The identified communities in the largest connected component from the 2024 network and their 
differing topic distributions highlight the symposium’s role in facilitating diverse interdisciplinary 
collaborations (Figure 2). Our results show a marked shift towards interdisciplinary collaboration 
at the PSB, as evidenced by increasing entropy in topic distributions and decreasing cosine similarity 
over time among collaborators. This evolving trend suggests that PSB participants are not only 
expanding their collaborative networks but are also engaging with a wider array of scientific 
disciplines than in previous years. The decrease in cosine similarity particularly highlights how the 
nature of these collaborations has evolved from close-knit, topic-specific interactions to more 
diverse, interdisciplinary exchanges. This shift may reflect broader changes in the field of 
bioinformatics, where cross-disciplinary approaches are becoming essential to tackle increasingly 
complex research questions 39–41. 
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    The trend of decreasing topic similarity, especially notable among first-time collaborators, 
indicates that PSB is successfully fostering an environment where researchers feel encouraged to 
explore new collaborations outside their immediate expertise. This is crucial for driving innovation 
and adapting to the rapidly changing landscape of bioinformatics research. The data also suggest 
that while established collaborators continue to work within familiar thematic areas, there is a strong 
movement towards branching out into new topics.  
     Over time, the composition of influential members within the PSB network has evolved (Table 
3), with recent years marking the rise of key figures, including three current editors/organizers. Their 
prominence might stem from consistent presence, increasing opportunities for co-authorship. While 
this could indicate a strategic integration of leadership roles, it might also reflect incidental outcomes 
of sustained participation. This observation underscores the complexities of interpreting the 
dynamics between leadership presence and collaborative patterns in academic networks. 

4.3.   Citation Discussion and Interpretation 

It was not surprising that earlier PSB publications, especially those from around the year 2000, 
received more attention, as reflected by the number of cumulative citations. Our citation analysis 
also revealed a declining trend in the citation relevance of certain topics. For instance, LDA topic 
2, which focuses on drug-drug interactions, and topic 9, covering ontologies, were highly cited in 
the early 2000s but have experienced a gradual decrease in citation percentage over the years. In 
contrast, topic 11 on protein folding has seen a noticeable increase in popularity. 
     The future trajectory of less frequently cited topics remains uncertain as the field evolves with 
new technologies. The process of these topics becoming mainstream could significantly alter their 
impact. Additionally, shifts in community focus—from established scholars to emerging 
researchers—may also influence citation patterns. The growing interdisciplinarity of the field 
presents another challenge, as works that span multiple disciplines sometimes struggle to connect 
with a well-defined audience, potentially diluting their impact 42. Nevertheless, our citation analysis 
suggests that forming interdisciplinary ties, as fostered through this venue, was associated with 
greater scientific impact, even after adjusting for time. 
 

5.   Conclusion 

The Pacific Symposium on Biocomputing stands as a premier venue in bioinformatics, 
embodying the forefront of convergent thinking by bringing together individuals from diverse 
backgrounds to address complex problems that span multiple disciplines. Through our 
application of quantitative NLP and network analysis methods, we have effectively mapped the 
scope and nature of the various themes and collaborative ties that have formed at this venue over 
the past 30 years. These analyses reveal not only the evolving patterns of collaboration but also 
highlight the increasing diversity and interdisciplinarity of the research presented at PSB. 
Looking ahead, we anticipate that PSB will continue to foster groundbreaking interdisciplinary 
research, adapting to new scientific challenges and technologies. As the field grows, the 
symposium will likely play a crucial role in shaping future trends in bioinformatics and 
computational biology. We expect that continued innovations in analytical methods will further 
illuminate the dynamics of collaboration and influence within this community, enhancing our 
understanding of how interdisciplinary interactions drive scientific progress. 
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Artificial Intelligence (AI) technologies are increasingly capable of processing complex and multi-
layered datasets. Innovations in generative AI and deep learning have notably enhanced the 
extraction of insights from both unstructured texts, images, and structured data alike. These 
breakthroughs in AI technology have spurred a wave of research in the medical field, leading to the 
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creation of a variety of tools aimed at improving clinical decision-making, patient monitoring, image 
analysis, and emergency response systems. However, thorough research is essential to fully 
understand the broader impact and potential consequences of deploying AI within the healthcare 
sector. 

Keywords: Artificial Intelligence, clinical medicine, decision support systems, large language 
models. 

1. Introduction

The integration of Artificial Intelligence (AI) into clinical medicine continues to expand at a
rapid pace, promising transformative changes across diagnostics, treatment planning, and patient 
monitoring [1], [2], [3], [4], [5]. While AI technologies offer remarkable capabilities in analyzing 
extensive and complex medical data sets, their real-world application necessitates robust 
frameworks that support explainability and generalizability. These aspects are crucial for building 
trust among clinicians and patients alike, ensuring that AI-driven interventions are both 
understandable and applicable across diverse clinical environments. This session showcases 
pioneering research that addresses these needs, highlighting innovative solutions that aim to set new 
standards in the deployment of AI tools in medicine. The emergence of large language models 
(LLMs) and other sophisticated AI systems has propelled forward our ability to interpret and utilize 
medical data, promising significant improvements in patient outcomes [6], [7]. However, the 
deployment of such technologies must be accompanied by stringent evaluations to confirm their 
effectiveness and safety in real-world clinical settings [8], [9]. This includes understanding their 
potential biases, operational limitations, and their overall impact on clinical decision-making 
processes. 

This year's session at the 2025 Pacific Symposium on Biocomputing (PSB), titled AI in Clinical 
Medicine: Towards Explainable and Generalizable AI Systems, concentrates on the latest 
advancements in AI that not only enhance clinical effectiveness but also prioritize transparency, 
adaptability, and ethical implementation in healthcare settings. Here, we highlight the accepted 
submissions for this session and set the stage for a discussion of AI’s role in revolutionizing medical 
practice, emphasizing the need for solutions that are not only technically proficient but also ethically 
sound and universally beneficial. As AI continues to permeate the healthcare landscape, this session 
provides a critical examination of both its achievements and the challenges that lie ahead in its 
journey from experimental algorithms to essential clinical tools. 

2. Artificial Intelligence in Clinical Medicine

2.1.  AI for Clinical Decision Support and Medical Workflows 

AI has increasingly been integrated into clinical decision-making processes, providing support for 
tasks such as diagnostics, treatment planning, and risk prediction [10]. Decision support systems 
that incorporate AI can process vast amounts of clinical data in real time, offering clinicians 
enhanced insights into patient care [11]. These tools are particularly valuable in settings where time 
and precision are critical, such as emergency departments, oncology, and intensive care units. 
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Prince et al. 2025 present a visual analytics framework aimed at evaluating interactive AI systems 
in pediatric brain tumor diagnosis [12]. Their work underscores the importance of understanding 
how AI can support clinicians in decision-making and improve clinical workflows.  
Bedi et al. 2025 introduce QUEST-AI, an innovative LLM-based system designed to generate and 
refine USMLE-style exam questions [13]. By automating this process, their system promises to 
reduce the time and cost involved in medical education.  
Rao et al. 2025 tackle the challenge of error generation in radiology reports with CX-REGen, a 
system that uses LLMs to create synthetic errors in chest X-ray reports to improve AI model training 
[14]. 
Healey et al. 2025 introduce LLM-CGM, a benchmark for summarizing continuous glucose monitor 
(CGM) data using AI, with applications in enhancing diabetes management [15]. 
Lastly, Godeme et al. 2025 investigate the use of synthetic text for developing NLP models to 
support peer supporters [16]. This study demonstrates that AI-generated synthetic text can 
effectively augment training datasets, which enhances the fidelity of peer support tools. Their 
findings emphasize the utility of AI in improving both training and support mechanisms for peer-
assisted health interventions. 

2.2.  Improving AI Models for Critical Healthcare Tasks 

To ensure that AI models can handle the complexity and variability of healthcare data, improving 
their generalizability and performance is crucial. Healthcare environments are diverse, and AI 
models must perform well across different populations, institutions, and clinical settings. 
Additionally, AI tools need to handle both structured data, such as lab results and vital signs, and 
unstructured data, like clinical notes, to offer comprehensive support [17], [18]. Several papers in 
this session focus on optimizing the performance and utility of AI models in healthcare.  
Shashikumar and Nemati 2025 present a comparative study of LLMs in sepsis prediction, 
demonstrating that smaller models can achieve performance levels comparable to larger ones, thus 
offering more resource-efficient solutions [19]. 
Wang et al. 2025 explore the use of LLMs in cancer registry coding, where AI models are applied 
to streamline and enhance the accuracy of reporting in real-world hospital settings [20]. 
Weissenbacher et al. 2025 developed an NLP-based system to evaluate the appropriateness of 
pediatric antibiotic prescriptions, contributing to improved antibiotic stewardship practices in 
healthcare [21]. 

2.3.  Ethical and Regulatory Considerations in AI Deployment 

The rapid development of AI in healthcare presents significant ethical and regulatory challenges. AI 
systems must be designed and deployed in ways that prioritize patient safety, privacy, and equity. 
As AI becomes more embedded in clinical workflows, it is critical to ensure that these systems 
comply with existing regulations and adapt to evolving legal frameworks [22]. Regulatory agencies, 
such as the FDA, are tasked with ensuring that AI technologies are safe, effective, and accessible to 
all patients [23]. 
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Rincon et al. 2025 explore the evolving regulatory landscape in healthcare AI, focusing on how 
recent Supreme Court decisions could impact the authority of regulatory agencies like the FDA [24]. 
Their analysis highlights the potential implications of regulatory uncertainty for the healthcare 
industry.  
In a related study, Levy et al. 2025 investigate the use of AI to predict suicide risk in veterans, 
integrating both structured and unstructured EHR data [25]. Their work underscores the ethical 
importance of using AI responsibly in sensitive areas like mental health. 

2.4.  Generalizability and Validation of AI Models 

Ensuring that AI models are generalizable and can be validated across different clinical settings is 
essential for their widespread adoption [26]. AI systems trained on data from a single institution or 
population often struggle to perform well in other settings due to variations in patient demographics, 
clinical practices, and data collection methods. Generalizability is crucial for developing AI tools 
that can be deployed in diverse healthcare environments without compromising accuracy or fairness 
[27]. 
In this session, Banerjee et al. 2025 introduce a multi-site validation framework to test the robustness 
of radiology AI models across different populations and institutions, addressing the critical need for 
AI systems that can generalize beyond their training data [28].  
Xiong et al. 2025 propose i-MedRAG, an iterative Retrieval-Augmented Generation (RAG) system 
designed to improve medical question-answering by incorporating follow-up queries, further 
enhancing AI’s ability to handle complex clinical cases [29].  
Ramwala et al. 2025 present ClinValAI, a cloud-based framework for the external validation of AI 
models in medical imaging, ensuring that these models meet high standards of performance and 
fairness [30]. 
Lastly, Keat et al. 2025 introduce PGxQA, a resource for evaluating the performance of LLMs on 
pharmacogenomic question-answering tasks [31]. This benchmark is designed to assess the ability 
of LLMs to provide clinically accurate information related to pharmacogenomics, which is crucial 
for ensuring these AI tools' safety and effectiveness when used in personalized medicine 
applications. 

3. Conclusion

The papers presented in this session demonstrate the expanding role of AI in clinical medicine. They 
showcase a range of applications designed to improve diagnostic accuracy, enhance decision 
support, and address ethical and regulatory challenges. As AI continues to integrate into healthcare, 
the need for rigorous validation, regulatory oversight, and ethical deployment becomes increasingly 
important. These contributions highlight the promise of AI while addressing the ongoing challenges 
of ensuring that these systems are safe, explainable, and generalizable across diverse clinical 
environments. 
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Human involvement remains critical in most instances of clinical decision-making. Recent
advances in AI and machine learning opened the door for designing, implementing, and
translating interactive AI systems to support clinicians in decision-making. Assessing the
impact and implications of such systems on patient care and clinical workflows requires
in-depth studies. Conducting evaluation studies of AI-supported interactive systems to sup-
port decision-making in clinical settings is challenging and time-consuming. These studies
involve carefully collecting, analyzing, and interpreting quantitative and qualitative data
to assess the performance of the underlying AI-supported system, its impact on the hu-
man decision-making process, and the implications for patient care. We have previously
developed a toolkit for designing and implementing clinical AI software so that it can be
subjected to an application-based evaluation. Here, we present a visual analytics frame-
work for analyzing and interpreting the data collected during such an evaluation process.
Our framework supports identifying subgroups of users and patients based on their char-
acteristics, detecting outliers among them, and providing evidence to ensure adherence to
regulatory guidelines. We used early-stage clinical AI regulatory guidelines to drive the sys-
tem design, implemented multiple-factor analysis and hierarchical clustering as exemplary
analysis tools, and provided interactive visualizations to explore and interpret results. We
demonstrate the effectiveness of our framework through a case study to evaluate a prototype
AI-based clinical decision-support system for diagnosing pediatric brain tumors.

Keywords: Clinical Decision Making; AI-Supported Interactive Decision Making; Evaluation
Studies; Visual Analytics Framework.

1. Introduction

Artificial Intelligence (AI) can transform healthcare decision-making by quickly analyzing large
amounts of data and improving diagnostic accuracy and patient outcomes.1 However, ethical
and legal implications, transparency of AI algorithms, and integration into existing workflows
present challenges that require careful management.1,2 Although AI has been increasingly
used to support decision-making across various fields, more studies are needed to safely and

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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efficiently enhance human judgment and interpretation. Achievieng this goal requires the
evaluation of AI systems on their algorithmic performance and their impact on humanistic
aspects.

A comprehensive and systematic approach is needed to assess the impact of AI on decision
making, particularly in high-risk settings such as healthcare.3,4 For example, a recent study
demonstrated that GPT-4V frequently presents flawed medical rationales in cases where it
makes the correct final choices regarding the interpretation of radiologic imaging.5 Examples
of clinical experts’ interactions with AI systems6,7 reveal a gap in understanding AI’s impact
on humanistic aspects of clinical decision-making.

This gap extends to developing objective and precise techniques to evaluate AI technolo-
gies’ safety and predictive precision.5 Such evaluation techniques are still a bottleneck in the
translational pipeline from a prototype tool to clinical deployment.8 Our research highlights
the substantial challenges related to implementing AI in high-risk decision-making scenarios
within healthcare. We present robust and scalable exploratory analysis methods for evaluat-
ing AI systems and facilitating their broader acceptance and implementation in healthcare
decision-making.

Monitoring clinical AI software effectively ensures performance, compliance, innovation,
and better patient outcomes through data analysis and personalized medicine. Our proposed
framework uses regulatory guidelines and statistical methods to assess system factors. Devel-
oping clinical AI software requires a structured framework: defining the problem, collecting
and preparing data, developing and evaluating the model, and implementing and monitoring
it. This comprehensive approach ensures that the software addresses specific clinical tasks,
uses relevant data, integrates into the clinical workflow, and stays up-to-date.

We introduce a scalable framework implemented as an interactive software solution to
analyze AI’s impact in high-risk clinical decision-making scenarios. Its goals include identify-
ing subgroups, detecting outliers, and supporting compliance with regulations. We integrate
methodologies from multiple fields, including factor analysis, hierarchical clustering, adherence
to regulatory guidelines, and interactive visualizations, to thoroughly analyze and enhance AI
effectiveness in clinical decision-making. An end-to-end evaluation framework can enhance
healthcare decision-making by improving AI’s effectiveness, facilitating its implementation,
and promoting adherence to regulatory guidelines, potentially leading to better patient out-
comes. We demonstrate the utility and effectiveness of our framework through a case study
assessing a prototype AI-based clinical decision-support system for the diagnosis of pediatric
brain tumors.

2. Background

AI-assistance for Clinical Interpretation on Radiographic Images of CNS
Tumors

As a use case in high-risk clinical decision-making, we look to AI support for diagnosing and
managing central nervous system (CNS) tumors. In this context, experts use demographics,
clinical presentation, imaging, and molecular information9 for tumor diagnosis. AI systems
can support efficient detection, diagnosis, staging, prognosis, and treatment planning of brain

Pacific Symposium on Biocomputing 2025

41



tumors, among other applications.9,10 These clincial decisions are only sometimes clear-cut
and can require significant resource allocation. It is generally agreed upon that AI has ample
room to support clinical decision-making in this context.6,11,12 However, when considering
the humanistic aspects of clinical AI support, it is becoming increasingly apparent that AI
has a heterogeneous impact on human decision-makers.6,11,12 Human experts may exhibit
automation bias or neglect, where they overweight and underweight the AI prediction relative
to their own, respectively.6 Therefore, assessing the effect AI assistance has on decision-makers
at the system level is essential. It is important to note that although AI has the potential
to enhance clinical decision-making significantly, it also brings challenges that need to be
addressed. These challenges include data-related issues, digital inequity gaps, bias, and the
need for robust governance frameworks that balance safety and innovation.10

Consensus Statements and Guidelines for Clinical AI

In the healthcare sector, specific guidelines have been established to rigorously evaluate the
clinical impact of AI, ensuring standards for transparency and ethical adherence. These guide-
lines contrast with those of other sectors, such as finance. Frameworks such as TRIPOD-AI13

and CONSORT-AI14 provide structured recommendations for preclinical and clinical AI trials;
they emphasize standardized reporting and detailed intervention analysis. The DECIDE-AI15

guidelines serve a critical role in bridging the preclinical and clinical AI trial phases.
DECIDE-AI targets early-stage clinical evaluations of AI-driven decision-support systems,

emphasizing the importance of assessing clinical utility, safety, and ergonomic factors to pre-
pare for broader clinical trials. Developed through international consensus involving experts
from diverse areas, these guidelines are pivotal in ensuring that AI technologies are safely and
effectively integrated into clinical practices. We used DECIDE-AI to drive the design of our
framework, aligning our evaluation methods with best practices for early-stage AI assessment
in healthcare.

Visual Analysis of Qualitative Data

The qualitative data analysis software landscape mainly features commercial products, with
a notable deficit in advanced open-source options tailored for specialized fields such as clinical
AI. Although feature-rich, commercial software like NVivo and ATLAS.ti are expensive and
designed for broader use, making them less suitable for niche research areas with limited
budgets and cases.

We introduce a new visual data analysis tool designed specifically for early-stage clinical AI
evaluations to address this gap. It offers a cost-effective, scalable solution for clinical AI studies,
enhancing user-centered evaluations and supporting the development of tailored clinical AI
applications.

3. Analytical Objective, Experimental Data, Regulatory Guidelines, and
Interface Design

We previously presented a framework for designing, implementing, and evaluating clinical AI
tools from an implementation science perspective.16 Here, we introduce a new framework for
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the analysis phase of application-based studies. Specifically, we consider (a) how users can
interact with AI systems to make sense of patient data so that they can make effective care
decisions and (b) how we monitor these AI systems for safety and efficacy (Figure 1).

We emphasize an exploratory and holistic mindset when interpreting the results of AI
evaluation studies. Our framework provides an overview of the data collected in the experi-
ment, complemented by secondary views that can display various facets that detail aspects of
the experimental data. We strive for simplicity and efficiency, integrating a minimalistic user
interface and implementing linked-view mechanisms for seamless visual filtering. Below, we
present the experimental data used to inform our design choices and describe the design of
the primary and secondary views.

Following regulatory guidelines, such as DECIDE-AI, to lead analysis is essential when
developing AI for clinical decision support. Figure 1 depicts some of these guidelines as black-
and-white text boxes. This structured method improves system development, ensures health-
care compliance, and thoroughly evaluates AI integration. It is important for creating efficient,
secure systems. Our framework supports identifying personas and patterns in evaluation data
and aligns with the DECIDE-AI guidelines.

Fig. 1. Conceptual depiction of how users and interactive AI systems come together to make care
decisions while monitoring system performance. DECIDE-AI themes guiding clinical AI evaluation
are shown in black-and-white text boxes.

Analytical Objective: Identifying Personas and Patterns

Our analytical initiative is focused on coarse but comprehensive data exploration. This task
plays a significant role in the initial phases of clinical AI system development to support
identifying user personas and patient subgroups, as well as detecting patterns of human-AI
agreement and disagreement. This exploration aims to guide the development of AI systems
tailored to their users and environments, resulting in more personalized and relevant applica-
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tions. During this stage, it is essential to acknowledge the subtle interactions between users
and AI systems that can yield valuable insights into refining AI algorithms for optimal per-
formance in real-world clinical settings.

Experimental Data

When evaluating AI’s role in clinical decision-making, it is important to adopt a comprehen-
sive approach that considers user-centered design and patient-related data. This approach is
centered around the collection of a broad range of categorical and continuous variables de-
scribing both the performance of the AI system and the interactions of the user with the
system and patient data.

In user-centered design, categorical data (nominal and ordinal) is essential for categorizing
and understanding user interactions and experiences. Nominal data can reveal usage patterns
and tool preferences, such as user roles (e.g., doctors, nurses, administrators) and AI tool types
(e.g., diagnostic aid, treatment planner). Ordinal data, such as user satisfaction ratings or task
difficulty levels, can provide insight into the usability and effectiveness of AI tools. Meanwhile,
continuous data, including interval and ratio data, provide quantitative user engagement and
tool performance measures. Interval data, such as response times or system up-time, and ratio
data, such as usage counts, session lengths, or error rates, provide precise metrics to track
changes over time or after modifications.

In addition to user-centered data, it is equally important to gather patient-related data.
Categorical patient data, such as diagnosis (e.g., Central Nervous System (CNS) tumor),
treatment type (e.g., surgery, radiation therapy, chemotherapy), and genetic markers, offer
essential insights into the patient’s health status and the complexity of their case. Similarly,
continuous data points such as tumor size, biomarker levels, and treatment response (e.g.,
tumor size changes or patient symptoms over time) play a pivotal role in providing precise
and quantifiable measures of the patient’s condition and treatment progress.

Taking into account both user and patient data, the AI tool can be designed to provide a
more holistic and personalized user experience. It can cater to the user’s specific tasks, such as
diagnosing a CNS tumor or monitoring a patient’s response to treatment, thereby enhancing
the tool’s effectiveness and usability in the clinical setting. This comprehensive data collection
and consideration approach is fundamental in the user-centered design and evaluation of AI
tools in clinical settings. It ensures that the tool meets the user’s needs and improves patient
outcomes, which is the ultimate goal of healthcare delivery. Thus, collecting and considering
diverse data types is fundamental in evaluating and optimizing AI in a clinical setting. It also
aids in mitigating biases and improving the fairness and equity of AI-driven clinical decisions.

Themes of Regulatory Guidelines Driving the Design

To achieve our analytical objective, we lean on the themes and guidelines in the DECIDE-AI
framework.15 Each theme is tailored to glean critical insights during the early phases of AI
system development and deployment in healthcare settings. The remainder of this subsection
provides a summary of each of these themes.
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User Characteristics Analysis. This theme involves collecting and assessing demographic
and clinical data from healthcare providers to develop practical AI solutions that meet diverse
user needs. This strategy enhances the system’s versatility and facilitates its acceptance and
integration in clinical settings. The theme aligns with DECIDE-AI guidelines 9A and 9B.

Implementation Reporting. This theme analyzes user interaction with the AI system and
its impact on clinical workflows, focusing on user engagement and system acceptance. The
goal is to ensure that the AI improves existing workflows and is easily integrated into clinical
settings. This theme aligns with DECIDE-AI guidelines 10A and 10B.

AI System Modifications. To maintain the AI system’s effectiveness and meet its users’
needs, it is imperative to document all modifications made during the study and analyze their
impact on the system’s outcomes. This theme is essential for the system’s continued evolution
and clinical efficacy. It corresponds with DECIDE-AI guideline 11.

Human-Computer Interaction Assessment. This theme assesses user agreement and com-
pliance with AI recommendations, focusing on improving trust and system reliability. By
analyzing deviations, developers can refine the AI to better meet user expectations and en-
sure its recommendations are practical for integration into daily operations. This theme aligns
with DECIDE-AI guideline 12.

Safety and Error Analysis. This theme focuses on identifying and addressing errors, mal-
functions, potential risks, and observed harm in the AI system to safeguard patient safety.
Vigilant monitoring and mitigation ensure compliance with healthcare regulations and ethical
technology deployment in clinical settings. This theme aligns with DECIDE-AI guidelines 13A
and 13B.

Human Factors Analysis. This theme combines usability testing and learning curve eval-
uations to ensure the AI system is practical and accessible from initial use to complete com-
petence. Meeting practical needs and improving user experiences provides high user adoption
and satisfaction and aligns with DECIDE-AI guidelines 14A and 14B.

Due to space constraints, we focus on the themes of Implementation Reporting, Human-
Computer Interaction Assessment, and Human Factor Analysis in the remainder of this paper.

Interface Design

This section outlines our interface design, which follows a top-down conceptual approach.
The UI is organized into primary and secondary views, creating a light, focused layout that
enhances interaction. This hierarchical structure improves user efficiency by providing coarse
overviews and allowing granular analysis of selected topics. Interactive views enable dynamic
data filtering, enriching the user experience with structured navigation and focused content.

Design of Primary View. Figure 2 shows an example of the primary view, detailed in
the case study in Section 4. Our visual analytics framework supports a two-stage, top-down
analytical process for handling complex clinical datasets. The initial analysis uses a full-screen
plotting window for broad pattern recognition and preliminary insights.

The primary view is configured with interactive functionalities to transition to the finer
data exploration phase. These include dynamic linking capabilities between primary and sec-
ondary data views and providing contextual information via tooltips. Such features are in-
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Fig. 2. Overview of the primary view displaying a factor analysis (i.e., MCA) bi-plot of clinical AI
user study experimental data. (a) Legend for the plot depicting entities and variables within the study
dataset. Entities and variables are annotated based on whether they are a user, AI agent, patient,
decision-making task, demographic, or survey value. (b) The Formatting panel controls the display
of the primary view and the appearance of marks. Marks are currently double-encoded for color and
shape, showing variable categories. (c) The Tools panel contains buttons to toggle secondary views.
The buttons are organized according to DECIDE-AI guidelines. (d, e) Examples of participants that
represent 2 Personas. (f) Grouping of AI-predicted and AI-ground truth values.

dispensable for users focusing on detailed data inspections, where precision in isolating and
scrutinizing data segments is necessary. Interactive tools like zoom, adjustable filters, and
data point selection (rectangular or lasso) enhance query specificity, streamline workflows,
and deepen analysis.

The minimalist toolbar of the interface, shown adjacent to Figure 2a on the left side, main-
tains simplicity by housing navigational buttons like project, formatting, tools, and help. This
design choice preserves an intuitive navigation structure while supporting extensive function-
ality, minimizing cognitive load for the analyst.

For this example, our primary view layout is determined using multiple correspondence
analysis (MCA). This type of factor analysis optimally suits the assessment of nominal cate-
gorical data like surveys. We expand on other factor analyses in our Discussion below. Using
a unified graphical interface with dual-coding (glyphs and colors) helps understand the rela-
tionships between clinicians’ behaviors, patient data, and AI insights.

The configuration of the primary view (Figure 2b), therefore, elevates the analytical ca-
pabilities required in clinical settings and aligns with rigorous academic data processing and
visualization standards. Designing to meet users’ operational and cognitive needs supports
nuanced data exploration, which is essential for advancing AI in healthcare and evaluating its
impact on clinical decision-making.
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Fig. 3. Comparative Analysis of User Sessions and AI Interactions. (a) This panel illustrates in-
teractions across two distinct sessions, capturing surveys, administrative actions (e.g., ‘Next’ button
clicks), and specialized tasks (e.g., survey responses). The utility of AI features is examined through
variations in image viewing (Barco Update Target) and AI button use, indicating differing reliance
on AI tools between sessions. (b) This diagram shows a trend of decreasing task completion times,
indicating improved user proficiency with system utilization over the session. (c) A heatmap high-
lights alignment and discrepancies in decision-making annotations between AI predictions, AI ground
truth, and user selections. This visualization is instrumental in evaluating the AI’s alignment with
user decisions and overall influence on decision-making.

Design of Secondary Views. The secondary views in our visual analytics framework
are intricately designed to complement the primary view by providing enhanced functionality
for detailed and task-specific analysis, as illustrated in Figure 3. These views, which can be
triggered from the toolbar menu (Figure 2c) have been developed with particular considera-
tions to support the themes within DECIDE-AI required to effectively evaluate AI interactions
within clinical contexts.

The decision to implement popup windows for secondary views is purposeful. It is designed
to preserve the primary interface’s clarity while enabling access to advanced data inspection
when required. This approach allows users to engage with complex data sets without cluttering
the primary view, facilitating user-controlled complexity in the visualization environment.
Such a design is critical for tasks requiring focused analytical attention on specific data subsets
while maintaining sight of the broader analytical context.

The secondary views utilize responsive SVG display widgets, which are pivotal for the
dynamic visualization of intricate, multi-dimensional data typical in clinical analytics. These
widgets are essential for detailed data relationship analyses, especially for interactions between
patient data and AI outputs, as they allow users to interactively manipulate visual elements.

The ability to resize and reposition popup windows empowers users to tailor the analytical
workspace to their specific needs or preferences, enhancing the ergonomics of data analysis.
This flexibility is essential during analyses such as cross-referencing multiple data sources or
adjusting visual layouts to better interpret data correlations and trends. Combining secondary
views with the primary view allows for both broad and detailed questions to be addressed
simultaneously.
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4. Case Study

To demonstrate our framework, we used data from a previously conducted evaluation study
of a prototype AI-based clinical decision-support system for the diagnosing pediatric brain
tumors. For context, we summarize the system and study here; details are provided in our
previous work.17

Development and Evaluation Study of Interactive AI Clinical Decision
Support Software

User Interface and Radiology Workstation Simulator. We collaborated with clinical partners
in a step-by-step design study, collecting visualization samples, conducting user interviews,
and improving designs based on feedback. In the initial phase, we used visualizations to
display the performance of the AI model. In the second phase, we visualized predictions
for clinicians using existing tools and conducted a user study. After immersing ourselves in
the clinical environment, we refined our task specifications and created initial prototypes in
the third phase. Finally, we built a radiology reading terminal and implemented basic AI
interfaces as web applications in the fourth phase. Additional details are provided in our
previous publication.18

AI Model Backend. The study used the ATPC50 dataset from the Advancing Treatment for
Pediatric Craniopharyngioma (ATPC) international multi-institutional consortium in North
America, which included information from 50 ACP patients.17 The study focused on patients’
initial presentations, utilizing imaging data from preoperative CT and MRI scans, with radio-
graphic features annotated by a certified neuroradiologist. The AI model thoroughly prepro-
cessed DICOM inputs by resizing images, adjusting contrast, and simulating different patient
positions. The data was rescaled to the JPEG range and then processed using ResNet V2
techniques. The study also included using a variational autoencoder for data reconstruction
and deep learning classifiers for diagnostic analysis.17,19

Experimental Study Design. The study recruited six post-residency faculty attending clin-
icians (three females and three males) from Children’s Hospital Colorado, focusing on those
specializing in neurosurgery and neuroradiology. Participants were recruited via email and
scheduled for individual 30-minute sessions over a two-week period to accommodate their
busy schedules.

At the start of each session, participants shared demographic information, were introduced
to the study’s goals, and completed the Subjective Numeracy Scale (SNS) survey. They then
received a step-by-step guide to the AI decision support tool through ten instructional slides.
Participants used radiologic images of CNS tumors to annotate an 11-point feature profile
of a pediatric CNS tumor known as Adamantinomatous Craniopharyngioma, both with and
without AI support. These feature profiles were completed within the software as a form with
checkboxes.

Participants engaged with AI in two forms. The first was a passive AI assistant that flagged
a checkbox if the user selected a value that was different from the AI prediction. The second
was a direct AI assistant that provided users with the AI-predicted feature profile and a list
of other patients that the AI model suggested were similar, based on L1 distance between
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prediction vectors. At the end of the session, participants provided feedback by completing
the System Usability Scale (SUS) survey. We collected survey data, feature predictions, and
system interaction logs.

Exploration and Interpretation of Data from the Evaluation Study

We now describe how our new framework for assessing interactive AI for clinical decision
support was used to analyze the data collected in our evaluation study.

Our analysis, which encompassed survey responses and system interaction logs, distin-
guished two primary user personas: the ’Tech Novice Numerate’ (Figure 2d) and the ’Confi-
dent Numerate’ (Figure 2e). The ’Tech Novice Numerate’ users displayed moderate numerical
skills but struggled to navigate the AI system, indicating a pressing need for improvements in
interface design and enhanced user training. In contrast, the ’Confident Numerate’ users, who
demonstrated high numerical proficiency, expressed concerns about the system’s consistency,
suggesting potential reliability and user acceptance issues.

An in-depth examination of the utilization of AI tools revealed significant variances in the
degree of dependency on AI support, as observed through differential usage of the ”Barco Up-
date” feature for additional image views and ”AI button” interactions. Additionally, a chrono-
logical analysis of task completions, encompassing SUS, SNS, and Feature Form responses,
shed light on the users’ learning trajectories and the system’s adaptability throughout the
session.

In Figure 2f, the overlay of points for AI predicted values and the AI ground truth suggests
a high degree of agreement between the AI model’s predictions and the annotations made by
a board-certified clinical expert, considered the ’ground truth’ in this context. This expert is
highly skilled and certified in the task at hand within this specific use case.

The fact that the AI model aligns closely with the ground truth annotator indicates that
the model has learned to mimic the decision-making process of this particular expert quite
accurately. However, it is essential to note that this expert may have interpretations that
differ from other experts in the field. This is a common occurrence in many professional fields,
including clinical practice, where different experts may have slightly different interpretations
or approaches based on their training, experience, and personal biases.

Collaboration among human experts in clinical practice is crucial. Discussing interpreta-
tions with colleagues can help reach a consensus or understand different viewpoints, which can
help mitigate discrepancies between different human experts. This collaborative approach is
particularly important in the context of the figures, as it can help reconcile differences between
the annotations that fall into Figure 2f (where the AI and the ground truth annotator agree)
versus those in Figure 2d or 2e (where there may be disagreement).

Understanding potential biases in the AI model is essential for evaluating clinical AI de-
vices in real-world settings. If the AI model consistently aligns with one expert (the ground
truth annotator, in this case), it may indicate that the model is biased towards that individ-
ual’s interpretations. These models need to generalize well across different experts and not
just mimic the decisions of one individual.
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This granular analysis of user-system engagement deepens our understanding of behavioral
dynamics and provides actionable insights for targeted enhancements in AI system design and
interface. These empirical findings emphasize the critical role of user-centered design in de-
veloping intuitive and reliable clinical decision-support tools, enhancing system functionality,
and fostering greater user trust and satisfaction in healthcare AI applications.

5. Discussion and Lessons Learned

Integrating AI in decision-making across high-stake sectors underscores a transformative shift
towards data-driven practices. However, deploying these AI systems, particularly in sensitive
areas such as healthcare care, requires an approach that couples algorithmic insights with
indispensable human judgment. The predominant reliance on commercial products often leaves
gaps in affordability and customization, especially in specialized fields such as clinical AI.
By introducing a visual analytics framework purposely built for clinical AI applications, we
propose a solution tailored to meet these unique requirements. Our framework can advance
analysis capabilities by interpreting data from clinical user studies and increasing accessibility
and practical relevance, reducing dependency on costly and often overly complex tools.

Consideration of the humanistic aspects of clinical AI evaluation is essential
for several reasons. Real-world scenarios vary significantly from controlled experiments,
making evaluating AI tools with diverse patient populations and varying data quality across
discrete clinical tasks to ensure their generalizability. Evaluations help to identify and mitigate
biases inherent in healthcare systems, ensuring fairness and equity. Real-world testing is vital
in revealing potential safety issues and unintended consequences, guaranteeing that AI tools
perform accurately and reliably in clinical settings. Furthermore, realistic evaluations consider
how AI integrates into existing workflows, including integration challenges, user experience,
and impact on efficiency. Involving clinicians and patients in the evaluation process provides
valuable insights into user acceptance, trust, and willingness to adopt AI tools, informing
necessary improvements. Finally, adhering to regulatory guidelines, such as DECIDE-AI, sig-
nificantly enhances the robustness and generalizability of clinical AI tools by emphasizing
fundamental principles. These include risk assessment and benefit analysis in real-world con-
texts, encouraging external validation and independent testing, assessing clinical utility, and
promoting transparency through clear documentation.

Basing a clinical AI evaluation method on factor analysis can enhance scala-
bility and accommodate diverse data types. Evaluative efforts for clinical AI systems
can generate a large volume of multiple data types. Empirical tools used in this field often
involve survey methods that can gather character descriptions of users (e.g., demographics),
information about system usability and a way to measure how well users can complete the
specific task supported by the system. In addition, continuous numeric data is also relevant in
this space with aspects like predictive probabilities from the AI model, system response time,
user interaction metrics, and human error rates. Understanding and considering all aspects
of the evaluation, including patient data, human expert judgment, and AI software inter-
actions is important. This comprehensive understanding is what produces robust tools that
fundamentally improve patient care.
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Factor analysis is a method for identifying latent factors, or underlying variables, in ob-
served data. Factor analysis uses the correlation structure amongst observed variables to model
fewer unobserved, latent variables known as factors. Researchers use this statistical method
when subject-area knowledge suggests that latent factors cause observable variables to covary.
For instance, we can evaluate an expert’s diagnostic prediction using patient data accessed in
software and compare it to the validated diagnosis. The prediction may need to be corrected
due to unobservable software interaction patterns, which are observable in factor analysis. By
capturing shared variance, it simplifies complex relationships among variables, aiding in the
simplification of data analysis. This method is also scalable, enabling the efficient handling of
large datasets by reducing dimensionality and making computations more manageable.

Factor analysis can accommodate diverse data types, including continuous and categorical
data, allowing for incorporating survey responses (categorical) and continuous data into factor
models. For example, Multiple Factor Analysis (MFA) is a multivariate method used to study
tables where a group of individuals is described by a set of variables, which can be quantitative
and qualitative and are structured in groups. It is an extension of Principal Component
Analysis (PCA) for quantitative variables, Multiple Correspondence Analysis for qualitative
variables, and Factor Analysis of Mixed Data for variables that belong to both types.

We implemented factor analysis using MCA for our framework because the data from
our evaluation study were mainly qualitative. However, many other factor analysis methods
are available, such as nonlinear PCA, which handles mixed data types more effectively.20 The
selection of the factor analysis method is flexible, and we will explore this area further in future
work to identify more sophisticated representations of this complex experimental context.

Effectively evaluating AI requires a delicate balance between realism and con-
trolled experiments to ensure robustness and practical applicability. Multiple facets
are involved in ensuring robust clinical AI software. One approach starts with simulated envi-
ronments to understand fundamental behavior in controlled settings, allowing for controlled
variation while maintaining reproducibility and gradually transitioning to real-world data.
Standardized benchmark datasets can provide a baseline for performance comparison in con-
trolled experiments, although it is essential to recognize their limitations in representing real-
world complexity. Another valuable strategy is transfer learning, which entails training models
on controlled data and fine-tuning them on real-world data to bridge the gap between con-
trolled and realistic contexts. Field studies conducted in clinical settings with actual users are
essential for observing how AI tools impact workflows, patient outcomes, and user satisfaction.
Adversarial testing is also important, introducing realistic challenges such as noisy data and
adversarial attacks during controlled experiments to reveal vulnerabilities and test robustness.
When used collectively, these strategies contribute to a comprehensive and balanced approach
to AI evaluation. This approach ensures that all aspects of AI performance are thoroughly
tested and evaluated, providing a fair and thorough assessment of the system’s capabilities.

An example of the need to consider the reality of deployment in contrast with controlled
experiments and statistical analysis can be seen in our study. Factor analysis is useful for
evaluating user studies, especially with structured questionnaires and surveys. It identifies re-
lationships between variables, simplifies data, and highlights key factors influencing responses.
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This helps researchers understand patterns in feedback and make informed decisions about
tool design and functionality. However, it mainly focuses on statistical relationships and might
miss nuances in user interactions. For example, in our study, all participants consistently ex-
perienced passive AI, but active AI was less used, likely due to the flawed concept requiring
comparisons without prior knowledge. This added complexity and confusion, which would not
be evident through factor analysis alone. To address such issues, deeper qualitative investi-
gations are necessary. These can include user interviews, observational studies, and detailed
feedback sessions to understand the context and reasons behind user behaviors. This approach
provides richer insights beyond statistical analysis, ensuring that AI tools are usable and prac-
tical in clinical settings. Combining quantitative and qualitative methods can lead to a more
comprehensive evaluation and refinement of AI support systems.

In conclusion, while these strategies have advantages and potential challenges, they all
play an important role in ensuring the practical evaluation of clinical AI tools. By proactively
considering these points and addressing potential critiques, we can work towards more robust,
ethical, and effective AI in healthcare.
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The United States Medical Licensing Examination (USMLE) is a critical step in assessing the 
competence of future physicians, yet the process of creating exam questions and study materials is 
both time-consuming and costly. While Large Language Models (LLMs), such as OpenAI's GPT-
4, have demonstrated proficiency in answering medical exam questions, their potential in 
generating such questions remains underexplored. This study presents QUEST-AI, a novel system 
that utilizes LLMs to (1) generate USMLE-style questions, (2) identify and flag incorrect questions, 
and (3) correct errors in the flagged questions. We evaluated this system's output by constructing a 
test set of 50 LLM-generated questions mixed with 50 human-generated questions and conducting 
a two-part assessment with three physicians and two medical students. The assessors attempted to 
distinguish between LLM and human-generated questions and evaluated the validity of the LLM-
generated content. A majority of exam questions generated by QUEST-AI were deemed valid by a 
panel of three clinicians, with strong correlations between performance on LLM-generated and 
human-generated questions. This pioneering application of LLMs in medical education could 
significantly increase the ease and efficiency of developing USMLE-style medical exam content, 
offering a cost-effective and accessible alternative for exam preparation. 

Keywords: USMLE; Medical Education; Large Language Models; Artificial Intelligence; GPT-4; 
Exam Question Generation; Automated Assessment; Medical Exam Preparation; Question 
Validity; Medical Licensing Examination 
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1. Introduction

Every year, over 100,000 medical students take the United States Medical Licensing Examination 
(USMLE), administered by the National Board of Medical Examiners (NBME).1 This rigorous 
examination is crucial for ensuring the competence of future physicians. However, generating the 
exam questions and related preparation materials is a manual process, which is both time-
consuming and costly. On average, each student spends over $4,000 on buying USMLE-related 
study materials.2 The high costs and substantial effort associated with producing these materials 
are the primary drivers of the cost, and offer a great opportunity for technological intervention.  

The quality of these exam questions plays a critical role in medical education and the training of 
future healthcare professionals. These exams assess key clinical knowledge and decision-making 
skills, which directly influence how prepared medical students are to handle real-world patient 
care. Ensuring the accuracy and biological relevance of the questions is vital for maintaining high 
standards in healthcare, as the competence of future physicians ultimately impacts patient 
outcomes. 

The adoption of Artificial Intelligence (AI) in healthcare is rapidly increasing, driven by 
advancements in Generative AI and especially, Large Language Models (LLMs) such as OpenAI's 
GPT-4.3,4,5  LLMs have been explored for various use cases in medicine, including generating 
clinical notes, summarizing patient records, and providing decision support.6,7,8 Numerous studies 
have demonstrated the proficiency of these models in answering USMLE questions, achieving 
over 80% accuracy on the USMLE Step 2 Clinical Knowledge (CK) exam.9 Despite their success 
in answering exam questions, there is limited research on the use of LLMs for generating medical 
exam questions, particularly for the USMLE. To address this gap, we introduce QUEST-AI, an 
autonomous system powered by LLMs that (1) generates USMLE-style questions based on in-
context examples, (2) verifies the system-generated questions using an ensemble of LLMs, and (3) 
refines any questions identified as incorrect. The system is evaluated with the assistance of 
physicians and medical students.  

We began by prompting GPT-4 to generate 50 questions inspired by sample questions from the 
USMLE Step 2 Clinical Knowledge (CK) exam. Then, we used aggregated predictions from an 
ensemble of diverse LLMs to flag incorrect questions. Finally, we prompted GPT-4 again to 
correct the flawed questions. In order to evaluate the quality of questions generated using our 
approach, we constructed a test set containing our 50 system-generated questions randomly 
interspersed with 50 human-generated sample questions. Three physicians and two medical 
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students engaged in a twofold assessment: (1) they attempted to distinguish between the system-
generated and human-generated USMLE-style questions, and (2) they  assessed the validity of the 
system-generated questions and answers. 

To our knowledge, ours is the first study to generate, verify, and refine USMLE-style questions 
using LLMs (Figure 1). This shift from answering questions to generating questions represents a 
novel application of AI in medical education, with the potential to revolutionize exam content 
development. 

Figure 1: The QUEST-AI System for Generation, Verification, and Refinement of USMLE-Style Questions: 
This figure illustrates the process used by QUEST-AI to generate, verify, and refine USMLE-style questions. The 
process begins with GPT-4 generating questions using sample questions from the USMLE Step 2 question bank as in-
context examples. An ensemble of LLMs then processes these questions, flagging any incorrect ones based on their 
ensembled predictions. Finally, GPT-4 refines the flagged questions, resulting in a high-quality, system-generated 
Step 2 question bank. 

2. Related Work

The use of Large Language Models (LLMs) in healthcare and education has seen considerable 
growth and innovation.  

2.1.  LLMs in Healthcare 

LLMs have become prominent in healthcare due to their advanced natural language processing 
capabilities, allowing them to handle large datasets and generate accurate, contextually relevant 
text.10 Bedi et al11  provide a systematic review of LLM applications across various healthcare 
tasks, including diagnosis12, report generation13, treatment recommendations14, and clinical 
referrals.14,15 While these studies demonstrate the potential of LLMs in clinical settings, few have 
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explored their application in the educational domain, specifically for training future healthcare 
professionals. This study builds on these advancements, applying LLMs to a novel task: automated 
medical exam question generation. 

2.2.  LLMs in Education 

LLMs have shown great promise in education, particularly in providing real-time support and 
feedback across a range of subjects, such as math 16, law 17 and medicine 4.  

Recent research has applied LLMs for automatic question generation, improving educational 
content and assessment quality. Laverghetta Jr. and Licato demonstrated the use of GPT-3 for 
cognitive assessments, and Tran et al. applied GPT-4 to generate high-quality multiple-choice 
questions (MCQs) for computing courses. 18 19 However, these efforts focus on general education, 
with little attention given to specialized medical education, particularly for high-stakes exams like 
the USMLE. 

2.3.  LLMs in Medical Education 

There has been growing interest in using LLMs to generate medical exam questions due to their 
potential to reduce the burden on educators and streamline content creation. A systematic review 
by Artsi et al. discovered a total of eight studies that explored LLMs like GPT-3.5 and GPT-4 for 
producing valid multiple-choice questions (MCQs) across various medical disciplines, including 
neurosurgery, internal medicine, and dermatology.20 While these studies demonstrate the 
feasibility of LLMs in medical education, they also highlight limitations such as inaccuracies, 
lower complexity in generated questions, and a lack of rigorous evaluation of content quality and 
validity, particularly for high-stakes exams like the USMLE. 21 22 23 24 25 

To address these gaps, our study evaluates GPT-4's ability to generate USMLE Step 2 CK-style 
exam questions. We provide insights into the practical applications of AI in medical education and 
its potential to enhance the accessibility and quality of exam preparation materials. By presenting 
a fully autonomous system for generating, verifying, and refining USMLE-style questions, we aim 
to demonstrate the capacity of LLMs to generate high-quality exam content, thereby improving 
the development and accessibility of medical education resources. 
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We randomly selected a set of 50 human-generated questions from a bank of 120 publicly available 
USMLE Step 2 CK test sample questions, ensuring that these questions did not include associated 
images or abstracts26. This was done to maintain a controlled and uniform format for comparison 
purposes.  

For system-generated questions, we employed a prompt chaining approach with GPT-4 as shown 
in Figure 2. We started with a human-generated USMLE CK test question-answer pair, which was 
included in the initial prompt to GPT-4. The model then generated an explanation of why the given 
answer was correct and the others were incorrect. This original question, along with the system-
generated explanation, were used in a follow-up prompt instructing GPT-4 to generate another 
USMLE Step 2 CK-style question in a similar format. This method ensured the generated questions 
closely matched the format, style, and complexity of the human-generated ones, promoting 
consistency and reducing deviations from the desired standards.  

After generating a set of system-generated questions, we compiled these alongside the human-
generated ones and randomly shuffled them to create a comprehensive 100-question set. This 
randomization was crucial to ensure an unbiased evaluation. 
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Figure 2: Prompt chaining strategy for question generation: First, we provide GPT-4 with an example question from 
the USMLE CK exam and ask why a specific option is correct and why others are incorrect. Once GPT-4 generates a 
response, we create a new prompt incorporating this response and the original question, then ask GPT-4 to generate 
another question in a similar format. 

3.2.  Evaluation by Physicians  

A group of three licensed, practicing physicians and two medical students were tasked with 
evaluating the 100-question set. They were instructed to: 

1. Choose the single best answer to each question without consulting any external reference.
2. Guess whether each question was generated by humans or GPT-4.

In a separate task, three physicians reviewed the 50 system-generated exam questions to evaluate 
their correctness, using any available external references. They recorded the type of errors found 
in the system-generated questions and the time taken to make their determinations. The two 
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phases of the study, marked by the different tasks performed by the medical specialists, are 
illustrated in Figure 3. 

Figure 3: Evaluation Process by Medical Specialists: In Phase 1 of the study, three physicians and two medical 
students attempted a USMLE exam that included both real and system-generated questions, tasked with choosing 
the best answer for each question and identifying which questions were system-generated. In Phase 2, three 
physicians evaluated the system-generated question-answer pairs to determine their validity. For invalid questions, 
they categorized the issues into four types: multiple correct answer choices, no correct answer choice, the system-
chosen answer choice is incorrect, or the question stem is incorrect. 

3.3.  Evaluation by LLMs  

An ensemble of five LLMs from the Hugging Face hub27 (a public repository of models) was 
selected for evaluation based on the models’ performance in public open LLM leaderboards28 and 
community support: Meta-Llama-3-70B-Instruct from Meta, Mixtral-8x22B-Instruct-v0.1 from 
Mistral AI, Qwen2-72B-Instruct from Alibaba, Phi-3-medium-4k-Instruct from Microsoft, and 
llama-2-70b-chat from Meta. Each of these models brings unique strengths due to variations in 
their architectures and training datasets, providing diverse perspectives on the task of identifying 
the best answer to system-generated USMLE-style questions. 

To evaluate the validity of the system-generated question-answer pairs, we tasked the ensemble 
with selecting the best answer. A simple majority-based classifier was constructed to flag 
potentially flawed questions: if any of the models disagreed with GPT-4’s selected best answer, 
the question was flagged for further review. This design is grounded in ensemble learning theory 
29, which posits that combining predictions from multiple models can improve accuracy and 
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reliability by reducing individual model bias and variance . The assumption here is that even a 
single disagreement may indicate a potential error, ambiguity, or inconsistency in the question or 
answer choices. This model heterogeneity strengthens the system's ability to detect flaws by 
increasing the likelihood of identifying subtle inconsistencies. 

Conversely, when all models in the ensemble agreed with GPT-4's answer, the question was 
considered less likely to be flawed. This consensus-based approach is consistent with voting 
schemes in ensemble learning, where agreement across multiple models typically indicates a high 
confidence prediction. 30 

3.4.  Categorization and Post-Hoc Editing by GPT-4 

GPT-4 was prompted to categorize each question-answer pair in the 100-item set into one of 18 
categories outlined in the USMLE content outline31. This categorization aimed to evaluate whether 
the system-generated questions fell into the same categories as the original human-generated 
questions used in the prompts. A physician then reviewed these category assignments for each 
question to verify their validity. We caveat the evaluation of category assignment validity by 
noting that the ground truth categories per question are not made publicly available by the NBME 
and the team of physicians and medical students that imputed item categories have no affiliation 
with NBME/USMLE.  

For the system-generated questions deemed incorrect by the ensemble of LLMs and physicians, 
we conducted a post-hoc editing stage. During this stage, we asked GPT-4 to first identify why a 
specific question was wrong and then modify or correct the mistakes present in the flagged 
questions. This was done to assess GPT-4's capability to improve its responses based on iterative 
feedback and refinement. A physician manually evaluated each corrected exam item to assess 
whether the corrections led to a valid result. 

The data collection and analysis were conducted in multiple phases from April 2023 to December 
2023, and an updated evaluation analysis was completed in July 2024. This evaluation process 
aimed to provide insights into the practical applications of AI in generating high-quality exam 
questions and to assess the potential of GPT-4 in contributing to medical education. Data and code 
for reproducing our results can be found at https://github.com/som-shahlab/gpt4usmle.  

Pacific Symposium on Biocomputing 2025

61

https://paperpile.com/c/ecEpg6/UEYT
https://paperpile.com/c/ecEpg6/BzsVu
https://github.com/som-shahlab/gpt4usmle


The average accuracy of the three physicians and two medical students in distinguishing between 
human-generated and GPT-4-generated questions was 51.8% (95% CI: 46.1% to 57.5%), nearly 
equivalent to random guessing. This suggests that there were no identifiable systematic differences 
between the system-generated and human-generated questions. Furthermore, the Pearson 
correlation between participants’ performance on system-generated and human-generated 
questions was statistically significant  (ρ = 0.952, P-value = 0.012). This strong correlation 
indicates that system-generated questions are comparable to human-generated questions in their 
ability to assess the clinical knowledge and skills examined in USMLE-style questions, providing 
a reliable and consistent measure of performance across both question types. 

On a separate task where three physician reviewers were asked to validate the 50 AI generated 
questions, 32 (64%) questions were deemed "correct" by all reviewers, while 18 (36%) were 
deemed "incorrect" by at least one reviewer. The reasons for labeling exam items as "incorrect" 
included "Multiple correct answer choices" (n=9), "AI-chosen answer is incorrect" (n=6), and "No 
correct answer choice" (n=3). These findings highlight specific areas where the system-generated 
questions fell short and suggest areas for further refinement in the AI's question generation 
capabilities. 

Reviewers spent, on average, 3.21 minutes (95% CI 2.73 to 3.69) reviewing each system-generated 
exam item for correctness. This quick evaluation time highlights a significant potential efficiency 
advantage, as it is substantially faster than drafting a question from scratch, which typically 
involves extensive research, drafting, and revision.  

4.2.  Evaluation by LLMs  

All LLMs within our LLM ensemble achieved adequate performance on the human-generated 
USMLE-style exam questions (see Table 1). Our proposed LLM ensemble classifier was able to 
discriminate between invalid system-generated questions with an Area under the Receiver-
Operator Characteristic curve (AUROC) of 0.79. We considered an item to be classified by the 
model as “flawed” if any one of the 5 LLMs in the ensemble disagreed with GPT-4 on the best 
answer choice. Of the 18 system-generated question-answer pairs deemed flawed by clinician 
reviewers, our approach correctly flagged 15 (Recall = 15/18 = 0.83). Overall, our approach 
flagged 25 system-generated question-answer pairs as flawed (Precision = 15/25 = 0.60). Of the 
25 system-generated questions not flagged by our approach, 22 were deemed valid by clinicians. 
See Table 2. 
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Table 1: Performance of LLMs in model ensemble on human- and system-generated USMLE-style questions. All 
models performed reasonably well (examinees typically must answer approximately 60% of items correctly to 
achieve a passing score on the USMLE)32 

Model % Correct on human-
generated questions 

% Correct on system-
generated questions 

Meta-Llama-3-70b-Instruct 0.80 0.80 

Mixtral-8x22B-Instruct-v0.1 0.80 0.78 

Phi-3-medium-4k-instruct 0.76 0.80 

Qwen2-72B-Instruct 0.80 0.82 

llama-2-70b-chat_huggingface 0.60 0.62 

Table 2: Confusion matrix for the LLM ensemble used to determine whether system-generated questions are 
potentially invalid by analyzing whether all LLMs agree with GPT-4 on the best answer (not flagged) or at least one 
LLM disagrees with GPT-4 on the best answer (flagged). 

Flagged as invalid by LLM 
ensemble 

Not flagged by LLM 
ensemble 

Deemed invalid by clinician 
reviewers 15 3 

Deemed valid by clinician 
reviewers 10 22 

4.3.  Categorization and Post-Hoc Editing by GPT-4 

For the categories assigned to each question by GPT-4, 8 questions were assigned invalid content 
category labels, while the remaining 92 questions were assigned appropriate labels. This outcome 
shows that GPT-4 generally performed well in classifying question categories, although it 
occasionally struggled to differentiate between Behavioral Health and Social Sciences. This 
challenge might be addressed by clarifying that Behavioral Health pertains to psychiatry and 
mental health topics, whereas Social Sciences covers medical ethics, interpersonal health, and 
health system quality improvement. 
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Additionally, 16 out of the 50 questions matched the category of their corresponding sample 
question. This suggests that GPT-4 introduces a degree of variability and diversity in its generated 
questions. Rather than merely replicating existing content, GPT-4 demonstrates the ability to 
create new and varied material. A breakdown of categories can be seen in the Supplementary 
section at - https://www.medrxiv.org/content/10.1101/2023.04.25.23288588v2 

For post-hoc editing, the questions deemed incorrect by at least one reviewer were passed through 
GPT-4. The model was asked to classify why a question-answer pair was incorrect and then to 
provide a corrected version. Impressively, for 9 out of 18 questions (50%), GPT-4 identified the 
same reason for incorrectness as the physician reviewers. For 11 of these 18 questions (61%), 
GPT-4 was able to correct its original mistake, resulting in a valid exam item. This demonstrates 
GPT-4's capability not only to generate questions but also to accurately diagnose issues with them 
and offer corrections. 

5. Conclusion

With ever-increasing costs of medical education, medical student debt, and a looming physician 
shortage33, there is an urgent need for cost-effective and easily accessible medical exam 
preparation resources. We designed QUEST-AI, a first-of-its-kind system that can improve access 
to high-quality USMLE-style questions by using LLMs to generate candidate exam questions, flag 
invalid candidate items, and correct flawed exam items. While performance of the system is not 
perfect, clinician evaluation suggests that (1) a significant majority of exam items generated using 
our approach are valid; (2) candidate performance on items generated using our approach 
correlates strongly with performance on human-generated USMLE-style questions; and (3) our 
system can be used to generate exam across a variety of content categories. This offers a promising 
solution for decreasing the cost and time required to generate USMLE-style questions. This in turn 
could reduce both the costs for exam preparation materials that debt-burdened medical students 
face and the costs for generating new exam items that non-profit organizations like the National 
Board of Medical Examiners face.  

6. Limitations

There are several important limitations to our system to consider when assessing whether it can be 
used in medical education.  

First, with respect to our evaluation, the medical specialists who attempted to select the best answer 
on the evaluation set of 50 system-generated and 50 human-generated questions were not MD 
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students (the primary audience that would benefit from such a system); they were practicing MDs 
who had already passed the USMLE Step 2 CK exam and DO students who would take a different 
but similar exam as part of their training. This was by design: we wanted to ensure that no assessor 
would recognize the exam items in the publicly available NBME-provided USMLE-style practice 
exam. Otherwise, their ability to distinguish between human- and system-generated questions 
would be overly optimistic. Additional study is needed to understand whether our results translate 
to the primary population of interest, namely MD students preparing to take the USMLE Step 2 
CK exam.  

Second, the clinicians who determined whether or not the system-generated exam items were valid 
were not expert exam writers nor were they affiliated with the NBME. It is quite possible that 
system-generated exam items deemed valid by our panel of clinicians would be considered invalid 
by NBME-employed expert exam writers, and vice versa. 

Third, there was no threshold for which our LLM ensemble-based flagging system was able to 
correctly recall all the system-generated exam items deemed invalid (except for if we trivially 
flagged all the items as invalid). There were 3 of 18 items deemed invalid for which all 5 LLMs 
in the ensemble agreed with GPT-4’s best answer selection (thus the question was not flagged) but 
where at least one clinician deemed the overall exam item to be invalid. This suggests that, were 
this system to be used entirely autonomously, it could generate flawed exam items. This has 
important ethical implications that should be considered and potentially addressed with improved 
methods before releasing the tool to the broader public. 

Finally, the number of system-generated questions was relatively small, with only 50 questions 
included in the study. While this sample size provided useful insights for an initial evaluation, it 
limits the generalizability of the findings. A larger set of questions is needed to provide a more 
comprehensive assessment of the system's performance across different content areas and question 
formats. Increasing the sample size in future studies will also allow for a more detailed evaluation 
of additional metrics and improve the statistical power of the results. 
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Accurately interpreting medical images and writing radiology reports is a critical but chal-
lenging task in healthcare. Both human-written and AI-generated reports can contain errors,
ranging from clinical inaccuracies to linguistic mistakes. To address this, we introduce ReX-
Err, a methodology that leverages Large Language Models to generate representative errors
within chest X-ray reports. Working with board-certified radiologists, we developed error
categories that capture common mistakes in both human and AI-generated reports. Our
approach uses a novel sampling scheme to inject diverse errors while maintaining clinical
plausibility. ReXErr demonstrates consistency across error categories and produces errors
that closely mimic those found in real-world scenarios. This method has the potential to aid
in the development and evaluation of report correction algorithms, potentially enhancing
the quality and reliability of radiology reporting.

Keywords: Radiology Report Generation; Chest X-Rays; LLMs; Chat-GPT; Error Injection;
Synthetic Data.

1. Introduction

Radiology reports provide crucial information for clinical decision-making and patient out-
comes.1 However, creating radiology reports is an intensive process, and requires a trained
specialist to analyze medical images and write in-depth medical reports.2,3 In human-written
reports, errors can arise due to various factors such as fatigue, high case volumes or complexity.
These errors may include misinterpretation of imaging findings, incomplete documentation of
relevant clinical information, and inconsistencies in terminology and language usage. In addi-
tion to such inaccuracies, the subjective nature of radiological interpretation leaves room for
errors, which may go unnoticed until they impact patient care.4,5

Recently, there has been a significant push towards automating the creation of these reports
using deep learning. While current approaches to generating radiology reports have, in some
cases, succeeded in creating complete and clinically relevant reports,6–9 automated report
generation presents its own set of challenges stemming from inherent biases within algorithms,
model constraints, and limitations in the data used. Errors can range from references to non-
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Fig. 1. Summary of ReXErr error generation pipeline. The bottom panel provides an example of
applying ReXErr to a sample radiology report.

existing priors, which are easier to detect, to false predictions or omissions, which are much
more problematic clinically and often go unnoticed.10,11 The prevalence of errors, both in
radiologist-written as well as AI-based reports, leaves a great need for more comprehensive
tools that can screen for and correct them. Throughout this paper, we present the Chest
X-Ray Report Error (ReXErr) method that can generate errors at a report and sentence
level. ReXErr offers a novel pipeline to synthesize plausible errors that capture the breadth
and diversity of errors made by humans and models and can thus be used to generate data
to train and adapt error correction algorithms. Figure 1 outlines an overview of the error
generation process.

2. Related Work

2.1. Error Classification in Radiology Reports

The 12-category framework developed by Kim and Mansfield, based on an evaluation of 1,269
errors, offers a foundation for understanding and classifying errors in human-generated reports
and is the most frequently used for human-error analysis.4,12 Most of the errors in this clas-
sification system fall under two types: missed findings (under-reading, satisfaction of search,
etc.) and interpretation errors (finding attributed to wrong cause/clinical entity due to faulty
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Table 1. Summary of the errors incorporated within the ReXErr pipeline.

Error Type Error Category Specific Errors

AI Generated Report Errors

Content Addition

Add Medical Device

False Prediction

False Negation

Linguistic Quality
Add Repetitions

Add Contradictions

Context-Dependent

Change Name of Device
Change Position of Device

Change Severity

Change Location
Change Measurement

Human Errors

Content Addition and

Context-Dependent

Human error - similar to above

Linguistic Quality
Change to Homophone
Add Typo

reasoning, lack of knowledge, etc.), with each of the 12 classifications focusing on the cause
for such an error to occur..5

Errors from report generation models differ, with more specific issues including halluci-
nated references to prior studies, and have their own categorization framework. One example is
the framework developed by Yu et al. to analyze common errors in model-generated radiology
reports, aiming to create metrics that account for these errors and improve alignment with
clinician feedback.13 Their framework includes six categories: “False prediction of finding”,
“Omission of finding”, “Incorrect location/position of finding”, “Incorrect severity of find-
ing”, “Mention of comparison that is not present in the reference impression”, and “Omission
of comparison describing a change from a previous study.” They develop a dataset, ReXVal,
which contains annotations on clinically significant and insignificant errors under their six
category framework for AI generated radiology reports with respect to ground-truth reports.
Another dataset, Refisco, was created to categorize the errors commonly made in retrieval-
based report generation models by their severity level and then correct each error using either
deletion, substitution, or insertion of a line.14 Both datasets provide different error catego-
rization frameworks specific for AI-generated reports, offering error-report ground truth pairs
with clinician annotations. However, their limited size (200 and 60 reports, respectively) un-
derscores the need for more extensive datasets that contain error reports and ground truth
pairs.

2.2. Synthetic Data Generation for Radiology Reports

Synthetic data generation is emerging as a valuable tool in radiology reporting research, ad-
dressing challenges of data scarcity. Recent studies have demonstrated its potential in various
applications. Zhao et al.15 generated modified reports with revision instructions, aiding in
the training of instruction-based report revision systems. Hyland et al.16 used GPT to para-
phrase MIMIC dataset reports, expanding their training set for report generation models.
Others have leveraged large language models to selectively modify radiology reports, address-
ing various clinical and research needs such as removing prior medical history references and
standardizing report structures.17,18 Most similarly, Asiimwe et al.19 created a synthetic error
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report set for developing an error detection and correction model. They intentionally intro-
duced errors into radiology reports, focusing on four out of the six error categories defined by
Yu et al.’s framework. This process resulted in the creation of 120,000 pairs of error-containing
and error-free reports, which serve as training data for their model. These advancements high-
light the growing importance of synthetic data in improving radiology reporting systems by
enabling large-scale, precise data generation. However, it also reveals the need for a more
comprehensive dataset that captures a wider range of diverse and complex errors.

Building upon these advancements, our study utilizes synthetic data generation to create
a large-scale dataset that incorporates a broader range of errors. We expand on the framework
established by Yu et al., addressing all six major categories of AI-generated errors, while also
introducing additional subtypes such as device-related errors. Furthermore, our dataset ad-
dresses linguistic quality issues in both human- and AI-generated reports. This comprehensive
approach allows us to create a more diverse and robust error dataset, providing a valuable
resource for developing and evaluating advanced radiology reporting systems.

2.3. Applications in Error Detection and Report Correction

Our comprehensive error dataset has significant potential applications in advancing both er-
ror detection and report correction in radiology. In error detection, research has progressed
from simple matching techniques for specific issues like laterality errors to more sophisticated
methods using LSTM and BERT-based models.20–22 Recent studies have even shown GPT-4’s
capability to identify common error categories (omission, insertion, spelling, and side confu-
sion).23 Our dataset, encompassing a wider range of error types, could further enhance these
detection models.

In report correction, efforts have focused on addressing specific types of hallucinations in
AI-generated reports, such as false references to non-existent prior scans.24,25 The emerging
task of report revision aims to refine existing reports through instruction prompts, as demon-
strated in recent multi-functional foundation models.6,15 Such an error-rich dataset could serve
as a valuable resource for training and evaluating these correction and revision systems, po-
tentially improving their ability to handle a diverse array of error types.

Furthermore, our dataset could be utilized as negative examples in reinforcement learning
algorithms to enhance AI model performance, or to validate automatic evaluation metrics like
RadCliQ and FineRadScore.26 This broad applicability underscores the potential impact of
our error injection method and resulting dataset in advancing the accuracy and reliability of
radiological reporting systems.

3. Methods

We created a streamlined pipeline to inject errors into radiology reports, which can be used
downstream to generate large datasets and train models for the identification and revision of
incorrect radiology reports. We demonstrate error generation with the ReXErr pipeline using
reports from the MIMIC-CXR train, dev, and test sets.27 This pipeline supports two main
tasks: report correction and sentence-level entailment. For both tasks, sentences are classified
into three categories: correct (0), error (1), and neutral (2). Neutral sentences reference past
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Table 2. Baseline prompting description for each error category.

Error Baseline Instruction / Description
Add Medical Device Add sentences that could be part of a radiology report regarding the presence of one or

more devices such as these: pacemaker, central venous line, NG tube, ET tube, ICD.

Change Name of Device If there is a medical device present in the report, change the name of the medical

instrument to a different name that is clinically plausible.

Change Position of Device If there is a medical device location present in the report, change the position of the
medical instrument to a different position that is clinically plausible.

Change Severity Change the severity of a finding in the report in a manner that makes clinical sense (e.g.,
change ‘mild’ to ‘moderate’).

Change Location Change the location or anatomy of a finding in the report in a manner that is still

clinically accurate (e.g., change ‘right’ to ‘left’ or ‘lateral’ to ‘medial’; always modifying a

sentence).

False Prediction Add a finding that is not present in the report (either adding a sentence or modifying a
sentence to insert).

False Negation Change a particular finding from the report from present to absent by changing a

sentence to indicate absence of the positive finding.

Change Measurement If there is a measurement for a device/finding present, change the units of measurement

(e.g., change ‘cm’ to ‘mm’) or change the value of the measurement to a different but still

reasonable value (e.g. change ‘4.9 cm’ to ‘5.8 cm’).

Add Opposite Sentence Add/alter a statement that is the opposite of another statement earlier in the same report.

Add Repetitions Add repetitions of sentences present within the report.

Change to Homophone Change a word in the report to a homophone of that word.

Add Typo Add a typographical error in the report.

reports, findings, or scans and are categorized separately, as algorithms would not be able to
determine their accuracy without additional context.

Report correction: Our pipeline generates paired ground truth and error reports, with
each error report containing three errors sampled from 12 possible error categories. Sampling
three errors per report provides a balanced representation of diverse error types while main-
taining a degree of similarity to the original report and has been used prior in the literature.23

We also separately specify the three error categories used in generating each report.
Sentence-level entailment: We provide a separate pipeline to create a sentence-level

error categorization by splicing pairs of sentences from ground truth and error reports. Each
pair includes the original sentence and its error version, their label (see categories below),
type of error injected (error class) and sequence in the original report (index). Maintaining
the sequential detail can help sentence-level entailment models developed upon data generated
through ReXErr use contextual information from previous sentences to identify errors such as
repetitions and contradictions.

3.1. Error Categories

Three board-certified radiologists were consulted in synthesizing the final list of errors included
within this generation protocol. The errors fall under two broad categories: AI generated report
errors and human errors. We further identify three sub-categories of errors: content addition,
context-dependent, and linguistic quality errors. Each of the 12 final error categories fall under
one of these subcategories and one of the two broader categories. The particular errors were
determined in careful collaboration with radiologists; specifically, we used a set of radiologist-
annotated reports generated from a current state of the art model to determine the most
salient automated generation errors, and consulted radiologists directly to gain a sense for
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human errors.6 We incorporate all six major categories of AI-generated errors established by
Yu et al.13 The content addition and context-dependent errors observed in human-generated
reports closely parallel those found in AI-generated reports. Additionally, we introduce a set of
errors that address linguistic quality issues present in both human- and AI-generated reports,
thereby creating a comprehensive error classification system. Table 1 contains a summary of
the errors implemented.

3.2. Data Synthesis

After extensive iteration and feedback from clinical experts, we developed a comprehensive
pipeline for introducing plausible errors into radiology reports using GPT-4o.28 GPT-4o was
chosen given its high performance relative to price. We define “plausible” errors as those that
either a human or an AI model could realistically make. The pipeline employs a sophisticated
sampling strategy to inject errors across all three categories within each report. Context-
dependent errors are only introduced when the associated context is present, as determined
by regex-based labeling that searches for specific keywords in each report. For instance, errors
related to changing the location and type of medical devices are only injected if a device
is mentioned in the report. The regex keywords for each category are constructed through
a combination of clinician input and analysis of radiology report terms used in the dataset.
Our approach balances the need for diverse and plausible errors while maintaining the overall
structure and believability of the reports. The problem formulation for the injection of errors
across all three categories is represented in Equation 1, where EC , EA, and EL represent
context-dependent, content addition, and linguistic quality errors respectively. T refers to the
tags present, where T ∈ {“device”, “measurement”, “location”, “severity”}.

P (Ec, EA, EL | T ) = P (Ec | T )× P (EA)× P (EL) (1)

The probability of selecting both the content addition (EA) and linguistic quality (EL) errors
are shown below in Equation 2. A and L both represent the number of individual errors present
within the content addition and linguistic quality error categories respectively across both the
AI and human groups. In our case, A would be 3 and L would be 4, where L includes the
linguistic quality errors in both the AI and human error categories.

P (EA) =
1

|A|
P (EL) =

1

|L|
(2)

The probability of selecting a context-dependent error given a particular tag is given by
Equation 3 below, where the error for the context-dependent error category is sampled across
the other categories if no relevant context is present. In the case where multiple tags are
provided, the probability of selecting a particular context-dependent error given a tag depends
on the normalized weight assigned to the tag (w′(ti)) as well as the total number of context-
dependent errors associated with each tag (E(t)).

P (Ec | T = ti) =


w′(ti)∑

t∈T
w′(t)×E(t) if T ̸= ∅

1
|A|+|L| if T = ∅

(3)
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Table 3. Examples of ground truth and error report generated through the ReXErr pipeline.

Ground Truth Error Report Errors Injected
Findings: Findings: The patient is status
post median sternotomy and CABG. The heart

size is top normal. The mediastinal and hilar

contours are unremarkable. Bilateral calcified
pleural plaques are seen diffusely which limits

assessment of the underlying pulmonary

parenchyma. No focal consolidation, pleural
effusion or pneumothorax is clearly

demonstrated. There are no acute osseous

abnormalities.

Impression: Bilateral calcified pleural

plaques indicative of prior asbestos exposure.

No definite acute cardiopulmonary abnormality
otherwise noted.

Findings: The patient is status post median
sternotomy and CABG. The heart size is

enlarged. The mediastinal and hilar contours

are unremarkable. Right calcified pleural
plaques are seen diffusely which limits

assessment of the underlying pulmonary

parenchyma. No focal consolidation, pleural
effusion or pneumothorax is clearly

demonstrated. There is a suspected left clavicle

fracture.

Impression: Right calcified pleural plaques

indicative of prior asbestos exposure. There is a

moderate left pleural effusion. No definite acute
cardiopulmonary abnormality otherwise noted.

‘change location’,
‘false prediction’, ‘add

contradiction’

Findings: Single frontal view of the chest
provided. There is no focal consolidation,

effusion, or pneumothorax. The
cardiomediastinal silhouette is normal. Again

seen are multiple clips projecting over the left

breast and remote left-sided rib fractures. No
free air below the right hemidiaphragm is seen.

Impression: No acute intrathoracic process.

Findings: Single frontal view of the chest
provided. There is know focal consolidation,

effusion, or pneumothorax. The
cardiomediastinal silhouette is normal. Again

seen are multiple clips projecting over the left

breast and remote left-sided rib fractures. There
is an ET tube present in the trachea. No free

air below the right hemidiaphragm is seen. No

free air below the right hemidiaphragm is seen.

Impression: No acute intrathoracic process.

‘add repetitions’, ‘add
medical devices’,

‘change to homophone’

Findings: There is mild-to-moderate
cardiomegaly, not significantly changed

compared with prior study. There is no

pneumothorax. A newly placed endotracheal
tube ends 4.3 cm above the carina. An NG

tube is seen ending in the stomach with its tip

and side ports beyond the margin of imaging.

Impression: 1. Severe acute pulmonary
edema. 2. Endotracheal tube ending 4.3 cm

above the carina.

Findings: There is mild-to-moderate
cardiomegaly, not significantly changed

compared with prior study. There is no

pneumothorax. A newly placed endotracheal
tube ends 4.3 mm above the carina. An NG

tube is seen ending in the stomach with its tip

and side ports beyond the margin of imaging.

Impression: 1. No pulmonary edema. 2.

Endotrakheal tube ending 4.3 cm above the

carina.

‘change measurement’,
‘false negation’, ‘add

typo’

The weights assigned to each tag w(ti) was calculated based on the frequency of each tag
present within the reports through the equations shown below. Each weight is equal to the
inverse of the prevalence of its respective tag. The weights are then normalized to w′(t).

w(t) =
1

f(t)
W =

∑
t∈T

w(t) w′(t) =
w(t)

W
(4)

Based on this sampling strategy, GPT-4o was then used to inject the errors. Table 2 summa-
rizes the baseline instructions given for each error type. Appendix A contains the complete
long-form prompt used to prompt GPT, whereas Appendix B contains the particular prompts
for each error category, including the examples for the relevant errors that use them.

3.3. Sentence Level Error Generation Process

Once the error reports were generated, each report was split into individual sentences and
mapped based on sentence similarity to their corresponding ground truth sentence. We used
Llama 3.1 to identify the error type in each sentence and screen for prior reports.29 Llama 3.1
was chosen instead of GPT-4o for error relabeling due to its sufficient accuracy and greater
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Table 4. Examples of ground truth and error sentences generated through the ReXErr sentence
splicing and labeling pipeline.

Original Sentence Error Sentence Label Error Class Index
Findings: Comparison is made to

previous study from .

Findings: Comparison is made to

previous study from .

2 Not Applicable 0

There is a right-sided PICC line
with distal lead tip at the cavoatrial

junction.

There is a right-sided PICC line
with distal lead tip at the mid SVC.

1 Change Position of
Device

1

There has been removal of the

right-sided chest tube.

There has been removal of the

right-sided chest tube.

0 Not Applicable 2

There remains a curvilinear tubular

device projecting over the
mediastinum.

There remains a curvilinear tubular

device projecting over the
mediastinum.

0 Not Applicable 3

This has been seen on multiple

images.

This has been seen on muitiple

images.

1 Add Typo 4

There is persistent opacity at the

left mid lung field and left-sided
pleural effusion which is stable.

There is persistent opacity at the

left mid lung field and left-sided
pleural effusion which stable.

1 Add Typo 5

There is no pulmonary edema. There is no pulmonary edema. 0 Not Applicable 6

The right lung is relatively clear. The right lung is relatively clear. 0 Not Applicable 7

The patient has had placement of an

endotracheal tube.

1 Add Medical

Device

8

cost-efficiency. The model was prompted to produce a Python dictionary with two keys: ”label”
and ”error class.” The ”label” key indicated whether the sentence was correct (0), erroneous
(1), or neutral (2), while the ”error class” key specified the error type, if applicable. The
”Add Repetition” error category was excluded, as repetition is only relevant at the report
level, and ”Add Opposite Sentence” was reclassified as ”False Prediction.” In cases where a
new sentence was added, the original sentence field was left blank, and for omitted sentences,
the error report sentence was left blank. Through this methodology, we are able to provide
side-by-side comparisons between individual sentences and their associated error sentences.
The order of sentences within the original report is maintained, including the position of
particular added or omitted error sentences. The sentences were manually reviewed to ensure
the accuracy of the sentence splicing.

3.4. Validating Error Injection Pipeline

In order to validate the quality and efficacy of our error injection pipeline, we analyze the
projected frequency of every single error category injected across the MIMIC train, dev, and
test subsets. Furthermore, a clinician reviewed 100 paired original and error-injected reports
to determine the fraction of error reports which are plausible AI-generated or human-written
reports. This was done to determine whether the synthesized error reports contain language
atypical to radiology reports or very obvious modifications and statements that are not med-
ically plausible which might limit the utility of the synthetic error reports.
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Table 5. Distribution of errors inserted across the MIMIC
train, dev, and test sets using the ReXErr methodology.

Error Category Train (%) Dev (%) Test (%)

Add Medical Device 33.33 33.32 33.33

Change Name of Device 13.64 13.47 18.91
Change Position of Device 13.64 13.47 18.91

Change Severity 28.71 29.88 30.18
Change Location 38.07 37.07 23.26

False Prediction 33.33 33.32 33.33

False Negation 33.33 33.32 33.33
Change Measurement 5.93 6.10 7.01

Add Opposite Sentence 25.00 24.97 24.99

Add Repetitions 25.00 24.97 24.99
Change to Homophone 25.00 24.97 24.99

Add Typo 25.00 24.97 24.99

4. Results

4.1. Strengths and Limitations of ReXErr

The ReXErr pipeline was found to proficiently generate errors across all of the error categories
listed for the majority of radiology report inputs. It is able to create multiple types of errors in
the same report, with variation within each error subtype as well. These errors closely mimic
those found in real-world report generation scenarios. Table 3 includes three examples of error
reports generated using our report-level error injection pipeline, while Table 4 presents several
examples of the sentence-level error generation process, along with the error labeling scheme.
Despite ReXErr’s ability to generate errors within the findings and impressions sections, there
are still limitations in its ability to maintain consistency in the error injections across both
sections. For example, while the first example in Table 3 is handled well, others such as the
measurement change in the third example show discrepancies.

4.2. Consistency Across Error Types

ReXErr also demonstrates reasonable consistency in distribution of errors inserted across the
MIMIC train, dev, and test sets. Certain errors, including “change measurement”, “change
name of device”, and “change position of device” are injected less frequently in the dataset due
to their reduced prevalence in the original reports. While the weighting mechanism used during
sampling helped augment this discrepancy, this quantitative analysis highlights key areas for
targeted improvements in developing more robust error injection and correction methods.
Table 5 outlines the frequencies of each error type across the train, dev, and test sets, with
each value representing the percentage of reports within the given set containing that specific
error. Notably, these percentages are relatively consistent across the three different splits.

4.3. Plausibility of Errors

Lastly, ReXErr was found to predominantly inject plausible errors within reports. Plausible
errors are mistakes that could reasonably occur in real-world radiology practice, while implau-
sible errors involve anatomical impossibilities or fundamental misunderstandings of medical
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principles that would otherwise never be made. Examples of implausible errors include sub-
stituting one medical device for another inappropriately (replacing ”pacemaker” with ”ET
tube” in ”A pacemaker is present with leads in the right ventricle”), or attributing findings to
anatomical structures beyond the chest x-ray image. In the sample of 100 ground truth and
error-injected reports reviewed by a board-certified clinician, 83 of the modified reports were
found to be plausible, while only 17 contained errors that were implausible in AI-generated
or human reports.

5. Discussion

Throughout this paper, we present ReXErr, a new pipeline designed to generate clinically
relevant and plausible errors. Despite ReXErr’s demonstrated capability to inject diverse er-
rors, certain limitations that may hinder its use. Firstly, the applicability downstream models
trained on data generated using ReXErr depends heavily on the quality and clinical rele-
vance of the errors generated. While the majority of ReXErr-generated errors were plausible,
we found 17 out of 100 augmented reports to contain implausible errors, meaning that the
prompting methodology could be further improved before implementation on a larger scale.

Another potential limitation is the error sampling approach. ReXErr’s sampling strategy
does not account for nested compound errors, where errors can belong to more than one cate-
gory, or cases where a sentence can contain multiple errors. Depending on how prevalent such
errors are in actual human or AI generated reports, the absence of these errors could nega-
tively impact ReXErr’s downstream utility. Furthermore, downstream models may struggle to
discriminate errors made in AI-generated text as ReXErr only adds errors to human-generated
reports. Even though the errors themselves are sampled amongst errors commonly made by
AI models, their addition to human generated text may not make them as representative as
errors that were added to AI-generated text.

Lastly, future pipelines could benefit from more extensive downstream model testing using
preliminary data generated. For example, while GPT-4o was chosen for its high performance
and affordability, other open-source LLMs may yield more robust errors, and downstream
testing would help elucidate which models can generate the most effective synthetic errors.
Moreover, downstream testing would help determine whether the changes made to reports are
significant enough for models to discern, as in some cases, the errors added are very minor.

6. Conclusion

Synthesizing accurate radiology reports is both difficult and time consuming, even for medical
professionals. While automated AI generation approaches are promising in alleviating this
workload and more efficiently generating comprehensive reports, they are liable to frequent
errors across report content, linguistics, and consistency. Throughout this paper, we present
the novel ReXErr method for generating annotated errors on both a report and sentence
level. Developed with radiologists, ReXErr captures common AI and human errors in a rep-
resentative and plausible manner, therefore offering a promising avenue for the development
of report screening and correction algorithms as well as improving the accuracy of existing
report generation approaches.
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Over the past decade, wearable technology has dramatically changed how patients manage
chronic diseases. The widespread availability of on-body sensors, such as heart rate monitors
and continuous glucose monitoring (CGM) sensors, has allowed patients to have real-time
data about their health. Most of these data are readily available on patients’ smartphone
applications, where patients can view their current and retrospective data. For patients
with diabetes, CGM has transformed how their disease is managed. Many sensor devices
interface with smartphones to display charts, metrics, and alerts. However, these metrics and
plots may be challenging for some patients to interpret. In this work, we explore how large
language models (LLMs) can be used to answer questions about CGM data. We produce an
open-source benchmark of time-series question-answering tasks for CGM data in diabetes
management. We evaluate different LLM frameworks to provide a performance benchmark.
Lastly, we highlight the need for more research on how to optimize LLM frameworks to
best handle questions about wearable data. Our benchmark is publicly available for future
use and development. While this benchmark is specifically designed for diabetes care, our
model implementation and several of the statistical tasks can be extended to other wearable
device domains.

Keywords: Large Language Models, Human-AI Interaction, Diabetes, Time Series

1. Introduction

Large language models (LLMs) have demonstrated tremendous promise in transforming how
information is automatically distilled and extracted. In clinical medicine, there has been much
excitement about how LLMs can transform the way doctors and patients interact with health-
care systems.1–4 Recent literature has demonstrated the ability of LLMs to extract medical
information and provide clinical summaries,5–8 even using medical images as input.9,10 These
advances have the potential to dramatically change the way that patients and clinicians in-
teract with medical data. Despite these advances, there has been less focus on how LLMs can
be used to extract information from time-series data from patient-owned medical devices.

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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In diabetes management, patient interpretation and understanding of their data is key
to making behavioral modifications. In recent years, the use of wearable continuous glucose
monitors (CGMs) for diabetes management has increased.11 These devices are worn on the
body and measure interstitial blood glucose approximately every 5 minutes. These devices
allow patients to view both their real-time and retrospective data on their smart devices.
The insights gained from CGM data are important for helping patients make behavioral and
treatment modifications to manage their diabetes.12 While several applications exist where
patients can view their retrospective data, some patients may find the interpretation of CGM
data to be challenging.13

In this work, we develop a benchmark of CGM question-answering (QA) tasks: LLM-CGM.
Figure 1 shows a schematic of the ideal system for LLM-enabled QA for CGM data. In this
setup, the user could ask a question about their CGM data, and receive a written answer in
return, thus transforming the way patients interact with their data.

Our contributions can be summarized as follows:

(1) We outline four categories of tasks for CGM QA. We articulate subtasks describing poten-
tial natural language queries about the data for each task. For each subtask, we include
sample question queries. The final benchmark contains a total of 30 questions.

(2) We provide a module to get the empirical answer questions in the benchmark from any
raw CGM data for evaluation.

(3) We implement three distinct baseline approaches to LLM QA of time-series data and show
the performance on the benchmark tasks.

(4) We evaluate our benchmark using synthetic and real CGM data of up to 14 days in length.

LLM-CGM can be accessed at https://github.com/lizhealey/LLM-CGM and can be leveraged
to evaluate future iterations of LLMs for diabetes.

Fig. 1. Illustrative overview.
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2. Related Work

2.1. LLMs of Time Series Interpretation

Recent work has investigated using LLMs for time-series data analysis,14 with a subset of this
space focusing on how LLMs can be used to interpret and understand time series data.15 In
the medical domain, there has been interest in building benchmarks for question-answering
(QA) tasks for wearable data. ECG-QA provides a QA dataset with a benchmark for 70
questions related to electrocardiogram interpretation.16 The Personal Health Large Language
Model (PH-LLM) was developed to provide insights on sleep and fitness goals from wearable
data.17 Similar work was recently published by Merrill et al., where they proposed a Personal
Health Insights Agent (PHIA),18 which leverages code generation and information retrieval to
respond to questions about data from wearable devices, such as step count. Our work builds
upon this previous work by providing a benchmark for wearable health data interpretation
with tasks specific for CGM data.

2.2. Diabetes Technology

Interest has also increased in using LLMs to enhance diabetes management through education
and personal coaching.19,20 A previous randomized control trial investigated using voice-based
AI to help patients with T2D manage their insulin,21 and they found that the AI application
benefited patients’ glycemic control. Other work has investigated a conversational health agent
for patients with diabetes, incorporating carbohydrate information and guidelines.22 Recently,
a few works have investigated using LLMs, such as GPT-4,23 to summarize CGM data.24,25

These works have explored how LLMs are capable of interpreting CGM data to produce easily
understandable summaries. Given the recent interest in the development of diabetes chatbots,
there is a need for further investigation of how to optimize LLMs for the analysis of CGM
data. Our work fills this gap by presenting a benchmark for conversational queries about CGM
data and a preliminary evaluation of different LLM frameworks.

3. Methods

3.1. Benchmarking Tasks

Queries of CGM data can have either objective or subjective answers. Many QA tasks for CGM
are subjective and depend on the specific patient circumstances. For example, a query of ”Is my
blood glucose control good?” is subjective and requires consideration of the patient’s medical
context. In this work, we focus on CGM tasks that can primarily be answered objectively.

Figure 2 gives an overview of the four task categories and subtasks, with example questions.
The tasks are broken down into categories that are delineated by both the computational
processes required to get an answer and the domain knowledge necessary to understand the
task. Many of the questions are inspired by guidelines from the American Diabetes Association
(ADA) on glycemic control26 and current frameworks for analyzing CGM data.27 Table 1 shows
the 30 questions included in this benchmark that are distributed across the task categories.
While there are many more types of questions that patients may want to ask about their data,
the purpose of these 30 questions was to provide a foundational baseline for a range of query
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Fig. 2. Benchmarking tasks by category and subcategory

3.2. Task Evaluation

Our curated list of 30 tasks has Python-generated solutions. We include the full list of tasks
and how they are evaluated in Table 1. Given any comma-separated value (CSV) file as input
with a column for the CGM values and timestamp, we automatically compute the answers to
the queries using the definitions in the table. For some tasks, the quantitative answer can be
subjective. For example, some of the questions depend on the period in which breakfast and
dinner are defined. These queries are noted in the table.

3.3. Model Framework

In our analysis, we use GPT-423 to generate text responses. We test three different frameworks
designed to analyze CGM data using GPT-4 that serve as baselines. The details for each model
and prompt framework can be found in Figure 3 and we also describe each below.

(1) LLM-Text: LLM-Text is a naive implementation where the CGM data and time stamps
are inputted to the language model as text as part of the prompt.

(2) LLM-Code: LLM-Code is a framework implemented in Python with three main steps.
This framework was inspired by recent work examining the ability of GPT-4 to analyze
data.30 In their work, they create a framework where the language model writes code that
is automatically executed. We adapt that approach to our setting. In the first step, the
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Table 1. LLM-CGM Benchmark Queries and Solutions. The colors correspond to benchmark
task categories.

User Question Ground Truth Answer

Q1 What was my mean glucose? Mean of glucose readings
Q2 What was my maximum glucose? Maximum of glucose readings
Q3 What was the standard deviation of my glucose? Standard deviation of glucose readings
Q4 What was my minimum glucose? Minimum of glucose readings
Q5 What was my percent time in range? Percent time between 70 mg/dL and 180mg/dL
Q6 What was my percent time in hyperglycemia? Percent time above 180 mg/dL
Q7 What was my percent time in hypoglycemia? Percent time below 70mg/dL
Q8 What was my glycemic variability? Standard deviation divided by mean of glucose readings
Q9 What was my percent time in severe hyper-

glycemia?
Percent of time spent above 250 mg/dL

Q10 What is my estimated A1C? Using estimated average glucose formula28

Q11 What was my percent time in severe hypo-
glycemia?

Percent time spent below 54 mg/dL

Q12 What time was my blood glucose highest? Date and time when blood glucose was max
Q13 What day was my glucose control the most out of

range?
Day with greatest absolute time outside of range 70-180mg/dL

Q14 What time of the day was my blood glucose low-
est?

Date where minimum glucose reached

Q15 When did my most recent episode of hypo-
glycemia occur?

Time of most recent hypoglycemia episode

Q16 How long was my last episode of hypoglycemia? Length of most recent period where glucose was consistently below
70mg/dL

Q17 What was my longest time spent in hyper-
glycemia?

Longest period where glucose was over 180mg/dL

Q18 How many times did I experience hypoglycemia? Number of episodes where glucose was less than 70mg/dL
Q19 What was my mean overnight blood glucose? Mean glucose from 12am to 6am**
Q20 What meal of the day did I have the highest blood

glucose?
Time window with max glucose where breakfast is 6am-11am,
lunch is 11am-4pm, dinner is 5pm-9pm**

Q21 Did I have noctural hypoglycemia? Yes if blood glucose was less than 70mg/dL between 12am and
6am**

Q22 What was my highest glucose reading during din-
ner?

Maximum glucose any day between 5pm and 10pm**

Q23 Is there any missingness in the data? Yes if there are gaps between data longer than 5 minutes
Q24 How many times did my sensor disconnect ? Number of gaps greater than 5 minutes
Q25 Was my low blood glucose likely due to sensor

error?
Yes if reading less than 70 mg/dL due to sensor anomaly*

Q26 Are there any artifacts in the CGM data? Yes if there was a sensor anomaly in data causing observed glucose
reading*

Q27 Was my glucose control today better than yester-
day?

Yes if mean glucose on current day was better than previous day**

Q28 Was my time in range improved this week com-
pared to last week?

Yes if time in range for the most recent week was better than the
previous week*

Q29 Was my max glucose lower today than yesterday? Yes if the maximum glucose on most recent day was lower than
the previous day

Q30 Did I spend less time in hypoglycemia this week
than last week?

Yes if total minutes in hypoglycemia for the most recent week was
less than the previous week*

*Not included in this evaluation ** May be subjective

LLM writes a Python script that begins by loading a CSV file with the CGM data. We
then program LLM-Code to automatically execute the Python script and produce text in
a new file. The final answer is obtained from the text file.

(3) LLM-CodeChain: Our workflow leverages the create csv agent() from Langchain29 that
allows the use of a Python tool. This allows the agent to write and run code to analyze
the CSV file. We use Langchain to connect to OpenAI’s GPT-4 model.23 The agent takes
the preprocessed CSV file as input, along with a prompt. The output is a generated narra-
tive and the log of computations. This framework is most similar to recent work PHIA,18

where the LLM can iterate through a thought-action chain.
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Fig. 3. Model and prompt frameworks included in benchmark for testing and evaluation.
LLM-CodeChain leverages builtin functions in Langchain29

Prompts: Figure 3 shows the prompts used as input for each of the model frameworks.
The prompts always include the query and, depending on the model framework, some infor-
mation about the context of the data. Future evaluations should include retrieval-augmented
generation, where the prompt includes information about diabetes, including definitions of
terms and instructions on how to analyze the data.

Technical Specifications: For all model implementations, we generate text using Ope-
nAI’s GPT-4.23 Our repository enables the testing of multiple models; however, for this paper,
all experiments were done using the model ”gpt-4-0125-preview”, with the temperature set to
.1.

3.4. Simulated Data

While there are many available datasets with CGM data from T1D, many require a data-
use agreement to be signed. Since uploading data to open-source LLMs conflicts with the
terms of these agreements, we curated our own CGM dataset using an FDA-accepted T1D
patient simulator.31 We generated five different cases of roughly 14 days of CGM data sampled
every five minutes. The simulator used was generated from an open-source Python patient
simulator.32 The characteristics of this dataset are visualized in Table 2 and Figure 4. By
using the patient simulator, we were able to curate a dataset with variable glycemic control.
Simulated cases had significantly varying glycemic signatures and characteristics, with some
patients spending a majority of their time in healthy glucose range, and with some individuals
spending less than 50% of the time in healthy glucose range.
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3.5. Real Data

We also used publicly available real CGM data,33 that was collected from individuals with
diabetes, pre-diabetes, and no diabetes. For this work, we only use five individuals in our
analysis to demonstrate the performance of LLMs on various CGM QA tasks. This subset
included three individuals with pre-diabetes and two without diabetes. The characteristics of
this dataset can be visualized in Table 2 and Figure 4.

Fig. 4. Data included in benchmark: (A) 24-hour mean and standard deviation of 5 cases from
synthetic data simulating patients with T1D. (B) 24-hour mean and standard deviation from 5 cases
from the real dataset33

Table 2. Characteristics of data. We show the mean value for each of the statistics, as well as
the minimum value in the dataset and maximum value in the dataset.

Synthetic T1D Data (n=5) Real Data (n=5)

Mean Min Max Mean Min Max

Number of data points 4033.0 (0.0) 4033 4033 1875.2 (171.814) 1779 2180
Average glucose (mg/dL) 168.085 (25.887) 130.298 196.627 108.052 (7.021) 97.013 116.556
Glucose management indicator 7.331 (0.619) 6.427 8.013 5.895 (0.168) 5.631 6.098
Coefficient of variation 0.3 (0.04) 0.242 0.354 0.172 (0.037) 0.135 0.225
Minimum glucose (mg/dL) 53.15 (10.846) 43.888 71.121 65.0 (4.528) 58 69
Maximum glucose (mg/dL) 352.354 (63.41) 267.212 400 192.8 (33.937) 144 234
Percent time sensor active 1.0 (0.0) 1 1 0.465 (0.043) 0.441 0.541
Percent time in range (70mg/dL-180mg/dL) 0.644 (0.175) 0.472 0.901 0.987 (0.011) 0.975 0.997
Percent time above range 1 (>180mg/dL) 0.349 (0.177) 0.099 0.526 0.006 (0.008) 0 0.02
Percent time above range 2 (>250mg/dL) 0.094 (0.087) 0.001 0.224 0.0 (0.0) 0 0
Percent time below range 1 (<70mg/dL) 0.007 (0.011) 0 0.026 0.004 (0.005) 0.001 0.012
Percent time below range 2 (<54mg/dL) 0.001 (0.002) 0 0.005 0.0 (0.0) 0 0

4. Results

In Table 3, we show the results categorized by the model type and the task categories. The
questions are shown individually across all cases, with total scores also listed for each task
category. We found that for simpler tasks, such as metric generation, performance was high.
Errors were often caused by a misinterpretation of the task. For example, when computing
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glycemic variability, the LLM would return the standard deviation, not the coefficient of
variation (Q8). The more complicated tasks had higher error rates. This was seen through
anomaly detection tasks and pattern recognition tasks. We also note that the performance of
LLM-Code compared to LLM-CodeChain varied depending on the tasks.

Table 4 gives examples of incorrect answers by framework. During our evaluation, there
were many times when the model did not produce an answer. This was often due to an error
in the original code. For these instances, instead of rerunning the example, we counted the
instances as inaccurate. These instances often occurred for tasks that were complicated, and
the model output suggested the limitation was due to inadequate information. For most tasks,
LLM-Code outperformed LLM-CodeChain. A notable limitation with LLM-Code is that code
is only written once, so the agent has no ability to rewrite code based on the output. This is
seen as an example in Table 4 where the length of the most recent episode of hypoglycemia
was not able to be computed. However, for some of the more complicated temporal queries,
LLM-CodeChain outperforms LLM-Code for the real cases.

Performance for the anomaly detection tasks and pattern recognition tasks were particu-
larly low. This was due to the fact that the computations necessary to answer these was more
complicated than to those of the other tasks. Without any information in the prompt about
what to execute, the LLM fails to answer correctly most of the time. Additionally, the prompts
did not include any information on what day ”today” was, impairing the performance.

We do not show the results for the LLM-Text framework due to the fact that there was
very poor performance for most of the tasks. The data used in our evaluation had CGM traces
of up to 14 days in length. This caused the token size of the model input to be extremely
large and the LLM struggled to return even basic estimates. We expect that the performance
could likely increase with smaller amounts of CGM data. An example output of LLM-Text to
Q1 is seen in Table 4.

There was some subjectivity when grading whether or not the LLM outcome was accurate.
For example, some numerical results were rounded, or within a very small margin of error.
For questions that returned percentages and values, answers were marked as correct if they
were equivalent when rounded to the nearest whole number. For questions related to meal
times, such as Q19 and Q22, answers were marked correct if they were within 10mg/dL of the
solution. We omitted four questions in the analysis presented in the paper. We omitted Q28
and Q30 since they are dependent on how a week is defined. We also omitted Q25 and Q26
because the data we used had no documented artifacts.

5. Conclusions

In this work, we developed a benchmark for LLM-enabled CGM QA tasks. We hope that this
work promotes further investigation of conversational agents for diabetes management. Our
work highlighted the potential for innovation of LLM frameworks for wearable data analysis.
LLM-Code and LLM-CodeChain both involved leveraging Python to analyze the data based
on the LLM output. LLM-Code was limited by the fact that it was designed only to be able
to write one Python script. We suspect for more complex tasks, LLM-CodeChain has benefits
that should be further investigated.
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Table 3. Table shows the fraction of CGM cases with correct answer for each question.
Results are broken down by the model framework used (LLM-Code vs LLM-CodeChain) and
the data type

Metric Generation Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
LLM-Code Synth (n=5) 1 1 1 1 .8 .8 .8 0 1 1 1
LLM-Code Real (n=5) 1 .8 1 1 1 1 1 0 1 1 1
LLM-Code Total (n=10) 1 .9 1 1 .9 .9 .9 0 1 1 1
LLM-Codechain Synth (n=5) 1 1 1 1 .2 1 1 0 1 1 1
LLM-Codechain Real (n=5) 1 1 1 1 0 1 1 0 1 1 1
LLM-Codechain Total (n=10) 1 1 1 1 .1 1 1 0 1 1 1
Temporal Queries Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
LLM-Code Synth (n=5) 1 1 .8 .8 .6 0 .2 .8 .4 1 .6
LLM-Code Real (n=5) 1 1 .8 .6 .4 .8 .4 .8 .2 1 .6
LLM-Code Total (n=10) 1 1 .8 .7 .5 .4 .3 .8 .3 1 .6
LLM-Codechain Synth (n=5) 1 0 1 .8 .2 .2 .2 .4 0 .4 0
LLM-Codechain Real (n=5) 1 .2 1 1 .2 .2 .4 .6 .8 1 0
LLM-Codechain Total(n=10) 1 .1 1 .9 .2 .2 .3 .5 .4 .7 0
Anomaly Detection Q23 Q24 Pattern Recognition Q27 Q29
LLM-Code Synth (n=5) .8 1 LLM-Code Synth (n=5) 0 .4
LLM-Code Real (n=5) 0 0 LLM-Code Real (n=5) 0 .6
LLM-Code Total (n=10) .4 .5 LLM-Code Total (n=10) 0 .5
LLM-Codechain Synth (n=5) .8 .2 LLM-Codechain Synth (n=5) 0 0
LLM-Codechain Real (n=5) 0 0 LLM-Codechain Real (n=5) .4 .4
LLM-Codechain Total(n=10) .4 .1 LLM-Codechain Total(n=10) .2 .2

Table 4. Error Examples

Framework Error Examples
LLM-Text Q1: “Given the extensive list of values, a precise calculation here isn’t feasible without computa-

tional tools. However, we can provide a rough estimate by observing the range and distribution
of values. The glucose values range from lows around 137 to highs of 322. Most values seem to
cluster in the mid-100s to mid-200s, with occasional peaks above 300. Given this distribution, it’s
reasonable to estimate that the mean glucose level might fall somewhere in the mid to upper 100s,
possibly around the 180 to 220 range.”

LLM- Code Q17: “Based on the data provided, your longest time spent in hyperglycemia was 23 hours and 35
minutes.”
Q16: “If your episode of hypoglycemia is ongoing, it’s not possible to determine its duration until
it has concluded.”

LLM- CodeChain Q20: “The period of the day when you had the highest blood glucose was at 07:45:00 on January
9, 2024”
Q24: “Without further information on how sensor disconnections are indicated in the data, it’s
not possible to determine the number of times the sensor disconnected based on the provided
information.”

This study had several limitations. We used a general purpose model that had not been
fine-tuned on any diabetes guidelines as our baseline. In our work, we showed baselines for the
performance of GPT-4 in answering these questions. Future work should investigate different
models, as well as different prompting techniques. Future work should also investigate per-
formance on different data. In this work, we used a mix of synthetic data and real data. The
performance of these frameworks may vary with real CGM data that is different than what
was tested. In particular, the performance may vary based on the length of the data being
analyzed.

There are particular safety concerns when developing and implementing LLMs for diabetes
management. Even in the absence of LLM-generated medical advice, incorrect assessment of
glucose data could cause patients to incorrectly dose insulin and put them at risk for life-
threatening hypoglycemia. While the framework we proposed in this work is a promising
research direction, incorrect answers pose a safety risk. These safety risks should inform future
model development and evaluation. Lastly, future work should explore how clinicians and
patients evaluate the output of these LLMs. While this work focused on benchmarking the
accuracy of QA tasks, there is much to be investigated to determine the clinical utility of LLM-
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enabled CGM analysis. The 30 questions in this benchmark were included to demonstrate the
breadth of questions that could be asked about CGM data. In the future, the benchmark will
expand with questions derived from patients themselves.
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dividuals—tasked with distinguishing between AI-generated and human-written sentences.
Using signal detection theory and confidence-based metrics, we evaluated the accuracy and
confidence levels of both groups. The results show no significant differences in rater agree-
ment between the two groups (p = 0.116), with overall classification accuracy falling below
chance levels (mean accuracy = 43.10%, p < 0.001). Both groups exhibited a tendency to
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cant bias (p = 0.007). Further analysis revealed a significant negative correlation between
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their confidence increased, their error rates decreased. Our findings support the feasibility
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1. Introduction

Peer support specialists play a crucial role in the mental health care system.1–4 These individ-
uals, who have lived experiences of mental health conditions, provide emotional, social, and
practical assistance to others facing similar challenges. The peer support movement has grown
significantly, with peer support specialists becoming an integral part of mental health services
due to their ability to engage and support individuals in ways that complement traditional
clinical interventions.1–4 This form of support is particularly important for adults with serious
mental illnesses, who often face high rates of morbidity and reduced life expectancy due to
poorly managed health conditions.5

Despite the proven benefits of peer support,3,4,6 there is a gap in tools that can assist peer
supporters in delivering consistent and high-quality care. An ideal tool would not only aid
in real-time fidelity monitoring but also enhance the delivery of evidence-based practices.7,8

Kadakia et al’s9,10 prior work has shown promise in this area, utilizing a deep learning model
trained on data from both recorded peer support conversations and Reddit to classify high-
fidelity peer support techniques. This approach demonstrated that natural language processing
(NLP) could be used to scale and ensure the fidelity of digital peer support interventions.

It has previously been established that improving data quality and quantity is a critical
step in improving deep learning model accuracy, particularly for NLP models.11,12 However,
in our application, accessing mental health data is often difficult, and transcription of in-
teractions can be labor-intensive and prone to errors.13–15 Furthermore, deep learning NLP
algorithms typically require large amounts of high-quality data to perform optimally.16,17 Pre-
viously, researchers have demonstrated that LLM generated text can be used to improve the
performance of NLP-related tasks, including text classification.18–20 Hence, we hypothesize
that large language models (LLMs) can be used to generate synthetic data that closely mimic
real peer support mental health sessions, thereby enhancing the fidelity classification of peer
support interventions.

In this study, we seek to demonstrate the feasibility of using synthetic data to mimic
human-written content effectively in the peer-supporter context. We also aim to validate
that peer supporters, as well as individuals who are professionally engaged in working with
LLMs (dubbed AI-proficient non-peer supporters) struggle to reliably distinguish between
LLM-generated sentences and real human sentences. This research will contribute to the un-
derstanding of synthetic data validation and its potential to support the development of robust
tools for peer supporters, ultimately enhancing the quality of mental health care.

2. Methods

2.1. Original Data Collection

Collection and transcription of the original human generated conversations are described
in Kadakia et al.9 In short, anonymized records of peer support conversations from the
PeerTECH platform where manually recorded verbatim.9 High-fidelity and low-fidelity sen-
tences are defined in the context of adherence to best practices for peer support in mental
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health.9,10,21 High-fidelity sentences refers to interactions that strictly follow established pro-
tocols and best practices, ensuring comprehensive and consistent delivery of peer support.
These interactions typically include elements such as active listening, empathy, validation of
experiences, and appropriate use of self-disclosure.9,10,21 Low-fidelity sentences, on the other
hand, denote interactions that deviate from these best practices, potentially lacking in one
or more critical aspects of effective peer support.9,10,21 Such deviations might include inade-
quate listening, insufficient emotional engagement, or inappropriate self-disclosure, which can
undermine the effectiveness of the support provided.

2.2. Synthetic Text Generation

To generate the synthetic text, we utilized OpenAI’s Application programming interface
(API), specifically the GPT-4 Turbo model,22 which was the most advanced model avail-
able at the time of the study. The process aimed to produce 10,000 sentences, which should
provide a robust training set for downstream NLP modeling.23 The GPT-4 Turbo model was
configured with a temperature setting of 0.9.

The generation process involved three key components: a system prompt, a specific prompt,
and user profiles. Two distinct system prompts were employed to generate transcripts demon-
strating both high- and low-fidelity practices in peer support conversations. The specific
prompt was constructed using characteristics of both the peer supporter and the patient.
For the peer supporter, the prompt included their age, gender, personality traits, mental
health history, and the topic of the support session. For the patient, the prompt specified
their age, gender, personality traits, and their diagnosed mental health condition. This struc-
tured approach ensured that each generated conversation was contextualized with specific
demographic and psychological information for both participants.

Example Prompt 1
Peer Supporter - Age: 35, Gender: female, Traits: compassionate, insightful, Mental
Health History: post-traumatic stress disorder, Session Topic: coping with trauma
Patient - Age: 29, Gender: male, Traits: distrustful, struggling, Mental Health Issue:
trauma recovery

Example Prompt 2
Peer Supporter - Age: 41, Gender: female, Traits: calm, reassuring, Mental Health
History: post-traumatic stress disorder, Session Topic: managing triggers
Patient - Age: 30, Gender: female, Traits: jumpy, anxious, Mental Health Issue:
post-traumatic stress disorder

All data manipulation and analysis were conducted in R version 4.3.2,24 with extensive
use of the tidyverse suite of packages25 for data manipulation, cleaning, and visualization. A
total of 154 API calls were executed, resulting in the generation of 10,736 sentences, exceeding
the initial target of 10,000 sentences.
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2.3. Synthetic Text Validation

To evaluate the accuracy and confidence of human raters in distinguishing between human-
generated and synthetic text, we randomly selected 100 sentences. These sentences were cat-
egorized based on their origin and fidelity: 17 high-fidelity and 14 low-fidelity sentences were
human-generated, while 43 high-fidelity and 26 low-fidelity sentences were synthetic. High-
fidelity refers to adherence to best practices for peer support in mental health providing,
while low-fidelity indicates lesser adherence.

We recruited two types of raters: AI-proficient non-peer supporters from Information,
Technology, and Consulting at Dartmouth College, and peer professionals recruited through
social media calls and email lists. Raters rated their confidence in how each sentence was
generated, using the options: Definitely Human, Maybe Human, I Don’t Know, Maybe AI,
and Definitely AI. Responses were collected using the Qualtrics survey platform (Qualtrics,
Provo, UT).

The survey data, which included ratings from AI-proficient non-peer supporters and peer
supporters was rated on a scale from 1 to 5, where 1 represented “Definitely AI” and 5
represented “Definitely Human.” Confidence ratings were assigned numerical values: 100 for
“Definitely,” 60 for “Maybe,” and 0 for “I don’t know.”

To evaluate rater performance, several metrics were calculated:
1. Percentage Agreement: For each sentence, the percentage agreement among all raters

was calculated by determining the proportion of ratings that matched the most common rating.

Agreement =

(∑n
i=1 I(ri = mode(r))

n

)
× 100

where ri represents the rating of the i-th rater, mode(r) is the most common rating among all
raters, and n is the total number of raters.

2. Group-Specific Agreement: The percentage agreement was calculated separately for
AI-proficient non-peer supporters and peer supporters to understand agreement within each
group.

3. Weighted Accuracy: Weighted accuracy was determined by comparing each rating to
the true origin of the sentence and adjusting for confidence levels.

Weighted Accuracy =

(∑n
i=1wi · I(ri = true origin)

n

)
× 100

where wi is the weight assigned based on the confidence level of the i-th rating, ri is the rating
of the i-th rater, and true origin indicates whether the sentence is human or AI-generated.

4. Percentage of Errors: The percentage of incorrect ratings was calculated by deter-
mining the proportion of ratings that deviated from the true origin of the sentence.

5. Average Confidence: The average confidence level for each sentence was calculated
by averaging the confidence scores provided by the raters.

Summary statistics were generated to provide an overview of the overall agreement, accu-
racy, error rates, and confidence levels among the different rater groups.

We also calculated accuracy, errors, and confidence at the rater level. For each rater, the
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percentage of sentences judged as human that were actually human was calculated:

Percentage Judged Human (Actual Human) =

(∑n
i=1 I(ri ∈ {4, 5} ∧ ti = Human)∑n

i=1 I(ri ∈ {4, 5})

)
× 100

and the percentage of sentences judged as human that were actually AI was calculated:

Percentage Judged Human (Actual AI) =

(∑n
i=1 I(ri ∈ {4, 5} ∧ ti = Synthetic)∑n

i=1 I(ri ∈ {4, 5})

)
× 100

2.4. Statistical Analysis

We performed various statistical tests to evaluate differences in rater performance and con-
fidence. Paired t-tests26,27 compared the accuracy, confidence, and agreement between peer
supporters and AI-proficient non-peer supporters. A one-sample t-test assessed whether the
overall accuracy differed significantly from 50%. An independent t-test evaluated the overall
agreement among all raters.

Correlation tests28 examined the relationship between errors and confidence levels for both
rater groups and for sentences labeled with low-fidelity. Specifically, correlations between errors
and confidence for AI-proficient non-peer supporters and peer supporters were assessed, as well
as for low-fidelity sentences.

To compare the proportion of AI judgments between low and high-fidelity sentences, paired
t-tests were performed separately for AI-proficient non-peer supporters and peer supporters.
Paired t-tests26,27 were also conducted to compare the percentage of judgments that were
actually human versus AI for each rater type.

2.5. Signal Detection Analysis

To evaluate the ability of raters to distinguish between human-generated and synthetic text,
we calculated signal detection measures. Weights for definite and maybe confidence levels were
defined, assigning a weight of 1 for definite judgments and 0.6 for maybe judgments.

For each rater, we calculated the signal detection theory (SDT) measures,29 including the
signal detection score (d’), beta, and criterion (c).

For each sentence, the counts of hits (true positives), false alarms (false positives), misses
(false negatives), and correct rejections (true negatives) were determined based on the ratings
and true origin. Specifically, for sentences with a true origin of human, hits were defined as
ratings of “Definitely Human” or “Maybe Human,” and false alarms were defined as ratings
of “Definitely AI” or “Maybe AI.” For sentences with a true origin of synthetic, hits were
defined as ratings of “Definitely AI” or “Maybe AI,” and false alarms were defined as ratings
of “Definitely Human” or “Maybe Human.”

The SDT measures were calculated using the psycho package in R.30 The d’ score was
computed as:

d′ = Φ−1(hit rate)− Φ−1(false alarm rate)

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution.
For each rater, the weighted SDT measures (d’, beta, and c) were calculated separately

for human and synthetic origins. The combined measures for each rater were used to perform
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t-tests to compare against a hypothesized mean of 0. T-tests26,27 for the combined d’ scores,
beta, and c values were conducted to determine if there was a significant ability to distinguish
between human and synthetic text.

2.6. Insight Calculation (Meta d’)

To evaluate rater insight, we calculated the meta d’ score, which measures a rater’s metacog-
nitive ability to discriminate between their correct and incorrect judgments.31,32

The meta d’ score was calculated using the negative log-likelihood optimization approach.
Specifically, we minimized the negative log-likelihood to find the meta d’ value that best
describes the observed data. The optimization was performed using the L-BFGS-B method,33

ensuring the parameter estimates stayed within reasonable bounds.
The steps to calculate meta d’ included:

(1) Aggregating the ratings data for each rater to count the occurrences of each confidence
level (0, 60, 100) for human and synthetic sentences.

(2) Defining the negative log-likelihood function based on the signal detection theory model
parameters.

(3) Using the optimx package34 to optimize the parameters and calculate the meta d’ score.
(4) Extracting and summarizing the meta d’ scores for each rater.

2.7. Sensitivity and Specificity Analysis

We calculated the sensitivity and specificity for each rater to evaluate their ability to correctly
identify human-generated text (with human as the positive case). The analysis was performed
using R with the dplyr,35 tidyr,25 purrr,36 ggplot2,37 and pROC38 packages.

Area under the receiver operating characteristic (AUROC) curves were calculated for each
rater. AUROC curves were plotted for the best, worst, and median raters.39,40

2.8. Code Availability Statement

The code used in this study is publicly available on GitHub at
[https://github.com/FrejusGdm/Synthetic-Text-Validation-Karen-Fortuna].

3. Results

The age of peer supporters ranged from 26 to 45 years (M = 32.5, SD = 4.2), while patients’
ages ranged from 19 to 45 years (M = 29.3, SD = 5.7). The most common mental health issues
addressed were depression (22.4%), social anxiety (14.9%), and obsessive-compulsive disorder
(13.0%). These are shown in Figure 1.

We recruited 9 AI-proficient non-peer supporters professionals and 13 professional peer
supporters to complete the survey (n=22). The mean agreement across all raters was 27.97
(95% CI: 25.55, 30.39). There was no significant difference in the levels of agreement between
AI-proficient non-peer supporters and peer supporters (p = 0.12). The overall accuracy of raters
was lower than what would be expected by random chance, with a mean accuracy of 43.10

Pacific Symposium on Biocomputing 2025

99



A B

Fig. 1: Demographic Distributions of Peer Supporters and Patients. (A) Gender distribution
among peer supporters and patients. (B) Frequency of various mental health issues reported
by patients.

(95% CI: 41.11, 45.09; p < 0.001 for a two-sided t-test). Within this, AI-proficient non-peer
supporters demonstrated higher accuracy (48.62%) compared to peer supporters (36.41%;
mean difference -12.21p < 0.001) and reported higher confidence levels (mean difference -
13.30p < 0.001), although the overall confidence was generally low, with a mean confidence
score of 47.75 (95% CI: 45.61, 49.89). These relationships are illustrated in Figure 2 (A)-(C).

Overall, we found that errors and confidence were not significantly correlated (p = 0.08).
However, this overall trend masks important differences between groups and conditions.
Among AI-proficient non-peer supporters, there was a significant negative correlation between
errors and confidence (r = −0.43, 95% CI: -0.55, -0.25; p < 0.001), indicating that as confi-
dence increased, errors decreased. In contrast, for peer supporters, the correlation between
errors and confidence was not significant (r = −0.19, 95% CI: -0.37, 0.01; p = 0.06). These
results are shown in Figure 2 (D).

When examining sentences labeled with low-fidelity, the correlation between errors and
confidence for peer supporters was not significant (r = −0.03, 95% CI: -0.34, 0.29; p = 0.87).
However, for AI-proficient non-peer supporters, there was a significant negative correlation
(r = −0.33, 95% CI: -0.58, -0.02; p = 0.04) in low-fidelity sentences. These results are shown
in Figures 2 (E) and (F).

In high-fidelity sentences, peer supporters exhibited a significant negative correlation be-
tween errors and confidence (r = −0.38, 95% CI: -0.58, -0.14; p = 0.003). Similarly, AI-proficient
non-peer supporters showed a significant negative correlation (r = −0.51, 95% CI: -0.68, -0.30;
p < 0.001).
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Fig. 2: Analysis of rater performance and confidence. (A) Weighted accuracy for AI-proficient
non-peer supporters and peer supporters, with a 50% accuracy line indicated. (B) Percentage
agreement among AI-proficient non-peer supporters and peer supporters. (C) Rating confi-
dence. (D) Scatter plot with fitted line and 95% confidence intervals showing rating confidence
by percentage errors. (E) Same as (D) for AI-proficient non-peer supporters with low-fidelity
ratings. (F) Same as (D) for peer supporters with low-fidelity ratings.

Peer support raters were more likely to assume that low-fidelity sentences were AI-
generated compared to high-fidelity sentences. This difference in proportions was statisti-
cally significant (p = 0.007), with a difference in proportions ranging from 0.02 to 0.10. For
AI-proficient non-peer supporters, the tendency to assume low-fidelity sentences were AI-
generated was also observed, although the difference was only borderline significant (p = 0.05),
with a difference in proportions ranging from 0.00 to 0.09. These findings indicate that both
peer supporters and AI-proficient non-peer supporters are more inclined to classify low-fidelity
sentences as AI-generated, though this tendency is more pronounced and statistically signifi-
cant among peer supporters.

The bar plot in Figure 3 (A) visualizes the percentage of sentences judged as “Human”
by two different groups of raters: AI-proficient non-peer supporters and peer supporters, for
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sentences that were actually AI-generated (AI). Of all sentences rated as “Human” by AI-
proficient non-peer supporters, 66.7% were AI-generated. This percentage was higher in the
peer supporter group, with 83.3% of sentences rated as “Human” being AI-generated. Sta-
tistical tests revealed that for AI-proficient non-peer supporters, the tendency to judge AI
sentences as “Human” was borderline statistically significant (p = 0.05). In contrast, Peer
Supporters showed a statistically significant tendency to judge AI-generated sentences as
“Human” (p < 0.001). These findings indicate a tendency for both AI-proficient non-peer sup-
porters and Peer Supporters to be deceived by AI-generated content, with Peer Supporters
being particularly susceptible. This could perhaps indicate AI hyperrealism31— where even
trained individuals are frequently unable to distinguish AI from human-generated text.

Signal detection theory was applied to evaluate the ability of raters to distinguish between
human-generated and AI-generated text. The d’ (d-prime) score is a measure of a rater’s ability
to discriminate between signal (human-generated text) and noise (AI-generated text), where
a higher d’ indicates better discrimination ability. Our analysis revealed that the combined
mean d’ score was significantly greater than zero (mean = 0.39, 95% CI: 0.22, 0.55; p < 0.001),
indicating that detection is occurring among raters.

In addition to d’, we also evaluated beta (β) and criterion (c), which provide insights into
the decision-making biases of the raters. A positive beta (β) indicates a conservative response
bias, meaning raters are less likely to label sentences as human. The combined mean beta (β)
was significantly greater than zero (mean = 1.37, 95% CI: 1.17, 1.57; p < 0.001), suggesting a
strong bias towards not labeling sentences as human. Similarly, the combined mean criterion
(c) was significantly greater than zero (mean = 0.62, 95% CI: 0.44, 0.80; p < 0.001), reinforcing
the notion of a reluctance to label sentences as human.

We also calculated the meta d’ score, referred to as insight, based on the raters’ confidence
levels. The meta d’ score measures a rater’s metacognitive ability to discriminate between their
correct and incorrect judgments. Our results showed that the combined mean meta d’ score
was not significantly different from zero (mean = −0.39, 95% CI: -1.37, 0.59; p = 0.42). This
near-zero insight score indicates that raters do not have a reliable metacognitive awareness of
their accuracy in distinguishing between human and AI-generated sentences, suggesting that
their confidence levels do not effectively reflect their true performance.

Plotting the signal detection score against the insight score allows us to identify how
detection and insight are interrelated. As shown in Figure 3 (B), we observe only two raters
(9%) with both good insight and good detection in the top-left quadrant of the plot.

Sensitivity and specificity were calculated with regards to the raters’ ability to discern
human-written sentences and are displayed in Figure 2(C). No rater achieved both a sensitivity
and specificity greater than 0.7, indicating that none of the raters were highly proficient at
correctly identifying human-written sentences while also correctly rejecting AI-generated ones.

We calculated the area under the receiver operating characteristic curve (AUROC) for
each rater, and a boxplot of AUROC scores across AI-proficient non-peer supporters and peer
supporters is shown in Figure 2(D). The mean AUROC for peer supporters was 0.59 (95% CI:
0.52, 0.67), while the mean AUROC for AI-proficient non-peer supporters was 0.61 (95% CI:
0.56, 0.66).
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Fig. 3: Comparison of rater performance and insights. (A) Bar chart showing the percentage
of ratings within each rater type judged as human, grouped by the true origin (AI vs Human
generation). Low and high fidelity sentences are pooled. (B) Plot of rater insight, calculated
as Meta d’ (as described by31), and signal detection score (d’) using the psycho30 package. (C)
Scatter plot of sensitivity versus specificity of a human rating for a true human label by rater.
(D) Boxplot of AUROC scores by rater type. (E) AUROC for the best, worst, and median
rater.

The top AUROC calculated (Peer Supporter), the bottom AUROC calculated (also Peer
Supporter), and the rater with an AUROC closest to the median (AI-proficient non-peer sup-
porters) are shown in Figure 2(E). These results highlight the variability in rater performance
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and suggest that, overall, raters struggled to consistently distinguish between human and
AI-generated text.

4. Discussion

There is a clear need for targeted training programs to enhance peer supporters’ ability to
critically evaluate their performance during peer-support calls, allowing them to improve the
quality of care they are producing.9,10 This aligns with recommendations by Naslund et al.41

philosophies on the importance of digital literacy in mental health support contexts. To sup-
port peer supporters in self-evaluating and improving their job performance, digital tools can
play a crucial role, but such tools require access to large amounts of high-quality data.

Given the difficulty in obtaining sufficient real-world data, large language models (LLMs)
offer a promising solution by generating synthetic data, as evidenced by the low detection
accuracy (43.10%) in our study, where the AI-generated text closely mimicked human-created
content.

The significant difference in accuracy between AI-proficient non-peer supporters and peer
supporters, with the AI-proficient group demonstrating higher accuracy, is expected. However,
the overall low accuracy for both groups underscores the challenges in reliably detecting AI-
generated content, even for those with technical expertise.

This raises the possibility that exposure to AI in professional settings may confer some
advantage in detecting synthetic content. However, the performance gap was small, which
suggests that even AI-exposure may not be sufficient to reliably distinguish between human
and AI-generated text in all cases. This brings into question how evaluators are selected for
similar studies, as familiarity with AI might not always correlate with better performance in
validation tasks. Future research should consider how varying levels of AI-exposure might im-
pact evaluators’ ability to assess synthetic text, and whether additional training or background
knowledge is required for optimal evaluation.

The tendency of both peer supporters and AI-proficient non-peer supporters to classify
low-fidelity sentences as AI-generated more often than high-fidelity sentences is particularly
interesting. This suggests that the quality or adherence to best practices in peer support
conversations might be a key factor in how text is perceived.

The promising results of this study, reflected in the low detection accuracy, suggest that
synthetic text could be effectively integrated into training data for automatic feedback algo-
rithms designed for peer supporters. However, it is essential to carefully consider the ethical
implications and ensure that the human element, which is crucial to peer support, is main-
tained.42

4.1. Limitations

There are several limitations to this analysis. Firstly, the small sample size (n = 22) limits
further generalizing our findings. However, the effects observed achieve statistical significance,
which suggests that the findings are robust despite the sample size. Secondly, our analysis
was based on the classification of individual sentences without additional context. While this
serves our goal of creating technologies to highlight sentences of high- and low-fidelity, it is
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reasonable to expect that providing more context around each sentence might yield different
results, as raters could potentially make more accurate judgments with more information.

Another limitation is the potential bias introduced by the specific demographic and profes-
sional backgrounds of our raters, which may not be representative of the broader population
of peer supporters and AI-proficient individuals. Additionally, the inherent variability in in-
dividual raters’ experiences and familiarity with AI-generated content could influence their
performance and confidence levels.

Testing was conducted on a single model, which restricts our ability to generalize the find-
ings across LLMs that may perform differently. Furthermore, we did not conduct a qualitative
analysis of the synthetic data, which could have provided deeper insights into its linguistic
quality, semantic accuracy, stylistic consistency, and realism. A more detailed assessment, such
as annotation by professional peer supporters, could offer valuable perspectives on the text’s
quality and its alignment with human communication in similar contexts.

We did not evaluate the synthetic data for downstream tasks, leaving its practical appli-
cation in real-world settings unexplored. This remains an important area for future work, and
in our next follow-up study, we plan to investigate how synthetic data can be integrated into
various downstream tasks, including its potential to enhance peer-support tools and other
applications in similar domains.

Despite these limitations, our findings support the hypothesis that synthetic data gen-
eration for augmentation is feasible. The validation efforts indicate that both AI-proficient
non-peer supporters and peer supporters struggle to reliably distinguish between human and
AI-generated text, suggesting that AI-generated synthetic data can effectively mimic human-
written content. This finding has promising implications for the use of synthetic data to
augment training datasets and improve the performance of fidelity classification algorithms.

5. Conclusion

This study demonstrates the potential for using LLMs in synthetic text generation to cre-
ate diverse datasets of peer support conversations, encompassing both high- and low-fidelity
examples. Our findings reveal that both our test groups had below 50% in distinguishing syn-
thetic text from human-created content, underscoring the sophisticated nature of current AI
language models. Importantly, this work does not aim to replace human peer supporters with
AI chatbots, but instead lays the groundwork for developing an automated feedback system to
enhance peer support training and quality assurance. The synthetic sentences generated pro-
vide a rich dataset for training AI models to classify the quality of peer support interactions,
potentially offering real-time feedback to supporters.

Future work might focus on developing and validating an AI-based feedback algorithm
using our synthetic dataset, exploring its ethical implications, and investigating the long-term
impacts of AI-assisted training on peer support outcomes. Ultimately, this study represents a
significant step towards leveraging AI to enhance, rather than replace, human-delivered peer
support, contributing to improved mental health support services.
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A Prospective Comparison of Large Language Models for Early Prediction of Sepsis1
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We present a comparative study on the performance of two popular open-source large language
models for early prediction of sepsis: Llama-3 8B and Mixtral 8x7B. The primary goal was to
determine whether a smaller model could achieve comparable predictive accuracy to a significantly
larger model in the context of sepsis prediction using clinical data.

Our proposed LLM-based sepsis prediction system, COMPOSER-LLM, enhances the previously
published COMPOSER model, which utilizes structured EHR data to generate hourly sepsis risk
scores. The new system incorporates an LLM-based approach to extract sepsis-related clinical
signs and symptoms from unstructured clinical notes. For scores falling within high-uncertainty
prediction regions, particularly those near the decision threshold, the system uses the LLM to draw
additional clinical context from patient notes; thereby enhancing the model's predictive accuracy in
challenging diagnostic scenarios.

A total of 2,074 patient encounters admitted to the Emergency Department at two hospitals within
the University of California San Diego Health system were used for model evaluation in this study.
Our findings reveal that the Llama-3 8B model based system (COMPOSER-LLMLlama) achieved a
sensitivity of 70.3%, positive predictive value (PPV) of 32.5%, F-1 score of 44.4% and false alarms
per patient hour (FAPH) of 0.0194, closely matching the performance of the larger Mixtral 8x7B
model based system (COMPOSER-LLMmixtral) which achieved a sensitivity of 72.1%, PPV of
31.9%, F-1 score of 44.2% and FAPH of 0.020. When prospectively evaluated,
COMPOSER-LLMLlama demonstrated similar performance to the COMPOSER-LLMmixtral pipeline,
with a sensitivity of 68.7%, PPV of 36.6%, F-1 score of 47.7% and FAPH of 0.019 vs. sensitivity
of 70.5%, PPV of 36.3%, F-1 score of 47.9% and FAPH of 0.020. This result indicates that, for
extraction of clinical signs and symptoms from unstructured clinical notes to enable early
prediction of sepsis, the Llama-3 generation of smaller language models can perform as effectively
and more efficiently than larger models. This finding has significant implications for healthcare
settings with limited resources.

Keywords: Large language model, Unstructured clinical notes, Clinical decision support systems
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1. Introduction

Sepsis is a life-threatening condition that arises when the body's response to infection causes
systemic inflammation, leading to tissue damage and organ failure. It is a major cause of mortality
and morbidity worldwide, accounting for a significant portion of hospital deaths1–3. Early detection
and timely intervention are critical to improving patient outcomes, as delayed treatment can lead
to severe complications and increased mortality4–6. Recent advancements in artificial intelligence
(AI) have enabled the development of predictive models that utilize electronic health record
(EHR) data to identify early signs of sepsis7. These AI-driven models can analyze vast amounts of
structured data, such as laboratory results and vital signs, to predict sepsis risk and prompt early
clinical intervention. Despite the success of these models, they often overlook the rich contextual
information embedded in unstructured clinical notes, which can provide additional insights into a
patient's condition.

Large language models (LLMs) have emerged as powerful tools for processing and
interpreting unstructured text data, making them valuable assets in predictive analytics for
healthcare8. LLMs, such as GPT-3, Claude and their variants, are pre-trained on extensive text
corpora and fine-tuned for specific tasks. In healthcare, LLMs have shown promise in tasks
ranging from generating clinical notes and summarizing patient histories to identifying clinical
entities and predicting patient outcomes9–12. The integration of LLMs with traditional AI models
has the potential to improve predictions by incorporating nuanced information from unstructured
data, thereby providing a more comprehensive view of a patient's health status.

However, the deployment of large LLMs in clinical settings presents significant challenges.
Large models, such as the Mixtral 8x7B model with 47 billion parameters, require substantial
computational resources for training and inference, which can be prohibitive in
resource-constrained environments. The motivation for this study was to explore the feasibility of
using a new generation smaller LLM, specifically the Llama-3 model with 8 billion parameters, to
achieve comparable performance for extraction of clinical signs and symptoms from unstructured
clinical notes. By reducing the model size, we aim to address the issues of computational
efficiency, scalability, and cost, while maintaining or even improving predictive accuracy.
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2.  Methods

2.1.  Data

This study utilized de-identified data from the electronic health records (EHR) of patient
encounters in the Emergency Department (ED) at two University of California San Diego (UCSD)
Health hospitals, using FHIR and HL7v2 standards. Patients were identified as having sepsis
according to the Sepsis-3 international consensus definition for sepsis2. The onset time of sepsis
was established by following previously published methodology, using evidence of organ
dysfunction and suspicion of clinical infection13–15. Patients aged 18 and older were monitored
throughout their stay until either their first episode of sepsis, transition to comfort care, or transfer
out of the ED. To ensure a sufficient quantity of predictor data, we focused on sequential hourly
predictions of sepsis starting two hours after ED triage. While the previously established
COMPOSER model14,16 used a decision threshold of 0.6, the COMPOSER-LLM model adopted a
lower threshold of 0.5 to enhance sensitivity. To mitigate the potential increase in false alarms, the
model incorporated additional contextual information from clinical notes for predictions in the
high-uncertainty range of 0.5-0.75. To assess the impact of lowering the decision threshold and to
explore the advantages of using an LLM for uncertain predictions, all patients with at least one
COMPOSER risk score above 0.5 were included for further analysis. Exclusions were made for
patients identified as having sepsis before the prediction start-time or those lacking heart rate or
blood pressure measurements prior to this time. Predictions were considered if the following
criteria were met: 1) At least one vital sign and lab measurement within the past 24 hours; 2) No
antibiotics received; and 3) Availability of an “ED provider note” or “H&P note.”

The retrospective cohort included ED patient encounters from October 1, 2023 to December
31, 2023. A total of 1320 ED encounters (16.3% septic) met the inclusion criteria for the
retrospective cohort. Additionally, the COMPOSER-LLM pipeline was prospectively deployed in
silent mode for real-time sepsis prediction in the two EDs within the UCSD Health system starting
from May 1, 2024. The prospective data collected during the time period of May 1 - June 15 2024
will be referred to as prospective cohort. A total of 754 ED encounters (18.4% septic) met the
inclusion criteria for the prospective cohort. Table T1 in the appendix shows baseline
characteristics and summary characteristics for the retrospective and prospective cohorts.

This investigation was conducted according to University of California San Diego IRB
approved protocol #805726 with a waiver of informed consent.

2.2.  COMPOSER-LLM

The schematic diagram of the entire COMPOSER-LLM pipeline is shown in Figure 1. Starting
from the time of ED admission, COMPOSER14,16 generated a sepsis risk score at an hourly
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resolution. We direct the reader to Shashikumar et al.16 for more details regarding the input
features (structured data) of COMPOSER. If the risk score exceeded a primary decision threshold
( =0.75), an alert was fired. Risk scores closer to a secondary decision threshold ( =0.50) wereθ

1
θ
2

often associated with false alarms. Consequently, for risk scores within the high-uncertainty region
( risk score > ), an LLM-based sepsis likelihood tool was utilized to enhance diagnosticθ

1
≥ θ

2

accuracy. Specifically, if the likelihood score surpassed a predetermined likelihood-based decision
threshold ( ) and the LLM indicated a ‘suspicion of bacterial infection,’ an alert was fired.α

2.2.1.  Sepsis likelihood tool

The sepsis likelihood tool was designed to improve diagnostic accuracy by confirming the
presence of sepsis-related clinical signs and symptoms documented in clinical notes. It first
utilized a large language model (LLM) to extract these signs or symptoms from the notes. The
extracted symptoms were then processed through a likelihood calculator to assess the probability
of sepsis. This calculated likelihood was subsequently used to confirm diagnosis of sepsis.

A Bayesian likelihood calculator was used to compute the likelihood of sepsis based on the
clinical signs or symptoms identified by the LLM. The posterior probability of sepsis given a set
of clinical signs or symptoms ( ), , was calculated as follows:𝐶𝑆

𝑖{ },  𝑖 ∈ 1.... 𝑀 𝑃 𝐷|𝐶𝑆( )

. Where, corresponded to the scenario under which the clinical𝑃 𝐷|𝐶𝑆( ) =  𝑃 𝐷( )·𝑃 𝐶𝑆|𝐷( )
𝑃 𝐶𝑆( ) 𝐶𝑆

𝑖
= 1

signs or symptom was identified to be present by the LLM pipeline. The set of sepsis-related𝐶𝑆
𝑖

clinical signs or symptoms used in this study ( ) were as follows: fever,𝐶𝑆
𝑖{ },  𝑖 ∈ 1.... 9

hypotension, tachypnea, tachycardia, altered mental status, elevated inflammatory markers,
positive blood culture, suspicion of bacterial infection, and organ dysfunction syndrome.

The likelihood values for each of the clinical signs or symptoms conditioned on sepsis have
been tabulated in Table T2 of Appendix.

2.2.2.  LLM-based clinical sign or symptom extractor:

The LLM-based clinical signs or symptoms extraction pipeline was designed to accept a prompt
and clinical notes (all notes generated from admission to the time of prediction) as input and
generate a JSON-formatted text output. Given that clinical notes can sometimes exceed the
predefined input length (context size) of the LLM, we employed the retrieval augmented
generation (RAG) technique17 to extract smaller, relevant text chunks (context) for the queried
clinical sign or symptom. These extracted text chunks were then appended to the input prompt for
the LLM. The prompt used in our analysis was as follows:
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"You are an ED doctor. Your task is to identify the following abnormal clinical signs and
symptoms: {clinical sign or symptom}. Think step-by-step and provide your response in the
following JSON format: {<clinical sign or symptom> : ["Yes or No", "Concise justification?"]}
Medical note: {RAG context}."

To minimize hallucinations and to maintain consistency in text generation, the temperature
parameter of the LLM was set to 0.3. Additionally, for each clinical sign or symptom, the LLM
pipeline was run three times and the majority outcome (clinical sign or symptom present or not)
across the multiple runs was used for downstream tasks.

Recent advancements, including enhanced training data, advanced architecture (such as group
query attention), improved tokenization, and refined training techniques, have enabled newer
generations of smaller parameter LLMs (such as Llama-3 8B18) to match or even surpass the
performance of older, larger models (such as Llama 2 70B19 and Mixtral 8x7B20). In this study, we
used the open-source Llama-3 8B and Mixtral 8x7B models to investigate whether the newer,
smaller LLM (Llama-3 8B) can achieve comparable effectiveness in extracting clinical signs and
symptoms from unstructured clinical notes to the much larger Mixtral 8x7B model. Specifically,
the Mixtral 8x7B, developed by Mistral AI, is a sparse mixture of experts LLM with 46.7 billion
total parameters, referred to as COMPOSER-LLMMixtral in this study. The Llama-3 8B, the latest
state-of-the-art LLM developed by Meta with 8 billion parameters, is referred to as
COMPOSER-LLMLlama in our analysis.

Figure 1. Schematic Diagram of the COMPOSER-LLM pipeline.
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2.3.  Experimental setup and evaluation

For all continuous variables, we have reported medians ([25th–75th percentile]). For binary
variables, we have reported percentages. Differences between the septic and non-septic cohort
were assessed with Wilcoxon rank sum tests on continuous variables and Pearson’s chi-squared
tests on categorical variables and significance was assessed at a p-value of 0.05. Sensitivity (SEN),
positive predictive value (PPV), and F-1 score at a fixed decision threshold have been reported at
the encounter level. SEN, PPV and F-1 score were reported under an end-user clinical response
policy in which alarms fired up to 48 hours prior to onset of sepsis were considered as true alarms,
and the model was silenced for six hours after an alarm was fired. Additionally, we have reported
false alarms per patient hour (FAPH) which can be used to calculate the expected number of false
alarms per unit of time in a typical care unit (e.g., a FAPH of 0.025 translates to roughly 1 alarm
every 2 h in a 20-bed care unit). The FAPH was calculated by dividing the total number of false
alarms by the total number of data points (sum of hourly time points across all patients) in a given
cohort.

The COMPOSER model was implemented in TensorFlow. The LLM-based clinical signs or
symptom extraction pipeline was implemented using the LangChain framework in Python. The
LLM pipeline was run on AWS multi-GPU EC2 instance with NVIDIA A10G GPUs: g5.12xlarge
ec2 instance type (cost of $5.672 per hour) for Mixtral 8x7B, g5.2xlarge ec2 instance type (cost of
$1.212 per hour) for Llama-3 8B.

2.4.  Prospective deployment:

COMPOSER-LLMMixtral and COMPOSER-LLMLlama model were prospectively deployed in
silent-mode on a cloud-based platform, as previously described by Boussina et al.14. Prospective
validation studies are essential in clinical applications of LLMs as retrospective performance may
not accurately reflect real-world performance due to factors such as incomplete or missing clinical
notes. The real-time platform extracted data at an hourly resolution of all the active patients
(across the two Emergency Departments within UCSD Health system) using FHIR APIs with
OAuth 2.0 authentication, and passed the input feature set to the COMPOSER-LLM inference
engine. The inference engine consisted of COMPOSER microservice and Sepsis likelihood tool
microservice hosted within separate EC2 instances. The sepsis risk scores generated by the
COMPOSER-LLM pipeline were then written to a flowsheet within the EHR using an HL7v2
outbound message. The flowsheet then triggered a nurse-facing Best Practice Advisory (BPA) that
alerted the caregiver that the patient was at risk of developing severe sepsis. As the models were
deployed in silent mode, the BPA was not shown to the end-user. The COMPOSER-LLM pipeline
was deployed for real-time prediction of sepsis across the two EDs within the UCSD Health
system starting from May 1, 2024.
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3.  Results
Table 1: Comparison of model performance.

COMPOSER COMPOSER-LLMMixtral
(Mixtral 8x7B)

COMPOSER-LLMLlama
(Llama-3 8B)

Retrospective
cohort

Sensitivity 72.9% 72.1% 70.3%

PPV 22.6% 31.9% 32.5%

F1-Score 34.5% 44.2% 44.4%

FAPH 0.037 0.021 0.0194

Prospective
cohort

Sensitivity 70.8% 70.5% 68.7%

PPV 25.1% 36.3% 36.6%

F1-Score 37.1% 47.9% 47.7%

FAPH 0.034 0.020 0.019

The standalone COMPOSER model achieved a sensitivity of 72.9%, positive predictive value
(PPV) of 22.6%, F-1 score of 34.5%, and FAPH of 0.037 on the retrospective cohort. In
comparison, COMPOSER-LLMMixtral demonstrated improved performance with a sensitivity of
72.1%, PPV of 31.9%, F-1 score of 44.2%, and FAPH of 0.021. Similarly, COMPOSER-LLMLlama

achieved a sensitivity of 70.3%, PPV of 32.5%, F-1 score of 44.1%, and FAPH of 0.0194.
Additionally, outputs generated by both the LLMs for the same patient are shown in Table 2.

Within the prospective cohort, the performance of COMPOSER-LLMLlama was found to be
similar to COMPOSER-LLMMixtral. Specifically, COMPOSER-LLMLlama achieved a sensitivity of
68.7%, PPV of 36.6%, F-1 score of 47.7%, and FAPH of 0.0190 whereas COMPOSER-LLMMixtral

achieved a sensitivity of 70.5%, PPV of 36.3%, F-1 score of 47.9% and FAPH of 0.020.

Table 2: Outputs generated by the LLM for various clinical signs and symptoms for a patient
COMPOSER-LLMMixtral

(Mixtral 8x7B)
COMPOSER-LLMLlama

(Llama-3 8B)

Fever
['Yes', 'Temperature recorded as high
as 102.7 degF (4 days ago), and
101degF (today)']

['Yes', 'Temperature of 102.7 degF is greater
than or equal to 100.4 degF.']

Hypotension ['No', 'Systolic BP > 100 mmHg,
normotensive']

['No', 'BP 122/94 is not less than 90/60.']

Tachypnea ['No', 'Respiratory rate 16-20, within
normal limits']

['No', 'Resp rate of 20 is not greater than
20.']

Tachycardia ['No', 'Pulse rate 77-83, within normal
limits']

['No', 'Pulse of 83 is not greater than 90.']
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Altered mental
status

['No', "No evidence of altered mental
status in the patient's medical note."]

['No', 'No mention of altered mental status
in the medical note.']

Elevated
inflammatory

markers

['Yes', 'Justification: The CBC with
diff shows an elevated white blood
cell count (16.1) and increased Imm
Gran % (1), indicating possible
infection or inflammation.']

['Yes', 'Elevated WBC (16.1) and Anion
Gap (16) indicating possible inflammatory
response.']

Positive blood
culture

['No', 'No information provided about
blood culture results in the medical
note.']

['No', 'No mention of positive blood culture
in the medical note.']

Suspicion of
bacterial
infection

['Yes', 'Elevated WBC, fevers, nausea,
vomiting, worsening right flank and
right-sided abdominal pain, and
recent instillations into nephrostomy
tube suggest possibility of infection.']

['Yes', 'Rising WBC of 16.1, worsening
renal insufficiency, and fevers, along with a
history of ESBL Kleb from a urine culture
3 days ago, suggest suspicion of bacterial
infection.']

Organ
dysfunction

['Yes', 'Abnormal renal function with
history of CKD, abnormal vital signs
(hypotension and tachycardia),
abnormal white cell count
(leukocytosis)']

['No', "The patient's physical exam and
diagnostic testing results do not indicate
any organ dysfunction. The patient's vital
signs are within normal limits, and the
physical exam is notable for moderate to
significant tenderness in the right side of
the abdomen, but no other abnormalities. "]

4. Discussion

The findings from this study highlight the potential of using the new generation of smaller
open-source LLMs for enhancing the early sepsis prediction. The results demonstrated that the
Llama-3 8B model (COMPOSER-LLMLlama) achieved comparable performance to the larger
Mixtral 8x7B model (COMPOSER-LLMMixtral), including sensitivity, positive predictive value
(PPV), and F-1 score, with slightly fewer false alarms per patient hour (FAPH). When
prospectively evaluated, the COMPOSER-LLMLlama pipeline showed similar performance to the
COMPOSER-LLMMixtral pipeline. These outcomes suggest that, for extraction of clinical signs and
symptoms from unstructured clinical notes, the Llama-3 generation of smaller language models
can perform as effectively and more efficiently than larger models, providing a more efficient and
cost-effective solution for real-time clinical decision support systems.

The new generation of smaller LLMs, such as the Llama-3 8B, possess several advantageous
properties over older, larger models like the Mixtral 8x7B. These smaller models have been
optimized with improved training data, advanced architectural techniques, and enhanced
tokenization methods. Despite their reduced parameter size, these advancements allow smaller
models to perform at par or even surpass the performance of older, more extensive models21. One
of the most significant advantages of smaller LLMs is their lower computational resource
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requirement, making them more accessible and scalable for deployment in resource-constrained
environments. The reduction in computational overhead (ec2 instance cost of $5.672 per hour for
Mixtral 8x7B vs $1.212 per hour for Llama-3 8B) also translates into lower operational costs and
faster inference times.

However, this study has several limitations. The sepsis likelihood tool was triggered only after
the availability of certain clinical notes (“ED provider note” or “H&P note”), potentially delaying
alert generation among patients in the uncertainty interval of 0.5-0.75. However, during the
prospective deployment of COMPOSER-LLM, the tool was triggered even if a note was
incomplete, as the contextual information within these notes still provided valuable insights.
Future research could investigate using LLM-based queries to extract essential patient and
provider information, such as suspicion of infection, and explore real-time capture of provider
notes through speech recognition and transcription to address issues with missing or incomplete
notes. Additionally, while the models were tested on data from two hospitals within a single health
system, the generalizability of these findings to other institutions with different patient populations
or clinical practices may be limited. Finally, future prospective studies (such as randomized
clinical trials) are needed to assess the impact of COMPOSER-LLM on patient care and outcomes.

5.  Conclusion

This study demonstrated that a new generation smaller LLM, the Llama-3 8B model (with 8
billion parameters), performed as effectively and more efficiently than an older generation larger
LLM, the Mixtral 8x7B model (with 47 billion parameters), for extraction of clinical signs and
symptoms from unstructured clinical notes to enable early prediction of sepsis. The results
advocate for the potential of smaller models in healthcare, offering a more resource-efficient
alternative without compromising accuracy.
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Appendix
Table T1. Patient characteristics of the retrospective and prospective cohorts

* p-value<0.05
CCI = Charlson Comorbidity Index
SOFA = Sequential Organ Failure Assessment score

Table T2. Likelihood values for each of the clinical symptoms conditioned on sepsis

Clinical symptoms Probability value
Fever 0.9
Hypotension 0.05
Tachypnea 0.7
Tachycardia 0.05
Altered mental status 0.05
Elevated inflammatory markers 0.5
Positive blood culture 0.9
Suspicion of bacterial infection 0.75
Organ dysfunction 0.45
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The primary challenge in reporting cancer cases lies in the labor-intensive and time-consuming process of 

manually reviewing numerous reports. Current methods predominantly rely on rule-based approaches or 

custom-supervised learning models, which predict diagnostic codes based on a single pathology report per 

patient. Although these methods show promising evaluation results, their biased outcomes in controlled 

settings may hinder adaption to real-world reporting workflows. In this feasibility study, we focused on lung 

cancer as a test case and developed an agentic retrieval-augmented generation (RAG) system to evaluate the 

potential of publicly available large language models (LLMs) for cancer registry coding. Our findings 

demonstrate that: (1) directly applying publicly available LLMs without fine-tuning is feasible for cancer 

registry coding; and (2) prompt engineering can significantly enhance the capability of pre-trained LLMs in 

cancer registry coding. The off-the-shelf LLM, combined with our proposed system architecture and basic 

prompts, achieved a macro-averaged F-score of 0.637 when evaluated on testing data consisting of patients’ 

medical reports spanning 1.5 years since their first visit. By employing chain of thought (CoT) reasoning and 

our proposed coding item grouping, the system outperformed the baseline by 0.187 in terms of the macro-

averaged F-score. These findings demonstrate the great potential of leveraging LLMs with prompt 

engineering for cancer registry coding. Our system could offer cancer registrars a promising reference tool 

to enhance their daily workflow, improving efficiency and accuracy in cancer case reporting. 

Keywords: Natural Language Processing; Large Language Models; Electronic Health Record; 

Cancer registry; Patient Journey. 

1.  Introduction 

Lung cancer stands as the foremost cause of cancer-related deaths among individuals aged 50 years 

and older, surpassing breast, colorectal, and prostate cancers combined in 2020, as reported by the 

Global Cancer Observatory, an initiative of the International Agency for Research on Cancer (Ferlay 

et al., 2020). In the United States, it is projected that 611,720 people will succumb to cancer of all 

types in 2024, equating to approximately 1,680 deaths per day (Siegel et al., 2024). Similarly, lung 

cancer has persistently held the top position as Taiwan's leading cause of cancer-specific mortality 

over the years. The survival rates for patients with lung cancer remain persistently low, often due to 

late-stage diagnosis that precludes complete surgical resection, thereby reducing long-term survival 

prospects. 

The Taiwan Cancer Registry (TCR), established in 1979 by the Taiwan Society of Cancer 

Registry, aims to comprehensively measure cancer incidence, morbidity, survival, and mortality 

among individuals with cancer in Taiwan (Chiang et al., 2015). However, the current method of 

reporting cancer cases involves labor-intensive and time-consuming manual review of extensive 

reports, including pathology and radiology reports. Dai et al. (2024) conducted a study at a hospital 

in southern Taiwan, finding that it takes approximately 30 minutes to process a single case in the 
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reporting processing. A significant challenge contributing to the time-intensive nature of the process 

is the large volume and diverse nature of reports associated with each patient. Registrars are required 

to review and understand a wide array of medical reports, such as pathology reports, radiology 

reports, and discharge summaries. These reports often cover a span of approximately 1.5 years per 

patient. One proposed solution to address this challenge involves leveraging artificial intelligence 

(AI) techniques to automatically parse and extract information from cancer pathology reports. 

However, these reports are commonly presented in unstructured formats, posing difficulties for 

machine interpretation due to varying writing styles among different hospitals. Current 

methodologies predominantly rely on specialized rule-based systems (Coden et al., 2009), machine 

learning models (Alawad et al., 2020; Dubey et al., 2019; Yoon et al., 2019) or the hybrid of neural 

symbolic system (Dai, Yang, et al., 2021). Most of these presented works (Alawad et al., 2020; 

Dubey et al., 2019; Yoon et al., 2019) evaluated their approaches based solely on a single pathology 

report per patient. This approach may lead to biased results and could struggle to adapt to the real 

reporting process. 

Recently, large language models (LLMs) have emerged as an effective method for extracting 

information from medical reports (Thirunavukarasu et al., 2023). Due to their large number of 

parameters and extensive pre-trained on diverse text corpora, LLMs have demonstrated impressive 

performance across numerous natural language processing (NLP) tasks, including zero-shot and 

few-shot scenarios (Brown et al., 2020; Nori et al., 2023). Although LLMs have achieved 

remarkable success in various applications, they still face significant limitations, particularly in 

domain-specific or knowledge-intensive tasks. These limitations include difficulties with processing 

long context lengths (Wang et al., 2024) and the potential for generating “hallucinations” when 

dealing with queries outside their training data or requiring up-to-date information (Zhang et al., 

2023). On the other hand, retrieval augmented generation (RAG) is an innovative method for 

tailoring LLMs to tasks in specific domains (Lewis et al., 2020). The core idea behind RAG is to 

leverage a vast collection of documents to enhance the capabilities of generative models, thereby 

improving efficiency in handling complex tasks that require integrated knowledge (Zakka et al., 

2024). Unlike traditional LLMs, RAG functions like a search engine by retrieving relevant text data 

from external knowledge bases through semantic similarity calculations in response to queries. By 

referencing external knowledge and segmenting large documents into smaller chunks, RAG 

effectively reduces the problem of generating factually incorrect content and improves the handling 

of long context data (Kandpal et al., 2023).  

In an effort to streamline the data curation process over the various reports of a patient journey 

while upholding high standards of accuracy, we explore the feasibility of employing LLMs 

alongside agentic RAG to autonomously extract cancer registry coding items pertaining to lung 

cancer from various types of clinical reports detailing a patient’s medical journey. This methodology 

mirrors the responsibilities of a cancer registrar in a real setting, involving the analysis of 

unstructured reports to identify pertinent data elements essential for cancer registry purposes and 

their conversion into standardized codes. 

Our contributions can be summarized as follows: 

(1) We develop an agentic RAG system to facilitate the cancer registry coding process in a real 

hospital setting. Specifically, we assess the feasibility of directly applying openly available 
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LLM models without any fine-tuning, utilizing sophisticated crafted prompts through the 

prompt engineering process.  

(2) We empirically show that off-the-shelf LLMs can achieve promising performance on certain

cancer registry coding tasks based on the proposed system architecture and the compiled

prompts. For example, Mistral-7B (Jiang et al., 2023) can achieve a macro-averaged F-score (F)

of 0.637 when evaluated on the test data used in the previous study (Dai et al., 2024).

(3) The LLM, employing strategies such as chain-of-thought (CoT) (Wei et al., 2022) and the

proposed coding item grouping, performs better by a large margin than those without these

features. When evaluated on the test data, the enhanced strategy outperforms the baseline model

without CoT by 0.187 in terms of macro-averaged F-score.

(4) The proposed system can provide a reference text to facilitate the interpretation of the generated

outcomes. We conducted an analysis of the presented errors with a detailed discussion for future

direction. Through the analysis, we believe that by further validating the generated output with

the original reports to reduce the potential hallucinations observed in the presented study, the

system could offer cancer registrars a promising reference tool to enhance their daily workflow.

2. Methods

To facilitate the coding process over the large and diverse reports associated with each cancer patient, 

we propose adapting the agentic RAG system. This system incorporates openly available LLM 

models along with sophisticatedly designed prompts through the prompt engineering process. In this 

section, we will first outline the dataset used and the target coding items. Then, we will provide an 

extensive overview of the proposed agentic RAG system. Subsequently, we will detail the design 

process and methods for our prompts. Finally, we will describe the evaluation metrics employed to 

assess the performance of our proposed system. 

2.1.  Datasets 

In collaboration with a hospital in southern Taiwan, we collected cancer registry records of lung 

cancer patients linked with corresponding medical reports in our previous work (Dai et al., 2024). 

In the compiled dataset, we removed records unrelated to lung cancer based on primary site 

information, along with patients who had fewer than two reports or only one type of report. This 

resulted in a final dataset comprising 30 coding item records for 1,629 patients. The dataset was 

further divided into training and testing sets, comprising 1,287 and 342 patients, respectively. Each 

patient is associated with an average of 14.6 medical records. Despite Mandarin Chinese being 

Taiwan's official language, all medical reports were documented mainly in English or a mixture of 

Chinese and English. The dataset was used for the evaluation of the proposed agentic RAG system 

for automatic cancer registry coding. For this pilot study, we selected eight coding items to develop 

our LLM-based cancer registry coding assistant system. These items include pathological TNM 

classifications (TNM), histology types (H), behavior types (B), primary site (PS), laterality (L), and 

grades (G). 
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2.2.  Proposed Agentic RAG System 

We applied RAG to process free-text medical reports collected over approximately 1.5 years to 

generate recommended cancer registry coding outcomes. Our system employs advanced embedding 

models to index and retrieve text chunks related to the specific coding prompt from medical reports 

using retrievers. These chunks are then filtered with post-processors to enhance accuracy before 

generating standardized cancer registry codes with an LLM. The system functions in two main 

stages: Top-k embedding-based retrieval and LLM-based code generation. 

In the first stage, the same embedding model used for indexing the chunks of medical records is 

used to embed the given prompts for retrieving the most pertinent text chunks from medical reports 

for each patient. These chunks are refined using keyword-based post-processors to ensure they are 

among the top three most relevant for the coding task. In the second stage, the refined text chunks 

are combined with the prompt and query. The LLM then processes this integrated information, 

learning from patterns in provided examples, analyzing the input, and generating accurate and 

standardized cancer registry codes. 

Figure 1 illustrates the system workflow of the proposed agentic RAG method. The detail 

workflow operates as follows: Initially, various medical reports for each patient are collected and 

formatted into JSON lines. These documents are then segmented into smaller, manageable text 

chunks. Each chunk undergoes processing through an embedding model, transforming it into a 

vector representation. When a query prompt for a coding task is received, it is similarly converted 

into a vector representation to facilitate a search within the vector database. This search identifies 

the most relevant text chunks, which are then combined with the query prompt to create a refined 

request. This refined request is sent to the LLM for processing, which subsequently provides a 

comprehensive response. For the underlying LLMs employed by the agents of the proposed RAG 

 
Fig. 1.   Workflow of the proposed agentic RAG system. 
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system, we experimented with Mistral-7B and LLaMA3-8B (Touvron et al., 2023). Both Mistral 

and LlaMA3 are renowned for their balance between computational efficiency and performance 

across diverse NLP tasks. Therefore, for our implementation of the proposed RAG system, we 

selected Mistral-7B as the base model and compared its performance with LlaMA3-8B. 

2.3.  Prompt Engineering for Cancer Registry Coding 

A prompt is a text-based and task-specific instruction given to a language model to guide its output 

without altering its parameters. The language model processes the prompt and generates a response 

based on the provided instructions and context (Marvin et al., 2023). Typically, a prompt may 

include instructions, input data, context, and an output indicator. According to the information 

provided, prompts can be categorized into four levels (Heston & Khun, 2023). Level four, known 

as CoT, breaks down the instruction into step-by-step solutions, offering language models a more 

structured way to handle the prompt for improved accuracy. Prompt engineering has emerged as a 

crucial technique for crafting effective prompts. It is an iterative process aimed at refining defined 

prompts to enhance the capabilities of pre-trained LLMs. In this subsection, we describe the crafted 

level four prompts through an iterative prompt engineering process. 

First, we set the goal to design the initial prompts for the eight coding tasks. We precisely 

specified the definitions of the coding task along with the desired output formats. In our initial 

implementation, we used the long-form coding manual of TCR (revision of the 2018v.6) to include 

detailed explanations and coding guidelines for each coding item. The first and second rows of Table 

1 show examples of the PS coding item. 

Furthermore, to achieve a more automated and controllable process, we designed output format 

prompts to instruct the LLM on how to format its output. As shown in the third row of Table 1, we 

specified that the LLM should generate its response in JSON format to facilitate the extraction of 

the conclusions. The output JSON object contains three keys: “explain”, “cite”, and the names of 

the target coding items. The target coding item name key holds the final coding result suggested by 

the LLM. If the LLM cannot determine the result based on the given report, the values for this key 

is instructed to assign “NA”. The “explain” key holds the explanation provided by the LLM for the 

reason why the coding results are suggested. The “cite” key includes the relevant paragraphs from 

the documents referenced by the LLM to support the coding results. We developed a simple parser 

based on regular expressions to convert the decoded text response from an LLM into a JSON 

structured format. If the response for a report cannot be parsed, “NA” is assigned for that report. 

During the refining phase, we evaluated the performance of each prompt on the coding tasks 

using the training set. Biomedical expert MS Huang (listed as the second author) carefully analyzed 

the models’ responses to identify any errors or areas where the response fell short. Based on the 

error analysis and the potential solutions observed, we adjusted the prompt content to get a more 

precise response. This process was repeated until satisfactory performance was achieved. We then 

evaluate the developed prompts on the test set for performance comparison. 

During the iterative process, we observed that certain coding items are often considered together 

in the actual cancer registration process. Therefore, we treated these related items as a coding item 

set and integrated their instructions into a single prompt during the design phase. For example, PS 

and L are often addressed together. This integration helps streamline the process and ensures that 
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related items are coded consistently and accurately. Table 2 shows the pre-defined coding item set. 

The grouped coding items are instructed within the same prompt. 

Another significant improvement during the iterative process to the above basic prompt was the 

introduction of CoT reasoning for coding items like TNM and G. This method involves 

decomposing the coding task into intermediate steps and solving each step before arriving at the 

final answer (Wei et al., 2022). For example, consider the coding item G. Initially, we provided 

detailed coding rules in the prompt, such as: 

 

Table 1.  Example of the level 3 structured prompt defined for the “primary site” coding 

item. The ellipsis indicates the placeholder for the prompt string for other coding items 

belonging to the same group. 

Prompt Component Example 

Coding item set definition 

Your task as an assistant is to identify and confirm the primary site […] 

of lung cancer.  

The primary site refers to specific regions within the respiratory 

system. 

[…] 

 

Coding rules for an individual item 

It is essential to use only the information provided in the document at 

hand, considering its date and the pertinent organs or tissues examined. 

Choose from the following standard codes: 

- Primary site codes: C339: Trachea, C340: Main bronchus, C341: 

Upper lobe, lung, … 

[…] 

 

Output format (including examples) 

Your response must be a valid JSON object containing the following 

keys: 

-'primary site': A string containing the code for the primary site. 

[…] 

Ensure your response is limited to the provided options for primary site 

[…].  

For instance, if the pathologic diagnosis specifies ‘Lung; upper lobe; 

left’, this indicates that the primary site […] are located in the ‘upper 

lobe’ of the ‘left’ lung, according to the provided options your JSON 

response should be: 

{ 

"explain": "[Insert your explanation here based on the document]", 

"cite": "[Insert the relevant passages extracted from the document 

used for your decision]", 

“primary site”: “C341”, 

[…] 

} 
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…Exclude any data from metastatic sites or recurrent tumors. If an excisional biopsy was 

conducted at the primary site and subsequent tumor resection shows no residual tumor, use 

the pathological grade/differentiation from the excisional biopsy. For patients who 

underwent neoadjuvant treatment before surgery, record the grade/differentiation based on 

post-surgical tumor tissue pathology. … 

We revised these rules by breaking down the coding task of G into three steps resulting a level four 

prompt:  

1. Identify relevant reports: First, we requested the LLM to identify pathology reports that include

surgical procedures from all available medical reports using a list of predefined common surgical

terms.

2. Define reference range: Next, we instructed the model to produce the coding result for G based

solely on the pathology reports identified in the first step. Coding definition rules similar to the

initial detailed definitions shown above were also applied in this step.

3. Point out other key points: Finally, we instruct the model to improve its accuracy by considering

the dates of the reports and the specific organs or tissues examined, followed by applying the

exact “coding rules” for G.

2.4.  Evaluation Metrics 

We evaluate the performance of the proposed agentic RAG system using the commonly used metrics 

for evaluating information extraction results: precision (P), recall (R), and F1-measure (F). P and R 

are also known as positive predictive value and sensitivity, respectively. The F-score is the weighted 

harmonic mean of P and R. The formulae for the three metrics are defined as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹 =
2×𝑃×𝑅

𝑃+𝑅

In these formulas, TP, FP, and FN represent the number of true positives, false positives, and false 
negatives, respectively, for each coding item. Specifically, if the model outputs “NA” for a coding 
item for a patient’s entire report set, it is counted as one FN for that patient.  

Table 2.  The pre-defined related item groups. 

Coding item group type Coding item 

Grouped 

- Pathological TNM classification (TNM)

- Primary site and Laterality (PS and L)

- Histology and Behavior (H and B)

Isolated Pathological grades (G)
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3.  Results 

3.1.  Performance Comparison of the Proposed Agentic RAG System 

To illustrate the effectiveness of the proposed system, we compared it with the previously developed 

neural symbolic hybrid system (Dai et al., 2024). and two baseline models, as shown in Table 3. For 

the hierarchical attention network (HAN) model (Gao et al., 2018), we followed the binary relevance 

transformation method (Dai, Su, et al., 2021) to formulate the coding task for each coding item as a 

multiclass classification task, training the corresponding number of HAN-based classifiers. For the 

multi-task convolutional neural network (MT-CNN) model (Alawad et al., 2020), BioWordVec 

(Zhang et al., 2019) was used to represent tokens, and a single model was trained to generate all 

eight cancer registry items.  

For the proposed RAG systems, LLaMA3-8B clearly outperformed Mistral-7B in almost all 

coding items under the same configuration and prompt design. LLaMA3-8B also outperformed MT-

CNN and HAN in five and six coding items, respectively. Notably, LLaMA3-8B also performed 

comparably to the neural symbolic system developed in our previous work, achieving the best F-

scores in coding items such as PS and L. These promising results demonstrate the feasibility of using 

LLM models without any fine-tuning for cancer registry coding tasks in the real hospital setting. 

3.2.  Ablation Study Results on Different Prompt Engineering Techniques 

To further evaluate the effectiveness of the exectuted prompt engineering process for downstream 

task performance. We execute our ablation study on four cases: (1) full prompt: the complete prompt 

with all components shown in Tables 1 and 2 and CoT; (2) a level 3-G prompt: a prompt without 

CoT; (3) a level 3-I prompt: a prompt without CoT and all coding item groups shown in Table 2 are 

isolated; and (4) a level 2 prompt: a level 3-I prompt without adding the context. In our 

implementation, the context refers to the part of “Coding rules for an individual item”. The results 

are shown in Table 4. 

The results from the level three prompt demonstrate the potential of LLMs in performing cancer 

registry coding tasks from medical reports. This finding is particularly inspiring as it highlights the 

broader potential of leveraging off-the-shelf LLMs for processing medical text without sophisticated 

Table 3.   Performance comparison of the proposed systems across eight coding 

items. The highest F-scores for each type are highlighted in bold. 

 Mistral-7B LLaMA3-8B Neural-symbolic MT-CNN HAN 

Coding Item P R F P R F F F F 

T 0.707 0.915 0.798 0.844 0.972 0.904 0.905 0.730 0.763 

N 0.845 0.955 0.897 0.860 0.976 0.914 0.928 0.830 0.904 

M 0.433 0.898 0.584 0.400 0.917 0.557 0.930 0.799 0.822 

PS 0.877 0.914 0.895 0.894 0.987 0.938 0.884 0.750 0.710 

L 0.911 0.917 0.914 0.926 0.987 0.956 0.948 0.910 0.951 

H 0.724 0.710 0.717 0.721 0.964 0.825 0.871 0.700 0.760 

B 0.942 0.855 0.897 1.000 0.977 0.988 0.934 0.994 0.994 

G 0.815 0.975 0.888 0.883 0.970 0.925 0.932 0.797 0.939 
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prompt engineering. Specifically, we observed that the performance for the coding items L, B, and 

PS is satisfactory, with F-scores over 0.85. However, the performance of the proposed RAG system 

with grouped prompts on the TN and G coding items is less satisfactory, with F-scores lower than 

0.6. Additionally, using isolated prompts alone, the proposed system struggles with additional 

coding items including TNM and G, showing even lower F-scores (F-score <0.6). By comparing 

the results of the level three prompt with the full prompt, we found that the inclusion of CoT 

reasoning significantly boosts the macro-averaged F-score from 0.637 to 0.824. This highlights the 

effectiveness of the employed prompt engineering process. Additionally, the level two prompt failed 

to extract any coding items, demonstrating the lack of practical cancer registry coding knowledge 

in the current off-the-shelf LLMs. 

4. Discussion

4.1.  Error Analysis 

Benefiting from the development of pre-trained LLMs, the proposed RAG system can rapidly 

support most of the cancer registry coding item extraction tasks without further fine-tuning steps. 

However, from our results, we also observe that the system may occasionally produce conclusions 

contrary to the facts, even when clear clues are present in the reference texts. These “hallucinations” 

indicate that the system’s performance has room for improvement. In this section, we outline 

common error profiles derived from the overall design and present corresponding examples along 

with potential solutions for future work. 

Reference Data Flaws: A single patient may have several to dozens of reports at different times 

and for different examination items during their treatment period. Using all reports can avoid 

missing critical information but also introduces computational burdens and noise that may interfere 

with the decision of the coding results. Therefore, in the retrieval phase for evidential chunks, we 

only retrieve the top three chunks to narrow the inference space. However, this approach has a 

double-edged sword effect, which may lead to inappropriate reference chunk citations. Such errors 

arise when the provided chunks do not offer clear and appropriate clues, leading the model to either 

refrain from responding or generate hallucinations not mentioned in the original text. Based on our 

analysis of the presented system errors, it is evident that the current implementation sometimes 

suffers from the dilemma of similar information retrieved from the top-3 reference data. To address 

this issue, a post-retrieval process mechanism could be introduced to enhance the diversity among 

candidate chunks. Balancing data coverage would be helpful for this shortcoming. 

Table 4.  The ablation study results on different prompt engineering techniques 

Technique Macro-P Macro-R Macro-F 

Full prompt (level 4) 0.782 0.892 0.824 

w/o CoT (level 3-G) 0.595 0.733 0.637 

w/o CoT & Group (level 3-I) 0.571 0.699 0.609 

w/o Coding Rules (level 2) 0.000 0.000 0.000 
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Inconsistency with Facts: There are instances where the model produces outputs deviating from 

the retrieved facts, even when the medical reports already provide a clear basis for concluding the 

coding results. Despite the defined prompts guiding and restricting the model’s behavior, situations 

that exceed these controls still occur. This type of hallucination, where the model lacks fidelity to 

the source facts, has also been noted in recent research on LLMs (Tonmoy et al., 2024). Both the 

initial one-shot prompting and the current self-consistency CoT (Wang et al.) approaches may not 

be robust enough to assist the model in recalibrating its responses. Future work could explore 

techniques like Re-Reading (RE2), which enhances understanding by processing questions twice to 

better focus on the input (Xu et al., 2024), and Self-Reflective Retrieval-Augmented Generation 

(Self-RAG), which improves both quality and factual accuracy through retrieval and self-reflection 

(Asai et al., 2023). These methods could help the model produce more consistently and 

progressively refined outputs. 

Knowledge Boundary Limitations: In the process of diagnosing cancer, different examination 

methods may yield varying results. Summarizing multiple possibilities and ultimately providing a 

final answer is challenging for both professionals and support systems. For instance, when 

identifying cancer histology, conclusions derived from surgical pathology are generally more 

reliable than those obtained from specimens, gross examinations, or microscopic examinations. We 

noticed that the current applied LLMs are limited by inherent knowledge gaps and may lack the 

capability to accurately assess the strength of evidence across reports, leading to a higher likelihood 

of errors. 

4.2.  Prompting Engineering for Cancer Registry Coding 

The extraction of target information from clinical texts using LLMs heavily depends on effective 

prompt design. Due to the multifunctional capabilities of pre-trained models, prompts can be crafted 

in various ways. This flexibility is particularly useful when considering the professional nature of 

the input texts and the need for post-processing the output data. 

In this study, the aim was to extract specific cancer registry codes from medical reports. The 

prompt design included a detailed instruction section, coding definitions, and examples, with the 

output required in a specific JSON format. This comprehensive approach, although necessary for 

accuracy, resulted in longer prompts. Different studies adopt varying prompt strategies. For instance, 

Hyeon Seok's work (Choi et al., 2023), which involved extracting cancer features from breast 

ultrasound and surgery reports, utilized simpler prompts without strict format requirements, as the 

outputs underwent manual validation. This streamlined approach achieved an accuracy of 87.7%. 

On the other hand, Huang et al. (2024) study, similar to ours, used detailed prompts for extracting 

data from public cancer data repositories, requiring output in a JSON format. Their structured 

prompt design, supported by thorough data preprocessing, achieved an F1-score of 88%. 

These examples demonstrate that while detailed prompts can enhance accuracy, they must be 

balanced with the need for efficiency and simplicity. A well-designed prompt, aligned with clean 

data sources and logical objectives, can significantly improve system performance, showcasing the 

importance of thoughtful prompt construction in utilizing LLMs effectively. 
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5.   Conclusion 

Cancer registry tasks involve referencing numerous clinical imaging and diagnostic reports to 

abstract patient information according to the AJCC-defined codes. These tasks are typically 

performed by certified clinical personnel with specialized cancer knowledge. The development of 

cancer registry support systems has the potential to reduce clinical workload and improve healthcare 

quality. Unlike traditional machine learning models, LLMs can utilize knowledge-guided prompts 

to predict field codes, making them valuable tools for supporting clinical tasks. In this study, we 

utilized the Mistral-7B and LLaMA3-8B pre-trained models and designed prompts for eight cancer 

registry items, including PS, L, H, B, G, and TNM. We observed that providing context and coding 

rules in a single prompt led to weaker performance due to insufficient reference report extraction. 

Incorporating CoT prompts, which provide step-by-step guidance toward the final coding output, 

significantly improved system performance. Additionally, we found that without specific cancer 

registry rules, the model's outputs became inconsistent and unreliable.  

Overall, our findings indicate that LLMs can achieve promising results in lung cancer registry 

coding tasks even without the need for fine-tuning. Specifically, LLMs demonstrate impressive 

performance and efficiently utilize auxiliary data for task completion without specific training 

examples. This underscores their potential as invaluable tools for automating and optimizing cancer 

data management processes. 

Appendix A. Prompt for Grouped Primary Site and Laterality in the Proposed RAG 

System 

Your task as an assistant is to identify and confirm the primary site and laterality of lung cancer. The primary site 

refers to specific regions within the respiratory system. The laterality refers to whether the cancer originates from a 

paired organ and is applicable only to primary tumors. It is essential to use only the information provided in the 

document at hand, considering its date and the pertinent organs or tissues examined. Choose from the following 

standard codes for lung cancer sites and laterality: 

 

Primary site codes: 

- C339: Trachea 

- C340: Main bronchus 

- C341: Upper lobe, lung 

- C342: Middle lobe, lung 

- C343: Lower lobe, lung 

- C348: Overlapping lesion of lung 

- C349: Lung NOS (Not Otherwise Specified) 

 

Laterality codes: 

- 1: Primary origin of the cancer is on the right side. 

- 2: Primary origin of the cancer is on the left side. 

- 3: Unilateral involvement only, but origin unclear whether from left or right side. 

- 4: Bilateral involvement with unclear side of origin, and medical records describe a single primary. 

 

Your response must be a valid JSON object containing the following keys: 

-'primary site': A string containing the code for the primary site. 

-'laterality': A string containing the code for laterality. 
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Ensure your response is limited to the provided options for primary site and laterality. For instance, if the tissue in 

the report is labeled as 'Lung; NOS' and the pathologic diagnosis specifies 'Lung; upper lobe; left', this indicates that 

the primary site and laterality are located in the 'upper lobe' of the 'left' lung, according to the provided options your 

JSON response should be: 

{ 

"explain": "[Insert your explanation here based on the document]", 

"cite": "[Insert the relevant passages extracted from the document used for your decision]", 

"primary site": "C341", 

"laterality": "2" 

} 

Appendix B. Implementation Details for the Proposed RAG System 

For the proposed RAG system, we utilize the LlamaIndex (Liu, 2022) framework. The developed 

system is deployed on a machine equipped with PyTorch libraries and CUDO12.0 along with an 

Intel i7-13700 processor, 64GB of RAM, and an NVIDIA GeForce RTX 4090 24GB VRAM (video 

RAM) graphics card. We employ M3-Embedding (Chen et al., 2024) as our embedding model for 

encoding a patient’s every medical report during the indexing stage. For the retrieval module, we 

set the number of top K candidate chunks to three. In our configuration settings, we set the 

temperature to 0 and the seed to 42. 

It is worth noting that loading models for inference demands a substantial amount of GPU memory. 

A general rule of thumb is that every billion parameters require 3 GB of graphics double data rate 

(GDDR) 6 VRAM for the default precision of parameter values (Lin et al., 2024). Due to the 

limitations of our machine hardware specifications, we quantize the employed LLMs to fixed-point 

4 (FP4) for inference, which recasts these model weights into lower precision data types. This 

method slightly reduces performance but significantly lowers the memory requirement to a quarter 

of the original. 

Appendix C. Definition of 30 Lung Cancer Coding Items in the Dataset for This Study 

Coding Type Description 

AJCC Edition The version and chapters of the AJCC (American Joint Committee on Cancer) 

cancer staging manual used to determine the cancer stage of the case. 

Behavior Code The morphological code (M-code) in the pathological diagnosis. The 5th code in 

the M-code is the behavior code. The first four digits of M-code indicate the 

specific histological term. The fifth digit is the behavior code, which indicates 

whether a tumor is malignant, benign, in situ, or uncertain. 

Clinical Other Staging Group The classification standards of the selected “Other Staging Systems” (defined 

below) chosen for staging cancer cases. 

Clinical Stage Descriptor The prefix or suffix used in conjunction with clinical TNM fields. The prefix/suffix 

denotes special circumstances that may affect the staging and analysis of the data 

and is based on the clinical T, N, and M categories prior to treatment. 
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Date of First Microscopic 

Confirmation 

The earliest date when the case's cancer was confirmed by microscopy. 

Date of First Surgical 

Procedure 

The earliest date of surgery for cancer performed at any medical institution. 

Date of Initial Diagnosis The earliest date the cancer was diagnosed by a physician. 

Date of Surgical Diagnostic 

and Staging Procedure 

The date of the surgical treatment performed for diagnosis or staging at any medical 

institution. 

Diagnostic Confirmation The most accurate basis of diagnosis at the reporting hospital or an external hospital 

for the case. 

Grade Clinical The grading/differentiation of the solid tumor before the first treatment. 

Grading/differentiation refers to the degree of similarity between the tumor and 

normal tissues. Well differentiated (Grade I) is most similar to normal tissue; 

undifferentiated (Grade IV) is most dissimilar from normal tissue. 

Grade Pathological The grading/differentiation of the solid tumor after surgery at the primary site. 

Grading/differentiation refers to the degree of similarity between the tumor and 

normal tissues. Well differentiated (Grade I) is most similar to normal tissue; 

undifferentiated (Grade IV) is most dissimilar from normal tissue. 

Histology The structure of the primary tumor cells under the microscope. 

Laterality The specification of whether the cancer originates from one side of a pair of organs 

or the body. It is a only applicable to the primary tumor site. 

Lymph vessels or Vascular 

Invasion 

The code is recorded based on the pathological report of the primary site to indicate 

the presence or absence of invasion into lymph vessels or blood vessels. 

Nodes Examined The total number of regional lymph nodes examined by a pathologist. 

Nodes Positive The total number of positive regional lymph nodes examined by a pathologist. 

Other Staging System The selection of alternative staging criteria if the AJCC Cancer Staging System is 

not utilized. 

Pathologic M The presence of distant metastases of the primary tumor. 

Pathologic N The regional lymph nodes involvement of the tumor. The item is encoded based on 

all clinical evaluations done prior to definitive surgery, plus all information through 

completion of definitive surgeries in the first course of treatment in the absence of 

disease progression or within 4 months of diagnosis, whichever is longer. 
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Pathologic Stage Descriptor The prefix or suffix used in conjunction with pathologic TNM fields. The 

prefix/suffix denotes special circumstances that may affect the staging and analysis 

of the data and is based on the pathologic T, N, and M categories after completion 

of surgical treatment. 

Pathologic T The size of the primary tumor and its invasion into adjacent tissues. The item is 

encoded based on all clinical evaluations done prior to definitive surgery, plus all 

information through completion of definitive surgeries in the first course of 

treatment in the absence of disease progression or within 4 months of diagnosis, 

whichever is longer. 

Perineural Invasion The presence of neural invasion as noted in the pathological report of the primary 

site in the medical records. 

Primary Site The primary site of the cancer. 

Scope of Regional 

Lymph Node 

Surgery 

The extent of regional lymph nodes removed, sectioned, or aspirated during the 

primary site surgery or another separate surgery at the reporting hospital. 

SSF 2 

SSF 5 

SSF 6 

SSF 7 

Cancer site-specific factors (SSF) related to prognosis and treatment decisions. 

SSF2: Visceral pleural Invasion (VPI)/elastic layer value set. 

SSF5: Sampling or dissection of mediastinal lymph nodes (N2 Nodes) value set. 

SSF6: EGFR (epidermal growth factor receptor) gene mutation value set. 

SSF7: ALK (Anaplastic lymphoma kinase) gene translocation value set. 

Surgical Margins The final status of the surgical margins after the primary tumor is removed. 

Surgical Margins Date The closest distance of tumor cells to the surgical margins in the pathological report 

after the primary tumor is removed. 
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Background: Ensuring antibiotics are prescribed only when necessary is crucial for main-
taining their effectiveness and is a key focus of public health initiatives worldwide. In cases
of sinusitis, among the most common reasons for antibiotic prescriptions in children, health-
care providers must distinguish between bacterial and viral causes based on clinical signs
and symptoms. However, due to the overlap between symptoms of acute sinusitis and viral
upper respiratory infections, antibiotics are often over-prescribed.
Objectives: Currently, there are no electronic health record (EHR)-based methods, such
as lab tests or ICD-10 codes, to retroactively assess the appropriateness of prescriptions
for sinusitis, making manual chart reviews the only available method for evaluation, which
is time-intensive and not feasible at a large scale. In this study, we propose using natural
language processing to automate this assessment.
Methods: We developed, trained, and evaluated generative models to classify the appropri-
ateness of antibiotic prescriptions in 300 clinical notes from pediatric patients with sinusitis
seen at a primary care practice in the Children’s Hospital of Philadelphia network. We
utilized standard prompt engineering techniques, including few-shot learning and chain-
of-thought prompting, to refine an initial prompt. Additionally, we employed Parameter-
Efficient Fine-Tuning to train a medium-sized generative model Llama 3 70B-instruct.
Results: While parameter-efficient fine-tuning did not enhance performance, the combina-
tion of few-shot learning and chain-of-thought prompting proved beneficial. Our best results
were achieved using the largest generative model publicly available to date, the Llama 3.1
405B-instruct. On our evaluation set, the model correctly identified 94.7% of the 152 notes
where antibiotic prescription was appropriate and 66.2% of the 83 notes where it was not
appropriate. However, 15 notes that were insufficiently, vaguely, or ambiguously documented
by physicians posed a challenge to our model, as none were accurately classified.
Conclusion: Our generative model demonstrated good performance in the challenging task
of chart review. This level of performance may be sufficient for deploying the model within
the EHR, where it can assist physicians in real-time to prescribe antibiotics in concordance
with the guidelines, or for monitoring antibiotic stewardship on a large scale.

Keywords: Antibiotic Stewardship, Classification, Large Language Models, Generative Sys-
tems
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1. Introduction

Antibiotic stewardship programs (ASPs) aim to optimize the use of antibiotics for specific
conditions and to combat the growing threat of antimicrobial resistance.1 Inappropriate pre-
scribing of antibiotics not only contributes to a global health crisis but also exposes patients,
particularly pediatric patients, to unnecessary side effects and disrupts their healthy micro-
biota.2 Ensuring that antibiotics are prescribed adequately —only when necessary and with
the correct dosage and duration— is essential for maintaining their efficacy and is a key focus
in public health and research efforts at national and international levels.

Most antibiotic prescribing takes place in the ambulatory setting, and approximately 30%
of all outpatient antibiotic prescriptions are unnecessary; a majority of unnecessary outpatient
prescribing is for acute upper respiratory tract infections.3,4 In particular, sinusitis which
is among the most common reasons for ambulatory antibiotic prescribing in children.3 The
symptoms of acute sinusitis often overlap significantly with those of uncomplicated viral upper
respiratory tract infections. As a result, antibiotics are often over-prescribed for sinusitis,
despite guidelines recommending more conservative use.5,6

The Centers for Disease Control and Prevention (CDC) Core Elements of Outpatient
Antibiotic Stewardship recommend tracking and reporting ambulatory antibiotic prescribing.7

Some metrics using data from the electronic health record (EHR) have been developed in order
to measure unnecessary and guideline-discordant prescribing.8 Several studies have created
classification models to assess appropriate antibiotic prescribing by linking patient diagnoses
to tier-based rules where the antibiotic prescription is always, sometimes, or never appropriate
depending on the diagnosis.3,9,10 Others have focused on metrics for specific conditions, such
as acute bronchitis, or have addressed antibiotic selection or duration of therapy.11–13 These
metrics have successfully been used in feedback for clinicians and practices and in assessing
the impact of stewardship programs on prescribing.

However, while these metrics and classification schemes perform reasonably well, they have
primarily only used structured data from the EHR, and have not been able to use information
from unstructured text present in clinical notes. This creates a significant gap for conditions in
which the assessment of appropriateness using an electronically-based metric from structured
data is not feasible. For example, in acute sinusitis, healthcare providers must distinguish
bacterial from viral sinusitis based on clinical signs and symptoms alone, and antibiotic pre-
scribing is only considered guideline-concordant for bacterial sinusitis. As such, there are no
lab tests or ICD-10 codes (structured data) that can be used to retroactively measure pre-
scribing appropriateness in the absence of time-intensive manual chart review of clinical notes.
While audits of patient charts have elicited important findings for the field of antibiotic stew-
ardship, there are limitations to manual review.9,14,15 Retrospective manual review of charts
is labor intensive and time consuming, therefore only small samples of charts can be reviewed,
limiting the potential applications in large scale antibiotic stewardship interventions.

This paper explores the significance of antibiotic stewardship for pediatric sinusitis and
presents a generative system, utilizing a Large Language Model (LLM) approach, to automate
the analysis of unstructured notes from pediatric primary care practices to determine justified
vs unjustified prescription of antibiotics given a case presentation, seeking to enable a large-
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scale study that aims to improve prescribing practices.

2. Materials and Methods

We represented the task of evaluating the guideline concordance of antibiotic prescribing in
clinical notes as a decision task. That is, given a note in which a patient was diagnosed with
sinusitis and prescribed antibiotics, our system should predict whether the prescription was
1) appropriate, 2) not appropriate, or 3) insufficient or ambiguous, in cases where the note
does not contain enough information to assess the appropriateness of the prescription.

2.1. Data collection

We identified all pediatric (younger than 18) clinical encounter notes by ICD-10 code from
outpatient billed encounters at one of 32 primary care practices in the Children’s Hospital of
Philadelphia (CHOP) network from July 1, 2017 through June 30, 2021 using the following
criteria: 1) visits with either a J01 (acute sinusitis) or J32 (chronic sinusitis) code and 2)
a prescription of an oral antibiotic (excluding antibiotics that would never be prescribed
for sinusitis). The following patients were excluded: 1) patients with a confounding chronic
medical condition identified by an ICD-10 code;16 2) patients with an ICD-10 code for another
infection that would warrant an antibiotic prescription at the same visit. Only primary care
visits were included; emergency department and urgent care visits were excluded. Only office
visit notes from healthcare providers were included.

A total of 10,311 patients met the inclusion criteria 6,377 (61.9%) for acute sinusitis, and
3,934 (38.2%) for chronic sinusitis, seen by 310 providers. The median number of encounters
per provider was 12 (3 – 48). To develop, train, and evaluate our classifier, we selected 300
encounter notes at random. Our intent was to reflect the natural distribution of the notes
where the system will be deployed, so we did not oversample or undersample any specific
group or provider. This resulted in 190 (63.3 %) encounter notes for acute sinusitis and 110
(36.7%) for chronic sinusitis, seen by 132 providers. The median number of encounters per
provider was 50 (21.5 – 92).

We split our annotated dataset into three sets, the first two of which were selected from
80 percent of the providers: a training set with 200 notes (117 notes with appropriate pre-
scriptions, 69 not appropriate, and 14 with insufficient or ambiguous documentation), a de-
velopment set with 50 notes (32 appropriate, 16 not appropriate and 2 insufficient). For the
third set (the test set), we selected 50 notes from the remaining 20% of the providers (35
appropriate, 14 not appropriate, 1 insufficient), in order to be able to test the system on how
it adapts to notes from new (unseen) providers.

2.2. Annotation

We derived a set of criteria by adapting the recommendations of two clinical practice guide-
lines17,18 to define the appropriateness of antibiotic prescribing to the patients we selected.
Table 1 summarizes our criteria. If a patient met at least one criterion, our annotators labeled
the note as appropriate. If there was clear evidence in the note that none of the criteria were

Pacific Symposium on Biocomputing 2025

141



met, the annotators labeled the note inappropriate; otherwise, if it was not possible for the
annotator to decide if the criteria were met or not in a note, the note was labeled insufficient.
Such cases usually include incomplete, ambiguous or vague documentation. The phrase ”pa-
tient had congestion for over a week” is an example of an ambiguous documentation. If the
congestion lasted for 8 or 9 days, criterion 1 in Table 1 would not be met and this would be
labeled ’not justified’. However, if the symptom lasted 10 days or longer, then criterion 1 would
be satisfied and this would be labeled ’justified’. The phrase ”Fever x 3 days” is an example
of incomplete documentation because it does not specify the exact temperature. Note that
our definition focuses solely on the act of prescribing antibiotics and excludes considerations
related to the appropriateness of the specific antibiotic prescribed, as well as its dosage and
duration.

Table 1: Clinical guidelines used to assess the appropriateness of an antibiotic prescription
for patients diagnosed with sinusitis. If the clinical note provided sufficient evidence to meet
at least one of the three established criteria, the prescription was annotated as appropriate.

Antibiotics appropriateness
1. Persistent illness: nasal discharge (of any quality), daytime cough, or sinus pain/pressure
lasting for ≥ 10 days without improvement
2. Severe onset, i.e., concurrent fever (temperature ≥ 39°C/102.2°F) and purulent nasal
discharge or sinus pain/pressure for at least 3 consecutive days
3. Worsening course, i.e., worsening or new onset of nasal discharge, daytime cough, sinus
pain/pressure, or fever after initial improvement

One pediatric physician annotated the 300 notes of our corpus as appropriate, inappropri-
ate, or insufficient. A second pediatric physician is currently annotating 50 notes of our corpus
to compute the inter-annotator agreement. To guide this assessment, an annotation guide was
developed, using input from a primary care pediatrician, two infectious diseases specialists,
and one pediatric infectious diseases specialist. This annotation guide was developed itera-
tively using practice notes from the same practices with the goal of improving reproducibility
as much as possible.

2.3. Generative models

Our task presents a significant challenge for conventional natural language processing (NLP)
systems, which typically rely on a pipeline approach.19–21 In such systems, a task is divided into
several ’simpler’ subtasks, each performed sequentially by independent modules. To complete
our task, an NLP pipeline would first require an information extraction module to identify
key symptoms in the clinical notes —congestion, cough, sinus pain/discomfort, and fever—
as reported by the patient during the encounter. Next, a classification module would detect
mentions of symptom severity and assign appropriate labels to each symptom. A third module
would normalize the extracted information by identifying and representing the progression of
symptoms. Finally, a logical validation module would verify whether the extracted information
aligns with the criteria outlined in Table 1, ultimately generating the final decision.
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This pipeline approach has several limitations that often result in reduced performance22

and limited adoption in the medical field. Each module operates based on a set of rules, which
can either be manually crafted or automatically learned from training data. Both approaches
demand significant human effort. In the medical domain, writing rules requires expertise in
both computer science and medicine, and these rules are often difficult to maintain over
time.23 An alternative is to learn the rules directly from annotated examples,24 but standard
machine learning algorithms typically need thousands of examples to achieve acceptable per-
formance, a resource-intensive and costly process. This often leaves modules only partially
trained, leading to suboptimal results.25 Even when the rules are well defined, they rarely
account for all possible cases, and module performance is almost never flawless.24 Since a
pipeline approach processes data sequentially through imperfect modules, errors from earlier
stages propagate through the system, compounding in later stages and significantly limiting
overall performance.19,26 Moreover, conventional NLP modules —such as classifiers, sequence
labelers, or normalizers— are typically designed to output only their labels and confidence
scores, without providing explanations for their decisions. This lack of interpretability forces
experts to rely on ad-hoc algorithms producing only partial and incomplete explanation of the
module behavior.27 This issue was particularly pronounced with transformer-based encoders
like BERT,28,29 the standard NLP architecture before the recent advancements with large lan-
guage models-based generative models, which was often qualified as a black box system and
not well adopted by medical professionals who doubted their decision.

As an alternative to conventional NLP systems, we propose using state-of-the-art genera-
tive systems powered by large language models (LLMs). In recent years, generative systems
have become the leading approach in NLP as evidenced by the widespread success of chat-
GPT.30 Generative systems feature interfaces that allow users to submit prompts in natural
language, an intuitive interface to perform a task.31 These prompts typically include an in-
struction specifying the desired action, along with optional data needed to perform the task.
Generative systems leverage semi-supervised training to transfer general knowledge acquired
from extensive text corpora, enabling them to generate appropriate responses and execute
instructions for tasks they were not explicitly trained on. This eliminates the need to retrain
the system for each specific task, a requirement often necessary in conventional NLP systems.

In this study, we applied a generative system to address the specific challenge of antibiotic
stewardship, a task for which no established benchmarks exist. In accordance with common
practices for deploying generative systems in clinical settings,32 we utilized prompt engineering
with few-shot learning and chain-of-thought reasoning. Instead of adopting more advanced and
resource-intensive techniques —such as full fine-tuning on large clinical datasets,33 knowledge
injection via retrieval-augmented generation,34 or self-correction through multi-agent interac-
tions— we chose to evaluate the system’s inherent capabilities,35,36 reserving these enhance-
ments for future research.

2.4. Classification with Generative systems

We performed our classification using generative systems from the Llama 3 family,37 which is
one of the largest freely available sets of models offering competitive performance compared
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to proprietary alternatives. We progressively refined an initial simple prompt by following
few-shot learning and chain-of-thought techniques to enhance the models’ performance on our
task. Additionally, we fine-tuned a Llama-3-70B-Instruct model using a parameter-efficient
fine-tuning (PEFT) approach, namely LoRA,38 to specialize the model for our specific task.

Initial prompt. Figure 1 outlines the various components of the prompt we designed to
instruct our model on how to classify the appropriateness of antibiotic prescription in clinical
notes. We began our experiments with an initial straightforward prompt that defined the role
the generative model should assume, followed by a brief paragraph specifying the instructions
for the task. This paragraph included the following key components:

(1) The role specifying the function the model should adopt when generating response, in our
case a pediatrician.

(2) The context which describes the notes; specifically, the input note is a clinical note of a
patient diagnosed with sinusitis who received antibiotics.

(3) The question the model should answer.
(4) The format in which we wanted the model to present its response.
(5) The text of the note to be classified
(6) The keyword Answer: to initiate the model’s completion according to our specified format.

The authors, during an interactive session, tried multiple initial prompts and evaluated the
Llama 3 70B-instruct model’s results on the development set. At the end of the interactive
session, we selected the initial prompt illustrated in Figure 1 Left.

Role: You are a pediatrician who believes in very rarely prescribing antibiotics and likes to explain why they should 
not be normally prescribed for sinusitis.
Definitions: A patient has fever if the patient has a body temperature above 102.2°F or 39°C. Nasal discharge 
quality can be a. clear and watery, b. thick and white, c. yellow, green, brown or grey, d. bloody, e. foul-smelling, f. 
thick and stringy, g. purulent. If a patient has nasal passages congested, then the patient has nasal discharges.
Conditional guidelines: As a pediatrician you would consider that the prescription of an antibiotic was not 
justified unless one or more of the following rule is satisfied:

Rule 1. If the patient had nasal discharge of any quality for 10 or more days without improvement, then the 
prescription of the antibiotics was justified.
Rule 2. If the patient was coughing during the day for 10 or more days without improvement, then the 
prescription of the antibiotics was justified.
Rule 3. If the patient experienced discomfort or pain in the areas around the sinus for 10 or more days without 
improvement, then the prescription of the antibiotics was justified.
Rule 4. If the patient had nasal discharge of any quality, was recovering, but then experienced an increase of its 
severity or its reappearance, then the prescription of the antibiotics was justified.
Rule 5. If the patient was coughing during the day, was recovering, but then experienced an increase of its 
severity or its reappearance, then the prescription of the antibiotics was justified.
Rule 6. If the patient experienced discomfort or pain in the areas around the sinus, was recovering, but then 
experienced an increase in the pain/discomfort severity or its reappearance, then the prescription of the 
antibiotics was justified.
Rule 7. If the patient had fever and, on the same time, had purulent nasal discharge for 3 or more consecutive 
days, then the prescription of the antibiotics was justified.
Rule 8. If the patient had fever and, on the same time, experienced discomfort or pain in the areas around the 
sinus, for 3 or more consecutive days, then the prescription of the antibiotics was justified.

Instructions: Following is are clinical notes of patients diagnosed with sinusitis and for whom antibiotics were 
prescribed. By default, assume that the prescription of antibiotics was not appropriate unless you find evidence in 
the note indicating that at least one of the preceding rules was satisfied. Answer strictly starting by Yes, No 
Insufficient. Then, give a short explanation of your decision justifying with spans extracted from the note when 
needed.
Examples - (note excerpt, answer, explanation, quotes) :

Note: {note 1 excerpt} Answer: Yes. Explanation: The patient was coughing for two weeks which is more than 10 
days therefore the prescription of antibiotics was justified (Rule 2. is satisfied) Quote: "cough x 2 weeks"
Note: {note 2 excerpt} Answer: No. Explanation: The patient had nasal passages congested for only 5 days 
which is less than 10 days (Rule 1. is not satisfied). The patient experienced pain in the areas around the sinus 
pain but no duration was specified (Rule 3. is not satisfied). Quote: "Thick yellow green congestion for about 5 
days"
Note: {Note 3 excerpt} Answer: Insufficient. Explanation: The patient was coughing during the day between 7 to 
10 days. This duration is vague. If the patient was coughing for less than 10 days then the prescription of the 
antibiotics was not justified (Rule 2. is not satisfied), on the contrary, if the patient was coughing for 10 days 
then the prescription of the antibiotics was justified (Rule 2. is satisfied) Quote: "Cough? 7-10 days"

Note to classify:
Note:  {textual content of the note to classify} Answer:

Prompt with conditional guidelines

Fig. 1: Left: Iterative construction of a prompt to classify antibiotic prescription appropri-
ateness using a Llama 3 generative model. Right: Our prompt with conditional guidelines.
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Guidelines. We first extended this initial prompt by inserting the clinical guidelines that
our annotators followed when labeling the notes in our corpus. The generative models that are
publicly available were pretrained on large corpora from the internet, which contain few, if any,
professional medical documents39,40 and may not have encountered or memorized our specific
guidelines. By including these guidelines directly in the prompt, we ensured that the model
had direct access to the criteria defining the task. The guidelines in Table 1 were written for
medical professionals. To make them more accessible and easier for our generative model to
interpret, LD, Assistant Professor in Medicine, simplified the language used in the guidelines.

Few-shot learning. Much like humans, generative models can benefit from seeing a few
examples before attempting a task, a concept known as few-shot learning. We implemented
this approach by including the text of three notes from our training set in the prompt, each
accompanied by their appropriateness labels. Although complex conditions could be used
to select these examples -such as choosing notes with close semantic similarity to the one
being classified or those that annotators found challenging41- we opted to select the examples
randomly. We chose this approach for simplicity and left the exploration of more sophisticated
selection strategies for future work.

Chain-of-thought prompting. Together with few-shot learning, we also employed chain-of-
thought prompting.42 After each label of our training examples, we included a brief explanation
of the label, along with the relevant quotes that demonstrated the extracted span from the
example note supporting the explanation. LD provided these explanations, highlighting which
criteria from Table 1 were met, missing, or challenging to verify based solely on the note’s
text. Requesting explanations along with quotes forces the model to ground its responses
within the text of the notes, thereby reducing hallucinations. Despite the large context window
of 8,192 tokens, the Llama-3-70B-Instruct model still has a limited prompt capacity, which
restricted us to including no more than three example notes. In a supplementary experiment, to
include additional examples, we did not input the entire text of the training notes. Instead, we
truncated the notes, only incorporating the sentences containing the relevant quoted phrases.

We hypothesized that chain-of-thought reasoning is an important component for improving
the performance of a generative model, and conducted additional experiments by reformulat-
ing our initial prompt and its components. While the description of the model’s role remained
unchanged, we revised the context and question to predispose the model to answer ’not ap-
propriate’ by default unless it identified evidence in the notes that satisfied a criterion from
our guidelines. We also introduced simple definitions for ’fever,’ ’nasal discharge,’ and ’nasal
congestion’ before presenting the guidelines, and we rephrased the guidelines as a set of eight
conditional rules. Additionally, we revised the explanations for all ten examples in the prompt
to explicitly indicate which rules were met or unmet (Line 9 in Table 2). We provide the exact
prompt used in these experiments in Figure 1) Right.

Parameter Efficient Fine-tuning with LoRA. Although generative models achieve state-of-
the-art performance on general NLP tasks, they may benefit from being fine-tuned to perform
more specific and challenging tasks. A standard method for training generative models is full
fine-tuning, a supervised training process. In this process, the model is presented with instruc-
tions and corresponding data required to perform a task. It generates a response, which is then
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automatically compared to the expected gold-standard answer from the training examples. If
the model generates the expected answer, no adjustments are made. However, if it deviates, all
weights of its underlying neural network are updated to increase the likelihood of generating
the correct response. While fine-tuning can enhance the model’s performance on specific tasks,
updating all weights of a very large neural network is computationally intensive and requires a
significant number of expensive GPUs, which were not available for our experiments. LoRA is
a heuristic proposed by Yu et al.38 to update only a small portion of the weights in the neural
network. We trained the Llama 3 70B-instruct model using the implementation of LoRA from
the litGPT 0.40 library.43 We employed the default learning parameters provided in litgpt,
which included the cross-entropy loss function and the AdamW optimizer instantiated with
a a learning rate equal to 1e-3. The model was trained using bfloat16 precision, with the
low-rank adaptation (LoRA) matrix rank set to 32. Training was conducted across 4 A100
GPUs for 20 epochs, with a batch size of 4. We retained the model checkpoint that achieved
the highest performance on our development set as the final trained model.

Larger language model. It has been demonstrated that increasing the size of generative
models not only improve their performance on known tasks but also unlocks new capabilities
exclusive to the largest models.40 For instance chain of thoughts, sufficiently large models
can mimic the logical steps humans follow when solving problems, and by learning to explain
their reasoning, they improve their performance. Considering the potential benefits of larger
foundational models, we also evaluated the Llama 3.1 405B-instruct quantized (int4) model,
which was released shortly before our submission deadline.

Evaluation. We evaluated the performance of the Llama 3 70B-instruct model using our
initial prompt on the development set, then assessed its performance as we sequentially added
each component designed to enhance the prompt —namely, guidelines, a few examples, ex-
planations for the labels, and finally, fine-tuning on our training corpus. We conducted all
experiments with a temperature of 0.001, top-p of 0.01, and top-k of 1, to ensure determin-
istic responses by consistently selecting the most likely token when generating its answers.
Due to time constraints and the slow processing speed of the Llama 3.1 405B-instruct model,
approximately 30 minutes to classify a single note, we were unable to rerun all experiments
to find the best prompt settings for this model. Instead, we evaluated this model with the
best-performing settings from the Llama 3 70B-instruct model on the development set. We
conducted all experiments with the default temperature of the Llama 3.1 405B-instruct model
set to 0.6, top-p to 0.9, and top-k to 50, allowing for more variety in its responses. Because
of time limitations, we did not run additional experiments with the temperature settings ad-
justed to ensure deterministic responses. After identifying the best model and settings, we
performed a final evaluation on the test set. Our test set consists of only 50 notes, making
it relatively small. Since our results indicate that the best-performing model used few-shot
prompting and was not fine-tuned on our training examples, those examples remained unused.
To assess how well our system scales, we reassigned the training examples and evaluated the
model on the training set. We define the evaluation set as the combined set of all examples
from both the training and test sets. Since there were very few notes labeled as insufficient in
our gold standard, most errors involved the model confusing notes with appropriate (guideline-
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concordant) prescriptions with those that were not appropriate (not guideline-concordant) and
vice versa. Therefore, we chose to report all results by only providing the percentage of notes
in each class that were correctly labeled by the generative model and did not report the more
standard F1-scores.

3. Results and Discussion

We present our results in Table 2, highlighting best performance on the test set. The system
correctly identified 10 out of 14 (71.4%) notes labeled as not appropriate and 32 out of 35
(91.4%) notes labeled as appropriate (line 9). This performance was achieved by providing
the model with instructions and logical guidelines to perform the task, without training on
the training set. The classifier demonstrated good correctness on a complex task typically
performed by trained physicians when only given a few examples and clear explanations indi-
cating whether the rules of the guidelines were satisfied or not. We also evaluated the model’s
performance on the entire training set to provide a more comprehensive assessment (line 9).
On this larger dataset, the system maintained comparable performance, with improved de-
tection of notes labeled as appropriate, correctly identifying 112 out of 117 (95.7%), while its
detection of unlabeled notes was slightly lower, identifying 45 out of 69 (65.2%).

The table shows that all modifications made to the initial prompt (line 1.) led to in-
cremental improvements in the model’s classification performance. The table offers several
interesting insights. Firstly, it is surprising that truncating the text of the example notes did
not lead to a performance drop (line 4. vs. line 5.). This suggests that most of the text in a
note is not utilized by the model for understanding the examples and can be omitted without
losing essential information. Secondly, it is worth noting that LoRA, the parameter-efficient
technique we employed using our training set, did not enhance the model’s performance (line
6. vs. line 7.).This unexpected result requires additional experiments for further explanation.
Thirdly, our findings align with recent trends in the NLP community, which indicate that
generative models based on larger language models perform better than their smaller coun-
terparts. This is evident in Table 2, where the Llama 3.1 405B-instruct model, at the time of
writing, the largest model freely available to the community, outperformed the Llama 3 70B-
instruct model. Lastly, since the model was not trained on our training set, it was not biased
toward recognizing the style of certain providers over others. It demonstrated robustness to
variations in providers’ styles and achieved comparable performance on the test set as it did
on the development set.

Several prior studies have used NLP and/or LLMs in infectious diseases to aid in the
diagnosis and treatment of infections, such as through the review of radiology reports or in
infection surveillance.44,45 To our knowledge, however, we present the first use of LLMs in the
assessment of antibiotic prescribing appropriateness using clinician notes. While these methods
require further refinement and validation in larger cohorts, use of LLMs can complement
previously-developed EHR-based stewardship metrics that use structured data elements, and
thus improve the ability to assess prescribing practices.3

The methods presented here have the potential for broad application. Sinusitis is one of the
most common infectious diagnoses in the outpatient setting for both adults and children, with
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Table 2: Classification results on the evaluation sets for various prompts and large language
models. For each line, the top percentage represents the proportion of notes labeled as appro-
priate correctly retrieved by the model, while the bottom percentage indicates the proportion
of notes labeled as not appropriate retrieved. We omitted the percentages of notes labeled as
insufficient because none of the models were able to retrieve any in this category.

Development Test Train
Llama 3 70B-instruct model

1. Role + Instructions
0.0 (0/32)
1.0 (16/16)

— —

2. Role + Instructions + Guidelines
0.0 (0/32)
1.0 (16/16)

— —

3. Role + Instructions + Guidelines
+ 3 Examples (Full text) w/o explanations

9.4 (3/32)
87.5 (14/16)

— —

4. Role + Instructions + Guidelines
+ 3 Examples (Full text) & explanations

87.5 (28/32)
18.8 (3/16)

— —

5. Role + Instructions + Guidelines
+ 3 Examples (Excerpt text) & explanations

53.1 (17/32)
62.5 (10/16)

— —

6. Role + Instructions + Guidelines
+ 10 Examples (Excerpt text) & explanations

90.6 (29/32)
31.2 (5/16)

— —

7. Role + Instructions + Guidelines
+ 10 Examples (Excerpt text) & explanations

+ LoRA fine-tuning

90.6 (29/32)
31.2 (5/16)

— —

Llama 3.1 405B-instruct model
8. Role + Instructions + Guidelines

+ 10 Examples (Excerpt text) & explanations
93.8 (30/32)
68.8 (11/16)

91.4 (32/35)
64.3 (9/14)

—

9. Role + Instructions + conditional Guidelines
+ 10 Examples (Excerpt text) & explanations

90.6 (29/32)
93.8 (15/16)

91.4 (32/35)
71.4 (10/14)

95.7 (112/117)
65.2 (45/69)

most encounters occurring in primary care, urgent care, and the emergency department.3 If
deployed across these settings, use of LLMs to assess prescribing appropriateness for sinusitis
has the potential to impact the care of millions of people. In practice, we envision that this
tool could be used in several ways. First, it could be used in provider-based feedback interven-
tions where prescribers receive feedback on their prescribing appropriateness retrospectively
at regular intervals (e.g. monthly), similar to prior work that utilized structured EHR-based
metrics.11,12,46 Additionally, this approach could be an important tool in tracking guideline
concordant prescribing over time at clinic or health system level, as recommended by the
CDC.7 Finally, this also has the potential to be deployed to aid in real-time decision support
during clinic visits, though modifications may need to be made given that not all notes are
completed during the visit.

3.1. Error analysis

We analyzed the errors made by the best classifier, the Llama 3.1 405B-instruct model (line
8. in Table 2), on the examples in the test set. The model misclassified a total of 8 notes. The
most frequent errors were False Positives (FPs), where the notes were labeled as inappropriate
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for antibiotic prescription, but the classifier predicted them as appropriate. There were 5 such
misclassified notes. Upon re-examining the notes, LD reviewed the explanations provided by
the model and determined whether they were valid. It was found that 2 FPs occurred in notes
that could have been labeled as insufficient due to ambiguous temperature documentation. For
the remaining 3 FPs, LD confirmed the errors made by the system. One error resulted from the
incorrect resolution of a deictic time reference; another from a misinterpretation of the term
’worsening’ (in the phrase ’acutely worsening symptoms overnight’, where ’worsening’ refers
to an increase in the severity of symptoms, not the progression pattern where the patient
initially feels sick, then slightly better, and then worse); and the final FP was due to the
system’s hallucination, incorrectly stating that a temperature of 102°F is higher than 102.2°F.

The model had more success classifying the notes in which antibiotics were prescribed
appropriately. There were only 3 False Negatives (FNs), as these notes clearly mentioned
the onset and duration of symptoms. One FN occurred due to the under-specification of the
definition of fever in criterion 3 in Table 1; unlike criterion 2, the exact temperature defining
a fever is not specified. As a result, there was a disagreement between the annotator and the
system regarding the resolution of this criterion in the note. The last two FNs were made on
notes that were ambiguous and could have been labeled insufficient.

Finally, we analyzed the errors made by the best-performing classifier (line 9.) on the 15
notes labeled as insufficient in the evaluation set. All misclassifications involved ambiguous
symptom duration phrases, such as ”congestion for over a week”, ”cough 7-10 days”, or
”nasal discharge about 1.5 weeks”. In 7 instances, the model correctly identified the temporal
expressions that were vague but failed to recognize the ambiguity and inaccurately assign either
a shorter or longer duration. In 8 other cases, the model explicitly flagged the expressions
as ambiguous but it still opted for an incorrect duration inference. Given that all errors
stemmed from ambiguity in symptom duration —often involving similar phrasing— we could
incorporate additional examples into the prompt to help the model better recognize those
phrases and correctly class insufficient documentation.

3.2. Limitations and future work

The largest model, Llama 3.1 405B-instruct, demonstrated good performance on our task.
It was able to follow the logic of our guidelines and provide reasonable explanations for its
decisions without explicit training. Although the task is challenging, it only requires the system
to identify four common symptoms, assess their severity, and understand their duration or
progression patterns. As evidenced by our performance with general generative models, the
necessary knowledge to perform the task was available in their training data from the internet.
However, most clinical NLP tasks will require specialized knowledge available only in clinical
notes and ontologies. Researchers will need to continue pretraining or fine-tuning these models
to integrate this domain-specific knowledge. As the size of generative models continues to grow,
these training tasks become increasingly challenging for standard institutions such as hospitals
and universities, which may lack the necessary hardware for the required computations.47

Note that our evaluation has several limitations. First, all notes were sampled from a
single clinical institution. We are currently annotating 281 notes from primary care visits
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for adult sinusitis at one of the University of Pennsylvania Health System’s practices. To
assess the robustness of our system in a different clinical setting, we plan to apply it to
these newly annotated notes. Additionally, future evaluations should test the accuracy of our
methods in other clinical environments, such as urgent care and emergency departments, and
across institutions that use different EHR systems. Second, our cohort was identified using
ICD-10 codes, which have suboptimal sensitivity and specificity for infectious diagnoses.48

Moreover, we only included visits where an antibiotic was prescribed. It is possible that some
visits for sinusitis, where an antibiotic was justified but not prescribed (guideline discordant),
were missed. However, given that the majority of patients with a sinusitis diagnosis receive
antibiotics, this scenario is likely infrequent.46

Ambiguous and vague documentation in the notes continues to pose a challenge for our
best model, as none of the insufficiently documented notes were correctly classified. With
larger language models now supporting input prompts of up to 16,000 tokens, we plan to
include more examples of vague and ambiguous notes, along with explanations, to help the
model recognize and classify these cases appropriately. Despite forcing the models to justify
their decisions and anchor their answers within the input texts, we still found instances of
hallucination. Integrating ’debates’ among several generative LLM-based models has been
proposed as an effective solution to detect and reduce hallucinations.35,49 Our approach could
easily be extended from a single generative model performing classification to a deliberative
panel finding consensus for each debated note. We leave the deployment and evaluation of this
approach to future work.

4. Conclusion

To address the challenge of over-prescribing antibiotics for sinusitis in children, this study
proposes using natural language processing to automate the assessment of prescription ap-
propriateness, overcoming the limitations of time-consuming manual chart reviews. We devel-
oped, trained, and evaluated generative models to classify the appropriateness of antibiotic
prescriptions in 300 clinical notes from pediatric patients with sinusitis at the Children’s Hos-
pital of Philadelphia primary care network. Although Parameter-Efficient Fine-Tuning did not
improve performance, the combination of few-shot learning and chain-of-thought prompting
proved beneficial. Our best results were achieved using the largest generative model available
at the time, the Llama 3.1 405B-instruct. On our evaluation set, the model correctly identified
144 (94.7%) of the 152 notes where the antibiotic prescription was appropriate and 55 (66.2%)
of the 83 notes where it was not. Without training, our generative model demonstrated good
performance in this complex task, suggesting it could be effectively deployed within the EHR
to assist physicians in real-time to prevent over-prescribing as well as in monitoring antibiotic
prescribing on a large scale. The clinical notes annotated for this study are Protected Health
Information and not publicly available at this point. We have shared the code for access at
https://bitbucket.org/hlpgonzalezlab/naps/.
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The rapid advancement of artificial intelligence and machine learning (AI/ML) technologies in 
healthcare presents significant opportunities for enhancing patient care through innovative diagnostic 
tools, monitoring systems, and personalized treatment plans. However, these innovative 
advancements might result in regulatory challenges given recent Supreme Court decisions that impact 
the authority of regulatory agencies like the Food and Drug Administration (FDA). This paper 
explores the implications of regulatory uncertainty for the healthcare industry related to balancing 
innovation in biotechnology and biocomputing with ensuring regulatory uniformity and patient 
safety. We examine key Supreme Court cases, including Loper Bright Enterprises v. Raimondo, 
Relentless, Inc. v. Department of Commerce, and Corner Post, Inc. v. Board of Governors of the 
Federal Reserve System, and their impact on the Chevron doctrine. We also discuss other relevant 
cases to highlight shifts in judicial approaches to agency deference and regulatory authority that 
might affect how science is handled in regulatory spaces, including how biocomputing and other 
health sciences are governed, how scientific facts are applied in policymaking, and how scientific 
expertise guides decision making. Through a detailed analysis, we assess the potential impact of 
regulatory uncertainty in healthcare. Additionally, we provide recommendations for the medical 
community on navigating these challenges.  
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1. Introduction

The use of artificial technologies (AI) and machine learning (ML) in healthcare has been 
continuously expanding,1 paving the way for more personalized, preventative, and innovative 
treatments that improve patient outcomes in the future.2 Its implementation will likely be widespread 
in various areas of medicine and can be especially beneficial in prevention, therapeutics, and 
diagnostics.2 The relevance of AI/ML advancements in medicine is evident, as seen in the rise of 
new innovative treatments and diagnostics, such as the use of AI algorithms for diabetic retinopathy 
screening,3 smart sensors that assist with more accurately estimating the probability of heart attacks,4 
and imagining systems that use algorithms for diagnostics information for skin cancer in patients.5 
In addition, the development of Generative AI (GenAI) tools, which leverage ML, has been 
skyrocketing since the launch of OpenAI’s ChatGPT in 2022. GenAI can create images, videos, and 
text, and it is expected to revolutionize healthcare, including providing a more patient-tailored 
approach.6 While exciting, these new developments come alongside various ethical and legal issues, 
many of which, due to their novelty, have yet to be addressed.7 This is especially true regarding the 
regulatory paths for these new developing technologies.8-9  

Upon the emergence of new AI/ML tools in healthcare, there have been clear efforts by the U.S. 
Food and Drug Administration (FDA), the regulatory agency for various medical products, 
including medical devices, to create new pathways and expectations for how to bring such tools to 
market.10-13 Recent Supreme Court decisions, such as Loper Bright Enterprises v. Raimondo14 and 
Relentless, Inc. v. Department of Commerce,15 have further complicated the process of determining 
more concrete paths and expectations for these newly developed technologies. These rulings led to 
the overruling of the Chevron doctrine, which has, in turn, diminished agency deference and set the 
stage for more litigation and more stringent criteria for regulatory actions. These decisions might 
have significant implications for the FDA and its current approach to AI/ML technologies in 
healthcare. Awareness of recent case law can allow those in the medical community to better 
anticipate expectations surrounding the development and implementation of new technologies.   

This Article first discusses the current regulatory framework for medical AI/ML and some of 
the FDA’s recent initiatives. It then discusses the Chevron doctrine and relevant Supreme Court 
decisions before the doctrine’s overruling. Next, it analyzes the two Supreme Court cases that led to 
Chevron’s fall, Loper Bright Enterprises v. Raimondo and Relentless, Inc. v. Department of 
Commerce. It also discusses a subsequent and relevant Supreme Court case, namely Corner Post.16

Finally, this Article analyzes how recent judicial decisions might affect regulatory practices and 
explores strategies for those looking to develop AI/ML in healthcare. In particular, we show that 
these uncertainties are likely to result in an increase in litigation, along with a need for more explicit 
rulemaking to constrain interpretations. However, given the speed at which medical AI/ML has 
advanced, it is important to keep up to date with recent case law and regulatory developments in the 
field.   

2. The FDA and the Regulation of Medical AI/ML

The FDA protects public health by assuring the safety, efficacy, and security of various medical 
products, including biological products and medical devices.17 It draws its authority from various 
statutes, primarily the Federal Food, Drug, and Cosmetic Act (FDCA).18 Its authority permits the 
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FDA to create legally binding regulations in cases where Congress delegated such power to the 
agency. In addition, the FDA also publishes guidance documents that reflect the FDA’s thinking on 
specific topics and developments. While acting through guidance documents (rather than 
regulations) seemed to be the FDA’s preferred means in recent years, these are not legally binding. 
Still, guidance documents play an essential role in practice because they reflect the agency’s current 
interpretation of the respective topics.   

The FDCA covers various products, such as food, drugs, medical devices, and cosmetics. The 
law, initially enacted in 1938, has been amended over 100 times to address new advancements and 
emerging challenges. Amendments relevant to the medical field specifically, are the Kefauver-
Harris Drug Amendments of 196219(which required drug manufacturers to provide proof of efficacy 
and safety before a drug could be marketed and approved by the FDA) and the Medical Device 
Amendment of 197620 (which established a risk-based classification system for medical devices and 
expanded the regulatory authority of the FDA over medical devices). Ultimately, the FDCA 
regulates three main pathways for medical devices to obtain marketing authorization: premarket 
notification or 510(k),21 premarket approval or PMA,22 and De Novo Classification request.23 The 
FDCA does not, however, allow the FDA to develop new pathways for medical devices unilaterally. 
This limitation on authority can present challenges as new technologies like AI/ML develop that do 
not fall under classic categories and might require more innovative regulatory pathways.   

Additionally, the FDA operates within the Administrative Procedure Act (APA) framework, 
which essentially governs the processes by which federal agencies may develop and issue binding 
regulations.24 The purpose of the APA, enacted in 1946, was to promote transparency, public 
participation, and accountability in the regulatory process. Under the APA, the FDA must follow 
specific procedures when creating its regulations, such as publishing notices of proposed 
rulemaking,25 allowing for public comment,26 and providing detailed explanations of the final rules. 
The procedures and limitations set forth by APA are to ensure that the FDA’s regulatory acts are 
both well-informed and open to comments. In contrast, unlike formal actions, the FDA can publish 
guidance documents much easier and faster because they are legally not binding in nature but still 
have a considerable impact in practice.   

The FDA also regulates medical AI/ML-enabled products so long as they are classified as 
medical devices under FDCA Section 201(h)(1).27 Recently, the FDA has attempted to advance the 
regulation of medical Al/ML due to its potential for transforming healthcare delivery and improving 
patient outcomes. The FDA has been proactively attempting to address the regulatory challenges 
posed by new AI/ML-enabled products through various guidance documents, publications, 
regulations, plans, and programs. For example, already back in 2019, the FDA published a 
discussion paper suggesting a new framework for changes to AI/ML-based Software as a Medical 
Device (SAMD).10 This was followed by an Action Plan on AI/ML-based SaMD issued in 2021.11 
Just in March of 2024, the FDA also released a paper as a complement to its Action Plan outlining 
its intent to incorporate collaboration between its different departments to better protect public health 
while still encouraging innovation through AI/ML.12,13 While unable to issue new authorization 
pathways on its own, the FDA may still determine how best to combine the pathways it is authorized 
to use to fit the needs of new and developing products.   
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Moreover, there have been more legislative actions attempting to proactively address the 
potential challenges raised by new medical technology such as AI/ML. For instance, the 21st Century 
Cures Act,28 signed into law on December 13, 2016, encouraged the innovation and development of 
medical devices that could be more effective in treating or diagnosing. However, the 21st Century 
Cures Act also explicitly excluded several categories of software functions from the FDCA 
definition of a “device,” which also includes certain clinical decision support software functions.29 
The FDA has heavily interpreted the meaning of such statute through guidance documents to state 
its current thinking on that topic.30-32  

3. Chevron and Relevant Supreme Court Decisions Before Its Overruling  

3.1 Chevron U.S.A, Inc. v. Natural Resources Defense Council, Inc. (1984)  
  
In 1984 the Supreme Court decided Chevron U.S.A., Inc. v. Natural Resources Defense Council, 
Inc.,33 establishing a key principle in administrative law known as the Chevron doctrine. The case 
involved a challenge to an Environmental Protection Agency (EPA) regulation, with litigants 
claiming the EPA regulation was inconsistent with the Clean Air Act. The Court upheld the EPA’s 
interpretation, establishing judicial deference to agency interpretations of ambiguous statutes. The 
Chevron doctrine involved a two-step process to resolve a challenge to an agency’s actions. First, 
the court would determine whether Congress had already directly addressed the matter in question. 
In other words, the court would decide whether the statute contains ambiguity or is silent on the 
matter, thereby necessitating any interpretation. If Congressional intent was clear and unambiguous, 
that intent was to be followed without deviation by the agency. If, however, silence or ambiguity 
necessitated interpretation of the statute on the matter in question, the court’s second step would be 
to decide whether the agency’s interpretation was based on a permissible construction of the statute. 
If the interpretation of delegated authority was reasonable, the agency’s expertise was entitled to 
deference by the court.33 at 843-844 Essentially, the Chevron doctrine was the primary means by which 
courts would determine whether an administrative agency was acting on or exceeding its 
congressionally delegated authority.   
  

What became known as “Chevron deference” acknowledged that federal agencies possess 
relevant expertise (such as scientific or technical expertise) critical for proper interpretation and 
implementation of statutes that the agency is charged by Congress with administering and that courts 
often lack this expertise.33 at 865 The Chevron doctrine reflected and respected a delicate balance of 
power between the branches of government: its two-step process ensured that Congress established 
the initial statutory framework for the federal policy, that administrative agencies implemented the 
statutory framework using the legislative instructions when available and filling in gaps only when 
it is permissible to do so; and that judicial oversight would ensure such agency interpretations were 
necessary and reasonable. The Chevron doctrine was heavily relied upon for 40 years, although 
pushback and critiques (particularly from those seeking to limit the power of federal agencies) 
caused judicial application of Chevron deference to evolve over time.   

3.2 West Virginia v. Environmental Protection Agency (2022)  

In 2022 the Supreme Court decided West Virginia v. EPA.34 West Virginia, backed by several other 
states and industry groups, challenged the EPA’s authority to regulate greenhouse gas emissions via 
the Clean Power Plan, arguing the EPA overstepped its authority under the Clean Air Act.34 at 715 
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The Supreme Court agreed and held the agency could not make such significant changes to the 
nation’s policies unilaterally.34 at 733 This ruling foreshadowed more recent decisions further limiting 
agency power.35 The court sidestepped Chevron precedent in this case. Instead, the court diverted 
attention to a new doctrine it introduced for the first time: the “Major Questions Doctrine.” The 
Major Questions Doctrine enabled the court to assume broad powers to invalidate agency actions, 
positing that agencies cannot act on matters of “economic and political significance” unless there is 
explicit authority from Congress for the agency to take actions of such importance. Considering the 
FDA’s scope of authority for regulating health technologies and their sizable economic 
consequences, this doctrine has the potential for courts to ultimately require more explicit 
congressional authorization for any regulatory actions of importance.   

3.3. Securities and Exchange Commission v. Jarkesy (2024) 

In June 2024 the Supreme Court decided Securities and Exchange Commission (SEC) v. Jarkesy,36 
making it more difficult for federal agencies to impose monetary penalties using administrative 
processes overseen by administrative law judges (ALJs). The SEC had brought an enforcement 
action against George Jarkesy for allegedly misleading investors regarding the hedge funds he 
managed, and the SEC ALJ found Jarkesy liable and imposed sanctions. Jarkesy successfully 
challenged the decision before the U.S. Court of Appeals for the Fifth Circuit, arguing that the 
agency’s use of an administrative process (i.e., the ALJ adjudication) violated his constitutional 
right to a jury trial under the Seventh Amendment.36 at 660,678 The Supreme Court agreed. In reaching 
its decision, the court examined the “Public Rights Doctrine,”36 at 660 a doctrine that acknowledges 
Congress may delegate adjudicative authority to a federal agency in some situations without 
infringing upon the Seventh Amendment right to a jury trial. Here, under the facts of this case, the 
court determined that actions regarding fraud and civil penalties are traditionally handled by courts 
and cannot be assigned by Congress to an agency.   

The case has ramifications beyond the SEC. All agencies, including the FDA, might need to 
reevaluate the types of cases enforced under its administrative adjudication process. Agencies 
enforcing health fraud and abuse laws could be on particularly shaky ground now.37 The use of 
ALJs, subject to more stringent constitutional constraints under the Roberts Court, might make 
agencies more hesitant to rely upon them. The use of ALJs has been an essential component of 
federal agencies’ regulatory and enforcement powers. These administrative proceedings, initially 
created to streamline the regulatory process, might now require more detailed consideration to 
ensure compliance and avoid litigation.   

The FDA’s administrative proceedings, such as hearings and product seizures for 
noncompliance,38 could be scrutinized as overstepping the constraints set by Jarkesy and the 
Supreme Court’s interpretation of the Public Rights Doctrine. The FDA’s processes for enforcing 
compliance with its regulations, including issuing fines or sanctions, might be challenged in a similar 
fashion to that of Jarkesy. Admittedly, though, the FDA’s enforcement actions have predominantly 
included informal ones such as warning letters. Thus, Jarkesy might even prompt the FDA to 
continue its path to use those.39  
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4. Chevron’s Fall and the Corner Post Case  

4.1 Loper Bright Enterprises v. Raimondo and Relentless, Inc. v. Department of 
Commerce (2024)  

The groundbreaking 5-4 Supreme Court decision on June 28th, 2024, in Loper Bright Enterprises v 
Raimondo and Relentless v. Dep’t of Commerce (two companion cases collectively referred to as 
“Loper Bright”14) expressly overruled Chevron, after 40 years of it functioning—as Justice Kagan 
described in the dissenting opinion joined by Justices Sotomayor and Jackson—“as a cornerstone 
of administrative law.”14 (dissent at 112) The case involved challenges to the National Marine Fisheries 
Service’s interpretation of statutory language for its fishing regulations because the agency’s 
interpretation required clear congressional authorization, which they did not have. The Court, calling 
Chevron deference “fundamentally misguided”14 at 14 and describing it as incompatible with the 
APA, held specifically that courts “under the APA may not defer to agency interpretation of the law 
simply because a statute is ambiguous.”14 at 62   
  

The Majority explained their decision by asserting not only that “...agencies have no special 
competence in resolving statutory ambiguities” but also that “[c]ourts do.”14 at 10  Rather than viewing 
subject matter expertise (including scientific and technical expertise) relevant to an agency’s scope 
of authority as reason to defer to the agency interpretation so long as it is reasonable, the Court took 
a dismissive and even hostile41 view to agencies, explaining that such deference would be an 
“abdication” of the court’s responsibilities to use “the traditional tools of statutory construction”14 at 

46 to “determine the best reading of the statute and resolve the ambiguity.”14 at 44-45  
 
The Court noted that the information provided by litigating parties and others through amici 

briefs would offer sufficient perspective even on technical details and that a court could consider 
agency interpretations (e.g., as one persuasive but not conclusive interpretation See 41,42). The Court 
also claimed that technical expertise could still be considered under Skidmore deference.14 at 11 
However, regarding deference under Skidmore, a court is not required to follow an agency’s 
interpretation of a statute but rather has the choice of determining the amount of deference, if any, 
to give an agency when considering “the thoroughness evident in its [the agency’s] consideration, 
the validity of its reasoning, its consistency with earlier and later procurements, and all of those 
factors which give it power to persuade.”42 at 11 While the Court in Loper Bright emphasized that 
Skidmore deference still permits courts to consider agency interpretations, it does so only if those 
interpretations are persuasive—a standard that is not governed by a strict rule but left to the courts’ 
discretion on a case-by-case basis. This level of deference provides significantly less binding 
authority for federal agencies, shifting more interpretative power to the courts while also limiting 
agencies’ ability to make decisions with the same level of control that they had previously under 
Chevron.  

 
As noted in the dissent, Chevron had “formed the backdrop against which Congress, courts, and 

agencies—as well as regulated parties and the public—all have operated for decades. It has been 
applied in thousands of judicial decisions. It has become part of the warp and woof of modern 
government, supporting regulatory efforts of all kinds—to name a few, keeping air and water clean, 
food and drugs safe, and financial markets honest.”14 (dissent at 113) Its overturning, therefore, could 
result in regulatory uncertainty, and federal agencies will need to relocate the boundaries of agency 
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authority (even boundaries that previously seemed clear and established). Additionally, the decision 
to overturn Chevron is likely to slow the efficiency of courts and agencies due to an anticipated 
flood of litigation.40   

4.2 Corner Post, Inc. v. Board of Governors of the Federal Reserve System  

Just days after overturning Chevron in Loper Bright, the Supreme Court decided Corner Post, Inc. 
v. Board of Governors of the Federal Reserve System16 and further molded the regulatory
landscape by extending the period during which agency regulations can be challenged. The case
involved a challenge from a truck stop business to certain regulations imposed by the Federal
Reserve Board regarding limits on fees to merchants for debit card purchases. The regulations
were promulgated in 2011, and the truck stop (which was established in 2018) brought the
challenge in 2021, a decade after the regulations were issued.

The lower courts dismissed the lawsuit due to the expiration of the APA’s 6-year period within 
which suits against agencies can be filed,43 but the Supreme Court reversed this decision. The 
Court’s holding rests on conceptualizing the APA’s period as a “statute of limitations”44 (which 
would begin to run when a specific plaintiff has been injured by the agency action) rather than a 
“statute of repose”45 (which would begin to run as soon as an agency’s action occurred, such as 
issuance of final regulations). The dissent highlighted that this understanding contradicts statutes 
within the administrative law context16 (dissent at 76,78) and warned that, under this interpretation, 
potential litigation against agency regulations would never end.16 (dissent at 83) Rather than an agency 
having some confidence that regulations issued a decade ago would be safe from legal challenges, 
this decision ultimately renders them vulnerable indefinitely. This decision opens the door for 
challenges to older regulations, resulting in a significant extension of the timeframe during which 
regulations can be contested than was previously understood.  

5. Impact of the Recent Supreme Court Decisions on Medical AI/ML

Legal scholars have started unpacking the broad impacts of these recent Supreme Court decisions 
for healthcare generally37,41 and medical AI/ML specifically.35,47 Under the leadership of Chief 
Justice Roberts, the Supreme Court has issued several decisions that are cause for concern for federal 
oversight of medical AI/ML. Previous works35 have highlighted cases (e.g., TransUnion v. 
Ramirez48 and Dobbs v. Jackson Women’s Health Org.49) that frustrate attempts by the Federal 
Trade Commission (FTC) and other policymakers to promote algorithmic fairness and responsible 
data practices in the context of digital health. This trend of the Supreme Court issuing “industry 
friendly” decisions37 that make it more challenging for federal agencies to engage in effective, 
adaptive governance has continued with the cases summarized here (i.e., Jarkesy, Loper Bright, and 
Corner Post). Even prior to the 2024 cases, scholars had remarked that the Supreme Court was, in 
effect, making America “ungovernable”50 by weakening the powers of every governmental branch 
except its own.51 Some have gone so far as to dub the Roberts Court as the “anti-innovation Court,”52 
as its holdings would suppress policy innovations many think are essential to impelling responsible 
conduct in a rapidly changing, AI-enabled world. The increased polarization of public opinion 
regarding the Supreme Court is likely expected to continue as policymakers debate President 
Biden’s proposed court reforms.54   

The recent Supreme Court decisions have strongly signaled a deregulation era is upon us;54 
however, the impact of these decisions directly on the FDA’s oversight of medical AI/ML remains 
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to be seen. While it is unlikely that the agency will be immune from these headaches of legal 
uncertainty, the agency’s habit of choosing to govern mainly by informal, non-binding guidance 
documents (as opposed to formal rulemaking) means that Loper Bright and Corner Post are not 
directly applicable to them. Governance by guidance, a subject garnering its own distinct 
criticisms,55 means in practical terms that there might rarely be regulatory interpretations of statutes 
ripe for legal challenges against the FDA.   

The FDA has so far mainly published discussion papers and non-binding guidance documents 
related to AI (as highlighted in Section 2 above).56 These informal actions are intended to offer 
agency flexibility, allowing the FDA to quickly change its current thinking on a topic to keep pace 
with innovation. Guidance documents can be released through a more direct and efficient process 
than proposed rules.25 These AI-related documents over the last few years have certainly provided 
helpful information to manufacturers and other stakeholders on the new regulatory challenges raised 
by AI, the FDA’s thinking and initiatives on this topic, and likely expectations during premarket 
reviews of AI/ML-based medical devices.  

Even if Loper Bright is not directly applicable to guidance documents, the holding still has 
important indirect implications for the regulation of medical AI/ML. In particular, the holding might 
encourage the FDA to continue using primarily informal actions like guidance documents rather 
than creating legally binding regulations, which are more time-consuming and costly for the 
agency.47 On the flip side, with the Supreme Court’s holding in Loper Bright, this approach will 
likely receive even more skepticism from courts in the future and might be seen as a potential bypass 
of formal rulemaking.47  

But even when creating legally binding regulations regarding AI/ML, the FDA would need to 
ensure that such regulations would be explicitly defined and authorized by Congress, as the agency’s 
flexibility to interpret ambiguous statutes has been reduced.47 When ambiguities arise, courts can 
now take the primary role in deciding outcomes. This could be difficult given the in-depth scientific 
and technological details specific to the areas of AI/ML. The courts can now rule in these highly 
specialized areas and attempt to piece together the relevant information to make decisions where 
Congress has not provided unambiguous language (which is often the case). Additionally, decisions 
on ambiguities by courts might carry the weight of stare decisis. In the jurisdictions bound by these 
holdings, agencies will not be allowed to enforce regulations that are inconsistent with the 
interpretation provided by those courts. Moreover, the courts’ need for a comprehensive 
understanding in anticipation of these rulings—each likely to be in different industries with different 
facts—will likely slow both the courts and the implementation of new regulations while legal 
challenges await adjudication.  

Moreover, Corner Post poses serious implications for the FDA, FTC, and other federal agencies, 
with the indefinite timeframe for challenges of agency regulations under the APA, complicating 
even those areas of regulatory compliance that might have been considered settled, well-established 
frameworks. Agencies might need to anticipate extended periods of litigation and AI/ML developers 
might experience ongoing regulatory uncertainty, which could impact market strategies, encourage 
litigious strategies, and delay innovations. Regulatory uncertainty has the potential to create spaces 
in which corporations might, for example, be tempted to engage in cost-cutting measures to increase 
profits but also result in compromised safety and efficacy.37 These conditions also might enable 
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some biotech/biomedical corporations to engage in questionable data practices and increased 
litigious practices to dominate the market, stifle competition, limit access to alternatives, and 
increase prices to consumers,37 necessitating more antitrust measures by the FTC.      

Congress might also begin to face pressure to revise statutes to make them less ambiguous to 
ensure their intent is reflected correctly and will likely need to draft and pass more detailed 
legislation for future issues. This might very well be the case for legislation specific to AI/ML 
technologies—including those developed for medicine,47 in light of AI in clinical applications 
presumptively considered “rights impacting” and “safety impacting”57 and could result in waiting 
for specific and comprehensive laws governing these technologies.  

With existing legal mechanisms available for use in the federal government’s oversight of 
medical AI/ML in question and new legislation slow to pass, it is incumbent upon the AI/ML 
community to be more proactive in their commitments to responsible development and use of these 
technologies. Innovative, integrated policy research is needed, with one clear example being the 
opportunity for AI/ML developers to pilot the CAITE model.58 Moreover, the integrated, holistic 
training of the medical AI/ML workforce is needed so that researchers and clinical practitioners can 
anticipate the evolving expectations and constraints in regulations across the AI/ML product (or 
system) lifecycle. This need for interdisciplinary training—such as that offered within Penn State’s 
Law, Policy, and Engineering initiative; Arizona State University’s School for the Future of 
Innovation in Society; or MIT’s Institute for Data, Systems, and Society, for example—is growing 
more urgent with the tremendous challenges and opportunities on the horizon for digital twins, as 
noted recently by the National Academies of Science, Engineering, and Medicine.59      

6. Conclusion

This paper has examined the regulatory challenges and implications of recent Supreme Court 
decisions on the FDA’s oversight of AI/ML technologies in healthcare. The dual challenge of 
promoting innovation while safeguarding public health underscores the importance of a balanced 
and nuanced regulatory framework. Ethical practices, risk management, and proactive compliance 
might become essential in navigating these uncertainties and ensuring the successful integration of 
AI/ML technologies into clinical practice. A collaborative approach involving regulators, industry 
stakeholders, and the biomedical community might become necessary to develop effective strategies 
for balancing innovation with patient safety and public health protection.  
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Accurate prediction of suicide risk is crucial for identifying patients with elevated risk burden, 
helping ensure these patients receive targeted care. The US Department of Veteran Affairs’ suicide 
prediction model primarily leverages structured electronic health records (EHR) data. This approach 
largely overlooks unstructured EHR, a data format that could be utilized to enhance predictive 
accuracy. This study aims to enhance suicide risk models’ predictive accuracy by developing a model 
that incorporates both structured EHR predictors and semantic NLP-derived variables from 
unstructured EHR. XGBoost models were fit to predict suicide risk– the interactions identified by 
the model were extracted using SHAP, validated using logistic regression models, added to a ridge 
regression model, which was subsequently compared to a ridge regression approach without the use 
of interactions. By introducing a selection parameter, α, to balance the influence of structured (α=1) 
and unstructured (α=0) data, we found that intermediate α values achieved optimal performance 
across various risk strata, improved model performance of the ridge regression approach and 
uncovered significant cross-modal interactions between psychosocial constructs and patient 
characteristics. These interactions highlight how psychosocial risk factors are influenced by 
individual patient contexts, potentially informing improved risk prediction methods and personalized 
interventions. Our findings underscore the importance of incorporating nuanced narrative data into 
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predictive models and set the stage for future research that will expand the use of advanced machine 
learning techniques, including deep learning, to further refine suicide risk prediction methods. 

Keywords: machine learning, suicide risk, clinical notes, electronic health records, Veterans 

1. Introduction

Veterans are at an elevated risk of suicide, underscoring the critical need for advanced risk 
stratification methods within the US Department of Veterans Affairs. The primary tool currently in 
use is Recovery Engagement and Coordination for Health – Veterans Enhanced Treatment 
(REACH-VET), an AI-driven model that utilizes structured data to assess and categorize suicide 
risk 1,2. This model plays a crucial role in pinpointing Veterans who are at the highest risk and 
disproportionately contribute to the annual suicide statistics 3. 
    Recent research efforts have focused on augmenting the REACH-VET model by integrating 
unstructured data sources, such as clinical notes, to uncover additional predictors of risk 4,5. Our 
previous studies have aimed at identifying specific risk groups and stratifying the impact of various 
textual suicide risk factors within these groups 6–10. By using REACH-VET to establish baseline 
risk, we have developed NLP models that employ semantic databases and textual analysis to track 
risk factors across different risk tiers and determine optimal intervention timing. 
     Our prior research effectively identified novel NLP-derived variables that complement 
traditional demographic and structured risk predictors. By matching cases and controls based on 
their risk percentiles as measured through structured predictors, we sought to control for potential 
confounding factors. Controlling for confounding factors, however, does not address the possibility 
of effect modification, an area that remains relatively underexplored in this context. Understanding 
how risk factors differ by Veteran subgroups is crucial not only for improving predictive accuracy 
but also for enhancing the explainability of how psychosocial factors relate to suicide risk across 
diverse groups. Exploring these interactions could lead to interventions that are more tailored and 
effective, underscoring the importance of this research for future clinical applications. 
     Classification and regression trees (CART) are particularly useful for examining effect modifiers 
among predictors through conditional decision splits. Previous studies have demonstrated their 
utility in revealing complex statistical interactions. Despite the effectiveness of CART in managing 
interactions, a significant challenge persists due to the overwhelming number of NLP variables 
compared to the relatively fewer structured predictors and patient-level clinical factors. This 
imbalance complicates their effective integration into the predictive model. This disparity 
necessitates innovative approaches to manage and interpret the extensive data generated by NLP 
techniques within our predictive models in the context of these patient factors. 
     This manuscript describes our methodology for refining risk prediction models by integrating 
both structured and unstructured data within a risk-matched Veteran population, aiming to deliver a 
more intricate comprehension of suicide risk. Our approach not only seeks to provide more pertinent 
risk assessments tailored to specific subpopulations but also aims to demonstrate how machine 
learning models can effectively identify effect modifiers of crucial psychosocial variables based on 
patient characteristics. These modifiers, once validated through conventional statistical regression 
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methods, have the potential to significantly improve the interpretability and precision of existing 
models for assessing suicide risk. 
 
2.  Methods 

2.1.  Patient Selection 

To establish our study group, we integrated 
data from the VA Corporate Data Warehouse 
(CDW) Electronic Health Records (EHR) with 
mortality information from the VA-
Department of Defense Mortality Data 
Repository 11. This allowed us to pinpoint 
Veterans who died by suicide and interacted 
with VHA healthcare services in 2017 or 2018, 
totaling 2,842 cases. Following established 
recommended guidance for matched case-
control studies that focus on infrequent events, 
we matched each suicide case with five 
controls. Assistance from the VA Office of 
Mental Health and Suicide Prevention was 
crucial in selecting control subjects who were 
treated at the same VHA facility and during the 
same period as the cases. Controls were chosen 
to match the deceased cases’ REACH-VET 
risk percentile and were alive at the time the 
cases died (totaling 14,042 controls) 12. 
Controls were unique and non-overlapping, 
such that no cases could share the same 
controls. We validated the effectiveness of our 
matching approach by evaluating the 
standardized mean differences in various 
demographic and clinical parameters between 
cases and controls (Table 1). In a prior study 
that analyzed risk trends in a national sample 
of recent VA suicide deaths 12, we found that patients at varying suicide risk tiers (high, 
moderate/med, and low), have very different diagnostic, service usage, and demographic patterns. 
To best develop targeted risk models, we stratified the present study’s sample using these risk tiers.    

2.2.  Data Collection and Partitioning 

2.2.1.  Clinical Note Retrieval 

We retrieved unstructured EHR notes from the CDW that were recorded within 30 days before each 
case’s death. This timeframe was chosen based on earlier research that highlighted the significance 
of clinical notes during the period immediately leading up to death by suicide. To prevent the 

Table 1: Patient Characteristics/Demographics 
  

Case Control p-
value (N=2842) (N=14042) 

Demographics    
  Female  119 (4.2%) 1079 (7.7%) 0.149 
  Non married 1688 (59.4%) 7861 (56.1%) 0.068 
  Married 1154 (40.6%) 6163 (43.9%) 0.038 
  Homeless_prior24m 212 (7.5%) 1189 (8.5%)  

  Veteran 2834 (99.7%) 13971 
(99.6%) 0.017 

  Rural 635 (22.3%) 3215 (22.9%) 0.013 
Risk Tier   0.007 
  High 389 (13.7%) 1940 (13.8%)  
  Moderate 1436 (50.5%) 7040 (50.2%)  
  Low 1017 (35.8%) 5044 (36.0%)  
Race   0.273 
  Am. Ind. or Asian Pacific 61 (2.1%) 308 (2.2%)  
  Black 154 (5.4%) 1638 (11.7%)  
  Hispanic 124 (4.4%) 875 (6.2%)  
  Unknown 129 (4.5%) 306 (2.2%)  

  White 2374 (83.5%) 10897 
(77.7%) 

 

Age    0.008 
  Mean (SD) 60.5 (18.0) 60.4 (15.7)  
Deployment    
  Vietnam 1100 (38.7%) 5862 (41.8%) 0.066 
  Afghanistan or Iraq 957 (33.7%) 4761 (33.9%) 0.017 
Mental Health Diagnosis/ Risk 
Flag 

 
  

  Anxiety 1341 (47.2%) 6686 (47.7%) 0.009 
  Bipolar 545 (19.2%) 2238 (16.0%) 0.085 
  Conduct 56 (2.0%) 316 (2.3%) 0.02 
  Depression 1876 (66.0%) 9137 (65.2%) 0.02 
  Neurocognitive 316 (11.1%) 1671 (11.9%) 0.025 
  OCD 80 (2.8%) 325 (2.3%) 0.032 
  PTSD 1060 (37.3%) 5273 (37.6%) 0.005 
  Personality 389 (13.7%) 1599 (11.4%) 0.070 
  Sleeping 1331 (46.8%) 7270 (51.8%) 0.100 
  Substance 1249 (43.9%) 5401 (38.5%) 0.112 
  Trauma 1442 (50.7%) 7235 (51.6%) 0.016 
  Combat  731 (25.7%) 2680 (19.1%) 0.159 
  Military Sexual Trauma  126 (4.4%) 875 (6.2%) 0.080 
Number of Inpatient Mental Health Days within 1 Year of Death  
  Mean (SD) 17.2 (66.1) 15.6 (64.6) 0.024 
Prescriptions    
  Opioid Rx_prior12 885 (31.1%) 4338 (30.9%) 0.004 
  Opioid Rx_prior24 1104 (38.8%) 5686 (40.5%) 0.035 
  Mood Stabilizer Rx_prior12 1017 (35.8%) 4718 (33.6%) 0.045 
  Mood Stabilizer Rx_prior24 1178 (41.4%) 5455 (38.9%) 0.052 
  Antipsychotic Rx_prior12 616 (21.7%) 2364 (16.9%) 0.122 
  Antipsychotic Rx_prior24 708 (24.9%) 2791 (19.9%) 0.120 
  Antidepressant Rx_prior12 1573 (55.3%) 7661 (54.6%) 0.014 
  Antidepressant Rx_prior24 1733 (61.0%) 8401 (59.9%) 0.022 
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influence of potential data leakage / endogeneity, we excluded notes from the final two days before 
death and any notes that referenced death or a high likelihood of death within the five days prior to 
the suicide. Additionally, we removed patients from our analysis if their records contained more 
than six times the average number of notes, thus preventing a disproportionate focus on individuals 
with higher healthcare engagement. This resulted in a dataset of 92,399 notes from 389 cases and 
1,940 controls at high risk, 107,532 notes from 1,436 cases and 7,040 controls at moderate risk, and 
44,613 notes from 1,017 cases and 5,044 controls at low risk. Model training and interpretation was 
conducted on the note-level, whereas performance was reported on the patient level (see 2.4). 

2.3.  Data Preparation 

2.3.1.  Derivation of NLP Variables 

To capture word counts, we first converted all our text to lowercase, removed stop words like 
“his/hers”, “were/would”, “and/with”, etc. and tokenized our data set into unigrams or bigrams. We 
used Sentiment Analysis and Cognition Engine (SÉANCE) to analyze sentiment from these tokens, 
transforming our corpus into 516 semantic variables. SÉANCE is a Python-based software package 
that is accessible on VA servers and has been found to be comparable to the commonly used 
Linguistic Inquiry and Word Count (LIWC) software 13,14. SÉANCE utilizes a variety of established 
linguistic databases, including SemanticNet 15,16, General Inquirer Database (GID) 17, EmoLex 18,19, 
Lasswell 20, Valence Aware Dictionary and sEntiment Reasoner (VADER) 21, Hu–Liu 22,23, Harvard 
IV-4 17, and the Geneva Affect Label Coder (GALC) 24. Each database consists of expert-derived
dictionary lists and rule-based systems 25, comprising over 250 unique variables, which can be
assessed in positive and negative iterations, leading to 516 SÉANCE variables.

2.3.2.  Extraction of Patient Characteristics 

Using data from the Corporate Data Warehouse (CDW), we extracted a comprehensive array of 
information encompassing demographics, social determinants of health, patterns of service usage, 
prescription histories, and diagnostic details. This data set included key demographic variables such 
as age, gender, marital status, and race. Social determinants like homelessness and military service 
were also considered, providing context to the healthcare challenges these Veterans may face. The 
service usage patterns captured included the number and types of visits to emergency departments 
and mental health services, which are critical indicators of health engagement and potential crisis 
points. Prescription data detailed the use of critical medications such as opioids and antipsychotics, 
while diagnostic information covered a wide range of mental health conditions from anxiety and 
depression to PTSD and substance abuse disorders (Table 1). We observed a significant disparity 
in the number of traditional patient characteristics available (n=66) compared to the number of NLP-
derived variables (n=516), which include terms and their negations extracted from clinical notes. A 
complete list of variables included in the model can be found in the Supplementary Material, 
available at the following URL: 
https://github.com/jlevy44/NLP_Demographics_VA/tree/main/Data_Dictionaries . 

2.3.3.  Training, Validation and Test Patient Cohorts 

For each risk tier, patients were stratified into training, validation, and test sets using an 80%, 10%, 
and 10% split, respectively. We utilized the GroupShuffleSplit function from the scikit-learn 
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package (Python v3.8) to ensure that all notes and patient characteristics from the same individual 
were grouped into the same set 26. This approach prevents any notes from a single patient from being 
distributed across different sets, thereby avoiding data leakage and ensuring the integrity of test set 
statistics. Variables were standardized via scaling parameters estimated from the training set. 

Figure 1: Workflow overview: A) The number of SÉANCE variables dwarfs the number of patient characteristics / 
demographics, B) Cross-modal interactions between SÉANCE and patient characteristics can be identified using a 
CART approach (e.g., XGBoost) through conditional decision splits between the different sets of variables; C) Shows 
how the relationships between NLP variables (squares) and suicide risk vary across different demographic subgroups 
(triangles). The lines represent these varying associations, providing simplified interpretations based on the GLM 
approach. D) Selection of SÉANCE and patient characteristics variables controlled through α, intermediate values 
reflect selection of both variable types, increasing likelihood of detecting cross-modal interactions 

2.4.  Selected Machine Learning Models 

All 582 patient characteristics / demographic and SÉANCE variables were modeled simultaneously 
to predict whether a clinical note corresponded to a patient who had died by suicide. Note-level 
predicted probabilities (𝑝 = 𝑓(�⃗�)) were averaged across the notes within each patient into a final 
patient-level score (�̅�) reflecting the risk of suicide used as the final comparison. We evaluated 
model performance on both the validation and test sets by calculating the patient-level area under 
the receiver operating characteristic curve (AUROC) which compared �̅� to whether the patient died 
by suicide. To ensure robustness, we employed a 1000-sample non-parametric bootstrapping to 
compute 95% confidence intervals for AUROC estimates. 
     We aimed to evaluate the performance of two machine learning models: 1) Penalized high-
dimensional generalized linear models, exemplified by ridge logistic regression 27, which apply an 
L2-norm penalty to shrink model coefficients (set to 2.5e5 after a coarse hyperparameter search). 
This method reduces model complexity and prevents overfitting by addressing multicollinearity. 2) 
Classification and regression trees (CART) 28, as implemented by Extreme Gradient Boosting 
(XGBoost). XGBoost is an advanced form of gradient boosting that incrementally refines decision 
trees by concentrating on errors from previous trees 29. It uses a gradient descent algorithm to 
meticulously adjust tree parameters, optimizing them based on the error gradient relative to earlier 
predictions. While the ridge regression model serves as a baseline for performance comparison, the 
XGBoost model is expected to enhance performance by capturing statistical interactions within and 
across modalities—specifically among patient characteristics / demographic and SÉANCE 
variables, as well as interactions between these modalities. XGBoost was specifically chosen for its 
capability to assign weights to features, directly influencing their selection probabilities during 
model training. This feature is crucial for effectively balancing the influence of different predictors 
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(see 2.5). While LightGBM and BART (Bayesian Additive Regression Trees) offer similar 
functionalities, they were not selected for specific reasons 30,31. LightGBM, for instance, only 
reweights the feature split gain after their initial selection, without altering initial selection 
probabilities. BART, on the other hand, allows for assignment of priors for variable selection, but 
computational demands are significantly higher, making it less suitable for our current scope but a 
potential candidate for future exploration. Ridge regression was selected as representative of 
generalized linear modeling approaches after initial comparisons to LASSO and ElasticNet 32. 
     The primary objective of this study is not simply to compare Ridge regression with XGBoost. 
Rather, our aim is to show that the interactions identified by XGBoost can offer additional valuable 
information, enhancing the predictive accuracy of Ridge regression and other generalized linear 
models that are known for their parsimonious interpretations. Consequently, we expect that 
incorporating these interactions as predictors—a method we have named Ridge-Int—will 
significantly improve the performance of Ridge regression, bridging the gap between complex 
machine learning and traditional statistical models 33. 

2.5.  Key Contribution: Weighting the selection of NLP variables and patient characteristics 

In tree-based models, the selection of variables for inclusion at various levels or nodes typically 
occurs with uniform probability. This approach can inadvertently lower the probability of selecting 
variables from smaller sets of variables, such as patient characteristics, compared to larger sets like 
those from NLP-derived variables. Consequently, this bias in variable selection could hinder the 
identification of meaningful interactions between patient characteristics / demographic and NLP 
variables, as the former are less likely to be chosen as nodes or leaves in the model. 
     To address this imbalance, we hypothesize that strategically weighting the selection of variables 
from these two distinct sets—patient characteristics / demographic and NLP variables—could be 
crucial for uncovering optimal interactions between them. In this study, we conduct a sensitivity 
analysis to explore the impact of different weighting strategies on the detection of interactions 
(Figure 1). Specifically, we investigate three scenarios: 

1. Upweighting Patient Characteristics / Demographics: We hypothesize that increasing the 
selection probability of patient characteristics (including demographics) could enhance the 
identification of interactions within these features. 

2. Upweighting NLP Features: Conversely, increasing the weight of NLP features is expected 
to surface more interactions within the NLP data. 

3. Balanced Weighting: Applying an equal weighting strategy, adjusted for the numerical 
disparity between the sets (upweighting patient characteristics / demographics proportionally 
to the number of NLP features), is hypothesized to facilitate the detection of cross-modal 
interactions, balancing the trade-offs between the two. 

To test these hypotheses, we introduce a selection hyperparameter, 𝛼 ∈ [0,1], which determines the 
extent to which one set of predictors is favored over the other. The weighting formula for individual 
patient characteristics / demograpgics is defined as α* !!"#$%"

!&'()*+,-./01
+ 𝜖, where !!"#$%"

!&'()*+,-./01
 represents 

the ratio of the number of NLP variables to patient characteristics, adjusting for their discrepancy. 
Conversely, the weight for selecting NLP variables is set as 1-α+ ϵ. Thus, an α value of 0 would 
give priority to NLP variables, highlighting interactions within the NLP data, whereas an α of 1 
would prioritize patient characteristics / demographics, enhancing the identification of interactions 
solely between structured patient characteristics. Here, ϵ is a small constant (ϵ = 1e-7) introduced to 
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ensure that the probability of selecting variables from either predictor set never reaches zero as 
required by the XGBoost package. This minimal 
adjustment allows for the rare but possible selection of 
variables from the non-prioritized set. 

2.6.  Model Fitting, Interaction Extraction and 
Validation for Experimental Comparisons 

We trained XGBoost models using various values for 
α, including 0 (favoring SÉANCE variables), 0.1, 0.3, 
0.5, 0.7, 0.9, and 1 (favoring patient characteristics). 
The model fitting process involved a 50-iteration randomized search for optimal hyperparameters 
(Table 2), with early stopping for tree boosting based on validation set performance. This procedure 
was repeated for all α and risk tiers.  
     For each value of α, we used the interactiontransformer package 33 to select candidate 
interactions for further analysis via the tree explainer. This assigns each interaction a global SHAP 
score, which represents the average influence of the interaction across all notes and patients, 
reflecting its overall contribution to the model’s performance 34. SHAP interaction scores were 
computed separately for the validation and test sets. To validate candidate interactions, we examined 
the top 1000 interactions identified by SHAP. For each interaction, we fit unpenalized generalized 
linear models (GLM, logistic regression) incorporating the interaction term (Figure 1C): 

𝑙𝑜𝑔𝑖𝑡(𝑝!"#$#%&) = 𝛽' + 𝛽(𝑓𝑒𝑎𝑡𝑢𝑟𝑒( + 𝛽)𝑓𝑒𝑎𝑡𝑢𝑟𝑒) + 𝛽*𝑓𝑒𝑎𝑡𝑢𝑟𝑒( ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 
     A candidate interaction was confirmed as validated if the p-value for the coefficient of the 
interaction term, 𝛽*, was less than 0.05 divided by 1000. This stringent criterion reflects the 
Bonferroni adjustment applied to account for multiple comparisons (1000 candidate interactions), 
ensuring the robustness of our findings against Type I errors. 
     To evaluate the effectiveness of SHAP values in identifying and prioritizing key interactions, we 
used Fisher’s exact test to compare the likelihood of GLM-validated variables appearing in the top 
100 versus the top 1000 SHAP-ranked interactions. By calculating an odds ratio (OR) and a 
corresponding p-value as a measure of enrichment in the top 100 set, we quantified the degree to 
which SHAP values not only identify but also accurately prioritize the most impactful interactions. 
     We hypothesized that validated interactions would be predominantly found among the highest-
ranked interactions by SHAP, indicating the effectiveness of SHAP in identifying the most 
influential interactions in terms of their contribution to the model’s predictive accuracy. This step 
serves not only to validate the interactions but also to verify the reliability of SHAP’s ranking 
mechanism in prioritizing the most statistically significant and predictive interactions a. 
     For the validated interactions, we categorized the nature of each interaction based on its modality: 
either within modality interactions (such as demographic-demographic or SÉANCE-SÉANCE) or 
cross-modality (demographic-SÉANCE) interactions. We quantified these categories by calculating 
their proportions within the overall set of validated interactions, providing insight into the patterns 
of relationships that significantly contribute to the model. 
     After categorizing the interactions, we incorporated them into the predictive model. Specifically, 
we enhanced the Ridge regression model by adding either the validated interactions or the top 50 

 
a Further clarification on these calculations can be found in Supplementary materials: “Clarification on Role of 

Algorithms and Methods”, at: https://github.com/jlevy44/NLP_Demographics_VA/blob/main/suppl_material.docx  

Table 2: XGBoost hyperparameter search grid 
Hyperparameter Values 

colsample_bynode 0.25, 0.5, 0.75, 1 
colsample_bylevel 0.25, 0.5, 0.75, 1 
colsample_bytree 0.5, 0.75, 1 
subsample 0.6, 0.8, 1 
min_child_weight 1, 3, 5, 7 
max_depth 3, 4, 5, 6 
gamma 0, 1, 5, 10 
reg_alpha 0, 0.1, 1, 10 
reg_lambda 0, 0.1, 1, 10 
Number of Trees 25, 50, 100 
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interactions ranked by p-value—whichever count was greater. This enhanced model, referred to as 
Ridge-Int, was designed to assess the impact of including significant interaction terms on the 
predictive accuracy. The performance of the Ridge-Int model was compared against the baseline 
Ridge model, which did not include interaction terms. We evaluated the models’ effectiveness on 
both the validation and test sets using the AUROC, with 95% confidence intervals calculated using 
the previously described bootstrapping method. 
     Following the validation and integration of interactions into our models, we plotted the AUROCs 
for XGBoost, Ridge, and Ridge-Int against the hyperparameter α, along with the odds ratios for the 
significance of validated interactions and the proportion of validated interactions that were cross-
modal within the validation and test set. We anticipated that the interactions identified by XGBoost 
would enhance the performance of Ridge regression, and that the performance metrics for both 
XGBoost and Ridge-Int would likely reach a plateau at an intermediate α value between 0 and 1. 
Similarly, we expected the enrichment of validated interactions and the proportion of cross-modal 
interactions to saturate at a midpoint α, demonstrating the relevance of cross-modal interactions for 
enhancing predictiveness. This analysis was stratified and performed across each risk tier, allowing 
for a nuanced evaluation of how the inclusion of interactions influences model performance within 
distinct suicide risk tiers. 

2.7.  Interpretation of Randomly Selected Interactions 

To deepen our understanding of the interactions between different modalities, we analyzed the 
statistical interaction models fitted to the data, employing estimated marginal means as a post hoc 
comparison to elucidate the effects of various psychosocial constructs obtained through NLP on 
suicide risk 35,36. These effects were specifically examined as conditioned by patient characteristics, 
and similarly, how patient characteristics / demographics influence the impact of psychosocial 
factors on suicide risk (Figure 1C). For illustrative clarity, effect estimates for randomly selected 
interactions were presented in detailed tables and supportive visualizations demonstrating the 
conditional/stratified effects of these psychosocial constructs by patient characteristics. 

3. Results

3.1.  Affirming the Relevance of Cross-modal Interactions 

In our study, we adjusted the selection probability between two predictor sets to investigate their 
potential trade-offs in influencing model performance. By altering the hyperparameter α, we 
modulated the selection bias towards either patient characteristics / demographics or SÉANCE 
variables within the XGBoost model, and then examined the nature and impact of the interactions 
identified by SHAP. The interactions that were extracted and validated using unpenalized GLMs– 
prior to their inclusion in Ridge-Int– with interaction terms demonstrated statistical validity. 
Importantly, these interactions, once confirmed through statistical modeling, showed a high 
enrichment within the top 100 SHAP-ranked interactions, evidenced by significant odds ratios. This 
result supports the effectiveness of XGBoost and SHAP in pinpointing genuine interactions. 
     Our analysis revealed that interactions were more prevalently validated at intermediate values of 
α, suggesting an optimal balance at these levels for extracting meaningful interactions between 
different types of data (Figure 2B, Table 3). The proportion of cross-modal interactions that were 
validated peaked at these intermediate α values (Figure 2C, Table 3). This finding corroborates the 
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hypothesis that adjusting α allows for fine-tuning of the XGBoost model to effectively balance the 
contribution of both predictor sets, enhancing the model’s capacity to uncover and utilize significant 
interactions between different data types. It should be noted that the enrichment of validated 
interactions was especially pertinent for low-risk tier patients, though a lower proportion of these 
interactions were cross-modal in nature. 
 

 
Figure 2: Model Comparison and Interaction Validation/Delineation: A) Test set model performance reported via 
the AUROC on the patient-level, aggregated across notes, for each model type and risk tier. B) Odds Ratio (OR) 
versus α. OR reflects the enrichment of validated interactions among the top-ranked interactions identified through 
SHAP, serving as a measure of how well the statistical model validates the interactions identified by SHAP. C) The 
proportion of validated interactions that were identified as cross-modal as a function of α. 

3.2.  Model Performance Comparisons 

In our study, we hypothesized that cross-modal interactions would significantly enhance the 
predictive performance in suicide risk assessment, particularly when analyzing aggregated data 
across patient notes. Our results confirmed this hypothesis, demonstrating the critical role of these 
interactions in improving model accuracy. Notably, the XGBoost model, which explicitly accounts 
for statistical interactions through conditional decision splits, consistently outperformed the 
traditional Ridge regression model, which does not inherently consider interactions (Figure 2A, 
Table 4). Upon integrating these extracted interactions from the XGBoost model into the Ridge 
regression frameworks (Ridge-Int), we observed marked performance improvement for the low and 
high risk patients and modest improvement in the moderate risk patients for α=0.1 (Figure 2A, 
Table 4). 
    Interestingly, the most pronounced gains were observed when the selection parameter α, which 
balances the influence of structured patient characteristics / demographics versus SÉANCE features, 
was set to intermediate values. This suggests that neither purely patient characteristics nor purely 
SÉANCE features are sufficient on their own; rather, it is their combination and the interactions 
between them that drive the predictive accuracy of the models. This phenomenon was corroborated 
by the relative alignment of these optimal α values with where the highest number of crossmodal 
interactions were identified and incorporated into the statistical modeling of the Ridge regression 
(Figure 2A,C, Tables 2,3). 
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Table 3: Validation and Analysis of XGBoost-Derived Interactions via SHAP and Subsequent Logistic 
Regression Modeling. OR indicate the degree to which validated interactions as confirmed through logistic 
regression modeling are enriched among the top SHAP-ranked interactions, reflecting the effectiveness of the 
XGBoost in identifying relevant interactions. Additionally, the table lists the proportion of these validated interactions 
that were characterized as cross-modal, highlighting their potential for bridging distinct data modalities. 

Risk α OR p % Cross- 
Modal 

Risk α OR p % Cross- 
Modal 

Risk α OR p % Cross- 
Modal 

Low 0 1.3 0.672 0.0% Med 0 2.0 0.082 0.0% High 0 2.4 0.017 0.0% 
0.1 11.5 <0.001 2.6% 0.1 5.0 <0.001 10.3% 0.1 3.1 <0.001 7.1% 
0.3 8.9 <0.001 2.9% 0.3 8.6 <0.001 9.8% 0.3 3.1 <0.001 9.3% 
0.5 10.9 <0.001 6.7% 0.5 6.3 <0.001 10.0% 0.5 4.4 <0.001 6.3% 
0.7 7.7 <0.001 2.5% 0.7 4.8 <0.001 7.3% 0.7 2.9 <0.001 8.6% 
0.9 7.4 <0.001 1.7% 0.9 4.6 <0.001 7.6% 0.9 2.9 <0.001 8.6% 

1 7.4 <0.001 1.7% 1 4.6 <0.001 7.6% 1 2.9 <0.001 8.6% 

Table 4: Test Set Model Performance for XGBoost and Ridge Regression models, comparing performance across 
low, medium, and high-risk tiers. The AUROC values are presented alongside 95% CIs calculated through 1000-
sample non-parametric bootstrapping. For Ridge Regression, ‘n/a’ indicates the performance of the model without the 
inclusion of interactions derived from XGBoost, serving as a baseline comparison. The variations in AUROC values 
across different α (ranging from 0 to 1) illustrate the impact of emphasizing either patient characteristics / 
demographics or SÉANCE features, or a balanced consideration of both, in predicting suicide risk. 

XGBoost 
Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI 
 Low 0 0.622 0.565 0.681 Med 0 0.602 0.555 0.646 High 0 0.715 0.642 0.788 

0.1 0.678 0.624 0.735 0.1 0.658 0.61 0.705 0.1 0.687 0.61 0.767 
0.3 0.672 0.618 0.721 0.3 0.637 0.59 0.681 0.3 0.726 0.65 0.799 
0.5 0.679 0.622 0.734 0.5 0.629 0.579 0.681 0.5 0.705 0.627 0.781 
0.7 0.669 0.611 0.723 0.7 0.638 0.589 0.686 0.7 0.698 0.618 0.782 
0.9 0.669 0.611 0.723 0.9 0.637 0.587 0.683 0.9 0.698 0.618 0.782 

1 0.669 0.611 0.723 1 0.637 0.587 0.683 1 0.698 0.618 0.782 
Ridge Regression 

Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI 
 Low n/a 0.651 0.593 0.704 Med n/a 0.615 0.566 0.666 High n/a 0.645 0.561 0.729 

0 0.653 0.596 0.706 0 0.615 0.565 0.665 0 0.646 0.562 0.729 
0.1 0.668 0.61 0.72 0.1 0.622 0.574 0.672 0.1 0.693 0.602 0.778 
0.3 0.66 0.6 0.714 0.3 0.609 0.559 0.659 0.3 0.692 0.603 0.773 
0.5 0.658 0.599 0.715 0.5 0.602 0.552 0.652 0.5 0.707 0.621 0.784 
0.7 0.653 0.594 0.708 0.7 0.612 0.562 0.66 0.7 0.691 0.602 0.775 
0.9 0.653 0.594 0.708 0.9 0.607 0.557 0.655 0.9 0.691 0.602 0.775 

1 0.653 0.594 0.708 1 0.607 0.557 0.655 1 0.691 0.602 0.775 
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α=0.3 α=0.5 α=0.7 
Risk Interaction log(OR)log(OR) Interaction og(OR)log(OR)l Interaction log(OR) p-adj 
High days_inpatMH_prior_12mo:Notlw_Lasswell -0.02 7.4e-07 Sleeping:vader_neutral -0.98 2.6e-02 Calc_age:Know_GI 0.16 1.0e-04 

days_inpatMH_prior_12mo:Coll_GI_neg_3 -0.03 4.0e-14 antipsy_prior24:vader_compound 0.19 1.0e-05 age_55_74:Hu_GI_neg_3 3.59 3.4e-10 
Substance:negative_adjectives_component 0.12 4.3e-02 age_55_74:Posaff_Lasswell -4.22 1.6e-03 days_inpatMH_prior_12mo:Tool_GI

_neg_3 
0.02 7.4e-05 

Calc_age:negative_adjectives_component 0.01 7.0e-08 Substance:Work_GI -4 1.5e-03 age_55_74:Socrel_GI_neg_3 2.74 4.8e-04
age_55_74:Coll_GI_neg_3 10.47 2.0e-22 Calc_age:Endslw_Lasswell 0.1 7.9e-03 elix_cat:Know_GI 3.24 1.2e-06 

Med elix_cat:fear_and_digust_component 0.74 3.2e-03 elix_cat:Male_GI -4.36 9.5e-04 elix_cat:Male_GI -4.36 9.5e-04 
elix_cat:Fear_EmoLex 3.26 6.1e-03 elix_cat:fear_and_digust_component 0.74 3.2e-03 moodst_prior24:Abs_GI 4.22 8.4e-03 
Substance:Powcoop_Lasswell_neg_3 -12.25 2.4e-05 opioid_prior12:Submit_GI_neg_3 -4.52 7.0e-05 di_cat:hu_liu_pos_perc_neg_3 -0.19 1.9e-02 
Nonmarried:hu_liu_pos_perc_neg_3 0.41 7.4e-03 MH_cat:hu_liu_pos_nwords 3.1 2.5e-02 Trauma:vader_positive 2.24 4.6e-04 
Unknown:Pleasur_GI_neg_3 8.63 3.4e-02 MH_cat:Tranlw_Lasswell 2.85 1.8e-03 Unknown:Pleasur_GI 9.05 1.8e-02 

Low elix_cat:fear_and_digust_component 0.74 3.2e-03 elix_cat:Male_GI -4.36 9.5e-04 elix_cat:Male_GI -4.36 9.5e-04 
elix_cat:Fear_EmoLex 3.26 6.1e-03 elix_cat:fear_and_digust_component 0.74 3.2e-03 moodst_prior24:Abs_GI 4.22 8.4e-03 
Substance:Powcoop_Lasswell_neg_3 -12.25 2.4e-05 opioid_prior12:Submit_GI_neg_3 -4.52 7.0e-05 di_cat:hu_liu_pos_perc_neg_3 -0.19 1.9e-02 
Nonmarried:hu_liu_pos_perc_neg_3 0.41 7.4e-03 MH_cat:hu_liu_pos_nwords 3.1 2.5e-02 Trauma:vader_positive 2.24 4.6e-04 
Unknown:Pleasur_GI_neg_3 8.63 3.4e-02 MH_cat:Tranlw_Lasswell 2.85 1.8e-03 Unknown:Pleasur_GI 9.05 1.8e-02 



 
 

 

3.3.  Select Interpretation of Findings from Cross-modal Workflow 

The XGBoost model successfully identified numerous cross-modal interactions, specifically at 
intermediate α, of which we selectively analyzed a few at random to elucidate their implications for 
decision-making and potential therapeutic advancements. For example, in Table 5, the results from 
GLM of validated interaction terms are presented. Table 6 and Figure 3 provide detailed 
breakdowns of four key interactions with further interpretation presented in the Discussion. 
 

 
Figure 3: Interpretation of Conditional Effects of Psychosocial Constructs Across Patient Subgroups for 
Randomly Selected Validated Interactions. A) Suicide risk associated with mood stabilizer use fluctuates based on 
mention of denial in clinical notes. B) Intensified impact of failure mentions in notes on suicide risk among Vietnam 
Veterans compared to other Veterans. C) Varying effects of mentioning communication forms, such as mentions of 
social media, on suicide risk across age groups, with younger Veterans showing heightened sensitivity. D) Increased 
suicide risk due to negative sentiments among patients with bipolar disorder. Note that interpretations are on the note-
level. Risk scale is expressed using the inverse logit link function. 
 

Table 6: Select Interactions and Conditional Effects from Logistic Regression Analysis on Randomly Selected 
Validated Interactions. Interaction terms are denoted using “:”, followed by a conditional effect, denoted by “|”, 
representing the evaluation of the variable’s effect under specific conditions set by the modifying variable on the right. 
Conditional effects are derived using estimated marginal means.  

Risk Term log(OR) p-value 
High moodst_prior12:Notlw_Lasswell -1.11e-05 8.95e-12 

Notlw_Lasswell|moodst_prior12 8.55e-06 7.40e-11 
Notlw_Lasswell|No moodst_prior12 -2.54e-06 7.96e-03 
Vietnam:failure_component 3.21e-06 5.25e-03 
failure_component|Vietnam -1.15e-06 1.45e-01 
failure_component|Not Vietnam 2.07e-06 1.40e-02 

Med Calc_age:Comform_GI -3.38e-07 1.87e-04 
Comform_GI|Age=30 1.24e-05 4.05e-05 
Comform_GI|Age=50 5.63e-06 3.25e-04 
Notlw_Lasswell|Age=70 -1.14e-06 4.56e-01 

Low Bipolar:vader_negative 1.37e-05 6.51e-06 
vader_negative|Bipolar -2.08e-06 4.66e-02 
vader_negative|Not Bipolar 1.16e-05 4.61e-05 

 

4.  Discussion 

Recent advancements have emphasized the critical role of machine learning and the analysis of 
unstructured clinical reports in augmenting suicide risk prediction models 37. These developments 
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aim to complement existing models that leverage structured predictors already operational within 
the VA system, which have been further repurposed to categorize risks into defined tiers for 
population studies 12. Despite these innovations, the dynamics between predictors derived from 
structured and unstructured data, and their combined potential to improve suicide risk prediction, 
remain largely unexplored. 
     In this study, we aimed to refine suicide risk predictive models to cater specifically to relevant 
subgroups. Our strategy involved developing models that balanced the inclusion of both structured 
and unstructured (NLP) predictors. This approach allowed us to delve into the trade-offs and 
synergies between these predictor types through traditional statistical modeling of the interactions 
extracted from them. We introduced a predictor set selection parameter, α, to regulate the extent to 
which predictors from semantic NLP variables (SÉANCE) and structured EHR were utilized. 
     Our findings revealed that this methodology not only enhanced the accuracy of suicide risk 
predictions but also illuminated how cross-modal interactions between NLP variables and structured 
predictors could demonstrate the altered risk associated with various psychosocial constructs based 
on patient characteristics / demographics and vice versa. The ability to discern these interactions 
underscores the pivotal role of cross-modal dynamics in improving model performance, validating 
their importance in complex predictive tasks such as suicide risk assessment.  
     The implications of our analytical approach are significant– we will now discuss key lessons and 
insights derived from interpreting the interaction terms (Figure 3, Tables 5, 6). A positive 
interaction effect estimate signifies an elevated suicide risk when one variable increases, conditional 
on the rise of another variable. Conversely, a negative interaction effect indicates reduced risk under 
the same conditions. For example, our analysis showed that patients with a substance use disorder 
who frequently use negative adjectives in their clinical notes are at an increased risk of suicide 38. 
In contrast, the presence of negative words has a less pronounced effect on patients without such a 
disorder. Another notable observation (Figure 3, Table 6) is that negative sentiments significantly 
elevate suicide risk among bipolar patients compared to those who are not bipolar, consistent with 
prior literature 39. These instances demonstrate how psychosocial constructs variably affect different 
patient groups, paving the way for future large-scale studies aimed at identifying novel intervention 
targets and enhancing preventive strategies in suicide risk management. 
     This study has several limitations that merit consideration and can inform future work. Firstly, 
while the predictive modeling results were aggregated across patient notes, the initial predictive 
modeling and interpretation were conducted at the individual note level. Surprisingly, models 
trained solely with patient characteristics / demographics (α=1) showed an AUROC greater than 
expected, given that they were matched based on REACH-VET percentile scores derived from these 
same characteristics. This outcome suggests two key insights: additional stratification of suicide risk 
within defined risk tiers can unearth predictive factors not captured by models trained exclusively 
on structured predictors across the entire population (i.e., effect modification by risk tier); 
furthermore, the design of XGBoost, which ensures non-zero selection probabilities for variables, 
allowed the inclusion of a small yet significant set of SÉANCE variables to bolster model 
predictiveness. We did not compare the usage of TreeSHAP to other interaction extraction 
approaches 40–42. Another limitation is that while the structured variables span over a year or more, 
the NLP variables are derived from observations within the past 30 days. Despite these observed 
limitations, the fundamental principles and broader findings of our research remain sound and valid. 
Another limitation is the statistical power to detect interactions, which may have been constrained 
by the limited sample size of this study. Future work aims to extend this analysis across a broader 
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temporal and demographic scope at the national level, which should incorporate a more diverse 
array of characteristics and potentially yield more robust findings above and beyond current suicide 
risk prediction approaches. Further external validation is limited by the focus on US veterans, and 
results may not generalize to other populations 43–46. It is common to train models on historical data 
and validate them on more recent data, which could have strengthened the validity of our findings. 
     It should also be noted that previous research has highlighted that increased care utilization 
significantly influences the REACH-VET scores used for matching and stratification by risk tier 12. 
Generally, more comprehensive data on Veterans can contribute to higher inferred suicide risk, 
whereas patients with less comprehensive records are typically assigned a lower risk. This 
variability in data completeness across different subpopulations underscores the need for our models 
to identify associations within these groups, especially since they may be differentially impacted by 
the extent of their record completeness 47–50. 
     Looking ahead, we plan to develop machine learning models that are not solely dependent on 
structured predictors for matching (i.e., randomly matched). This approach will allow us to 
potentially identify patterns that were previously obscured due to the biases introduced by data 
completeness. This could lead to more nuanced and effective predictive models that better address 
the diverse needs of all subgroups within the Veteran population. 
     The interpretation of findings from SÉANCE terms should be approached with caution 51,52. 
SÉANCE encompasses a diverse array of lexical variables, each with different standards and 
encompassing varying numbers of words. However, these terms face challenges in capturing the 
nuanced contexts in which these words are used, which can complicate the interpretation of these 
concepts beyond their mere mention. This limitation is akin to the current challenges faced in 
sentiment analysis, even with the incorporation of negation terms. Initially, we adopted a semantic 
database approach as a proof of concept for this method. While we plan to expand our analysis to 
include a “bag-of-words” approach that captures all words within the corpus, this method also has 
its limitations as it tends to disregard their context within sentences. Therefore, our future work will 
focus on employing deep learning techniques to mine for motifs and patterns that can capture more 
complex and nuanced narratives. This approach will allow us to better contextualize these constructs 
and understand their differential impacts, informing future interventions more effectively 53–58. 
     Furthermore, deep learning models offer the flexibility to weigh different forms of information—
including social determinants of health—on a patient-by-patient basis. They can also help identify 
critical timepoints for collecting notes that are most relevant to assessing suicide risk and 
determining optimal times for intervention. Our earlier work relied on count-based approaches, 
partly due to the limitations of computing resources available within the VA VINCI computing 
system. However, as advanced graphics processing units (GPU) systems become more accessible at 
the VA, we anticipate a shift towards more sophisticated deep learning approaches. 
 
5.  Conclusion 

In conclusion, this study demonstrates the potential of integrating structured and unstructured data 
sources to enhance the predictiveness of suicide risk models for Veterans. The nuanced insights 
gained from cross-modal interactions identified through this comprehensive approach can better 
appreciate the dynamic interplay between numerical data from electronic health records and rich, 
psychosocial constructures available in clinical notes. As we move forward, the incorporation of 
more advanced machine learning techniques, particularly deep learning, promises to further refine 
our predictive capabilities and offer more targeted, effective interventions and risk prioritization.  

Pacific Symposium on Biocomputing 2025

179



 
 

 

References 
1.  McCarthy JF, Cooper SA, Dent KR, Eagan AE, Matarazzo BB, Hannemann CM, Reger MA, 

Landes SJ, Trafton JA, Schoenbaum M. Evaluation of the recovery engagement and 
coordination for health–veterans enhanced treatment suicide risk modeling clinical program 
in the veterans health administration. JAMA network open. American Medical Association; 
2021;4(10):e2129900–e2129900.  

2.  Kessler RC, Hwang I, Hoffmire CA, McCarthy JF, Petukhova MV, Rosellini AJ, Sampson 
NA, Schneider AL, Bradley PA, Katz IR, Thompson C, Bossarte RM. Developing a practical 
suicide risk prediction model for targeting high‐risk patients in the Veterans health 
Administration. Int J Methods Psych Res. 2017 Sep;26(3):e1575.  

3.  McCarthy JF, Bossarte RM, Katz IR, Thompson C, Kemp J, Hannemann CM, Nielson C, 
Schoenbaum M. Predictive Modeling and Concentration of the Risk of Suicide: Implications 
for Preventive Interventions in the US Department of Veterans Affairs. Am J Public Health. 
American Public Health Association; 2015 Sep;105(9):1935–1942.  

4.  Leonard Westgate C, Shiner B, Thompson P, Watts BV. Evaluation of Veterans’ Suicide 
Risk With the Use of Linguistic Detection Methods. PS. 2015 Oct 1;66(10):1051–1056.  

5.  Poulin C, Shiner B, Thompson P, Vepstas L, Young-Xu Y, Goertzel B, Watts B, Flashman 
L, McAllister T. Predicting the risk of suicide by analyzing the text of clinical notes. PloS 
one. Public Library of Science San Francisco, USA; 2014;9(1):e85733.  

6.  Levis M, Westgate CL, Gui J, Watts BV, Shiner B. Natural language processing of clinical 
mental health notes may add predictive value to existing suicide risk models. Psychological 
medicine. Cambridge University Press; 2021;51(8):1382–1391.  

7.  Levis M, Levy J, Dufort V, Russ CJ, Shiner B. Dynamic suicide topic modelling: Deriving 
population‐specific, psychosocial and time‐sensitive suicide risk variables from Electronic 
Health Record psychotherapy notes. Clin Psychology and Psychoth. 2023 Jul;30(4):795–810.  

8.  Levis M, Levy J, Dufort V, Gobbel GT, Watts BV, Shiner B. Leveraging unstructured 
electronic medical record notes to derive population-specific suicide risk models. Psychiatry 
research. Elsevier; 2022;315:114703.  

9.  Levis M, Levy J, Dimambro M, Dufort V, Ludmer DJ, Goldberg M, Shiner B. Using natural 
language processing to evaluate temporal patterns in suicide risk variation among high-risk 
Veterans. Psychiatry Research. Elsevier; 2024;116097.  

10.  Levis M, Levy J, Dent KR, Dufort V, Gobbel GT, Watts BV, Shiner B. Leveraging natural 
language processing to improve electronic health record suicide risk prediction for Veterans 
Health Administration users. The Journal of clinical psychiatry. Physicians Postgraduate 
Press, Inc.; 2023;84(4):47557.  

11.  Department of Veterans Affairs, Department of Defense. Joint Department of Veterans 
Affairs (VA) and Department of Defense (DoD) Mortality Data Repository – National Death 
Index (NDI) [Internet]. 2017. Available from: 
https://www.mirecc.va.gov/suicideprevention/documents/VA_DoD-MDR_Flyer.pdf 

12.  Levis M, Dimambro M, Levy J, Dufort V, Fraade A, Winer M, Shiner B. Characterizing 
Veteran suicide decedents that were not classified as high-suicide-risk. Psychological 
Medicine. Cambridge University Press; 2024;1:1–10.  

13.  Crossley SA, Kyle K, McNamara DS. Sentiment Analysis and Social Cognition Engine 
(SEANCE): An automatic tool for sentiment, social cognition, and social-order analysis. 
Behav Res. 2017 Jun;49(3):803–821.  

Pacific Symposium on Biocomputing 2025

180



 
 

 

14.  Pennebaker JW, Mehl MR, Niederhoffer KG. Psychological Aspects of Natural Language 
Use: Our Words, Our Selves. Annu Rev Psychol. 2003 Feb;54(1):547–577.  

15.  Angioni M, Demonits R, Deriu M, Tuveri F. Semanticnet: a WordNetbased Tool for the 
Navigation of Semantic Information. Proceedings, GWC. 2008;21–34.  

16.  Das A, Bandyopadhyay S. Semanticnet-perception of human pragmatics. Proceedings of the 
2nd Workshop on Cognitive Aspects of the Lexicon [Internet]. 2010 [cited 2024 Jul 31]. p. 
2–11. Available from: https://aclanthology.org/W10-3402.pdf 

17.  Stone PJ, Dunphy DC, Smith MS. The general inquirer: A computer approach to content 
analysis. MIT press; 1966 [cited 2024 Jul 31]; Available from: 
https://psycnet.apa.org/record/1967-04539-000 

18.  Mohammad SM, Turney PD. CROWDSOURCING A WORD–EMOTION ASSOCIATION 
LEXICON. Computational Intelligence. 2013 Aug;29(3):436–465.  

19.  Mohammad S, Turney P. Emotions evoked by common words and phrases: Using 
mechanical turk to create an emotion lexicon. Proceedings of the NAACL HLT 2010 
workshop on computational approaches to analysis and generation of emotion in text 
[Internet]. 2010 [cited 2024 Jul 31]. p. 26–34. Available from: https://aclanthology.org/W10-
0204.pdf 

20.  Lasswell HD, Namenwirth JZ. The Lasswell value dictionary. New Haven. 1969;  
21.  Hutto C, Gilbert E. Vader: A parsimonious rule-based model for sentiment analysis of social 

media text. Proceedings of the international AAAI conference on web and social media 
[Internet]. 2014 [cited 2024 Jul 31]. p. 216–225. Available from: 
https://ojs.aaai.org/index.php/icwsm/article/view/14550 

22.  Hu M, Liu B. Mining and summarizing customer reviews. Proceedings of the tenth ACM 
SIGKDD international conference on Knowledge discovery and data mining [Internet]. 
Seattle WA USA: ACM; 2004 [cited 2024 Jul 31]. p. 168–177. Available from: 
https://dl.acm.org/doi/10.1145/1014052.1014073 

23.  Hu M, Liu B. Mining opinion features in customer reviews. AAAI [Internet]. 2004 [cited 
2024 Jul 31]. p. 755–760. Available from: https://cdn.aaai.org/AAAI/2004/AAAI04-119.pdf 

24.  Scherer KR. What are emotions? And how can they be measured? Social Science 
Information. SAGE Publications Ltd; 2005 Dec 1;44(4):695–729.  

25.  Urbanowicz RJ, Moore JH. Learning Classifier Systems: A Complete Introduction, Review, 
and Roadmap. Journal of Artificial Evolution and Applications. 2009 Sep 22;2009:1–25.  

26.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, 
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, 
Perrot M, Duchesnay É. Scikit-learn: Machine Learning in Python. Journal of Machine 
Learning Research. 2011;12(Oct):2825–2830. PMID: 34682092 

27.  Hoerl AE, Kennard RW. Ridge Regression: Applications to Nonorthogonal Problems. 
Technometrics. 1970 Feb;12(1):69–82.  

28.  Loh WY. Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery. 2011 Jan 1;1:14–23.  

29.  Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22Nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 
[Internet]. New York, NY, USA: ACM; 2016 [cited 2019 Nov 26]. p. 785–794. Available 
from: http://doi.acm.org/10.1145/2939672.2939785 

Pacific Symposium on Biocomputing 2025

181



 
 

 

30.  Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. Lightgbm: A highly 
efficient gradient boosting decision tree. Advances in neural information processing systems 
[Internet]. 2017 [cited 2024 Jul 31];30. Available from: 
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-
Abstract.html 

31.  Tan YV, Roy J. Bayesian additive regression trees and the General BART model. Statistics 
in Medicine. 2019;38(25):5048–5069. PMID: 31460678 

32.  Ranstam J, Cook JA. LASSO regression. British Journal of Surgery. 2018 Sep 
1;105(10):1348.  

33.  Levy JJ, O’Malley AJ. Don’t dismiss logistic regression: the case for sensible extraction of 
interactions in the era of machine learning. BMC Med Res Methodol. 2020 Jun 29;20(1):171. 
PMCID: PMC7325087 

34.  Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, 
Bansal N, Lee SI. From local explanations to global understanding with explainable AI for 
trees. Nature Machine Intelligence. 2020 Jan;2(1):56–67. PMID: 32607472 

35.  Lenth RV, Buerkner P, Giné-Vázquez I, Herve M, Jung M, Love J, Miguez F, Riebl H, 
Singmann H. emmeans: Estimated Marginal Means, aka Least-Squares Means [Internet]. 
2023 [cited 2023 Mar 1]. Available from: https://CRAN.R-project.org/package=emmeans 

36.  Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: an 
alternative to least squares means. The American Statistician. Taylor & Francis; 
1980;34(4):216–221.  

37.  Riblet NB, Matsunaga S, Lee Y, Young-Xu Y, Shiner B, Schnurr PP, Levis M, Watts BV. 
Tools to detect risk of death by suicide: A systematic review and meta-analysis. The Journal 
of clinical psychiatry. Physicians Postgraduate Press, Inc.; 2022;84(1):43891.  

38.  Harlow LL, Newcomb MD, Bentler PM. Depression, self-derogation, substance use, and 
suicide ideation: Lack of purpose in life as a mediational factor. Journal of Clinical 
Psychology. 1986;42(1):5–21.  

39.  Stange JP, Hamilton JL, Burke TA, Kleiman EM, O’Garro-Moore JK, Seligman ND, 
Abramson LY, Alloy LB. Negative cognitive styles synergistically predict suicidal ideation 
in bipolar spectrum disorders: A 3-year prospective study. Psychiatry Research. 2015 Mar 
30;226(1):162–168.  

40.  Agrawal R, Trippe B, Huggins J, Broderick T. The Kernel Interaction Trick: Fast Bayesian 
Discovery of Pairwise Interactions in High Dimensions. Proceedings of the 36th International 
Conference on Machine Learning [Internet]. 2019 [cited 2024 Sep 29]. Available from: 
https://proceedings.mlr.press/v97/agrawal19a.html 

41.  Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH. A Robust 
Multifactor Dimensionality Reduction Method for Detecting Gene–Gene Interactions with 
Application to the Genetic Analysis of Bladder Cancer Susceptibility. Annals of Human 
Genetics. 2011;75(1):20–28.  

42.  Tsang M, Cheng D, Liu Y. Detecting Statistical Interactions from Neural Network Weights. 
ArXiv [Internet]. 2017 May 14 [cited 2024 Sep 29]; Available from: 
https://www.semanticscholar.org/paper/Detecting-Statistical-Interactions-from-Neural-
Tsang-Cheng/5f85a8eaa7a1a1686f5a2bf721c63e337f03d8eb 

43.  Nock MK, Millner AJ, Ross EL, Kennedy CJ, Al-Suwaidi M, Barak-Corren Y, Castro VM, 
Castro-Ramirez F, Lauricella T, Murman N. Prediction of suicide attempts using clinician 

Pacific Symposium on Biocomputing 2025

182



 
 

 

assessment, patient self-report, and electronic health records. JAMA network open. American 
Medical Association; 2022;5(1):e2144373–e2144373.  

44.  Fernandes AC, Dutta R, Velupillai S, Sanyal J, Stewart R, Chandran D. Identifying suicide 
ideation and suicidal attempts in a psychiatric clinical research database using natural 
language processing. Scientific reports. Nature Publishing Group UK London; 
2018;8(1):7426.  

45.  Atmakuru A, Shahini A, Chakraborty S, Seoni S, Salvi M, Hafeez-Baig A, Rashid S, San 
Tan R, Barua PD, Molinari F. Artificial Intelligence-based Suicide Prevention and 
Prediction: A Systematic Review (2019-2023). Information Fusion. Elsevier; 2024;102673.  

46.  Bayramli I, Castro V, Barak-Corren Y, Madsen EM, Nock MK, Smoller JW, Reis BY. 
Temporally informed random forests for suicide risk prediction. Journal of the American 
Medical Informatics Association. Oxford University Press; 2022;29(1):62–71.  

47.  Barak-Corren Y, Castro VM, Javitt S, Hoffnagle AG, Dai Y, Perlis RH, Nock MK, Smoller 
JW, Reis BY. Predicting Suicidal Behavior From Longitudinal Electronic Health Records. 
AJP. 2017 Feb 1;174(2):154–162.  

48.  Bostwick JM, Pabbati C, Geske JR, McKean AJ. Suicide Attempt as a Risk Factor for 
Completed Suicide: Even More Lethal Than We Knew. AJP. 2016 Nov 1;173(11):1094–
1100.  

49.  Tanguturi Y, Bodic M, Taub A, Homel P, Jacob T. Suicide risk assessment by residents: 
Deficiencies of documentation. Academic Psychiatry. Springer; 2017;41:513–519.  

50.  Tsui FR, Shi L, Ruiz V, Ryan ND, Biernesser C, Iyengar S, Walsh CG, Brent DA. Natural 
language processing and machine learning of electronic health records for prediction of first-
time suicide attempts. JAMIA open. Oxford University Press; 2021;4(1):ooab011.  

51.  Rudin C. Stop explaining black box machine learning models for high stakes decisions and 
use interpretable models instead. Nature machine intelligence. Nature Publishing Group UK 
London; 2019;1(5):206–215.  

52.  Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for 
delivering clinical impact with artificial intelligence. BMC Med. 2019 Dec;17(1):195.  

53.  LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May;521(7553):436–444. 
PMID: 36774395 

54.  Sawhney R, Joshi H, Gandhi S, Shah R. A time-aware transformer based model for suicide 
ideation detection on social media. Proceedings of the 2020 conference on empirical methods 
in natural language processing (EMNLP) [Internet]. 2020 [cited 2024 Jul 31]. p. 7685–7697. 
Available from: https://aclanthology.org/2020.emnlp-main.619/ 

55.  Hsieh TY, Wang S, Sun Y, Honavar V. Explainable Multivariate Time Series Classification: 
A Deep Neural Network Which Learns to Attend to Important Variables As Well As Time 
Intervals. Proceedings of the 14th ACM International Conference on Web Search and Data 
Mining [Internet]. Virtual Event Israel: ACM; 2021 [cited 2024 Jul 31]. p. 607–615. 
Available from: https://dl.acm.org/doi/10.1145/3437963.3441815 

56.  Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, Melnikov A, 
Kliushkina N, Araya C, Yan S, Reblitz-Richardson O. Captum: A unified and generic model 
interpretability library for PyTorch. arXiv:200907896 [cs, stat] [Internet]. 2020 Sep 16 [cited 
2021 Feb 11]; Available from: http://arxiv.org/abs/2009.07896 

57.  Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. In: Guyon I, 
Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, editors. Advances 

Pacific Symposium on Biocomputing 2025

183



 
 

 

in Neural Information Processing Systems 30 [Internet]. Curran Associates, Inc.; 2017 [cited 
2019 Jun 9]. p. 4765–4774. Available from: http://papers.nips.cc/paper/7062-a-unified-
approach-to-interpreting-model-predictions.pdf PMID: 31050537 

58.  Grootendorst M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure 
[Internet]. arXiv; 2022 [cited 2024 Jul 31]. Available from: http://arxiv.org/abs/2203.05794 

 

Pacific Symposium on Biocomputing 2025

184



ReXamine-Global: A Framework for Uncovering Inconsistencies in Radiology
Report Generation Metrics

Oishi Banerjee1* Agustina Saenz1* Kay Wu1* Warren Clements2,† Adil Zia2,†

Dominic Buensalido2,† Helen Kavnoudias2,† Alain S. Abi-Ghanem3,† Nour El Ghawi3,†

Cibele Luna4,† Patricia Castillo5,† Khaled Al-Surimi6,† Rayyan A. Daghistani7,† Yuh-Min Chen8,†

Heng-sheng Chao8,† Lars Heiliger9,† Moon Kim9,† Johannes Haubold10,†

Frederic Jonske11,† Pranav Rajpurkar1

*Equal Contribution.
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
2Department of Radiology, Alfred Health, Melbourne, Victoria, Australia
3Department of Diagnostic Radiology, American University of Beirut, Beirut, Lebanon
4Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida, USA
5University of Miami / Jackson Memorial Hospital, Miami, Florida, USA
6Department of Healthcare Management, University of Doha for Science and Technology, Doha,
Qatar
7Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, Saudi Arabia
8Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
9Institute for AI in Medicine, University Hospital Essen, Essen, North Rhine-Westphalia, Germany
10Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital
Essen, Essen, North Rhine-Westphalia, Germany
11Department of Medical Machine Learning, Institute of AI in Medicine, University Medicine Essen,
Essen, North Rhine-Westphalia, Germany
†MAIDA Initiative Partners

Oishi Banerjee: oishi banerjee@g.harvard.edu
Agustina Saenz: ads006@mail.harvard.edu
Kay Wu: kay.wu@medportal.ca

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2025

185



Given the rapidly expanding capabilities of generative AI models for radiology, there is a
need for robust metrics that can accurately measure the quality of AI-generated radiology
reports across diverse hospitals. We develop ReXamine-Global, a LLM-powered, multi-site
framework that tests metrics across different writing styles and patient populations, expos-
ing gaps in their generalization. First, our method tests whether a metric is undesirably
sensitive to reporting style, providing different scores depending on whether AI-generated
reports are stylistically similar to ground-truth reports or not. Second, our method mea-
sures whether a metric reliably agrees with experts, or whether metric and expert scores
of AI-generated report quality diverge for some sites. Using 240 reports from 6 hospitals
around the world, we apply ReXamine-Global to 7 established report evaluation metrics
and uncover serious gaps in their generalizability. Developers can apply ReXamine-Global
when designing new report evaluation metrics, ensuring their robustness across sites. Addi-
tionally, our analysis of existing metrics can guide users of those metrics towards evaluation
procedures that work reliably at their sites of interest.

Keywords: radiology report generation; metrics; evaluation; generalization

1. Introduction

The capabilities of AI are rapidly expanding in the field of radiology, with recent generative AI models
comprehensively interpreting all aspects of radiology images and describing them in sophisticated
text reports [1, 2, 3, 4]. To compare models and efficiently track progress in this space, developers
rely heavily on automatic metrics that can efficiently score AI-generated radiology reports, measuring
the accuracy of their content. These metrics measure the similarity between AI-generated candidate
reports and ground-truth, radiologist-written reports; a candidate is assumed to be high-quality when
metrics show it is similar to the corresponding ground-truth report. However, there are concerns that
scores from commonly used metrics may not accurately evaluate the content of AI-generated reports,
thus providing a misleading impression of model performance [5]. Furthermore, automatic metrics
have historically been used to evaluate models trained on and tested against reports from a handful of
single-institution datasets [6, 7], and it is unclear whether they generalize well across diverse reports
from external sites.

In our work, we developed ReXamine-Global, a method for testing potential metrics across differ-
ent writing styles and patient populations and exposing gaps in their generalizability. Using ground-
truth reports from diverse hospitals, our method tests whether metrics are prone to two possible
failure modes. First, we test whether metrics are undesirably sensitive to reporting style. Specifically,
we explore whether they provide different scores depending on whether AI-generated reports are
stylistically similar to ground-truth reports (e.g. during internal validation, when the model is tested
against a familiar distribution) or not (as might occur during external validation, when model is
tested against an unfamiliar distribution). Second, we check whether metric scores correlate with
expert scores, with the expectation that an ideal metric would rank candidate reports exactly as
an expert would. Using reports from 6 hospitals in different countries, we applied ReXamine-Global
to test the generalizability of 7 established metrics for evaluating AI-generated radiology reports,
revealing flaws in existing metrics.

Our work makes two primary contributions:

(1) We introduced ReXamine-Global, a new method for testing how report evaluation metrics gener-
alize across diverse writing styles and patient populations. When creating new report evaluation
metrics, developers can apply our method to determine whether metrics are overly sensitive to
report-writing style or otherwise prone to poor generalization.

(2) By applying ReXamine-Global to 7 existing metrics, we uncovered gaps in the generalizability
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Fig. 1. ReXamine-Global tests how metrics generalize when used across distributions, with the goal
of uncovering two failure modes. First, we test whether automatic metrics are undesirably sensitive
to clinically irrelevant differences in report style, providing different scores depending on whether
candidates are stylistically similar to the ground truths. Next, we test whether metrics disagree with
expert scores, providing unreliable judgments at some sites. A successful metric would avoid both
failure modes.

of many popular metrics, with a GPT-4-based metric outperforming all other approaches. These
insights can help users of existing metrics design more reliable evaluation procedures for their
sites of interest.

2. Methods

The ReXamine-Global Framework

We proposed a LLM-powered framework for testing how a report evaluation metric performs across
different writing styles and patient populations:

(1) Multi-site data collection: Gather a diverse dataset of ground-truth reports from multiple
hospitals, representing a range of patient populations and writing styles.

(2) Standardization of ground-truth texts: Use a large language model (LLM) to rewrite the
original ground-truth reports in a standardized style, while preserving the original content.

(3) Generation of error-containing ‘candidate’ texts: Use a LLM to insert errors into stan-
dardized ground-truth reports. This step produces ‘candidate’ reports, representing outputs from
an imperfect radiology report generation model.

(4) Application of metric: Use the metric to compare two pairs of reports: 1.) each candidate
vs. its original ground-truth report (a stylistically different pair) and 2.) each candidate vs. its
standardized ground-truth report (a stylistically similar pair).

(5) Expert evaluation: Engage clinical experts to manually evaluate the candidate reports, com-
paring them against ground-truth reports and counting the number of errors.

(6) Assessment of metric consistency across styles: Test whether, for any site, the metric pro-
duces significantly different scores for “candidate-original” pairs and “candidate-standardized”
pairs. Ideally, a metric would always give a candidate the same score, regardless of whether it is
being compared against the original or standardized ground-truth report.
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Country Example Reports

Australia ECMO catheter via inferior vena cava, tip in
mid right atrium. Nasogastric tube in stomach.
Left internal jugular central line tip in left bra-
chiocephalic SVC junction. ETT 1 cm above ca-
rina. Left lower lobe collapse/consolidation. No
pneumothorax or pleural effusion.

ETT and pacemaker position. ETT tip 4 cm
from carina. Increased density in left hemitho-
rax consistent with pleural fluid collection. No
consolidation seen.

Germany Rightly inserted endotracheal tube. Gastric
tube subphrenically blanked out. Right tran-
sjugular CVC and sheath with tip projection
to superior vena cava. New delineable sternal
cerclages. Delineable clip material after mitral
valve replacement. Progressive ateal confluent
shading in left lung inferior field, mixed picture
of pleural effusion and decreased ventilation. In-
creasing inferior ventilation in right lung sub-
field. Minor congestion signs. No pneumotho-
rax.

Heart and mediastinum widened in supine posi-
tion. Patchy shadowing bipulmonary, likely due
to congestion, concomitant atypical infiltrates
cannot be excluded by projection radiography.
Clinical correlation required. No major pleural
effusion. No pneumothorax delineable in supine
position. Properly inserted endotracheal tube.
Transjugular CVC on right side with tip projec-
tion to superior vena cava. Gastric tube ending
in projection onto left upper abdomen.

Lebanon Mild pulmonary edema. Cardiomegaly with car-
diothoracic index of 0.57. No large pleural ef-
fusion or detectable pneumothorax. Single lead
pacemaker with intact lead terminating in right
ventricle topography. Chest wall intact.

Increase in left basal pleural effusion with over-
lying haziness likely related to basal atelectasis.
Right basal atelectatic bands. Right lung other-
wise clear. No detectable right pleural effusion.
Cardiac silhouette is in size.

Saudi Arabia Enlarged cardiac/pericardiac silhouette. Promi-
nent central pulmonary vasculatures and bron-
chovascular markings suggest pulmonary con-
gestion. Bilateral lower lung more of linear opac-
ities may reflect atelectatic changes although in-
fectious process not entirely excluded.

Left upper lobe atelectatic band otherwise un-
remarkable study.

Taiwan Elevated right hemidiaphragm, tracheal devi-
ated to Rt side. Right lung volume reduction is
considered. Consolidation over right upper lung
field, tumor growth cannot be r/o. R/o bullae
over right lung apex

Consolidation over right hemithorax, cause
to be determined. Lung consolidation change
and/or pleural effusion cannot be r/o. Trachea
slightly deviated to Rt side.

United States IMPRESSION: Lines, tubes, etc: None. Car-
diomediastinal silhouette: Within normal lim-
its. Mediastinum midline. Lungs: Questionable
subtle patchy right lower lung zone opacity
which could represent an infectious process in
the appropriate clinical setting, although lim-
ited due to overlying breast tissue summation.
Pleura: Bilateral costophrenic angles sharp. No
pneumothorax. Mild biapical pleural thicken-
ing/scarring. Bones/soft tissues: Unremarkable.

IMPRESSION:
Intact median sternotomy wires. Scattered sur-
gical clips projecting over heart. Cardiac sil-
houette top normal in size. Trachea and me-
diastinum midline. Mild tortuosity of descend-
ing thoracic aorta. Greater than expected den-
sity of midline lower mediastinum, could reflect
hiatal hernia, other lower mediastinal pathol-
ogy not entirely excluded. No significant edema.
No airspace consolidation. Mild asymmetric el-
evation of right hemidiaphragm. No appreciable
pleural effusion or pneumothorax, though lung
apex clipped from field-of-view. No aggressive
osseous lesion.

Table 1. Our dataset represents hospitals in 6 different countries, with reports that vary widely in
content, terminology and organization. For example, the reports from Germany were automatically
translated to English, resulting in atypical wording choices (e.g. “delineable”, “ateal”). Reports

from Taiwan heavily featured abbreviations (e.g. “Rt” for “right”), while reports from the United
States were longer than average, frequently containing several subsections. Variations such as these

can pose a challenge for automatic metrics.

(7) Assessment of metric agreement with expert scores: Test whether, for any site, the
metric’s scores fail to agree with expert scores. Ideally, metrics and experts will agree about
which reports are the highest- and lowest-quality at every site, regardless of ground-truth style.

Using this framework, we assessed 7 existing automatic metrics for report evaluation.

Dataset

To apply ReXamine-Global, we sampled reports from a private dataset containing chest X-ray reports
from around the world, with a focus on emergency departments and intensive care units. We selected
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reports that were either originally written in or translated into English. We included data from 6
hospitals in 6 different countries: United States, Saudi Arabia, Taiwan, Australia, Germany, and
Lebanon. We randomly sampled 40 reports from each hospital, resulting in a total dataset of 240
reports. We refer to these reports as “original ground-truth reports.”

These radiology reports represent different patient populations as well as different writing styles,
with marked differences in terminology, syntax and organization. For example, the reports from
Germany were automatically translated to English, leaving artifacts that can prove challenging for
automatic metrics. We give examples of these diverse reports in Table 1, which shows two examples
from each site.

2.1. Generation of Candidate Radiology Reports Using GPT-4

After choosing 240 cases, we created 240 candidate reports, representing AI generations requiring
evaluation. Our aim was to simulate outputs from an advanced but still flawed report generation
model trained on MIMIC-CXR, a dataset widely used in the field [8]. We used GPT-4 to produce
a candidate report based on each radiologist-written ground-truth report, using a two-step process
described further in Appendix A:

(1) Standardizing Style: Initially, GPT-4 was tasked with rewriting the ‘Findings’ and ‘Impres-
sion’ sections of an original ground-truth report, using an example from MIMIC-CXR as a style
guide. This step produced reports that preserved the original content but were written in a
standardized, MIMIC-based style. A clinical expert checked 10 randomly sampled reports to
ensure that this step did not meaningfully change report content. We refer to these reports as
“standardized ground-truth reports.”

(2) Introducing Errors: In the subsequent step, GPT-4 was instructed to deliberately introduce
a few errors into the paraphrased report, thereby producing the final candidate report. We
suggested several possible types of errors, such as the addition of a new finding, omission of an
existing finding, or modification of the size or severity of a finding (Figure 2).

Fig. 2. Using GPT-4, we first standardized the style of the ground-truth reports and then introduced
errors to create AI candidates. For details on our prompts, please see Appendix A.

2.2. Automatic Metrics

We examined seven existing automatic metrics used to judge the quality of AI-generated radiology
reports. We included two general-purpose metrics that are not specialized for medical text: BLEU-
2, which counts overlapping substrings in the ground-truth text and AI-generated text [9], and
BERTScore, which computes the similarity of embeddings produced by passing each text through
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a general-purpose BERT model [10] . Additionally, we considered clinical metrics such as CheXbert
vector similarity, which compares the similarity of embeddings produced by passing each text through
a specialized medical BERT model [11], and RadGraph-F1, which uses a specialized medical model
to extract a graph of medical entities and relations from each text and measures the similarity of
the graphs [12]. Additionally, we studied two versions of the RadCliQ metric, recently proposed
specifically for evaluating AI-generated reports [5]. RadCliQ-v0 and RadCliQ-v1 both use a machine
learning model to take in values from other metrics, such as BERTScore and CheXbert vector
similarity, and then produce a composite score based on these input values. Finally, we considered
FineRadScore, a recently proposed method that uses LLMs to perform a line-by-line comparison of
ground-truth and candidate reports [13]. In our implementation of FineRadScore, we used GPT-4 to
identify lines requiring corrections and treated the total number of problematic lines as the final score,
which we refer to FineRadScore-GPT-4. We use implementations of these metrics from previously
established repositories [14, 15].

2.3. Expert Evaluation

To obtain gold-standard measurements of candidate report quality, we conducted a manual evalua-
tion engaging both an internal medicine attending physician and a radiology resident. The evaluation
protocol was based on a scoring system adapted from the American College of Radiology [16] and
from prior research studies [5], designed to assess the clinical significance of discrepancies in report
interpretations. Errors were classified into seven independent categories: False prediction of finding;
Omission of finding; Incorrect location of finding; Incorrect position of finding; Incorrect severity of
finding. Mention of comparison that is not present in the reference impression; Omission of compari-
son describing a change from a previous study. We counted the total number of errors found in each
report to produce our final expert score, so lower-quality candidates receive higher scores. For this
study, each reviewer was assigned 120 unique reports, with an additional 10 reports each to assess
inter-rater agreement.

2.4. Experiments

We used our 7 automatic metrics and expert evaluation to compare two types of report pairs: (1)
the original ground-truth report vs. the AI candidate report, and (2) the standardized ground-truth
report vs. the AI candidate. We assessed how automatic metrics performed on these comparisons
using two approaches. First, we tested whether AI candidates received different scores when compared
against the standardized ground-truth report rather than the original ground-truth report; we assume
an ideal metric would be robust against clinically irrelevant stylistic variations and therefore give
the same scores in both experiments. Second, we tested whether metric scores agreed with expert
scores, as an ideal metric would provide the same ranking of a site’s reports as experts do. These
two approaches allowed us to compare how metrics behave when assessing reports with different
styles (original ground truth vs. AI candidate) and reports with similar styles (standardized ground
truth vs. AI candidate), as the standardized ground truth and AI candidate reports share a common
GPT-4-generated style.

To facilitate interpretation of our results, we standardized the directionality of all automatic
and human evaluation metrics, so that a higher score consistently indicates worse performance from
the report generation model. Originally, higher scores for BLEU-2, BERTScore, CheXbert vector
similarity, and RadGraph-F1 indicated better performance, while lower scores for RadCliQ and
FineRadScore-GPT-4 indicated better performance. To align all metrics so a higher score indicates
worse performance, we multiplied the scores of BLEU-2, BERTScore, CheXbert vector similarity,
and RadGraph-F1 by -1. This standardization makes it easier to compare our results across different
evaluation metrics.
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We employed two main statistical approaches to study the behavior of automatic metrics across
different countries and ground-truth styles. First, we conducted paired t-tests to determine whether
automatic metrics provide different scores depending on whether original or standardized ground-
truth reports are used. These tests were performed independently for each country to account for
potential regional variations. To address the issue of multiple comparisons in our t-test analyses, we
applied a Bonferroni correction to control the familywise error rate. The significance level α was set
at 0.05, and the Bonferroni-corrected threshold was calculated as α/n, where n is the total number
of paired t-tests conducted (number of metrics × number of countries = 42). Second, we calculated
Spearman’s rank correlation coefficients (ρ) to quantify the agreement between automatic metrics
and human evaluations for each country. This analysis was performed separately when using original
and standardized ground-truth reports, allowing us to assess how well our automatic metrics aligned
with human judgments across different ground-truth styles and geographical regions.

3. Results

3.1. Effect of Stylistic Differences on Metric Scores

We found that stylistic differences significantly impacted scores from all metrics, with the exception
of FineRadScore-GPT-4. Across all non-GPT metrics and countries, paired t-tests revealed signifi-
cant differences in scores depending on whether original or standardized ground-truth reports were
used (Bonferroni-corrected p < 0.05) (Table 2). BERTScore showed the highest mean t-statistics
across all countries (mean t-stat = -29.72, range: -17.24 to -37.09), indicating a substantial and
consistent difference in scores between the two report styles. FineRadScore-GPT-4 exhibited the
smallest t-statistics (mean t-stat = -1.07, range: -1.50 to -0.42) and was the only metric that did not
show significant differences for any country after Bonferroni correction. All t-statistics were negative,
indicating that comparisons between standardized ground truth reports and AI candidates consis-
tently yielded lower scores (i.e. indicating higher-quality AI candidates) compared to comparisons
between original ground-truth reports and AI candidates. In other words, metrics rated the AI model
as better-performing when the ground truth stylistically resembled the AI candidate. More details
on the distribution of metric and expert scores can be found in Appendix B.

Metric Mean t-stat Min t-stat Max t-stat Significant Countries

BLEU-2 [9] -27.23 -31.01 -20.60 6
BERTScore [10] -29.72 -37.09 -17.24 6
CheXbert Similarity [11] -6.29 -8.15 -3.97 6
RadCliQ-v0 [5] -20.50 -30.08 -11.20 6
RadCliQ-v1 [5] -22.23 -32.37 -12.77 6
RadGraph-F1 [12] -13.66 -19.18 -9.65 6
FineRadScore-GPT-4 [13] -1.07 -1.50 -0.42 0

Table 2. Negative t-statistics indicate that standardized ground truth-AI candidate pairs (similar
styles) consistently received lower scores than original ground truth-AI candidate pairs (different
styles). The magnitude of the t-statistic reflects the strength of this difference. The “Mean” value
gives the average t-statistic across all 6 countries, while the “Min” and “Max” t-stat values show
the lowest and highest values seen across the 6 countries. The “Significant Countries” column
indicates the number of countries (out of 6) where the metric showed a significant difference
between ground truth-AI candidate and standardized ground truth-AI candidate pairs after

Bonferroni correction. FineRadScore-GPT-4 is the only metric whose scores were not significantly
affected by the ground-truth style.
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Fig. 3. Except for FineRadScore-GPT-4, no metric achieved positive Spearman correlations with
expert scores at every site, indicating poor generalization. Correlations for original ground-truth
reports are shown in the black box plots (left). Correlations for standardized ground-truth reports
are shown in blue box plots (right). Metrics typically achieved higher performance with standardized
ground-truth reports than original ground-truth reports. For detailed numerical results, see the table
in Appendix C.

3.2. Correlation of Automatic Metrics with Expert Scores on Stylistically Diverse
Reports

When comparing original ground-truth reports against stylistically different candidates, metrics fre-
quently failed to align with experts (Figure 3). FineRadScore-GPT-4, the only metric using a LLM,
offered the best performance, with coefficients ranging from (ρ = 0.34 to 0.60). Despite achieving
positive correlations at some sites, each of the other metrics had negative coefficients for at least one
site. BLEU-2 showed especially poor performance, with Spearman’s rank correlation coefficients (ρ)
ranging from ρ = −0.20 to −0.48.

3.3. Correlation of Automatic Metrics with Expert Scores on Stylistically
Standardized Reports

After standardizing ground-truth reports to resemble the style of the candidates, metrics generally
showed better agreement with experts (Figure 3). For example, FineRadScore-GPT-4’s coefficients
rose across all sites, now ranging from ρ = 0.52 to 0.78. Despite similar increases, every other metric
still had a negative coefficient for at least one site, suggesting that metrics can fail to generalize even
after standardization. Notably, BLEU-2’s correlation coefficients remained consistently negative even
after standardization, ranging from ρ = −0.34 to −0.06.
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4. Discussion

ReXamine-Global, which tests report evaluation metrics across diverse distributions, successfully
revealed critical gaps in metric generalizability. By applying ReXamine-Global to 7 existing met-
rics, we found that most automatic metrics are undesirably sensitive to stylistic differences, giving
significantly different scores depending on the style of the ground-truth report. The only excep-
tion was FineRadScore-GPT-4, which used a powerful LLM to evaluate reports [13]. Furthermore,
we observed that automatic metrics of all kinds demonstrated, at best, moderate correlation with
expert opinions when using original ground-truth reports. Metrics generally attained better correla-
tions when comparing candidates against standardized ground-truth reports, opening the possibility
that preprocessing candidates and ground-truth reports to make them stylistically similar can im-
prove evaluation procedures. Importantly, we observed that metric behavior sometimes varied across
hospitals; for example, CheXbert Similarity’s correlations when comparing candidates and original
ground-truth reports ranged from -0.065 to 0.45. This finding shows the importance of including data
from a range of diverse hospitals.

The clear variability in metric performance across sites highlights important directions for future
work. ReXamine-Global automatically identifies extreme failure cases, surfacing candidate-report
pairs that could benefit from metric-specific, qualitative analysis to reveal concrete mechanisms
behind metric failure. We provide an example of such a qualitative analysis in Appendix D, manually
reviewing reports to identify specific scenarios where BLEU-2 and RadGraph-F1 perform poorly.
Furthermore, ReXamine-Global can guide the development of more robust report evaluation metrics,
capable of generalizing effectively across diverse healthcare settings. We also hope our work can warn
users about the risks of naively applying metrics to new distributions and help them choose high-
performing metrics for their specific sites of interest.

4.1. Limitations

While we utilized GPT-4 to generate standardized ground-truth and candidate reports, candidate re-
ports generated by other models may elicit different behavior from metrics, so a metric that performs
well on ReXamine-Global may generalize poorly to some other distribution of generated reports. In
addition, our manual evaluation scoring system did not encompass all possible error categories, po-
tentially overlooking some types of inaccuracies, and our evaluation was conducted by only two
physicians, which significantly limits the breadth and diversity of expert assessment. We also as-
sumed that the same number of errors is present regardless of whether the candidate is compared
against the original ground truth or the standardized ground truth, though it is possible that errors
were occasionally added or removed by GPT-4 during standardization. These constraints may have
introduced bias and reduced the robustness of our manual evaluation results. Ideally, each candidate-
report pair would be reviewed by multiple physicians from diverse specialties, with a third reviewer
to resolve discrepancies. This approach would provide a more comprehensive and reliable assessment
of report quality and error identification. A larger pool of reviewers would also make it possible to
conduct inter-rater reliability analyses, which could confirm the reliability of manual evaluation.
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8. Appendices

Appendix A. GPT-4 Instructions

We gave GPT-4 the following instructions when standardizing the style of our original ground-truth
reports:

Pretend you are a radiologist and format the content of these notes in a

polished findings and impressions section. Your findings section may be

long or short. Your impression should only have 1-3 lines. If you are

unsure about an abbreviation, term, or other odd phrasing, make your best

guess. Match the style of this radiology report:

Report:

Findings: Single frontal view of the chest demonstrates a right

Port-A-Cath in unchanged position, terminating at the cavoatrial junction.

Median sternotomy wires are present, along with surgical clips in the left

upper quadrant. The heart is mildly enlarged, but stable compared with

prior examinations, with redemonstration of calcified mediastinal lymph

nodes. A rounded opacity in the lower left lung likely correlates to a

calcified granuloma as seen on CT of the chest from ___. There is no

evidence of pneumonia, pleural effusion, pneumothorax or overt pulmonary

edema. The lung volumes are low, accentuating bibasilar atelectasis. No

subdiaphragmatic free air is present.

Impression: No subdiaphragmatic free air or other acute cardiopulmonary

process.

After standardizing the style of our reports, we used the following instructions to introduce errors,
producing the final candidate:

Please write a report using the above report as a template. Perturb the

content of a few existing lines. Here are some examples of how a line

could be changed:

- If the report says X condition is present, state that X condition is

absent.

- If the report rules out X condition, state that X condition is present.

- Change the location, size, severity, or implications of a condition.

Only perturb a few lines. Keep the other lines exactly the same. Your

report should still sound fluent, like a radiologist wrote it.
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Appendix B. Distribution of Metric and Expert Scores

This table gives more details on metric and expert scores per country. On average, metrics gave lower
scores when comparing AI candidates to standardized ground-truth reports, rather than to original
ground-truth reports.

Metric Ground Truth Australia Lebanon Taiwan
Saudi
Arabia

United
States

Germany

BLEU-2
Original

−0.23 ±
0.10

−0.25 ±
0.09

−0.17 ±
0.06

−0.13 ±
0.07

−0.24 ±
0.07

−0.20 ±
0.06

Standardized
−0.70 ±
0.13

−0.69 ±
0.11

−0.72 ±
0.11

−0.70 ±
0.12

−0.74 ±
0.13

−0.69 ±
0.13

BERTScore
Original

−0.47 ±
0.09

−0.52 ±
0.08

−0.41 ±
0.08

−0.43 ±
0.15

−0.49 ±
0.08

−0.44 ±
0.06

Standardized
−0.87 ±
0.07

−0.86 ±
0.06

−0.86 ±
0.06

−0.87 ±
0.06

−0.87 ±
0.08

−0.85 ±
0.08

CheXbert Similarity
Original

−0.69 ±
0.19

−0.64 ±
0.14

−0.70 ±
0.19

−0.57 ±
0.24

−0.66 ±
0.18

−0.65 ±
0.19

Standardized
−0.83 ±
0.17

−0.78 ±
0.15

−0.83 ±
0.14

−0.78 ±
0.16

−0.78 ±
0.19

−0.74 ±
0.18

RadCliQ-v0
Original

2.31 ±
0.65

2.09 ±
0.46

2.45 ±
0.52

2.64 ±
0.96

2.29 ±
0.61

2.55 ±
0.50

Standardized
0.83 ±
0.57

0.88 ±
0.48

0.77 ±
0.42

0.83 ±
0.57

0.83 ±
0.64

1.01 ±
0.47

RadCliQ-v1
Original

0.47 ±
0.41

0.30 ±
0.30

0.57 ±
0.32

0.70 ±
0.59

0.45 ±
0.39

0.64 ±
0.31

Standardized
−0.61 ±
0.39

−0.59 ±
0.32

−0.66 ±
0.27

−0.63 ±
0.39

−0.65 ±
0.43

−0.51 ±
0.32

RadGraph-F1
Original

−0.41 ±
0.12

−0.52 ±
0.10

−0.40 ±
0.11

−0.39 ±
0.17

−0.44 ±
0.13

−0.36 ±
0.11

Standardized
−0.65 ±
0.13

−0.68 ±
0.11

−0.69 ±
0.09

−0.69 ±
0.17

−0.71 ±
0.13

−0.66 ±
0.12

FineRadScore-GPT-4
Original

4.15 ±
1.00

3.73 ±
1.34

4.80 ±
1.51

3.60 ±
1.58

4.88 ±
1.68

4.60 ±
1.61

Standardized
3.92 ±
1.35

3.65 ±
1.10

4.47 ±
1.47

3.33 ±
1.42

4.58 ±
1.52

4.35 ±
1.44

Expert Errors Both
3.48 ±
1.71

3.15 ±
1.31

3.60 ±
1.45

2.38 ±
1.31

4.05 ±
1.50

3.65 ±
1.44

Table 3: Means and standard deviations of metrics and expert scores.

Appendix C. Full Correlation Results

This table gives detailed results about how metric scores were correlated with expert scores, across
sites and ground-truth report styles.

Metric Ground Truth Australia Lebanon Taiwan
Saudi
Arabia

United
States

Germany

BLEU-2
Original -0.48 -0.44 -0.35 -0.20 -0.31 -0.21
Standardized -0.10 -0.34 -0.06 -0.20 -0.23 -0.15

BERTScore
Original -0.26 -0.28 -0.07 -0.25 -0.11 0.17
Standardized 0.07 -0.33 -0.02 0.02 -0.17 -0.08

CheXbert Similarity
Original 0.24 -0.06 0.45 0.03 0.01 0.04
Standardized 0.36 -0.10 0.30 0.24 0.06 0.04

RadCliQ-v0
Original 0.06 -0.22 0.17 -0.00 -0.07 0.21
Standardized 0.35 -0.12 0.25 0.25 -0.05 -0.04

RadCliQ-v1
Original 0.00 -0.25 0.08 -0.01 -0.11 0.19
Standardized 0.30 -0.16 0.24 0.20 -0.09 -0.05

RadGraph-F1
Original -0.06 -0.27 -0.21 0.09 -0.20 0.21
Standardized 0.17 -0.14 0.30 0.24 -0.13 -0.06

FineRadScore-GPT-4
Original 0.56 0.59 0.51 0.60 0.43 0.34
Standardized 0.78 0.76 0.62 0.52 0.52 0.69

Table 4: Spearman correlations between metric and expert scores.
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Appendix D. Failure Modes of BLEU-2 and RadGraph-F1

By examining extreme failure cases where metrics gave particularly incorrect scores, we were able
to identify some qualitative reasons for metric failure. We focused on BLEU-2 and RadGraph-F1,
which represent the overlap between short phrases and clinically relevant keywords respectively, and
are more readily interpretable than other embedding-based approaches. To understand how BLEU-2
can fail, we studied reports from Australia, where BLEU-2 achieved its lowest correlation of -.48.
To understand how RadGraph-F1 can fail, we studied reports from Lebanon, where RadGraph-F1
achieved its lowest correlation of -.27.

In Table 5, we looked at cases where metrics marked reports as being high-quality, though experts
found many errors in them. We observed that these errors tended to affect only one or two words
in the report (e.g. “left” vs. “right”, “4.5” vs. “5”). As a result, these errors barely reduced the
overall scores from these metrics, which directly measure word or keyword overlap. Embedding or
LLM-based approaches may have been more capable of recognizing that these particular mismatches
had an outsized impact on the meaning of the report, even though they affected fairly few words.

Original Ground-Truth Report AI Candidate Metric
Score

Expert
Score

The ETT is 4.5 cm above the carina. A catheter
enters via right internal jugular approach, looped
in the lower portion of the right atrium and has
its tip in the right ventricle. This position is un-
usual and clinical correlation suggested. Mediasti-
nal and left basal chest drains noted. Nasogastric
tube has its tip in the body of the stomach. The
lungs are mildly congested. There is minor left
basal atelectasis. Minor blunting of the bilateral
costophrenic angles is in keeping with small pleu-
ral effusions. No pneumothorax.

Report: Findings: Assessment of the chest X-
ray reveals an endotracheal tube positioned 5
cm above the carina. A catheter is noted to en-
ter through the left internal jugular vein loop-
ing into the lower right atrium and ending in
the right ventricle, an unusual placement. Medi-
astinal and right basal chest drains are evident.
Nasogastric tube placement is accurate with its
tip located in the body of the stomach. Radio-
graphic evidence of moderate bilateral lung con-
gestion is observed along with minor presence of
right basal atelectasis. There is minor blunting
of the bilateral costophrenic angles suggestive of
small pleural effusions. A small pneumothorax
is identified. Impression: Unusual catheter posi-
tioning, presence of minor right basal atelecta-
sis, small bilateral pleural effusions, and identi-
fied pneumothorax. Clinical correlation recom-
mended.

BLEU-2:
-.42

6

No pleural effusion or detectable pneumothorax.
The cardiac silhouette is enlarged with a cardio-
thoracic ratio of 0.6. A coronary stent is noted
There is an impression of a rounded area of shad-
owing projecting over the mid aspect of the car-
diac silhouette on the PA projection and retro-
cardiac space on the lateral projection, that may
be related to a hiatal hernia, less likely a pul-
monary opacity. The rest of the lungs are clear.
No overt pulmonary oedema. No displaced rib
fracture. There is exaggerated kyphosis of the
thoracic spine with mild central loss of height of
few of the visualised vertebral bodies mainly in
the mid dorsal spine. Metallic hardware is noted
along the left humeral head and proximal shaft.
Comparison to previous studies if available is sug-
gested

Report: Findings: The X-Ray shows no dis-
cernible pneumothorax or pleural effusion. The
cardiac silhouette is normal-sized with a car-
diothoracic ratio of 0.4, and a coronary stent is
present. A pronounced area of shadowing is ob-
served over the mid aspect of the cardiac silhou-
ette on the PA projection and retrocardiac space
on the lateral projection. This may be related to a
hiatal hernia or more likely, a pulmonary opac-
ity. No signs of pulmonary oedema or rib frac-
tures are detected. The rest of the lungs appear
clear. A mild kyphosis of the thoracic spine is
noted with significant loss of height in several of
the visualised vertebral bodies, mainly in the up-
per dorsal spine. Metallic evidence is seen along
the right humeral head and proximal shaft. Im-
pression: Normal cardiac size and probable pul-
monary opacity noted. Suggest comparison with
previous studies for further evaluation.

RadGraph-
F1:-.62

5

Table 5. These candidates received low metric scores despite containing many errors. Errors are
highlighted in bold. Scores for these metrics have been multiplied by -1, so higher scores indicate

worse performance.

In Table 6, we examined cases where metrics marked reports as being low-quality, though experts
found few errors. Here, we found that stylistic differences in how normal findings were described
substantially impacted BLEU-2’s performance. In the first example, the predicted report was much
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longer than the ground-truth report, in part because it was more explicit in ruling out abnormalities
(“no additional abnormalities”, “no other acute cardiopulmonary conditions”). This discrepancy
reflects realistic variation among radiologists. Some radiologists may prefer concise reports which
imply that unmentioned abnormalities are absent, while other radiologists write longer reports that
clearly rule out many abnormalities. Unfortunately, BLEU-2 performed poorly when facing this
stylistic diversity and found little overlap due to the substantial difference in wording, even though
the ground truth and candidate conveyed nearly identical content.

RadGraph-F1 failed due to even subtler differences in writing style. The RadGraph pipeline
extracts keywords and labels them based on their function in the report, and the RadGraph-F1 score
quantifies how often the labeled keywords from the ground-truth and candidate reports match. While
the names of abnormalities and anatomical locations stayed largely consistent between the ground
truth and AI candidate, other differences in wording led to markedly different sets of keywords (e.g.
“within”, “acceptable”, and “range” vs. “normal”), causing RadGraph-F1 to indicate that these
reports do not match well. Additionally, we observed discrepancies in how the RadGraph model
labeled keywords across stylistically different reports. For example, “infiltrates” was labeled as being
“located at ‘pneumonic’” in the ground-truth report, yet it was labeled as “modifying ‘pneumonic’”
in the AI candidate, an inconsistency that further harmed RadGraph-F1’s performance.

Original Ground-Truth Report AI Candidate Metric
Score

Expert
Score

Bilateral lower hilar peribronchial thickening in
this setting is likely to represent bronchitis.

Report: Findings: The scrutinized chest X-ray ex-
hibits bilateral mid hilar peribronchial thicken-
ing. The pattern of these findings is frequently
seen in instances of bronchitis. No additional ab-
normalities or significant changes in comparison
to preceding examinations are identified. Impres-
sion: The noted markers are suggestive of bronchi-
tis. No other acute cardiopulmonary conditions
have been detected.

BLEU-2:
-.09

1

Impression No consolidation or definite
pneumonic infiltrates. No pneumothorax or
pleural effusion. The cardiomediastinal silhouette
is normal. The visualised bones are unremarkable.

Report: Findings: Single frontal view of the chest
shows evidence of consolidation and immedi-
ate pneumonic infiltrates. There are no signs
of pneumothorax or pleural effusion. The car-
diomediastinal silhouette falls within the accept-
able range. Evaluation of the visible bones does
not reveal any conspicuous anomalies. Impres-
sion: Chest X-ray exhibits acute cardiopul-
monary changes and still does not present any
bone abnormalities.

RadGraph-
F1:-.35

1

Table 6. These candidates received high metric scores despite containing almost no errors. Errors
are highlighted in bold. Scores for these metrics have been multiplied by -1, so higher scores

indicate worse performance.
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The emergent abilities of large language models (LLMs) have demonstrated great potential
in solving medical questions. They can possess considerable medical knowledge, but may
still hallucinate and are inflexible in the knowledge updates. While Retrieval-Augmented
Generation (RAG) has been proposed to enhance the medical question-answering capabili-
ties of LLMs with external knowledge bases, it may still fail in complex cases where multiple
rounds of information-seeking are required. To address such an issue, we propose iterative
RAG for medicine (i -MedRAG), where LLMs can iteratively ask follow-up queries based
on previous information-seeking attempts. In each iteration of i -MedRAG, the follow-up
queries will be answered by a vanilla RAG system and they will be further used to guide
the query generation in the next iteration. Our experiments show the improved performance
of various LLMs brought by i -MedRAG compared with vanilla RAG on complex questions
from clinical vignettes in the United States Medical Licensing Examination (USMLE), as
well as various knowledge tests in the Massive Multitask Language Understanding (MMLU)
dataset. Notably, our zero-shot i -MedRAG outperforms all existing prompt engineering and
fine-tuning methods on GPT-3.5, achieving an accuracy of 69.68% on the MedQA dataset.
In addition, we characterize the scaling properties of i -MedRAG with different iterations
of follow-up queries and different numbers of queries per iteration. Our case studies show
that i -MedRAG can flexibly ask follow-up queries to form reasoning chains, providing an in-
depth analysis of medical questions. To the best of our knowledge, this is the first-of-its-kind
study on incorporating follow-up queries into medical RAG.

Keywords: Large Language Models; Retrieval-Augmented Generation; Medical Question
Answering; AI for Healthcare.
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1. Introduction

Generative artificial intelligence (AI) technologies such as large language models (LLMs)
have brought a wide variety of opportunities for biomedical applications.1–4 For example,
they have shown great potential for answering biomedical questions,5–9 summarizing medical
documents,10–12 and matching patients to clinical trials.13–16 However, LLMs often generate
plausible-sounding but inaccurate content, an issue commonly known as “hallucination” in
the literature.17 They also possess outdated knowledge obtained from a fixed set of training
data.18 Retrieval-augmented generation (RAG) provides a lightweight post-training solution
to these issues by providing LLMs with relevant documents retrieved from up-to-date and
trustworthy sources.19,20

While there have been several medical applications of RAG, such as Almanac,21 Clinfo.ai,22

and MedRAG,23 their RAG component is mainly beneficial to questions that have direct
answers in a single document, such as those in the PubMedQA24 and BioASQ25 datasets.
However, only marginal improvements are seen with RAG for questions that require multiple
rounds of clinical reasoning like MedQA,26 a dataset curated from medical license examina-
tions. For example, to recommend a treatment for a patient with certain symptoms, a system
needs to first infer the potential diagnosis from the symptoms and then find a suitable treat-
ment for the diagnosis. Nevertheless, only one round of retrieval is conducted in the vanilla
RAG architecture, prohibiting multiple rounds of information seeking that are required in
complex clinical reasoning.

In this work, we propose i -MedRAG, a simple and effective framework for incorporating
follow-up queries into RAG. Specifically, we prompt LLMs to iteratively generate follow-up
queries to search for additional information from external medical corpora. The queries and
the corresponding answers generated with RAG will be used to augment the answer generation
of the original question. Empirical results demonstrate the effectiveness of i -MedRAG on both
open- and close-source LLMs, which show improved performance on the United States Medical
Licensing Examination (USMLE) subset of MedQA and medical questions from the Massive
Multitask Language Understanding (MMLU) dataset. Our further analysis of the number of
iterations and number of queries per iteration used in i -MedRAG reflects how its performance
scales with different settings. Additionally, we present several case studies of i -MedRAG,
showing how it overcomes the limitations in vanilla RAG to find the correct answers.

In summary, our contributions are three-fold:

• We introduce i -MedRAG, a novel RAG architecture that incorporates follow-up queries
to solve complex reasoning tasks.

• We have conducted comprehensive experiments on medical question answering, and
the results demonstrate that i -MedRAG not only outperforms vanilla RAG approaches
but also surpasses all other prompt engineering approaches on MedQA with GPT-3.5,
setting a new state-of-the-art performance of 69.68%.

• We also provide analyses to further characterize i -MedRAG, showing how its perfor-
mance varies with the scaling of follow-up queries.
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2. Related Work

2.1. Retrieval-Augmented Generation for Medicine

Retrieval-augmented generation (RAG) has been widely adopted in medicine. Here, we discuss
several representative approaches. Almanac21 is a system that augments LLMs with curated
resources for medical guidelines and treatment recommendations, which shows improvements
over the standard LLMs in six manually assessed metrics. Similarly, Low et al.27 demonstrate
the improvements of RAG-based systems for real-world clinical queries with manual evalua-
tion. Clinfo.ai22 is an open-source web application that answers clinical questions based on
retrieved scientific literature from PubMed articles. Xiong et al.23 conduct a benchmarking
study with the MedRAG toolkit, and show the benefits of RAG in several medical multi-choice
question answering datasets. There are also various biomedical literature search products28

that use RAG to summarize the retrieved articles,29 such as OpenEvidencea and ChatRWDb.
However, most of the RAG studies in medicine use the vanilla architecture with only one
round of retrieval. There have been several attempts to use iterative data refinement for LLM
training30 or RAG31–33 in the general domain. Nevertheless, similar ideas have not yet been
explored in the medical domain. To the best of our knowledge, our study presents the first
approach and evaluations on incorporating follow-up queries in RAG for medicine.

2.2. Medical Question Answering

Question answering tasks such as MedQA,26 PubMedQA,24 MedMCQA,34 BioASQ,25 and
Massive Multitask Language Understanding (MMLU)35 are commonly used to benchmark
the medical knowledge and reasoning capabilities of LLMs.36 Most of these datasets focus on
single-hop questions such as “what is the most common symptom of hypertension?”, while
only MedQA questions are longer patient vignettes where both medical knowledge and multi-
step reasoning are required. As such, there have been many studies working on improving the
GPT-3.5 performance on MedQA with prompt engineering. Figure 1 shows the comparison
among different representative prompt engineering approaches on MedQA, including chain-of-
thought (CoT) prompting,37 self-consistency (SC) prompting,38 multi-agent communication
with MedAgents,39 and RAG-based approaches such as Knowledge Solver (KSL),40 LLMs
Augmented with Medical Textbooks (LLM-AMT),41 and MedRAG.23 Much fewer studies
focus on prompt engineering with GPT-4 on MedQA,7,42 probably because the raw GPT-4
error rate43 is close to the noise rate in MedQA annotations.44 In this study, we focus on the
zero-shot setting as it reflects realistic clinical scenarios. While not requiring any instances for
training or few-shot learning, our approach surpasses all previous methods with GPT-3.5 on
the MedQA dataset.

3. Methods

Figure 2 shows the overview of our i -MedRAG and its comparison to the vanilla Retrieval-
Augmented Generation (RAG). Different from RAG, our i -MedRAG modifies its pipeline by

ahttps://www.openevidence.com/
bhttps://www.atroposhealth.com/chatrwd
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Fig. 1. Comparison of various methods proposed to improve GPT-3.5 performance on MedQA. Our
zero-shot i -MedRAG outperforms all previous prompt engineering and fine-tuning methods.

replacing the information retrieval step (Figure 2 left) with our proposed iterative question-
answering step (Figure 2 middle and right). The settings of RAG are described in Section 3.1
and the pipeline of our new i -MedRAG is discussed in Section 3.2. The details of the iterative
question answering are described in Section 3.3.

3.1. Retrieval-Augmented Generation

In the zero-shot setting of medical question answering, the task of LLM M is trying to find the
correct answer A given the question Q only. The ideal answer prediction Ã can be provided
by

Ã = argmax
A

PM(A | Q, inst.), (1)

where the “inst.” is the task instruction the user provides that instructs the model to perform
the task. As medical questions are knowledge-intensive,36 it benefits from accessing large-scale
external corpora to search for useful information.21–23 A typical method to combine LLM
reasoning with external corpora is RAG, which first retrieves relevant documents from the
corpus for the given medical question and enters the retrieved documents along with the
question into LLM to augment its answer generation. Formally, the RAG pipeline can be
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Fig. 2. Overview of i -MedRAG and its comparison to RAG (MedRAG). Left: the pipeline of
Retrieval-Augmented Generation (RAG). Middle: the pipeline of our proposed i -MedRAG. Right:
the iterative generation of question-specific medical query-answer (QA) pairs by asking follow-up
queries.

described as

Ã = RAG(Q;M,R,D) = argmax
A

PM(A | Q, inst., {di}Ni=1), (2)

where {di}Ni=1 are the question-specific retrieved documents given by

{di}Ni=1 = R(Q;D). (3)

Here R is the text retriever and D is the corpus with a collection of documents.

3.2. Iterative Retrieval-Augmented Generation

While RAG exhibits promising performance in medical question answering,23 it may be unable
to handle certain complex medical questions in real-world cases. As text retrievers are typically
trained to find relevant documents based on text similarity or lexicon overlap, they cannot
break down a complex question and search for relevant information in a step-by-step manner.
Thus, the inflexible retrieval step (Formula 3) in RAG may fail to analyze medical questions
and find useful information to augment the answer generation, especially in complex clinical
cases, where multiple rounds of information-seeking are required.

To address the issues mentioned, we propose to incorporate flexible information retrieval
by prompting LLMs to iteratively generate follow-up queries based on the given medical
question and previous information-seeking history. Moreover, as the context lengths of LLMs
are limited, it can be impractical and infeasible to include all retrieved documents in the
LLM context. Therefore, we prompt LLMs to directly answer the raised queries with relevant
information and use such query-answer pairs as the information-seeking history. The pipeline
of our proposed system can be formulated as

Ã = i-MedRAG(Q;M,R,D) = argmax
A

PM(A | Q, inst., {(qi, ai)}Ni=1), (4)
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where {(qi, ai)}Ni=1 are the queries and the corresponding answers generated by LLMs with the
help of RAG. The iterative process of query and answer generation will be detailed in Section
3.3.

3.3. Iterative Generation of Follow-up Questions

While the retrieved documents in RAG are determined by the question and the retrieval sys-
tem, we propose to incorporate the reasoning capabilities of LLMs in i -MedRAG by prompting
them to dynamically generate helpful queries in a step-by-step manner. Specifically, the LLM
will be encouraged to generate n different queries to help find useful additional information for
m iterations. In all iterations except for the first one, the model will be given the information-
seeking history to generate context-specific follow-up queries. The queries qi1, · · · , qin generated
in the i-th iteration can be formulated as

qi1, · · · , qin =


argmax
qi1,··· ,qin

PM(qi1, · · · , qin | Q, inst.′), if i = 1,

argmax
qic1,··· ,qin

PM(qi1, · · · , qin | Q, inst.′, {(qjk, ajk)}k=1,··· ,n
j=1,··· ,i−1), if i > 1.

(5)

Different from the “inst.” in Formula 2, the “inst.′” here is a modified instruction which
focuses on generating follow-up queries instead of answering the medical question. For each
query generation step, we prompt the LLM to analyze the existing information first and then
generate new queries for additional knowledge. The step-by-step “reason-then-query” pipeline
helps LLMs break down complex medical questions and find useful information from the
external corpus. The answer to each generated query is given by a RAG system mentioned in
Formula 2. This enables the system to leverage existing literature to provide grounded answers
for generated queries.

The overall algorithm of i -MedRAG is presented in Algorithm 1.

4. Experiments

4.1. Evaluation settings

To evaluate the performance of our proposed i -MedRAG on knowledge-intensive medical
question-answering tasks and compare it with other approaches, we select MedQA26 as the
testbed, which contains medical questions collected from United States Medical Licensing
Examination (USMLE). With complex clinical cases in the dataset, MedQA reflects the dif-
ficulty of decision-making in real-world clinical medicine. The approaches for comparison are
prompt engineering or fine-tuning methods that try to improve the performance of GPT-
3.5 on MedQA, including chain-of-thought (CoT) prompting,43 self consistency (SC), knowl-
edge solver (KSL),40 medical agents (MedAgents),39 LLMs augmented with medical textbooks
(LLM-AMT),41 medical retrieval-augmented generation (MedRAG),23 and LLMs with test-
time adaptations (MedAdapter).45

Additionally, we evaluate the generalizability of our i -MedRAG with more LLMs and
medical datasets. Llama-3.1-8B is selected as the representative of open-source models, which
has a context window of 128k tokens. We also include MMLU-Med, a set of six medical
tasks (anatomy, clinical knowledge, professional medicine, human genetics, college medicine,
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Algorithm 1 The algorithm of i -MedRAG for medical question answering

Input medical question Q, large language model M, text retriever R, medical corpus D, query
instruction “inst.′”, answer instruction “inst.”, hyperparameters m,n,N

Output answer prediction Ã
1: Initialize the information-seeking history H = emptylist()
2: for i in 1, 2, · · · ,m do
3: if i = 1 then
4: generate n new queries qi1, · · · , qin using M given Q
5: else if i > 1 then
6: generate n new queries qi1, · · · , qin using M given Q and H
7: end if
8: for j in 1, 2, · · · , n do
9: retrieve N relevant documents d1ij , · · · , dNij using R and D given qij
10: generate the answer aij using M given qij and d1ij , · · · , dNij
11: add the query-answer pair (qij , aij) to the list H
12: end for
13: end for
14: generate the predicted answer Ã using M given Q and H
15: return Ã

college biology) fromMassive Multitask Language Understanding (MMLU), following previous
studies.8,23 MMLU-Med serves as a testbed to show the performance of i -MedRAG on a variety
of different medical tasks.

Both MedQA and MMLU-Med are composed of multi-choice questions, whose evaluation
metric is the accuracy of predicted answers chosen from given options. For the retrieval part
in i -MedRAG, we select the Textbooks26 and Statpearlsc corpora introduced in MedRAG,23

which are shown effective on medical examination questions. MedCPT46 is chosen as the text
retriever, which has been trained on domain-specific literature. For other baselines compared,
the official settings described in their papers are used.

4.2. Main results

Table 1 shows the comparison results of i -MedRAG and other baseline approaches on MedQA
using GPT-3.5. Official scores reported in previous research are used for a fair comparison.
While methods with few-shot learning or model fine-tuning tend to perform better than the
ones in a zero-shot setting, our i -MedRAG set a state-of-the-art performance of GPT-3.5
on MedQA without any training samples or parameter tuning. Among zero-shot approaches,
i -MedRAG (69.68%) has a significant performance improvement (p < 0.05) compared to the
previous best record achieved by MedRAG (66.61%).

The results of generalizing i -MedRAG to more LLMs and data are presented in Table
2. We compare i -MedRAG with our implemented CoT and MedRAG to see if i -MedRAG

chttps://www.statpearls.com/
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Table 1. Performance of GPT-3.5 with different prompt engineering / fine-tuning methods on
MedQA. The “External Knowledge” column denotes if the method augments LLM generation with
information retrieval of external knowledge.

Method External Knowledge Setting Accuracy (%)

Chain of Thought43 No zero-shot 50.82
Knowledge Solver40 Yes zero-shot 58.40
Chain of Thought + Self Consistency39 No zero-shot 61.30
MedAgents39 No zero-shot 64.10
LLMs Augmented with Medical Textbook41 Yes zero-shot 65.00
MedRAG23 Yes zero-shot 66.61

Chain of Thought43 No five-shot 53.57
Chain of Thought + Self Consistency39 No five-shot 62.10
LLMs Augmented with Medical Textbook41 Yes fine-tuned 67.90
MedAdapter45 No fine-tuned 68.66

i-MedRAG (ours) Yes zero-shot 69.68

can bring a consistent improvement of LLM performance in medical question answering. For
all experiments with i -MedRAG, we tune the hyperparameters on a validation set of 100
samples and then report its scores on the test set. Similar to the results on GPT-3.5, the
open-source Llama-3.1-8B also shows improved performance on MedQA with the help of i -
MedRAG. While Llama-3.1-8B shows a close performance to GPT-3.5 in CoT and MedRAG
settings, its performance is significantly improved with i -MedRAG, achieving an accuracy
of 75.02%. The improved performance of GPT-3.5 and Llama-3.1-8B on MMLU-Med also
demonstrates the generalizability of i -MedRAG to more medical data. As medical questions
in MMLU-Med are less complex than the USMLE questions in MedQA, follow-up queries may
not be necessary to find relevant information for the given question. Thus, it can be observed
that the improvement by i -MedRAG compared to MedRAG is less significant in MMLU-Med
than in MedQA.

Table 2. Performance of i -MedRAG on different LLMs and datasets. “Acc.” denotes the ac-
curacy. “∆” shows the relative performance improvement compared with CoT.

Model Method
MedQA-USMLE MMLU-Med Average

Acc. ∆ Acc. ∆ Acc. ∆

GPT-3.5-Turbo CoT 65.04 +0.00% 72.91 +0.00% 68.98 +0.00%
GPT-3.5-Turbo MedRAG 66.61 +2.41% 75.48 +3.52% 71.05 +3.00%
GPT-3.5-Turbo i -MedRAG 69.68 +7.13% 75.85 +4.03% 72.77 +5.49%

Llama-3.1-8B CoT 64.73 +0.00% 77.23 +0.00% 70.98 +0.00%
Llama-3.1-8B MedRAG 66.54 +2.80% 78.05 +1.06% 72.30 +1.86%
Llama-3.1-8B i -MedRAG 73.61 +13.72% 78.42 +1.54% 76.02 +7.10%
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4.3. Scaling with iterations and queries

As we described in Section 3.3, the number of iterations to ask follow-up queries and the
number of queries generated in each iteration are the two critical hyperparameters in our
proposed iterative generation of follow-up queries. To explore how different selections of the
hyperparameter values affect the model performance, we run i -MedRAG with different settings
and compare their results. We test both GPT-3.5 and Llama-3.1-8B on MedQA and MMLU-
Med to examine if there are model-specific or task-specific patterns.

Figure 3 shows the model performance with different hyperparameter settings. Generally,
MedQA and MMLU-Med show distinct patterns in performance change with the increasing
number of iterations. While the performance of both GPT-3.5 and Llama-3.1-8B on MedQA
tends to improve with more iterations of follow-up queries, their performance on MMLU-Med
converges or starts to drop with just one or two iterations, corresponding to the different
complexities of these two tasks.

From the results on MedQA, it is also empirically shown that the number of generated
queries per iteration determines the rate of performance improvement and convergence over
multiple iterations. LLMs with more queries generated per iteration tend to have a larger
improvement in accuracy but also converge more quickly. Such a result is intuitively reasonable
as more information can be collected each iteration with more generated queries.

4.4. Case studies

Table 3 shows the predictions of GPT-3.5 on a MedQA question with different prompt engi-
neering approaches. The question asks about the mechanism of the drug for transitional cell
carcinoma of the bladder which causes hearing loss. To solve the problem, it is important to
find the exact drug and then figure out how it causes the mentioned symptoms. However, the
CoT result shows that GPT-3.5 does not inherently contain sufficient medical knowledge to
solve this problem. Instead of inferring the described drug, GPT-3.5 with CoT directly hal-
lucinates a wrong option as the answer. While free radicals are relevant to hearing loss, their
connection to the disease of the patient is unclear and not discussed. Compared to CoT which
solely relies on the internal knowledge of LLMs, MedRAG provides an opportunity for LLMs
to augment their answer generation with external medical knowledge. Nevertheless, the model
output shows that the MedRAG system fails to retrieve useful information about the drug
from medical corpora. Given the complex problem description, it is difficult for text retrievers
to find the asked mechanism without knowing the drug.

With iteratively generated follow-up queries, our i -MedRAG manages to identify the de-
scribed drug and find information about its mechanism. From Table 3, it can be observed
that GPT-3.5 starts with a general query about the asked mechanism. However, similar to
the case in MedRAG, the RAG system fails to provide useful information about the query.
With the information-seeking history, GPT-3.5 updates its actions with follow-up queries with
respect to side effects especially hearing loss. With the updated queries, it manages to identify
“cisplatin” as the drug which is not explicitly mentioned in the question. A query about the
mechanism of action of cisplatin is further proposed to search for information about the an-
swer to the original question. With several iterations of adaptive question answering, GPT-3.5
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Fig. 3. i -MedRAG performance on MedQA and MMLU-Med with different hyperparameters.

successfully finds the correct answer for the given clinical medical question.
Table 4 shows another case from the MMLU-Med dataset by Llama-3.1-8B. The case is

selected from the “professional medicine” subtask of MMLU-Med, which contains complex
clinical cases similar to those in MedQA. In the question, LLMs are asked to choose the next
step in diagnosis given the described symptoms, which requires the initial analysis of potential
diseases. Similar to GPT-3.5, the open-source Llama-3.1-8B may hallucinate wrong answers
with just CoT or MedRAG, as shown by the highlighted incorrect rationales in Table 4. With
iterative follow-up queries, i -MedRAG enables the LLM to find out the correct answer by
making specific queries given existing information. For example, Llama-3.1-8B asks about
the symptoms of Clostridium difficile infection (CDI) and diverticulitis in its first iteration
which helps it to identify diverticulitis as the potential disease for the diagnosis. In the second
iteration, the model queries about the CT scan for diverticulitis, where the answer provides
key information that helps it identify the correct next step.
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Table 3. An example of how i -MedRAG helps GPT-3.5 to find the correct answer. The incorrect
rationale and useful evidence are highlighted.

MedQA Question

0001: A 67-year-old man with transitional cell carcinoma of the bladder comes to the physician
because of a 2-day history of ringing sensation in his ear. He received this first course of neoadjuvant
chemotherapy 1 week ago. Pure tone audiometry shows a sensorineural hearing loss of 45 dB. The
expected beneficial effect of the drug that caused this patient’s symptoms is most likely due to which
of the following actions? A. Inhibition of proteasome, B. Hyperstabilization of microtubules, C.
Generation of free radicals, D. Cross-linking of DNA

CoT

Analysis: The patient is experiencing a ringing sensation in his ear, which is a symptom of tinnitus.
[...] Among the given options, the most likely mechanism of action that could cause sensorineural
hearing loss is the generation of free radicals. Free radicals can cause oxidative damage to the hair
cells and auditory nerve, leading to hearing loss. Therefore, the answer choice is C. Generation of
free radicals. Answer: C ✗

MedRAG

Retrieved documents: [...] Analysis: [...] To determine the mechanism of action of the drug
causing the symptoms, we need to identify the drug used for neoadjuvant chemotherapy. However,
the drug is not mentioned in the question stem or the provided documents. Without this informa-
tion, it is not possible to definitively determine the mechanism of action. Therefore, the answer
cannot be determined based on the given information. Answer: Cannot be determined. ✗

i-MedRAG

Query (Iteration 1): What is the mechanism of action of the neoadjuvant chemotherapy drug
used in transitional cell carcinoma of the bladder? Retrieved documents: [...]
Answer : Based on the provided documents, the mechanism of action of the neoadjuvant chemother-
apy drug used in transitional cell carcinoma of the bladder is not explicitly mentioned [...]
Query (Iteration 2): What are the potential side effects of neoadjuvant chemotherapy drugs used
in transitional cell carcinoma of the bladder? Retrieved documents: [...]
Answer : The potential side effects [...] include myelosuppression, dysuria, urinary frequency, con-
tact dermatitis, and systemic illness associated with granulomatous infections in multiple sites.
Query (Iteration 3): What is the specific neoadjuvant chemotherapy drug [...] that can cause
sensorineural hearing loss? Retrieved documents: [...]
Answer : The specific neoadjuvant chemotherapy drug used in transitional cell carcinoma of the
bladder that can cause sensorineural hearing loss is cisplatin.
Query (Iteration 4): What is the mechanism of action of cisplatin? Retrieved documents:
[...]
Answer : The mechanism of action of cisplatin is achieved through the covalent binding of platinum
to the purine bases guanine and adenine in DNA. This covalent binding leads to intra-strand and
inter-strand crosslinks causing subsequent strand breaks [...]
Final analysis: [...] The drug that is most likely responsible for the patient’s symptoms is cisplatin,
which is known to cause sensorineural hearing loss. The mechanism of action of cisplatin involves
cross-linking of DNA, leading to subsequent strand breaks and cell death. Therefore, the correct
answer is D. Answer: D ✔
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Table 4. An example of how i -MedRAG helps Llama-3.1-8B to find the correct answer. The incorrect
rationale and useful evidence are highlighted.

MMLU Question

professional medicine-020: A 52-year-old woman comes to the emergency department because
of a 1-week history of low-grade fever and increasing abdominal cramps that are exacerbated by
bowel movements [...] Her temperature is 38.1◦C (100.6◦F), pulse is 75/min, and blood pressure is
150/80 mm Hg [...] there is tenderness to palpation of the left lower quadrant with guarding but
no rebound [...] leukocyte count is 15,000/mm3 [...] Which of the following is the most appropriate
next step in diagnosis? A. Test of the stool for Clostridium difficile toxin B. Endoscopic retrograde
cholangiopancreatography C. Pelvic ultrasonography D. CT scan of the abdomen with contrast

CoT

Analysis: [...] the differential diagnosis includes diverticulitis, appendicitis, and bowel obstruction.
However, the absence of bloody stools and the patient’s response to antibiotics makes diverticulitis
less likely. Therefore, the most appropriate next step in diagnosis is to test for Clostridium difficile
toxin in the stool. Answer: A ✗

MedRAG

Retrieved documents: [...] Analysis: [...] Given the patient’s symptoms and history, the most
likely diagnosis is a pelvic abscess or a complication related to the previous surgery. The most
appropriate next step in diagnosis would be to investigate the pelvic area for any potential compli-
cations or abscesses. Answer: C ✗

i-MedRAG

Query 1 (Iteration 1): What are the common symptoms and diagnostic criteria for Clostridium
difficile infection (CDI)? Retrieved documents: [...]
Answer: [...]
Query 2 (Iteration 1): What are the typical findings on physical examination and laboratory
tests for diverticulitis? Retrieved documents: [...]
Answer: Based on the provided documents, the typical findings on physical examination and
laboratory tests for diverticulitis are: Physical Examination: Tenderness to palpation over the area
of inflammation (almost always present) [...] Fever is almost always present, but hypotension and
shock are uncommon. Laboratory Tests: Leukocytosis (elevated white blood cell count) [...]
Query 1 (Iteration 2): What are the typical imaging findings for diverticulitis on a CT scan of
the abdomen with contrast? Retrieved documents: [...]
Answer: [...] These findings are consistent with the diagnosis of diverticulitis, and are often used
to differentiate it from other conditions that may present with similar symptoms.
Query 2 (Iteration 2): What are the indications for surgical intervention in a patient with
diverticulitis? Retrieved documents: [...]
Answer: [...]
Final Analysis: [...] The patient’s laboratory results show a leukocyte count of 15,000/mm3,
indicating leukocytosis [...] The patient’s symptoms of abdominal cramps, fever, and leukocytosis,
combined with tenderness to palpation of the left lower quadrant, are consistent with diverticulitis
[...] the most appropriate next step in diagnosis is to perform a CT scan of the abdomen with
contrast to evaluate for diverticulitis and rule out other causes of her symptoms. Answer: D ✔
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5. Discussion

Overall, our proposed i -MedRAG effectively improves the performance of LLMs on complex
medical questions by prompting them to iteratively ask follow-up queries. The experimental
results show that our approach is better than previously proposed prompt engineering and
fine-tuning methods, and is generalizable to various LLMs and medical question-answering
datasets. Nevertheless, our approach has certain limitations which need to be discussed. It
is also worthwhile to discuss the future work of this study to analyze how it can be further
improved to facilitate real-world medical assistance.

5.1. Limitations

The first limitation of i -MedRAG is its high cost. While generating more follow-up queries
tends to provide LLMs with more comprehensive and focused information about the given
medical question, the cost also grows linearly with the number of queries generated. The time
cost can be further increased if more documents are used to help answer the generated queries
with RAG. While the cost is comparable to approaches using multiple LLM agents39 or self
consistency47 which also prompt LLMs multiple times for each question, it is much more costly
than baseline prompting methods such as CoT.37

Another limitation is the selection of hyperparameter values for optimal performance. As
shown in Figure 3, different LLMs can have different hyperparameter settings for their optimal
performance. Even for the same LLM, its optimal hyperparameters can vary based on the
medical questions being processed. Thus, it is non-trivial to find the optimal hyperparameters
of i -MedRAG for a new medical task, which may be inefficient for real-world deployments.

5.2. Future work

Given the limitations of i -MedRAG, we consider several potential future directions that could
further improve the performance of retrieval-augmented generation for medicine. The first
direction is the automation of hyperparameter selection in i -MedRAG. To reduce the laborious
process of hyperparameter selection, one may use an LLM agent to dynamically determine
how many follow-up queries should be asked each iteration. This can improve the efficiency
and flexibility of the hyperparameter selection process. Another future direction is to improve
the performance of i -MedRAG with few-shot demonstrations. While few-shot CoT prompting
is demonstrated to perform better than the zero-shot counterpart,43 it is not easy to adapt
such strategies to i -MedRAG as the reasoning process can be dynamically affected by the
use of external corpora and retrievers. Investigating how i -MedRAG can benefit from one or
few-shot samples could be a potential direction to further enhance its performance on medical
question answering. More quantitative analysis can also be performed to examine the error
types of i -MedRAG compared to existing methods.
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Artificial Intelligence (AI) algorithms showcase the potential to steer a paradigm shift in clinical 
medicine, especially medical imaging. Concerns associated with model generalizability and biases 
necessitate rigorous external validation of AI algorithms prior to their adoption into clinical 
workflows. To address the barriers associated with patient privacy, intellectual property, and diverse 
model requirements, we introduce ClinValAI, a framework for establishing robust cloud-based 
infrastructures to clinically validate AI algorithms in medical imaging. By featuring dedicated 
workflows for data ingestion, algorithm scoring, and output processing, we propose an easily 
customizable method to assess AI models and investigate biases. Our novel orchestration mechanism 
facilitates utilizing the complete potential of the cloud computing environment. ClinValAI’s input 
auditing and standardization mechanisms ensure that inputs consistent with model prerequisites are 
provided to the algorithm for a streamlined validation. The scoring workflow comprises multiple 
steps to facilitate consistent inferencing and systematic troubleshooting. The output processing 
workflow helps identify and analyze samples with missing results and aggregates final outputs for 
downstream analysis. We demonstrate the usability of our work by evaluating a state-of-the-art breast 
cancer risk prediction algorithm on a large and diverse dataset of 2D screening mammograms. We 
perform comprehensive statistical analysis to study model calibration and evaluate performance on 
important factors, including breast density, age, and race, to identify latent biases. ClinValAI 
provides a holistic framework to validate medical imaging models and has the potential to advance 
the development of generalizable AI models in clinical medicine and promote health equity. 

Keywords: Artificial Intelligence; Bias; Breast Cancer; Clinical Validation; Cloud Infrastructures; 
Generalizability; Medical Imaging 

Pacific Symposium on Biocomputing 2025

215



 
 

 

1.  Introduction 

Artificial Intelligence (AI) algorithms have demonstrated encouraging results in the field of 
biomedical signal1,2 and image3–11 processing, electronic health record (EHR) analysis12, and 
clinical text processing13 to provide improved diagnostic outcomes, early intervention strategies, 
and well-tailored patient-specific management options. The performance of AI algorithms has been 
on par with radiologists14 and even better in a few scenarios15.  

However, deep learning models are susceptible to generalizability challenges16. Diagnostic AI 
models have demonstrated deteriorated performance during independent evaluation on datasets 
reflecting real-world healthcare settings, especially for specific subpopulations17. The adoption of 
such algorithms can have critical implications for patients’ safety. Thus, large-scale independent 
external validation of AI models is imperative before adopting them into clinical workflows.  

Nevertheless, there are several barriers to robust evaluation. Since AI vendors are protective of 
their intellectual property, they may be unwilling to provide their algorithms to health institutions 
for validation, especially prior to their purchase. Per HIPAA guidelines, medical centers cannot 
share patient data with commercial organizations without their consent since it contains protected 
health information. Moreover, different AI algorithms have varying storage and computing 
requirements. Planning and budgeting for resources to cater to such varying needs can cause 
substantial financial and cognitive burdens on health systems evaluating multiple AI tools on-
premises for clinical adoption. Outsourcing clinical validation work to third-party services can be 
costly and involve legal and operational complications while sharing access to clinical data.  

To address the limited technical guidance on developing methods that can aid in monitoring the 
performance of AI in clinical medicine18, we propose ClinValAI – an open-source cloud-agnostic 
unified framework for establishing robust infrastructures to validate AI algorithms. We customize 
its functionalities for the clinical validation of AI models for medical imaging applications. Our 
work aims to enable medical institutions to rigorously evaluate models prior to their integration into 
clinical workflows. By leveraging our framework, healthcare institutions can screen data from large 
populations to accurately assess model generalizability and investigate latent biases.  

To demonstrate the capabilities of our framework, we used our ClinValAI-based cloud 
infrastructure to perform large-scale clinical validation of Mirai19, a state-of-the-art open-source 
mammography-based AI algorithm for breast cancer risk prediction. We comprehensively evaluate 
its generalizability on a large and diverse dataset of 26,449 2D screening mammography exams 
from 14,291 patients, demonstrating the reliability of our work in monitoring AI models and 
assessing algorithmic bias in healthcare settings. Our framework has the potential to improve a 
clinical institution’s AI model selection process to enhance patient care for their target population. 

2.  Methods 

The clinical validation of AI algorithms can be performed via on-premises as well as cloud-based 
infrastructures. While medical institutions traditionally trust on-premises setups with their patient 
data, challenges, including upfront resource investments, scalability issues, and maintenance 
overhead, can obstruct validation efforts. In contrast, the configurability of cloud-based storage and 
computational environments, their cost-effective setup and maintenance, built-in network security 
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and information recovery services, and rapid acquisition render cloud infrastructures an appealing 
choice for deploying and rigorously validating AI models on large datasets. ClinValAI can be 
leveraged to establish innovative, effective, and secure cloud-based validation infrastructures. 
Figure 1 details our conceptual framework for externally validating AI models in clinical medicine. 

Fig. 1.  Conceptual overview of the ClinValAI framework. 

2.1.  Preserving Patient Data Privacy 

Patient privacy and information security concerns constrain biomedical data sharing and stymie AI 
algorithm development and validation efforts20. ClinValAI leverages the “Model to Data” (MTD) 
paradigm21,22 to validate AI models on private biomedical data. Cloud infrastructure and 
containerization techniques form the foundation of the MTD framework. Rather than providing 
direct data access to the vendors, the Dockerized models are uploaded to the cloud host as containers 
encapsulating the AI algorithms, their dependencies, and other configuration settings required for 
successfully testing the models on the data stored in the cloud. To address intellectual property 
concerns, ClinValAI supports license files for Docker images, allowing AI vendors to control access 
to their AI models. Thus, ClinValAI enables health institutions to preserve patient data within a 
firewall and run models on medical imaging exams without providing vendors direct data access.  

2.2.  Data Pipeline Infrastructure 

ClinValAI features multiple computational pipelines for biomedical data processing and clinical 
validation of AI algorithms through a combination of series and parallel jobs.   

2.2.1.  Workflow Representation 

To comprehensively express the workflow design, we leverage the Workflow Description Language 
(WDL)23 due to its comprehensibility and cross-platform interoperability. WDL enables defining 
pipelines to process and analyze data. WDL necessitates an engine to execute its functionalities. Our 
proposed framework utilizes miniWDL24, a WDL execution engine for biomedical applications that 
functions as a job orchestrator for executing multiple data processing workflows in a parallel 
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fashion, depending on the available memory and computing resources. The customizability of 
ClinValAI’s workflow representation method bolsters its utilization for the clinical validation of AI. 

2.2.2.  Job Scheduling and Batch Processing Orchestration Mechanism 

Our framework is equipped with tools that provision compute instances and communicate with the 
miniWDL engine and a container job scheduling mechanism to automate infrastructure deployment 
(Figure 2). It can be further modified for more granular control over those pipelines. After the 
workflow submission, the WDL script is uploaded to cloud storage, and the job scheduling 
mechanism is invoked to run a miniWDL container, known as the “head” job container. ClinValAI 
implements data processing pipelines through the miniWDL engine operating on this container. The 
head job pulls the WDL script from the cloud storage and, per its instructions, directs the scheduling 
mechanism to spin up “task” job Docker containers that execute individual components of the 
workflow. ClinValAI enables the head job containers to spin up multiple sets of task job containers 
to achieve the parallel execution of computational steps. 

Fig. 2:  ClinValAI’s job scheduling and batch processing orchestration mechanism. 

For our case study on clinical validation of the Mirai algorithm for breast cancer risk prediction 
on screening mammograms, our ClinValAI-based cloud infrastructure ingests a set of compressed 
files, each representing a batch comprising multiple sub-folders corresponding to patients’ 
mammography exams. ClinValAI creates multiple execution streams for each set; all exams in one 
batch are processed serially by leveraging numerous task containers running sequentially. Exams in 
one batch are scored independently of other batches in a parallel fashion. Thus, ClinValAI’s data 
pipeline enables leveraging the full potential of the cloud computing environment. 

In addition to validating AI models using their Docker images, our framework supports 
customizing Linux Docker images to establish optimized workflows. Rather than dynamically 
pulling scripts from cloud storage at run-time, ClinValAI facilitates configuring the Docker images 
at build time. This approach avoids inadvertent version updates in the sequence of instructions 
during run-time, which could produce inconsistent results. While fetching scripts from cloud storage 
during run-time is more convenient, baking them into the Docker image enhances reliability. 

2.3.  Data Ingestion Workflow 

ClinValAI’s data ingestion workflow (Figure 3) is the first of the three stages in the framework. It 
comprises an input auditing and a data standardization mechanism.   
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Fig. 3.  ClinValAI’s data ingestion workflow ensures that inputs are consistent with model prerequisites. 

2.3.1.  Input Auditing Mechanism  

ClinValAI’s input auditing mechanism performs the vital task of verifying if the data can be 
processed and are aligned with the model’s prerequisites before initiating the scoring process. This 
can help ensure a sample size that preserves statistical power for meaningful analysis. Through a 
configured Docker image, it compares the uploaded data with a manifest file and algorithm-specific 
requirements to verify that the dataset is complete with all the required information. 

To validate Mirai, a manifest file comprising the accession numbers, data modality, the 
corresponding number of images in each exam, image laterality and projection, file sizes, etc., is 
created. The auditing logic checks for corrupted files, DICOMs with missing pixel array data, and 
unsupported manufacturing devices and monitors if the image metadata contains all the information 
required by the algorithm. For example, AI models for mammography interpretation may not be 
able to process images if view/projection (Cranio-Caudal (CC) or Medio-Lateral Oblique (MLO)) 
or laterality (left or right breast) information is missing from DICOMs. ClinValAI thoroughly 
analyzes the data to identify such inconsistencies and features a comprehensive input auditing 
mechanism to ensure a seamless external validation study. 

2.3.2.  Data Standardization 

Standardizing inputs before initiating AI inferencing is necessary if there is variation from multiple  
data sources or if a data source requires enrichment before algorithmic processing can take place. 
ClinValAI’s data standardization mechanism analyzes the findings of the input auditing logic and 
provides the feature of customizing the associated Linux Docker image to achieve data 
standardization and ensure the quality of the study data. 

For our validation study of Mirai’s performance, if a set of DICOMs is corrupted or missing 
pixel array information, the standardization mechanism does not pass them through the scoring 
workflow. Similarly, it removes images that do not match the study criteria – for example, deleting 
all the non-mammography images to ensure that only the acceptable modalities are included.  

One of the important aspects of ClinValAI’s data standardization mechanism is its ability to 
impute missing information. For example, if an image does not have laterality or projection 
information in the DICOM headers, the framework populates the DICOM metadata using the details 
from the manifest files. Moreover, if the required data is not available in the manifest file, it parses 
other descriptive DICOM headers to look for specific information for imputation. For example, AI 
algorithms for mammography interpretation expect laterality information in one of the 
ImageLaterality, Laterality, or FrameLaterality headers and projection information in the 
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ViewPosition header. If these tags are missing, ClinValAI’s data standardization mechanism 
analyzes other subjective headers like SeriesDescription to systematically impute laterality and 
projection information into their respective tags. Thus, ClinValAI can be customized to facilitate 
effective data cleaning and preprocessing, information imputation, and data standardization. 

2.4.  Scoring Workflow 

ClinValAI’s scoring workflow (Figure 4) is the second stage in the framework. It comprises a data 
restructuring, an algorithm inferencing, and a score extraction mechanism. 

 
Fig. 4.  ClinValAI’s scoring workflow ensures consistent inferencing and systematic troubleshooting. 

2.4.1.  Data Restructuring 

Various health institutions can organize patient data and medical images in different formats, 
requiring datasets to be systematized by patient ID, accession numbers, or date of collection. 
Different AI models can have their specific input structuring requirements. For example, a model 
may require all images from a patient to be in a single folder, while another may need additional 
sub-folders based on exam ID or modality. Different models may need varying numbers of images 
per exam – for instance, Mirai needs four standard 2D mammograms (CC and MLO views of the 
left and right breast), whereas some models can function even with unilateral exams. Some models 
can raise errors if inputs contain multiple images of the same view and laterality combination, while 
others can successfully score them. Moreover, some models can process 2D and 3D images 
simultaneously, while others can leverage separate Docker images depending on shape and 
modality. ClinValAI supports extensive data restructuring by enabling the customization of Docker 
images to account for model-specific variations by holistically analyzing the DICOM metadata and 
pixel array information, thereby establishing consistency between input and model criteria. 

2.4.2.  AI Algorithm Inferencing 

ClinValAI enables effective customization of AI algorithms’ Docker images to facilitate accurate 
scoring of exams. The Docker file is specified with the required environment variables and 
necessary scoring scripts, and the updated Docker image is used to spin up the AI model’s Docker 
container to execute algorithmic processing. Information about the computational requirements of 
the AI algorithms can be utilized to identify the appropriate compute instances to be specified in our 
framework. To work with asynchronous inferencing workflows, our framework also features a 
polling mechanism depending on the inference time of each algorithm to ensure that the compute 
instances are not stalled due to inconsistent data, node failures, or other issues. Furthermore, our 
framework provides the flexibility of incorporating additional steps, such as drafting a list of input 
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studies to be processed or creating corresponding output folders for storing final results, depending 
on the models’ prerequisites. Similarly, using our framework, we reconfigure Mirai’s open-source 
Docker image via programmatic steps to streamline its inferencing workflow. Thus, by facilitating 
multiple customization features, ClinValAI enables robust validation of AI algorithms. 

2.4.3.  Score Extraction 

After the completion of the scoring process, the model’s generated files need to be processed to 
retrieve specific outputs of interest, such as image-, exam-, or patient-level scores. Different AI 
algorithms have different ways of representing outputs. ClinValAI enables customizing the Linux 
Docker image to follow the modes and steps to extract scores from diverse formats – from flat files 
like comma-separated values (CSV) documents to highly nested DICOM Structured Reports (SRs) 
and JavaScript Object Notation (JSON) objects. Similarly, ClinValAI also facilitates the storage of 
supplementary files, such as annotations in processed images or heat maps, and associated model 
explanations, if available, to facilitate improved interpretation for radiologists. Moreover, this step 
also records and organizes logs specific to the algorithm and workflow. Thus, ClinValAI facilitates 
systematic troubleshooting, effective scoring, and rigorous clinical validation of AI algorithms.  

2.5.  Output Processing Workflow  

ClinValAI’s output processing workflow (Figure 5) is the third and final stage in the framework. It 
comprises an output auditing and an output aggregation mechanism.  

 
Fig. 5.  ClinValAI’s output processing workflow helps identify and analyze samples with missing results and 

aggregates final outputs for downstream analysis. 

2.5.1.  Output Auditing Mechanism 

Once the scoring workflow has been executed, ClinValAI performs the essential task of verifying 
if results have been produced for all the inputs and if the generated files comply with the algorithm’s 
expected outputs. Moreover, the framework facilitates examining if the required numeric values of 
interest, inference reports, and supplementary files can be extracted from the resulting outputs. 
ClinValAI identifies samples with missing output data, irretrievable scores, and corrupted output 
files to enable analysis of samples to be re-scored. If no outputs are generated for a patient’s exam, 
infrastructure-specific logs can be inspected to check for issues related to compute instances or 
customization of the Docker images. If scores cannot be extracted from the model’s output for an 
exam, algorithm-specific logs can be analyzed to check for inconsistencies and errors. Overall, 
ClinValAI facilitates a holistic output auditing mechanism for the streamlined validation of models.  
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2.5.2.  Output Aggregation Mechanism 

Outputs from individual workflows are hierarchically stored based on set number, batch number, 
and exam ID. Analyzing the complete dataset in the distributed format of cloud storage can be 
cumbersome. Before statistical analysis can be performed, ClinValAI systematically aggregates 
relevant details by appending all results to a relational database. After the completion of scoring 
workflows for all standardized batches of exams, the pipeline connects to the database and 
hierarchically uploads data from the audited results, supplementary files, and logs by inserting rows 
for every set, batch, and exam as demonstrated by the entity relationship diagram (Figure 6). During 
statistical analysis, this database is pulled to analyze findings. ExamIDs and Study UIDs (Unique 
Identifiers) are used to cross-reference the AI algorithm’s results and the attributes of interest. 

  
Fig. 6.  Entity Relationship Diagram for the aggregated output data. Abbreviations: URI=Uniform Resource Identifier; 

PK=Primary Key; FK=Foreign Key 
 
Thus, ClinValAI features multiple customizable workflows to establish optimized infrastructures 
for robust clinical validation of AI algorithms for medical imaging applications. 

3.  Evaluation and Results 

To evaluate the utility of our framework, we used our ClinValAI-based cloud infrastructure to 
perform a rigorous external validation of Mirai, a state-of-the-art deep learning algorithm that 
predicts future breast cancer risk across five years by processing the four standard views of a 2D 
digital mammogram – Cranio-Caudal and Medio-Lateral Oblique views of the left and right breast.  

3.1.  Patient Cohort 

All mammography screening exams from 2010-2014 performed across four imaging facilities in the 
University of Washington (UW) Medicine health system were reviewed for eligibility. Exams of 
women with age < 40 or ≥ 80 years, a personal history of breast cancer, or the presence of breast 
implants were excluded. Cancer outcomes at year 5 after every exam were collected via linkage to 
the Washington State cancer registry, which captures all breast cancers diagnosed within the state 
of Washington through December 31st, 2020, allowing for robust ground truth for all screening 
exams. Information on breast density and patient demographics, including age at the time of imaging 
and race, were obtained from the University of Washington Medicine electronic medical records. 
ClinValAI excluded exams with insufficient 2D screening images and processed 26,449 exams from 
14,291 patients to generate Mirai scores. A total of 543 exams (2.1%) were followed by a breast 
cancer diagnosis within five years (88 in year 1, 92 in year 2, 112 in year 3, 119 in year 4, and 132 
in year 5). Table 1 shows the patient characteristics. BI-RADS25 categories ‘heterogeneously dense’ 
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and ‘extremely dense’ correspond to dense breasts, and ‘almost entirely fatty’ and ‘scattered 
fibroglandular’ correspond to non-dense breasts. 

Table 1. Patient characteristics at each exam. 
   Breast Cancer within 5 years 
 All  Yes No 

Variable (n = 26,449)  (n = 543) (n = 25,906) 
Age     
    40-49 7,014 (26.5%)  114 (21.0%) 6,900 (26.6%) 
    50-59 9,431 (35.7%)  151 (27.8%) 9,280 (35.8%) 
    60-69 7,082 (26.8%)  171 (31.5%) 6,911 (26.7%) 
    70-79 2,922 (11.0%)  107 (19.7%) 2,815 (10.9%) 
Race     
    White 20,365 (82.6%)  460 (87.1%) 19,905 (82.5%) 
    Black 1,649 (6.7%)  31 (5.9%) 1,618 (6.7%) 
    Asian 2,394 (9.7%)  33 (6.2%) 2,361 (9.8%) 
    Other 241 (1.0%)  4 (0.8%) 237 (1.0%) 
    Unknown 1,800  15 1,785 
Breast density     
    Not dense 11,659 (44.1%)  216 (39.8%) 11,443 (44.2%) 
    Dense 14,786 (55.9%)  327 (60.2%) 14,459 (55.8%) 
    Unknown 4  0 4 

Values are number (%). 

3.2.  Statistical Analysis 

A mammography exam was used as the unit of analysis. Nonindependence of multiple exams from 
the same women was accounted for in calculations of 95% confidence intervals (CIs) and p-values 
by using generalized estimating equations (GEE) or the nonparametric bootstrap, clustered by 
woman26. The Mirai algorithm provides cumulative risk predictions for years 1-5 following the 
index examination. The outcome used for evaluating the performance of Mirai was the 
presence/absence of a cancer diagnosis at each timeframe. The discrimination performance of Mirai 
was evaluated using receiver operating characteristic (ROC) curves, the area under the ROC curve 
(AUC), and Uno’s concordance index (c-index) as an overall summary over the 5-year timeframe27. 
The calibration of Mirai was evaluated using calibration plots and corresponding summaries of 
overall calibration (calibration-in-the-large) and the calibration slope28. To help distinguish between 
breast cancer detection vs. risk prediction performance, we performed the analyses using all 
available exams and then repeated the analyses after excluding exams that had a breast cancer 
diagnosis within six months. All statistical analyses were conducted using R (version 4.3, R 
Foundation for Statistical Computing, Vienna, Austria). All hypothesis tests were two-sided, with 
statistical significance defined as p < 0.05. 

3.3.  Discrimination Performance 

AUCs ranged from 0.81 (95% CI: 0.75-0.86) for 1-year cancer outcomes with the 1-year Mirai 
scores to 0.70 (95% CI: 0.0.67-0.72) for 5-year cancer outcomes with the 5-year Mirai scores when 
including all examinations (Figure 7, Table 2). The c-index was 0.70 (95% CI: 0.67-0.72). After 
excluding 70 exams with a cancer diagnosis within six months, the AUC was 0.72 (95% CI: 0.56-
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0.84) at 1 year and 0.68 (95% CI: 0.65-71) at 5 years, while the c-index was 0.68 (95% CI: 0.65-
0.70). These values were more similar to previously reported results in other cohorts19,29 after 
applying the same type of exclusion (Table 2)29, though they were still on the lower end of the range.  

 
Fig. 7. Discrimination performance of Mirai. Panel A: ROCAUC values over time and the overall c-index. The orange 
values are based on all exams, and the blue values are after excluding cancers within six months. Error bars represent 

95% CIs. Panel B: ROC curves at different time points based on all exams. Panel C: ROC curves at different time 
points after excluding cancers within six months. 

 
Table 2. Discrimination performance of Mirai in the University of Washington and 7 previously reported cohorts. 

 1-Year AUC 
(95% CI) 

5-Year AUC 
(95% CI) 

C-index 
(95% CI) 

All Exams    
    University of Washington, USA 0.81 (0.75-0.86) 0.70 (0.67-0.72) 0.70 (0.67-0.72) 
    MGH, USA19 0.84 (0.80-0.87) 0.76 (0.73-0.79) 0.75 (0.72-0.78) 
    Novant, USA29 0.78 (0.73-0.84) 0.75 (0.70-0.80) 0.75 (0.70-0.80) 
    Emory, USA29 0.83 (0.81-0.86) 0.76 (0.74-0.79) 0.77 (0.75-0.79) 
    Maccabi-Assuta, Israel29 0.86 (0.81-0.91) 0.75 (0.71-0.79) 0.77 (0.73-0.81) 
    Karolinska, Sweden19 0.90 (0.89-0.92) 0.78 (0.76-0.80) 0.81 (0.79-0.82) 
    CGMH, Taiwan19 0.90 (0.87-0.93) 0.79 (0.75-0.82) 0.79 (0.76-0.83) 
    Barretos, Brazil29 0.89 (0.86-0.93) 0.82 (0.78-0.86) 0.84 (0.81-0.88) 
Excluding Cancers within 6 Months    
    University of Washington, USA 0.72 (0.56-0.84) 0.68 (0.65-0.71) 0.68 (0.65-0.70) 
    MGH, USA19 0.71 (0.60-0.84) 0.71 (0.68-0.75) 0.69 (0.66-0.73) 
    Novant, USA29 N/A 0.72 (0.66-0.79) 0.72 (0.66-0.79) 
    Emory, USA29 0.74 (0.66-0.84) 0.71 (0.68-0.74) 0.69 (0.66-0.72) 
    Maccabi-Assuta, Israel29 N/A 0.68 (0.62-0.74) 0.70 (0.64-0.76) 
    Karolinska, Sweden19 N/A 0.71 (0.69-0.73) 0.71 (0.69-0.74) 
    CGMH, Taiwan19 0.84 (0.72-0.99) 0.70 (0.66-0.75) 0.70 (0.66-0.75) 
    Barretos, Brazil29 0.87 (0.80-0.94) 0.75 (0.70-0.80) 0.78 (0.74-0.83) 

MGH = Massachusetts General Hospital; CGMH = Chang Gung Memorial Hospital. 
 

 
Fig. 8. Discrimination performance of Mirai within subgroups. Error bars: 95% CIs. Dashed line: AUC = 0.50. 
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Discrimination, as measured by the overall c-index, was also examined within subgroups 
defined by age, race, and breast density, as shown in Figure 8. There were no statistically significant 
differences in the c-index between subgroups (unadjusted p > 0.094 for each comparison). 

3.4.  Calibration Performance 

Calibration plots for Mirai risk predictions versus observed at different timeframes are shown in 
Figure 9. The corresponding metrics of overall calibration (observed risk minus mean predicted risk) 
and the calibration slope are shown in Table 3. When all exams are included, the metrics indicated 
significantly overestimated risk in years 1-2 (overall calibration: -0.15% to -0.10%, p < 0.014 for 
both), but that Mirai was overall reasonably well calibrated for the later years, where the 95% CIs 
for overall calibration included zero (no difference between observed and predicted risk on average) 
and the 95% CIs for the calibration slope included 1 (predictions were not more or less extreme 
[farther from the mean] than observed on average).  

 
Fig. 9. Calibration plots of Mirai with all exams included, with predicted risks grouped into deciles of approximately 
equal size. Error bars represent 95% CIs. The dashed line corresponds to perfect calibration (intercept = 0, slope = 1). 
 

Table 3. Calibration statistics for Mirai. 
 All Exams  After Excluding Cancers within 6 Months 
 Overall Calibration*  Calibration Slope†  Overall Calibration*  Calibration Slope† 
Timeframe Estimate (%) (95% CI)  Estimate (95% CI)  Estimate (%) (95% CI)  Estimate (95% CI) 
1-year risk -0.10 (-0.17, -0.03)  0.83 (0.52, 1.22)  -0.36 (-0.39, -0.32)  0.05 (0.00, 0.12) 
2-year risk -0.15 (-0.25, -0.04)  0.76 (0.51, 1.06)  -0.40 (-0.48, -0.32)  0.21 (0.08, 0.36) 
3-year risk -0.13 (-0.29, 0.03)  0.89 (0.60, 1.20)  -0.38 (-0.53, -0.26)  0.40 (0.20, 0.63) 
4-year risk -0.05 (-0.25, 0.14)  0.90 (0.63, 1.20)  -0.31 (-0.49, -0.12)  0.50 (0.27, 0.76) 
5-year risk 0.09 (-0.15, 0.33)  1.03 (0.75, 1.32)  -0.16 (-0.38, 0.07)  0.66 (0.44, 0.91) 

*Observed risk minus mean predicted risk; a value > 0 indicates the prediction under-estimated risk on average, and a 
value < 0 indicates the prediction over-estimated risk. 
†A well-calibrated model has a calibration slope of 1; slope > 1 indicates that high predictions tended to underestimate 
risk (not high enough) and low predictions tended to overestimate risk (not low enough); slope < 1 indicates predictions 
tended to be more extreme than observed (high values too high and low values too low). 

 
When exams with cancer diagnoses within six months were excluded, the calibration metrics 

substantially worsened (Table 3). Overall, Mirai significantly overestimated risk, more so at earlier 
timeframes (overall calibration: -0.40% to -0.36% in years 1-2 and -0.31% to -0.16% in years 4-5), 
and the calibration slopes were significantly less than 1 at all timeframes (calibration slopes: 0.05 
to 0.66, p < 0.012 across years). 

Thus, ClinValAI enabled the establishment of an effective cloud infrastructure to successfully 
perform the clinical validation of Mirai on a large and diverse dataset to study its generalizability.  
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4.  Discussion 

We introduce ClinValAI to promote the external clinical validation of AI algorithms on medical 
imaging exams, thereby providing the opportunity to reliably understand their real-world 
performance in healthcare settings and their impact on patient care, health, and safety. Our 
framework can be leveraged to evaluate the generalizability of deep learning models on healthcare 
data from diverse demographics to analyze the differences in performance across various sub-
populations and identify biases. ClinValAI can facilitate the detection of models’ failure modes and 
enable an understanding of AI’s potential to function as a standalone tool for diagnostic applications.  

An important consideration while using our work is the requirement to specify necessary 
programmatic steps while configuring Docker images to execute individual mechanisms. However, 
ClinValAI’s multiple customizable features enhance its usability for validating AI models.  

Our presented analysis is limited to just one deep learning algorithm. As a next step, we plan to 
leverage ClinValAI to perform a rigorous external validation study of Mirai and three commercial 
AI algorithms for breast cancer risk prediction on a large and diverse dataset of ≥ 40,000 
mammograms from seven registries affiliated with the Breast Cancer Surveillance Consortium 
(BCSC). Utilizing our framework for this study will enable the evaluation of model performance at 
the woman, exam, and tumor levels, facilitating a comprehensive assessment of the generalizability 
of AI models. While we showcase ClinValAI’s usability for medical imaging models, our work can 
be extended to validate AI models for various biomedical data modalities.   

Finally, ClinValAI is equipped to provide opportunities to periodically retest performance. 
Vendors can analyze performance based on detailed findings from the results communicated by our 
framework. This encourages the development of explainable models to better reason performance, 
thereby enhancing the potential of receiving clinicians’ trust. The streamlined feedback mechanism 
can support targeted algorithm fine-tuning efforts. This can foster enhanced academic-industry 
partnerships. The continuous monitoring feature enables analyzing variations in model performance 
vis-à-vis data drift and model drift. Overall, ClinValAI can pave the way for studying the capabilities 
of AI algorithms in optimizing clinical workflows and reducing the burden on the medical fraternity. 
ClinValAI’s codebase and scripts for statistical analysis can be accessed here: 
https://github.com/OjasRamwala/ClinValAI. 

5.  Conclusion 

The rise in commercial AI algorithms in clinical medicine and the associated generalizability 
concerns make rigorous validation indispensable to the clinical translation of AI tools. ClinValAI 
addresses critical challenges associated with external validation efforts and provides an easily 
customizable and cloud-agnostic framework to build scalable infrastructures to audit and monitor 
AI algorithms. By enabling large-scale external validation efforts on data from diverse cohorts, our 
work has the potential to foster health equity and overcome health disparities by promoting the 
development of robust, interpretable, and generalizable AI algorithms for healthcare applications. 

Pacific Symposium on Biocomputing 2025

226

https://github.com/OjasRamwala/ClinValAI


 
 

 

Acknowledgments 

This work was funded in part by the National Cancer Institute (grants P01CA154292, 
R01CA262023, R37CA240403, and R37CA292399), the American Cancer Society (grant 21-078-
01-CPSH), the University of Washington Institute of Medical Data Science Pilot Award, an Amazon 
Web Services Health Equity Award, and the Intramural Research Program of the National Human 
Genome Research Institute, National Institutes of Health. 

References 
1. Parmar, S. K., Ramwala, O. A. & Paunwala, C. N. Performance Evaluation of SVM with Non-

Linear Kernels for EEG-based Dyslexia Detection. in 2021 IEEE 9th Region 10 Humanitarian 
Technology Conference (R10-HTC) 1–6 (2021). doi:10.1109/R10-HTC53172.2021.9641696. 

2. Ramwala, O. A., Paunwala, C. N. & Paunwala, M. C. GRU-Based Parameter-Efficient Epileptic 
Seizure Detection. in Biomedical Signal and Image Processing with Artificial Intelligence (eds. 
Paunwala, C. et al.) 73–86 (Springer International Publishing, Cham, 2023). doi:10.1007/978-
3-031-15816-2_4. 

3. Fatemi, M. et al. Inferring spatial transcriptomics markers from whole slide images to 
characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study. J. 
Pathol. Inform. 14, 100308 (2023). 

4. Schopf, C. M. et al. Artificial Intelligence-Driven Mammography-Based Future Breast Cancer 
Risk Prediction: A Systematic Review. J. Am. Coll. Radiol. (2023). 

5. Ramwala, O. A., Dhakecha, S. A., Ganjoo, A., Visiya, D. & Sarvaiya, J. N. Leveraging 
Adversarial Training for Efficient Retinal Vessel Segmentation. in 2021 13th International 
Conference on Electronics, Computers and Artificial Intelligence (ECAI) 1–6 (2021). 
doi:10.1109/ECAI52376.2021.9515093. 

6. COVID-19 Diagnosis from Chest Radiography Images using Deep Residual Network | IEEE 
Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9225521. 

7. Mulchandani, H. et al. Tonsillitis based Early Diagnosis of COVID-19 for Mass-Screening using 
One-Shot Learning Framework. in 2020 IEEE 17th India Council International Conference 
(INDICON) 1–6 (2020). doi:10.1109/INDICON49873.2020.9342371. 

8. Novel Multi-Modal Throat Inflammation and Chest Radiography based Early-Diagnosis and 
Mass-Screening of COVID-19. Open Biomed. Eng. J. 15, 226–234 (2021). 

9. Dalal, P. et al. Throat Inflammation Based Mass Screening of Covid-19 on Embedded Platform. 
in Soft Computing and its Engineering Applications (eds. Patel, K. K., Garg, D., Patel, A. & 
Lingras, P.) 277–288 (Springer, Singapore, 2021). doi:10.1007/978-981-16-0708-0_23. 

10. Levy, J. et al. Artificial Intelligence, Bioinformatics, and Pathology: Emerging Trends Part I—
an Introduction to Machine Learning Technologies. Adv. Mol. Pathol. 5, e1–e24 (2022). 

11. Levy, J. et al. Artificial Intelligence, Bioinformatics, and Pathology: Emerging Trends Part II–
–Current Applications in Anatomic and Molecular Pathology. Adv. Mol. Pathol. 5, e25–e52 
(2022). 

12. Yang, X. et al. A large language model for electronic health records. Npj Digit. Med. 5, 1–9 
(2022). 

13. Wu, S. et al. Deep learning in clinical natural language processing: a methodical review. J. Am. 
Med. Inform. Assoc. JAMIA 27, 457–470 (2019). 

Pacific Symposium on Biocomputing 2025

227



 
 

 

14. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret 
Screening Mammograms | Breast Cancer | JAMA Network Open | JAMA Network. 
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2761795. 

15. McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. 
Nature 577, 89–94 (2020). 

16. Maleki, F. et al. Generalizability of Machine Learning Models: Quantitative Evaluation of Three 
Methodological Pitfalls. Radiol. Artif. Intell. 5, e220028 (2022). 

17. Hsu, W. et al. External Validation of an Ensemble Model for Automated Mammography 
Interpretation by Artificial Intelligence. JAMA Netw. Open 5, e2242343 (2022). 

18. Ramwala, O. A. et al. Establishing a Validation Infrastructure for Imaging-Based Artificial 
Intelligence Algorithms Before Clinical Implementation. J. Am. Coll. Radiol. (2024) 
doi:10.1016/j.jacr.2024.04.027. 

19. Yala, A. et al. Toward robust mammography-based models for breast cancer risk. Sci. Transl. 
Med. 13, eaba4373 (2021). 

20. Mooney, S. J. & Pejaver, V. Big Data in Public Health: Terminology, Machine Learning, and 
Privacy. Annu. Rev. Public Health 39, 95–112 (2018). 

21. Alternative models for sharing confidential biomedical data | Nature Biotechnology. 
https://www.nature.com/articles/nbt.4128. 

22. Piloting a model-to-data approach to enable predictive analytics in health care through patient 
mortality prediction | Journal of the American Medical Informatics Association | Oxford 
Academic. https://academic.oup.com/jamia/article/27/9/1393/5868591. 

23. Voss, K., Gentry, J. & Auwera, G. V. D. Full-stack genomics pipelining with GATK4 + WDL 
+ Cromwell. (2017) doi:10.7490/F1000RESEARCH.1114631.1. 

24. miniwdl — miniwdl documentation. https://miniwdl.readthedocs.io/en/latest/. 
25. D’Orsi, C. J., Sickles, E. A., Mendelson, E. B. & Morris, E. A. 2013 ACR BI-RADS Atlas: Breast 

Imaging Reporting and Data System. (American College of Radiology, 2014). 
26. Huang, F. L. Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters. Educ. 

Psychol. Meas. 78, 297–318 (2018). 
27. Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B. & Wei, L. J. On the C-statistics for evaluating 

overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 30, 1105–
1117 (2011). 

28. Crowson, C. S., Atkinson, E. J. & Therneau, T. M. Assessing Calibration of Prognostic Risk 
Scores. Stat. Methods Med. Res. 25, 1692–1706 (2016). 

29. Yala, A. et al. Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk 
Model. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 40, 1732–1740 (2022). 

 
 

Pacific Symposium on Biocomputing 2025

228



PGxQA: A Resource for Evaluating LLM Performance for Pharmacogenomic QA Tasks† 

Karl Keat1*, Rasika Venkatesh1*, Yidi Huang1*, Rachit Kumar1, Sony Tuteja2, Katrin Sangkuhl3, Binglan 

Li3, Li Gong3, Michelle Whirl-Carrillo3, Teri E. Klein3,4,5, Marylyn D. Ritchie6,7,8**, Dokyoon Kim7,8** 
1Genomics and Computational Biology Graduate Program, 2Department of Medicine, University of 

Pennsylvania, Philadelphia, PA, USA 
3Department of Biomedical Data Science, 4Department of Medicine (BMIR), 5Department of Genetics, 

Stanford University, Stanford, CA USA  
6Department of Genetics, 7Institute for Biomedical Informatics, 8Department of Biostatistics, Epidemiology 

and Informatics, University of Pennsylvania, Philadelphia, PA, USA 

*, **The Authors contributed equally to this work 

**Emails: marylyn@pennmedicine.upenn.edu, dokyoon.kim@pennmedicine.upenn.edu  

Pharmacogenetics represents one of the most promising areas of precision medicine, with several 

guidelines for genetics-guided treatment ready for clinical use. Despite this, implementation has been 

slow, with few health systems incorporating the technology into their standard of care. One major 

barrier to uptake is the lack of education and awareness of pharmacogenetics among clinicians and 

patients. The introduction of large language models (LLMs) like GPT-4 has raised the possibility of 

medical chatbots that deliver timely information to clinicians, patients, and researchers with a simple 

interface. Although state-of-the-art LLMs have shown impressive performance at advanced tasks 

like medical licensing exams, in practice they still often provide false information, which is 

particularly hazardous in a clinical context. To quantify the extent of this issue, we developed a series 

of automated and expert-scored tests to evaluate the performance of chatbots in answering 

pharmacogenetics questions from the perspective of clinicians, patients, and researchers. We applied 

this benchmark to state-of-the-art LLMs and found that newer models like GPT-4o greatly 

outperform their predecessors, but still fall short of the standards required for clinical use. Our 

benchmark will be a valuable public resource for subsequent developments in this space as we work 

towards better clinical AI for pharmacogenetics. 

Keywords: Pharmacogenetics; Pharmacogenomics, Large Language Models, Artificial Intelligence, 

Clinical Informatics. 

1. Introduction

1.1.  Pharmacogenetics 

Pharmacogenetics (PGx) is the study of the role of genetics on an individual’s response to 

medication, with the aim of bringing tools to the clinic that can utilize a patient’s genetic information 

to improve medication safety and efficacy. Genetic variations that lead to changes in the activity or 

availability of drug metabolizing enzymes (DMEs), receptors, channels, and other proteins involved 

in pharmacodynamics and pharmacokinetics can contribute strongly to interindividual variability in 

drug response, resulting in an increased risk of adverse drug reactions (ADRs) and nonresponse 
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phenotypes.1 By identifying genetic markers that influence drug response, PGx enables healthcare 

providers to predict which patients are more likely to experience adverse reactions or treatment 

failure. This knowledge allows for more individually tailored medication regimens, optimizing 

therapeutic outcomes while minimizing the risk of side effects.2 The overarching goal of PGx is 

promoting personalized medicine, such that patients receive the right drug and the right dose, at the 

right time. In doing so, the field aims to improve patient outcomes, enhance medication safety, and 

reduce healthcare costs associated with ineffective or harmful treatments. 

Despite the availability of numerous well-characterized, clinically actionable PGx guidelines for 

widely used medications, the clinical implementation of PGx has been slow. Very few medical 

centers and clinics routinely use this technology. This gap is due to various factors such as a lack of 

awareness and education among healthcare providers, the constantly evolving body of PGx 

guidelines, and technical challenges in integrating PGx data into electronic health records (EHRs).3 

The cost of PGx testing and variable insurance coverage can also pose significant financial barriers, 

while regulatory and legal concerns may also impact the extent of implementation of PGx testing in 

hospital systems.4 Lack of domain expertise and education among healthcare providers, patients, 

and researchers in particular poses a critical barrier to the implementation of PGx-guided therapies 

in clinical settings as this leads to difficulty understanding and interpreting test results, in addition 

to limited research conducted regarding the clinical impact of such technologies.5 

1.2.  Existing PGx Resources and Limitations 

Given that there are many causes for interindividual variability in treatment response as well as a 

need for guidance in interpreting PGx screening results, multiple independent bodies of experts have 

published research and guidelines to inform PGx-guided treatment. The Clinical Pharmacogenetics 

Implementation Consortium (CPIC) is one such group that has generated a set of specific drug 

recommendations to guide prescribing practices in the presence of genetic test results. CPIC has 

established 43 evidence-based clinical guidelines for 151 commonly prescribed medications. These 

recommendations were created based on a large body of evidence showing the impact of known 

PGx alleles in altering drug metabolism or response. Level A refers to gene-drug pairs where genetic 

information “should be used” for prescribing decisions and alternative therapies or dosing are highly 

likely to be effective and safe. At least one moderate or strong action (change in prescribing) is 

recommended for Level A pairs. Level B refers to pairs where genetic information “could be used” 

to change prescribing because alternative therapies/dosing are extremely likely to be as effective 

and as safe as non-genetically based dosing. Other international committees with their own sets of 

guidelines include The Dutch Pharmacogenetics Working Group (DPWG), and the French National 

Network (Réseau) of Pharmacogenetics (RNPGx).6 The Pharmacogenomics Knowledge Base 

(PharmGKB), is a resource that aims to comprehensively aggregate, curate, and characterize PGx 

knowledge including the literature and guidelines from these distinct sources.7 

While these resources are highly comprehensive, most require a moderate to high degree of 

domain knowledge to understand and interpret the provided information. Clinicians and patients, in 

particular, need PGx expertise to understand reports and utilize them to inform treatment decisions. 

Clinicians typically receive limited PGx training and therefore rely heavily on these resources for 

guidance.5,8–12 Moreover, differences among guidance sources and the rapid pace of new discoveries 

and guidelines create potential for misunderstandings and confusion. While PharmGKB curates, 
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aggregates, and presents guidance across sources, clinicians, patients, and researchers may prefer 

an interface that allows them to query and access targeted information using natural language instead 

of menus and tables. 

1.3.  Opportunities for Large Language Models to Guide PGx 

Large language models (LLMs) represent a major advance in artificial intelligence, allowing for the 

creation of seemingly intelligent chatbots which can interpret questions and assist with various tasks. 

LLMs have shown promise in a variety of natural language tasks, including those in medicine. For 

example, chatbots using LLMs can accurately answer patient queries in a conversational manner 

preferred by patients. GPT-4 has also achieved human-level accuracy on the United States Medical 

Licensing Exam (USMLE), outperforming the minimum passing threshold on short answer and 

multiple-choice questions.13 LLMs have been proposed for integration into clinical workflows to 

handle administrative tasks, which include managing appointment scheduling by patient request, 

answering routine inquiries about medication or treatment plans, and assisting in the preparation of 

medical records.14,15 Additionally, LLMs can support clinical decision-making by providing real-

time information retrieval and analysis, potentially reducing the cognitive load on healthcare 

professionals and improving patient outcomes.16 For these reasons, advances in LLMs have created 

an exciting opportunity to build chatbots to assist with complex medical specialties like PGx, 

providing a powerful and intuitive interface to access pharmacogenetic knowledge. 

Despite the promise of LLMs in medicine, there are significant issues that must be addressed 

before widespread clinical integration. These models are limited to the information they were trained 

on and can produce fabricated responses with an authoritative and confident tone when lacking 

information. There are numerous examples of this phenomenon across disciplines, but this poses a 

particularly large barrier to use in healthcare, where real time patient decisions rely on the presence 

of accurate information and mistakes can cost lives.17–19 Moreover, LLMs are costly to update and 

retrain as new information becomes available.20–22 This poses a challenge in fields where clinical 

guidelines are routinely updated, such as in PGx, and even current state-of-the-art LLMs had their 

training data capped several months before the latest CPIC guideline release. Despite these risks, 

LLMs are already being employed by clinicians, patients, and researchers to answer medical 

questions and their performance must be studied in order to understand their limitations.23 

1.4.  Prior work on LLMs for PGx 

PGx is a specialized area of medicine with limited and variable levels of coverage in the US medical 

and pharmacy curriculum.5,10–12 Despite this, PGx has a wide impact on several specialties due to 

the variety of drugs with actionable guidelines. Therefore, leveraging LLMs in this field has the 

potential to significantly enhance clinical practice and patient care. For instance, Murugan et al., 

used GPT-4 and retrieval-augmented generation (RAG) to build PGx4Statins, a PGx chatbot for 

answering questions about statin therapy guidelines.24 However, the limitations of LLMs may pose 

a particular risk in this field, as PGx guidelines are revised and updated irregularly as new evidence 

becomes available, and inaccurate or outdated advice may result in adverse drug reactions or 
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treatment nonresponse. As such, any PGx chatbot would need to be thoroughly vetted before clinical 

implementation is possible. 

While the performance of LLMs at answering general medical questions has been demonstrated, 

there is limited data on how LLMs perform with PGx queries. Prior to now, there have been no 

comprehensive, publicly available benchmarks to assess the performance of LLM chatbots in 

answering PGx queries. PGx4Statins was benchmarked manually, requiring a team of scorers to rate 

LLM responses based on the criteria of accuracy, relevancy, risk management, language clarity, bias 

neutrality, empathetic sensitivity, citation support, and hallucination limitation on a 1-5 scale. While 

this likely represents a gold-standard approach for evaluating real-world performance of a PGx 

clinical chatbot, PGx4Statins was only able to be tested on a small number of questions and for a 

single drug, demonstrating the limitations of this evaluation strategy.24 As new chatbots and 

language models are released, a more scalable solution is needed to comprehensively test the 

accuracy of these tools, so that we can then prioritize top performers for more rigorous, labor-

intensive testing. 

To address the absence of evaluation strategies for PGx chatbots, we have developed PGxQA, 

a resource for evaluating the performance of LLMs in a variety of PGx-related tasks for multiple 

identified stakeholders: patients, clinicians, and researchers. PGxQA consists of a large corpus of 

PGx questions generated directly from CPIC data resources, CPIC PGx guidance for Level A drug-

gene pairs, or provided by experts in the field. In addition, PGxQA includes tools for higher 

throughput manual and automated evaluation of accuracy and completeness. PGxQA’s question set 

covers all of the CPIC Level A guidelines across several dimensions, such as translating genotypes 

into phenotypes, naming the dbSNP ID(s) for variant(s) that define a particular star-allele, and most 

importantly, translating phenotypes into clinical recommendations. These resources will help 

promote the responsible development of medical chatbots by allowing us to assess their knowledge 

of PGx topics, thus lowering barriers to implementation of PGx in the clinic and providing easier 

access to PGx knowledge for clinicians, patients, and researchers. 

2.  Methods 

2.1.  Automated Question Generation 

To generate a meaningfully large corpus of evaluation questions, a significant proportion of the 

question bank was generated using custom python scripts to extract relevant information from the 

‘CPIC Data’ database from their GitHub repository and format the information as question-answer 

pairs.25 The psycopg2 package was used to load and query CPIC’s postgresql database and pandas 

was used to output tables of questions.26–28 

Due to a large degree of redundancy in questions and the potential for an over-weighting of 

pharmacogenes with many defined star alleles in our overall scoring, we implemented a subsetting 

tool which takes each set of questions and drops redundant questions to maintain roughly even 

proportions of questions based on which genes they cover and what answer choices they cover. All 

generated questions are available for download, such that users can run the entire set or generate 

custom subsets based on their own criteria. 
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2.2.  LLM Querying 

To query the various studied LLMs, we wrote a set of python scripts to load in our questions and 

send them to a local or remote LLM server. We defined a universal base prompt for all LLMs to 

ensure that all LLMs are working with similar basic instructions. We used the ‘openai’ python 

package along with an OpenAI API key to remotely query GPT-3.5-turbo, GPT-4-turbo, and 

OpenAI’s latest model as of writing, GPT-4o. We were also able to use the ‘openai’ python interface 

to send queries to a locally hosted instance of the open-source LLM Llama 3. Lastly, we used the 

‘requests’ library in python to connect to Google’s Generative Language REST API to query Gemini 

1.5 Pro, Google’s flagship LLM product.29 We used our python code to query the LLMs with all of 

the questions in our subsets, outputting tables containing the original question, question metadata, 

the ground-truth reference answer, the LLM answer, and some automated scoring metrics. 

2.3.  Manual Question Generation 

2.3.1.  External Provided Questions 

While the structured information within the CPIC database allows us to cover a large proportion of 

the potential use cases for a PGx chatbot, we sought out real world sources of PGx questions to 

represent what information is being sought by actual clinicians, researchers, and patients. We 

acquired a set of questions sent to PharmGKB scientists from 2020-2024, containing queries about 

PGx and the PharmGKB scientists’ responses. Additionally, we obtained an anonymized set of 

questions and answers from Penn Medicine’s Pharmacogenetics Consult Service, which provided a 

rich source of clinician-centric questions on PGx testing, results interpretation, and other relevant 

queries. We manually pruned these datasets to stay within our scope of queries about PGx 

information retrieval and formatted them into tables as short answer questions for our LLMs. 

2.3.2.  Adversarial Questions 

To assess how the models perform when presented with incorrect information, insufficient 

information, or information outside of the scope of queries regarding PGx, we devised sets of 

structured adversarial questions. These queries were structured to be nearly identical to the question 

bank extracted directly from the CPIC database, with the exception of having extraneous or missing 

information. For these queries, we evaluate whether LLMs answer that sufficient information was 

not available to answer the question, scoring based on the rate of refusal to respond. We additionally 

ran the whole set of LLM queries, giving the LLMs the option to refuse to respond, as to compare 

refusal rates between standard and adversarial queries. 

2.4.  Automated LLM Metrics 

To rapidly score the large corpus of questions and reduce reliance on expert labor, we generated a 

set of automated scoring functions to directly measure or approximate the performance of the LLMs 

on each specific task. 
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2.4.1.  Numeric Scoring 

For questions requiring a numeric answer, such as the allele frequency tests, LLMs were instructed 

to format their response as a number. We then parsed out this number and calculated the mean 

absolute deviation (defined as the mean of the differences) between the LLM answer and the 

reference answer for the entire question set. 

2.4.2.  Information Retrieval Scoring 

For questions where the task involved returning non-sentence information such as dbSNP IDs, gene 

symbols, or generic drug names, we instructed the LLMs to return the desired information in a 

predictable format that can be parsed using regular expressions or by splitting a defined delimiting 

character like ‘;’. For question sets where there are multiple values making up the answer (for 

example to list all of the drugs which have CPIC guidelines linked to a particular gene), performance 

was measured as precision and recall, where precision is the proportion of values in the LLM answer 

that are found in the reference answer, and recall is the proportion of values in the reference answer 

that were correctly included in the LLM answer. 

2.4.3.  Multiple Choice Scoring 

For question sets where the questions had a small finite set of possible answers, we constrained them 

to multiple choice, where the LLM was told to select the correct answer from a provided list of 

options, facilitating the process of detecting if the LLM answered correctly programmatically. For 

these queries, the accuracy of the LLM in identifying the correct response was computed as the 

proportion of answers that were correctly selected. 

2.4.4.  Automated Text Similarity Metrics 

In the case of short-answer questions where we wanted the LLMs to answer in one or two sentences, 

it is nontrivial to directly score the accuracy without human graders with the expertise to evaluate 

the answers, which presents a scalability issue. To roughly approximate human scoring, we 

computed automated text similarity metrics between the LLM answer and a human-written 

reference answer. Specifically, we compute the cosine similarity of the answers under different text 

embedding models as well as BERTScore using the microsoft/deberta-xlarge-mnli base model. We 

selected the model that most closely resembled human judgement by comparing the embedding 

scores’ concordance with human-scored answers.30–34 We then calculated the “win-rate” of the LLM 

answers by looking at the percentage of answers where the LLM similarity score to the reference 

answer was higher than the LLM similarity score to a generic discordant answer. For example, if 

asked to make a clinical recommendation, where the correct answer is to avoid the drug and the 

discordant answer is to take the drug as normal, the LLM would “win” if its answer has higher 

similarity to the reference answer than the discordant answer. 
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2.5.  Human Review of LLM Answers 

2.5.1.  Concordance with Automated Metrics 

To determine which text metric best captures the semantics of PGx recommendations, we manually 

reviewed a set of 77 short-answer questions and responses from GPT-4o. For each question, we 

manually annotated whether the LLM answer was closest to the ground truth reference answer, or 

an alternative response containing a discordant recommendation. Using these human labels as 

ground truth, we computed the F1 score of each text metric by classifying an example positive if the 

LLM-reference pair has the highest metric value among all LLM-response pairs.30–34 We found that 

BERTScore Precision maximizes agreement with human judgment. 

2.5.2.  Subject Matter Expert Reviews 

We recruited 4 PGx experts to perform a granular manual review of a selected subset of short-answer 

LLM responses. For each question, reviewers were shown a human-written and LLM-generated 

response in randomized blinded order and asked to rate each answer on a five-point Likert scale 

along attributes of accuracy (i.e. "This response is clinically/scientifically accurate"), completeness 

(i.e. "This response contains all of the necessary information to address the question fully"), and 

safety (i.e. "This answer does not pose any danger to human health or safety). For each question, 

reviewers were also presented with the relevant CPIC guideline document. Ratings were collected 

using the open-source Data Annotator for Machine Learning tool35, which was deployed on an AWS 

EC2 instance with a public IP address so that expert reviewers from around the country could easily 

work on the assigned scoring task or quit and return to the task later. 

2.6.  Data Analysis and Visualization 

The results of our various scoring approaches were analyzed in a Jupyter notebook with pandas, 

which is included in the GitHub repository for this project.27,28,36 All plots were generated using the 

matplotlib and seaborn python packages.37,38 

3.  Results 

3.1.  The PGxQA Question Corpus 

In total, the PGxQA question corpus consists of 110,207 questions covering different areas of PGx. 

While we subsequently present our own tools for querying and evaluating LLMs using this 

expansive dataset, we make available the entire set of questions as a resource agnostic of 

downstream evaluation approach. We detail the question types covered in Table 1.  
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Table 1: Representative examples of PGxQA questions generated from CPIC database or external sources 

Question 

Type 

Description Number of 

questions 

Example Prompt Expected Response 

Allele 

frequency 

Ask for a value indicating the 

allele frequency of a given 

allele in a population. 

2,548 “What is the average allele frequency of ABCG2 rs2231142 reference 

(G) in the African American/Afro-Caribbean population? Respond with 

just a number, rounded to 4 decimal places, with no additional text.” 

0.9651 

Allele 

definition 

Ask for dbSNP IDs for 

variants that define or are part 

of a given allele. Note that 

some alleles consist of 

multiple SNPs. 

901 “What SNPs are in the allele definition for CFTR F1052V? Provide a 

dbSNP ID (also known as an rsID, starting with rs) when available.” 

rs150212784 

Allele 

function 

Determine how an allele 

affects the overall function of 

a gene. 

1,111 “What is the allele functionality of CYP2C9 *9? Please select the 

answer from the following choices: {'Normal function', 'Decreased 

function', 'Uncertain function', 'No function', 'Unknown function'}, and 

respond with only your selection.” 

Normal function 

Genes to 

drugs 

Ask for drugs with actionable 

CPIC guidelines for a given 

gene. Note that multiple 

drugs can be listed. 

22 “Which drugs have actionable CPIC guidelines for CYP2C19? Please 

respond with nothing but a list of generic drug names delimited by ';'.” 

pantoprazole;sertraline;o

meprazole;lansoprazole;

amitriptyline;citalopram;

voriconazole;escitalopra

m;clopidogrel 

Diplotype 

to 

phenotype 

Ask what the defined 

pharmacogenetic phenotype 

is for a given set of alleles in 

a gene. 

101,138 “What is the pharmacogenetic phenotype for CYP2C9 *1/*1? Please 

select the answer from the following choices: {'Intermediate 

Metabolizer', 'Normal Metabolizer', 'Poor Metabolizer', 

'Indeterminate'}, and respond with only your selection.” 

Normal Metabolizer 

Drugs to 

genes 

Ask what genes a clinician 

might want to include in a 

panel given what drug a 

patient is taking OR what 

genes have actionable 

guidelines for certain drugs 

for an interested researcher. 

Note that multiple genes can 

be listed. 

79 (each); 158 

(total) 

Clinician: “I want to give my patient paroxetine. What genes should I 

include in a pharmacogenetics panel? Please respond with nothing but a 

list of gene symbols delimited by ';'.” 

 

Researcher: “What genes have actionable pharmacogenetic guidelines 

for paroxetine? Please respond with nothing but a list of gene symbols 

delimited by ';'.” 

Clinician: CYP2D6 

 

Researcher: CYP2D6 

Phenotype 

to category 

Given an individual with a 

certain allele and a drug, 

provide a guideline for that 

phenotype-drug combination 

if applicable in terms of drug 

dosing (multiple choice). 

Note: this is a multiple choice 

version of “Phenotype to 

guideline”. 

2,145 “What would be the clinical guidance for someone who is HLA-

B*57:01 negative for HLA-B with regards to taking abacavir? Please 

respond with just 'Avoid' if the guidance is to avoid the drug or take an 

alternate drug, 'Alter dose' if the guideline is to raise, lower, or start 

with a specific dose, or 'Unchanged', if there are no clinical 

recommendations or there is no deviation from standard care for this 

phenotype and drug.” 

Unchanged 

Phenotype 

to guideline 

Ask the LLM to, given an 

individual with a certain 

allele and a drug, provide a 

guideline for that allele-drug 

combination if applicable in a 

short-answer format (not 

multiple choice). 

Note: this is a short answer 

version of “Phenotype to 

category”. 

2,133 “What would be the clinical guidance for someone who is HLA-

B*57:01 negative for HLA-B with regards to taking abacavir?” 

Use abacavir per 

standard dosing 

guidelines 

Adversarial 

questions 

(refusal) 

For the above categories, 

provide a similar prompt, but 

with one of the entities 

(genes, drugs, alleles, etc.) 

being fabricated or incorrect. 

A model is expected to refuse 

to answer.  

36 “What SNPs are in the allele definition for QSTG1 reference (C)? 

Provide a dbSNP ID (also known as an rsID, starting with rs) when 

available or answer UNKNOWN if unknown.” 

UNKNOWN 

External 

Questions 

Questions provided by one or 

more external sources, as 

described in Section 2.3.1. 

 

Note that these were all 

scored manually using expert 

raters, as described in Section 

2.5.2. 

15 “My patient underwent a percutaneous coronary intervention (PCI) and 

I want to prescribe clopidogrel. They had pharmacogenetic testing and 

are a CYP2C19 rapid metabolizer (*1/*17).  Do they need a different 

dose of clopidogrel from the standard 75 mg daily?” 

“Per the current CPIC 

guidelines, patients who 

are CYP2C19 poor 

metabolizers have 

significantly reduced 

CYP2C19 activity, and 

should avoid clopidogrel 

if possible due to 

increased risk of adverse 

cardiac and 

cerebrovascular events.” 
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3.2.  Automated Performance Metric Results 

3.2.1.  Quantitative or Categorical Responses 

OpenAI’s GPT models almost universally performed better than Llama or Gemini on numeric, 

information retrieval, and multiple-choice query metrics (Table 2). In particular, GPT-4o, 

outperformed or was in second place for nearly every metric. However, overall performance varied 

widely across question categories, with models performing worse at Allele Definition, Allele 

Function, Diplotype to Phenotype, and Phenotype to Category questions than the other question 

categories. Performances of less than 0.5 for most metrics and LLMs indicate that allele-related 

questions were more likely to lead to incorrect answers, potentially because allele definitions are 

dependent on contextual information such as genes. This potentially highlights that LLM training 

data or approaches may not properly encode allele information, particularly if they do not 

incorporate tabular data like the CPIC allele tables. Additionally, the number of star alleles has 

grown massively as new variants and combinations of variants are discovered. Limited references 

to these alleles in scientific literature likely contribute to poor performance, since LLMs primarily 

draw from natural language and at baseline struggle with tabular data.39 

In contrast, other categories saw stronger performance such as the “Genes to drugs” or “Drugs 

to genes” categories, particularly in the average recall of the LLMs in identifying the expected 

entities. This indicates that entities such as drugs and genes, which have been described in text for 

much longer, and across a wider variety of sources, may be better encoded within the LLM weights. 

However, the precision in these categories was lacking for several LLMs, indicating that such LLMs 

may be prone to so-called “hallucinations” when responding to these questions, or may make claims 

backed up by inconclusive evidence. 

Table 2. Mean scores for each automated question category except for Phenotype to Guideline. 

The top scoring model for each category is bolded 

Question Category Metric Llama 3 Gemini Pro 1.5 GPT3.5 GPT4 GPT4o 

Allele frequency Mean Absolute Deviation 0.1178 0.1465 0.1147 0.0601 0.0561 

Allele definition Average Precision 0.1443 0.1341 0.1750 0.2599 0.2599 

 
Average Recall 0.2274 0.1422 0.2107 0.2221 0.2229 

Allele function Accuracy 0.3856 0.3791 0.3333 0.5033 0.4771 

Genes to drugs Average Precision 0.2870 0.1364 0.5459 0.4760 0.6843 

 
Average Recall 0.3955 0.1104 0.6810 0.6719 0.6300 

Diplotype to phenotype Accuracy 0.3770 0.3455 0.2565 0.3665 0.4346 

Drugs to genes (clinician) Average Precision 0.3177 0.1706 0.2169 0.4424 0.5992 

 
Average Recall 0.7679 0.4494 0.7152 0.8481 0.9367 

Drugs to genes (researcher) Average Precision 0.4325 0.3430 0.2968 0.5580 0.8091 

 
Average Recall 0.7489 0.5190 0.7278 0.6667 0.8418 

Phenotype to category Accuracy 0.4365 0.3538 0.3212 0.4385 0.5635 

Phenotype to guideline BERTscore Precision Win rate 0.7056 0.5499 0.7178 0.7251 0.7056 
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3.2.2.  Short Answer Responses 

After comparing each text embedding method to human classification results, the BERTScore 

Precision metric was the most concordant with human similarity assessments in indicating which of 

several reference answers the GPT-4o-generated response was the most concordant with (Figure 

1a., Supplementary Table S1).30–34 Because this metric seemed the closest to capturing human 

judgment on a broad scale, we used it as an automated scoring proxy for LLM performance on our 

short answer “Phenotype to guideline” tests. Based on automated tests, GPT-4-turbo slightly 

outperformed GPT-3.5-turbo, GPT-4o, and Llama 3 in average win rate as defined in the methods 

(Figure 1b.). However, Gemini-Pro seems to greatly underperform relative to its counterparts, 

having an average win rate roughly 0.15 lower than the other models, indicating that its answers 

likely significantly diverged from the other models and from the ground truth reference. 

3.2.3.  Refusal Assessment 

When given the option to refuse to respond, LLMs had highly variable rates of refusal on 

misspecified and properly specified questions (where misspecified refers to questions where there 

is not sufficient information to answer, or there exist no clinical guidelines for the requested 

information). Ideally, a medical chatbot should refuse to answer misspecified questions (a refusal 

rate of 1 is best) and answer properly specified questions (a refusal rate of 0 is best). Llama, Gemini, 

and GPT3.5 all refused to answer both types of questions at roughly equal rates. Llama and Gemini 

tended to refuse very infrequently (<0.2 refusal rate) in either circumstance, while GPT-3.5 refused 

at roughly equal rates for both circumstances (~0.3 refusal rate) (Figure 2). A low refusal rate for 

misspecified queries might indicate a higher tendency to hallucinate information when given 

confusing or contradictory queries. In contrast, GPT-4 and GPT-4o showed a higher rate of refusal 

for misspecified questions (~0.7) compared to properly specified questions (~0.3), indicating that 

these two models exhibit ability to identify questions with incorrect information as well as a 

propensity to avoid hallucinations, though there remains significant room for improvement. These 

results are further broken down in Supplementary Table S2, which shows the refusal rates for 

different categories. 

  
Figure 1: a.) Scorer concordance with human ratings of response similarity as defined by the F1 of the agreement 

for the Phenotype to Guideline question category for GPT-4o. b.) Model win rates in Phenotype to Guideline Tests. 

 a.  b. 
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Figure 2: Refusal rates of the different LLMs for misspecified and properly specified question sets. 

3.3.  LLM Results with Human Scoring 

3.3.1.  Manual LLM Metrics 

Although the emphasis of this work is on large scale benchmarks that can be employed widely, even 

in settings where manual expert review would be intractable, it is undeniable that expert reviewers 

provide invaluable understanding of the nuances and details of PGx which cannot easily be 

measured by automated scorers and text similarity scores. We recruited 4 PGx experts to manually 

score a set of GPT-4o responses to 15 short answer questions, and had those same experts score the 

human-written reference answers. On average, GPT-4o performed lower than the reference answer 

in all categories, with ‘Accuracy’ having the largest gap (Table 3). While these results reflect that 

GPT-4o performed well for many questions, there were some answers where it provided highly 

incorrect or even dangerous responses, such as when it gave incorrect recommendations on 

tacrolimus PGx in the context of liver transplant. 

4.  Discussion 

This work provides a framework and dataset to evaluate LLM-based chatbots in their ability to 

answer PGx questions derived from gold-standard PGx data sources. In demonstrating our 

framework, we have highlighted the strengths and weaknesses of LLMs in handling a wide range 

of PGx queries, providing guidance for future improvements. 

4.1.  Avenues for Improving LLMs 

The main limitations we identified in LLM-based chatbots are their especially poor accuracy for 

queries requesting numeric answers as well as newer or less common star alleles, their tendency to 

Table 3. Average Likert scores for Accuracy, Completeness, and Safety of GPT-4o and 

reference answers as scored by PGx experts 

Metric GPT4o Reference Answer Performance Gap 

Accuracy (Likert) 3.917 4.917 -1.000 

Completeness (Likert) 4.167 4.533 -0.367 

Safety (Likert) 4.083 4.850 -0.767 
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invent false information instead of refusing to answer unknown queries, and their inability to 

understand the quality of the underlying sources of their claims. These are broader issues in LLM 

research, and many techniques have been employed to address them. Prompt-engineering involves 

devising specific prompts to elicit more comprehensive, more accurate, and better-worded responses 

from LLMs, which is inexpensive and requires minimal technical expertise, making it highly 

accessible.40 However, its ability to enhance results is limited, and excessive engineering can lead 

to increased token usage per query, potentially raising costs and complexity in processing time.41,42 

This approach was employed in many of the structured answer questions in PGxQA and yielded 

more concise and readily usable information. 

Fine-tuning LLMs on specific datasets of PGx questions, such as those generated in this study, 

presents an opportunity for models to better understand and respond to domain-specific queries. 

This approach has been shown to improve the relevance and accuracy of LLM responses. Although 

fine-tuning can be expensive, requiring significant computational resources like GPUs to train and 

update the model, it provides a tailored solution for domain-specific prompts.43 However, fine-tuned 

models can still hallucinate, as they rely on pre-trained embeddings.44  

Retrieval augmented generation (RAG) incorporates a retrieval mechanism into LLMs, enabling 

the model to directly source information from an updated knowledge base. This approach is 

relatively cheap and straightforward to maintain, as updating the knowledge base is less resource-

intensive compared to training the LLM itself.45 This is ideal for domains such as PGx, where 

knowledge bases are constantly updated. This also reduces the risk of hallucinations by providing 

the model with direct access to accurate data sources. However, RAG systems require large context 

windows for effective querying and a higher degree of human intervention is involved to teach the 

LLM how to access and utilize these external sources.44,46 

To address the needs efforts are underway by the PharmGKB/CPIC group at Stanford to create 

AI-ready data for consumption by LLMs. In addition, collaborative efforts are underway by Dr. 

Roxana Daneshjou and Dr. Klein’s groups at Stanford to develop both clinician-forward and patient-

forward tools using generative AI to disseminate this knowledge on the current PharmGKB website 

and in the future, in the ClinPGx resource. 

4.2.  Limitations of PGxQA 

PGxQA is intended to be a framework for initial evaluation of a chatbot in answering PGx questions, 

particularly in answering questions concordant with pre-existing guidelines (such as information 

from CPIC, PharmGKB, and others). As shown above, PGxQA provides a variety of metrics that 

provide insight into several dimensions of the performance of LLMs. However, it is important to 

recognize that PGxQA has several limitations due to the way that it was devised and developed with 

a focus on automated assessment. First, the questions in PGxQA are largely created automatically 

from public PGx data sources. Most questions are query-based—requesting information that would 

require looking up information from one database and not synthesizing knowledge across multiple 

databases or fields. This facilitates automated evaluation at the expense of being able to understand 

this dimension of LLMs, referred to as “multi-hop reasoning”. To mitigate this, handcrafted 

questions and actual questions asked of PGx researchers and clinicians are included through the 
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“External Questions'' category, though LLM responses to these questions cannot fully be assessed 

automatically.  

Our emphasis on automated scoring approaches, while valuable for large-scale evaluation, 

introduces other limitations as well. We engineered the prompts to instruct the LLM to return 

answers in our desired format to properly score responses for our information retrieval tasks, 

introducing a small possibility that asking for results in this strict format alters performance. As 

shown in the comparison between the clinical and researcher versions of our drug to genes questions, 

the LLMs do seem to have variable performance when similar questions are asked in different ways. 

However, this represents a weakness of LLMs that must also be studied prior to clinical use due to 

the heterogeneous nature of real-life queries. There are also limitations to our text-similarity-based 

scoring, as text embeddings do not fully capture the nuances of human judgment. Despite these 

compromises, we believe that PGxQA will still provide useful metrics for chatbot evaluation and 

we anticipate that future work may address many of the limitations of PGxQA and of LLM chatbots. 

4.3.  Future Directions 

Going forward, we expect PGxQA to serve as an automatic evaluation framework to continually 

evaluate LLMs. This initial evaluation has shown dramatic improvements in performance in more 

recent models, such as GPT-4o, relative to older iterations such as GPT3.5. We anticipate that 

further advancements in model architecture and training will strengthen the ability of these models 

to function as a valuable resource in PGx. Using PGxQA, we can continually monitor improvements 

in LLM performance and assess new technologies as they are unveiled. The automatic generation 

of questions from the CPIC database, which is routinely updated, will also ensure that LLMs are 

updated with the latest information and clinical guidelines. The metrics presented in PGxQA will 

be continually refined to best reflect the latest evidence. As PGx is a continually evolving area of 

study, it is essential to have a scalable framework for ongoing evaluation to ensure that model 

improvements translate into tangible benefits for the field in terms of accuracy and relevance.  

The future of PGx chatbots holds significant promise as LLMs become increasingly integrated 

into healthcare settings to provide clinical recommendations and support. These chatbots will be 

able to use large quantities of PGx literature and evidence to strengthen and personalize their 

responses to clinician, patient, and researcher queries. The development of advanced LLMs, coupled 

with emerging techniques like RAG, will help ensure that PGx chatbots can reliably provide 

personalized and accurate evidence-based guidance regarding medication intake and dosage. 

However, the future of these chatbots depends on rigorous continual assessment of their 

performance. The resources developed in PGxQA represent a first-in-class approach to guide 

automated LLM evaluation, prioritizing accuracy, completeness, and safety for PGx chatbots. 

5.  Supplemental Materials and Data Availability 

Supplemental tables and the author contributions list are available at: 

https://ritchielab.org/publications/supplementary-data/psb-2025/pgxqa 

All code, questions, LLM answers, and scoring results are available at: 

https://github.com/KarlKeat/PGxQA/ 
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1. Overview

The “Overcoming Health Disparities: Intersectional Approaches in Precision Medicine” session at 
the Pacific Symposium on BioComputing 2025 was aimed to advance computational methods and 
data science approaches to address racial, ethnic, and gender disparities in biomedical research and 
healthcare. Emphasizing the role of big data and electronic health records, the session focused on 
how social identities and categories like race, gender, and ethnicity interact to shape individual 
healthcare experiences and systemic inequalities. By tackling challenges in capturing and analyzing 
social determinants of health and environmental risk factors, this year session’s papers highlight 
strategies such as multi-ancestry genetic studies, enhanced data collection from large population-
based cohorts, and advanced geocoding clustering techniques. These efforts are crucial for 
integrating complex social and biological factors to reduce health disparities and improve precision 
medicine. 

2. Advancing multi-ancestry genetic research

Historically, genetic studies have focused predominantly on individuals of European descent, 
leading to disparities in risk prediction and personalized medicine. While embracing genetic 
diversity aims to reduce these disparities, methodological challenges persist.  

Jones and Cardone et al. (2025) examined how different methods of combining genetic data 
from diverse ancestry groups affect genome wide association study (GWAS) results, finding that 
multi-ancestry methods can identify shared signals but may diminish ancestry-specific associations, 
potentially masking important genetic insights for underrepresented populations. This highlights the 
need for methods that consider both shared and ancestry-specific variants to ensure equitable 
benefits.  

Addressing this, Winters et al. (2025) developed a multi-ancestry polygenic risk score (PRS) for 
uterine fibroids using GWAS data from FinnGen and Biobank Japan, which outperformed single-
ancestry PRSs across diverse cohorts, demonstrating improved model transferability. The findings 
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demonstrate that a multi-ancestry approach captures broader genetic variation and enhances model 
transferability across different racial groups. 

Further exploring uterine fibroids, Akerele et al. (2025) investigated their genetic relationship 
with blood pressure traits using multi-ancestry GWAS datasets, finding that higher blood pressure 
increases fibroid risk and vice versa, suggesting shared genetic architecture. These findings enhance 
understanding of the mechanisms linking these conditions, potentially leading to better diagnosis 
and treatment strategies. 

3. Integrating social determinants of health to enhance genetic risk models

While genetic studies have traditionally focused on the influence of genetic variants on phenotypes, 
they have largely overlooked the role of social determinants of health (SDoH) in disease incidence 
and health disparities. However, genetic associations alone cannot establish causation; additionally, 
SDoH may have an even stronger effect than genetic variation, and thus these factors are important 
to consider.  

Guare et al. (2025) investigated how SDoH and lifestyle risk factors modulate genetic 
susceptibility in women’s health outcomes by focusing on seven disorders within the All of Us 
Research Program. They computed PRSs and found that nine out of twelve PRSs were significantly 
associated with their respective conditions. Notably, higher environmental risk groups, such as 
individuals with elevated body mass index (BMI), were diagnosed earlier and exhibited increased 
genetic susceptibility, emphasizing the importance of integrating genetic and environmental data for 
more precise risk models.  

Similarly, Mazzotti et al. (2025) analyzed electronic health record data from over 1.4 million 
individuals to identify social risk factor clusters and their association with obstructive sleep apnea 
(OSA) and cardiovascular outcomes. Using latent class analysis, they defined three social burden 
clusters and discovered that those with the highest social burden were less likely to be diagnosed 
with OSA compared to those with the lowest burden. Among OSA patients, clinical predictors of 
cardiovascular events varied across social risk clusters, indicating that social factors differently 
influence cardiovascular risk. These findings highlight significant health disparities in both the 
diagnosis of OSA and the prediction of cardiovascular diseases, underscoring the need for tailored 
interventions. 

4. Methods to detect and mitigate disparities

New computational methods that consider various data modalities are essential to uncover biases 
and disparities in healthcare data, disease incidence, and outcomes. Liu et al. (2025) introduce a 
causal inference approach using proximal mediation analysis to detect clinician implicit biases in 
diagnosis decisions within large-scale medical data like the UK Biobank, quantifying how biases 
formed by racism, ableism, and sexism impact patient outcomes.  

 On the other hand, the paper of Niu et al. (2025) presents the Gaussian Process Spatial 
Clustering (GPSC) method, a novel algorithm that clusters census tracts based on spatial location 
and socioeconomic status. GPSC captures both geographic and other characteristic patterns 
simultaneously, enabling the identification of meaningful clusters of census tracts based on 
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socioeconomic and environmental indicators associated with health and cancer risk in the Carolina 
Breast Cancer Study. 

5.  Addressing Disparities in Adverse Drug Reactions 

Finally, addressing disparities in adverse drug reactions, Muse et al. (2025) developed a statistical 
approach using multistate Cox models to detect and quantify potential adverse drug events (ADEs) 
resulting from polypharmacy, focusing on differences between patient subgroups such as males and 
females. Analyzing data from nearly 2 million patients in Denmark, they computed hazard ratios 
for changes in laboratory test results before and after drug exposure, linking these findings to a drug-
drug interaction database. Their models have potential applications for medical safety agencies and 
could improve efficiency in drug approval pipelines. By revealing how ADEs differ among patient 
subgroups, this work contributes to enhancing patient safety through precision medicine. This study 
complements the other research by emphasizing the importance of considering demographic factors 
in healthcare data analysis to reduce disparities and improve health outcomes. 
 

6.  Conclusion 

Collectively, these studies highlight the role of innovative computational methods and multi-
ancestry approaches in addressing health disparities across various medical domains. By integrating 
genetic data with social determinants of health, researchers are developing more precise risk models 
that account for the complex interplay of factors influencing disease outcomes, which may 
ultimately lead to a better understanding of causation. Advances in detecting and mitigating biases—
in clinical decision-making, spatial analysis, and machine learning—contribute to reducing systemic 
inequalities in healthcare. The papers in this session demonstrate how intersectional and data-driven 
strategies in precision medicine can potentially overcome existing limitations and promote health 
equity. 
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Genome-wide association studies (GWAS) are an important tool for the study of complex disease 
genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can 
have important implications on the results and their biological interpretation. Many GWAS have 
been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase 
the representation of diverse ancestries in genetic studies. The question of how these data should be 
combined and the consequences that genetic variation across ancestry groups might have on GWAS 
results warrants further investigation. In this study, we focus on several commonly used methods for 
combining genetic data across diverse ancestry groups and the impact these decisions have on the 
outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-
specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-
ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across 
ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. 
These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up 
studies. Decisions regarding how the genetic data are combined has the potential to mask important 
findings that might serve individuals of ancestries that have been historically underrepresented in 
genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared 
variants need to be developed. 

Keywords: GWAS; Ancestry; Health Disparities. 

1. Introduction

1.1.  Population Structure in Genome-Wide Association Studies 

Genome-wide association studies (GWAS) are a powerful tool for discovering genetic associations 
with traits of interest1. Since its introduction in 2005, the use of GWAS has become a standard 
method in the field of statistical genetics, offering insight into the contribution of alleles with small 
effect sizes for complex traits2. As DNA sequencing becomes more affordable, and large healthcare 
systems, biobanks, and consortia continue to link electronic health record (EHR) information 
containing disease phenotypes to patients’ genetic information, larger sample sizes for complex 
disease show continued promise for the application of GWAS. At the time of writing this 
manuscript, the GWAS catalog contained summary statistics for over 5,000 phenotypes3.  

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and 
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Beyond the wide application of GWAS in the field of genetics, considerable work has been 
done to identify the impact of quality control (QC) procedures and best practices for GWAS4,5. 
Technical decisions such as allele frequency threshold, variant quality thresholds, data missingness, 
and population structure are all known to impact GWAS outcomes5. Despite the considerable work 
that has been done to offer guidance on GWAS QC and study design, many decisions are made on 
a case-by-case basis and the approach taken can vary based on the lab and the guidance 
referenced1,4,5. We aim to focus specifically on the impact that different strategies for combining 
genetic data from two genetically inferred ancestry groups have on GWAS summary statistics. 

An individual’s genetic ancestry can be inferred from their DNA, which contains 
information about the genetic signatures resulting from ancestral migrations, mutations, 
recombination, genetic drift, and natural selection4,6,7. Ancestry-specific evolutionary and 
demographic histories can lead to linkage disequilibrium (LD) and allele frequencies that differ 
across populations and result in spurious associations due to the confounding effects of ancestry in 
GWAS8,9. Some standard methods to control for population structure within a GWAS study cohort 
are the use of a mixed model combined with a genetic relationship matrix (GRM), principal 
component analysis (PCA), and the subsequent inclusion of a small number of principal components 
(PCs) as covariates in the GWAS model10,11. However, even with the inclusion of PCs, population 
structure may not be entirely accounted for, leading to persistent spurious associations12. Additional 
methods of inferring genetic ancestry such as K-means clustering and quadratic discriminant 
analysis (QDA) of PCA data or the application of tools such as ADMIXTURE can provide greater 
resolution for decisions regarding the inference of genetic ancestry of individuals and prove useful 
for QC decisions for GWAS in admixed and multi-ancestry cohorts13,14.  

As the volume of genetic data combined with rich EHR phenotype data from diverse 
populations continues to increase, GWAS will continue to be an important tool. Subsequently, the 
choice between a study focused on ancestry-specific and/or multi-ancestry GWAS approaches will 
have important implications on the results and their interpretations, especially when GWAS 
summary statistics are used for downstream analyses such as transcriptome-wide association studies 
(TWAS), proteome-wide association studies (PWAS), or polygenic scores (PGS)4,15,16. Ancestry-
specific GWAS may provide insight into genetic associations within specific ancestral 
groups, allowing for the detection of associations that may be unique or have varying effect sizes 
across different populations. However, these approaches can be limited due to smaller sample sizes 
in underrepresented global populations. Multi-ancestry mega-analysis GWAS or meta-analysis 
approaches can leverage larger sample sizes and provide insight into genetic associations shared 
across ancestrally diverse populations4,15,17. However, both approaches present unique challenges 
and opportunities that must be carefully considered in the experimental design and interpretation of 
results. 

1.2. Inclusion of Diverse Ancestries in Genetic Studies 

Genetic studies are predominantly focused on European ancestry, with most GWAS conducted in 
these populations, leading to insights that are not always generalizable to non-European groups and 
exacerbate health disparities3,17–22. The lack of diversity in genetic research limits our understanding 
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of genetic variation in underrepresented ancestries and its relationship with complex traits19,21. 
Initiatives like the All of Us Research Program, the Human Heredity and Health in Africa 
(H3Africa) Initiative, the Million Veteran Program (MVP), and the NHLBI Trans-Omics for 
Precision Medicine program (TOPMed) aim to address this by recruiting diverse populations and 
creating more representative datasets for genetic research22–25. However, integrating these diverse 
datasets into GWAS is complicated by unequal sample sizes and differences in allele frequency and 
LD patterns between populations, which highlight the need for robust and specialized 
methodologies to ensure accurate and equitable interpretation of genetic associations. 

Incorporating diverse ancestries in GWAS offers opportunities to discover associations 
absent in European-focused studies, providing valuable insight for underrepresented 
populations16,26. It can also enhance fine mapping by leveraging genomic diversity across 
ancestries17. Multi-ancestry mega-analysis and ancestry-specific GWAS with meta-analysis offer 
solutions but are limited by differences in study design, sample sizes, and the model specified for 
the meta-analysis. Decisions between fixed effect or random effect meta-analysis will have an 
impact on the combined results and require assumptions regarding the heterogeneity of associations 
between populations4,27,28. 

1.3. Shared and Ancestry-Specific Associations 

Most human genetic variation can be observed within all ancestry groups and many genetic 
associations with disease are shared across human populations29. However, for a small portion of 
the genome, associations can vary across different ancestral populations, with distinct loci 
contributing to the same trait in populations with distinct genetic ancestry. This is evident in 
Solomon Islanders, where a mutation in the TYRP1 gene is associated with blond hair30. This 
mutation is absent outside of Oceania, and thus cannot explain blond hair in individuals of European 
ancestry30. Similarly, variants such as the G1 and G2 variants in APOL1 have been shown to account 
for a substantial degree of risk for chronic kidney disease (CKD) in individuals of African ancestry 
while being very rare or absent in other ancestry groups31–33. These examples underscore the 
importance of conducting ancestry-specific GWAS to uncover genetic associations that may be 
masked, diluted, or even missing in multi-ancestry analyses. 

Many GWAS of complex traits have identified associations that are shared across ancestries 
in which a shared variant demonstrates a similar effect size for a trait across multiple 
populations26. For example, variants in the FTO gene have been consistently associated with 
increased body mass index across diverse populations34. Similarly, variants in the TCF7L2 gene are 
strongly associated with increased risk of type 2 diabetes (T2D) across multiple populations35–44.  

The basis of phenotypic variation and the influence of genetic ancestry is complex. Some 
diseases exhibit ancestry-specific genetic associations, while others share common genetic 
associations across populations. This complexity is further compounded by the continuous nature 
of admixture in natural populations. Understanding the genetic factors that influence complex traits 
across different populations is crucial for developing personalized medicine approaches tailored to 
the unique genetic makeup of diverse individuals. The present study aims to contribute to this 
understanding by investigating the genetic associations with chronic kidney disease (CKD) and type 
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2 diabetes mellitus (T2D) across European (EUR) and African (AFR) ancestries, utilizing both 
ancestry-specific and multi-ancestry GWAS approaches to comprehensively assess the impact of 
genetic variation on these traits (Figure 1).  

2. Methods

Figure 1: Study Overview: For each binary phenotype, four GWAS were run: EUR-specific, AFR-
specific, EUR and AFR combined (multi-ancestry mega-analysis), and meta-analysis of EUR- and AFR-

specific GWAS. 

2.1.  Data and Study Participants 

The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked research program 
at the University of Pennsylvania, Perelman School of Medicine45. PMBB participants provided 
consent for research, including blood sample collection, generation of genetic data, and EHR 
access45. Individuals with imputed genotype, demographic, and EHR data were included in this 
study. PMBB v2.0 imputed data and v2.3 phenotype data were utilized45. 

2.2.  PMBB Centralized Genotyping, Imputation, & Quality Control 

DNA was extracted from blood samples, which were genotyped by the Regeneron Genomics Center 
with an Illumina Global Sequencing Array v2.0 (GSAv2) containing 654,027 fixed markers45. 
Variant and sample-level quality control was conducted prior to genotype imputation using PLINK 
v1.945,46. Variants with genotype call rates < 95%, individuals with discordance between reported 
sex and genetic sex, and individuals with sample call rates < 90% were dropped45. Subsequently, 
autosomes were imputed using TOPMed version R2 genome build 38 reference panel25,45,47. After 
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imputation, PLINK v2.0 was used for additional variant and sample-level quality control45,46. 
Variants with genotype call rates < 99%, minor allele frequency (MAF) < 1%, Hardy-Weinberg 
Equilibrium (HWE) exact test p-value < 1e-8 or imputation R2 scores < 0.3 were excluded45. 
Palindromic SNPs, insertions and deletions, and multiallelic variants were also excluded. In 
addition, individuals with sample call rates < 99% were dropped45. 

2.3.  Principal Component Analysis, Genetically Inferred Ancestry, and Ancestry-Specific 
Quality Control 

2.3.1 Quality Control Prior to Principal Components Analysis 

Prior to PCA, quality control was conducted in all eligible samples using PLINK v1.9 and v2.046. 
Individuals with sample call rates < 95% were dropped46. In addition, variants with genotype call 
rates < 95%, imputation R2 scores < 0.80, MAF < 5%, or HWE exact test p-value < 1e-10 were 
excluded46. Subsequently, only variants in the intersection between the PMBB and 1,000 Genomes 
genetic datasets were included6.  

2.3.2 Principal Component Analysis and Genetically Inferred Ancestry 

Principal component analysis (PCA) was conducted with eigensoft smartPCA on the LD pruned 
autosomal data48. PCs in PMBB were projected onto 1,000 Genomes6,48. Using the top two PCs, 
genetically inferred ancestry was computed using QDA with 1,000 Genomes super-populations as 
a reference6,14. Individuals that had >80% probability of similarity to clusters representing the 
1,000 Genomes super-population of EUR of AFR were retained for inclusion in GWAS. 

2.3.3 Analysis-Specific Quality Control and Principal Components Analysis 

After computing genetically inferred ancestry, analysis-specific quality control was completed in 
EUR, AFR and MEGA (union of EUR and AFR) cohorts with PLINK v1.9 and v2.046. Individuals 
with sample call rates < 95% and variants with genotype call rates < 95%, MAF < 95%, or 
imputation R2 score < 0.3 were excluded. Only biallelic and non-palindromic SNPs were retained. 
PCA was conducted within each cohort independently following QC using eigensoft smartPCA48. 
Principal components from the cohort-specific PCA were used as covariates in the GWAS. 

2.4.  Genome Wide Association Study 

GWAS were conducted using SAIGE11. We conducted GWAS utilizing three stratification methods: 
GWAS stratified to EUR individuals only (EUR-specific), GWAS stratified to AFR individuals only 
(AFR-specific), and GWAS with both EUR and AFR individuals (MEGA). We tested associations 
with two phenotypes: CKD and T2D. To phenotype individuals, ICD-9 and ICD-10 codes were 
mapped to PhecodeX if they had at least two separate instances of an ICD code49. The Phecodes 
used were as follows: CKD = GU_582.2, T2D = EM_202.249. Eligible controls had zero instances 
of an ICD code used in case definition. To mitigate the effects of sample size, we randomly down 
sampled while matching case control ratio to ensure the same number of cases and controls across 
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EUR and AFR individuals for each phenotype. The multi-ancestry mega-analysis GWAS contained 
a balanced number of EUR and AFR individuals, and the same total sample size as ancestry-specific 
GWAS. Age at data release, sex assigned at birth, and PC1-7 were used as covariates. We selected 
the top seven PCs because this explained 79-98% of variance between individuals in the three 
cohorts (Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 3). 

2.5. Meta-Analysis 

Summary statistics from the AFR and EUR ancestry-specific GWAS analyses were meta-analyzed 
using METASOFT27,28. To compare the impact of model specification on the outcome, the meta-
analyses were conducted using a fixed-effect (FE), random-effect (RE), modified random-effect 
(RE2_INITIAL), and modified random-effect with adjustment for mean effect and heterozygosity 
(RE2_CORRECTED)27,28. Meta-analyses were conducted on the intersection of variants included 
in the AFR and EUR-specific GWAS. All summary statistics from independent GWAS were 
adjusted using genomic control following the instructions in the METASOFT publication27,28. To 
ensure consistent sample sizes between analyses, the EUR and AFR groups were randomly down 
sampled prior to GWAS while maintaining balanced case control ratio such that the meta-analyses 
contained the same total sample size as the other GWAS. GWAS and meta-analysis results were 
visualized using qqman and SynthesisView50,51. Variants that had a p-value < 5e-8 were considered 
significant.  

2.6. Analysis of Effect Size Variability 

To assess changes in effect size for variants included in all analyses, we identified whether a 
variant’s effect size changed direction in at least one analysis. We compared effect sizes in the 
following analyses: all analyses, ancestry-specific compared to multi-ancestry approaches, MEGA 
analysis compared to meta-analysis approaches, and fixed effect meta-analysis compared to random 
effect meta-analysis. We identified the percentage of variants that changed direction of effect in 
each comparison group, both genome-wide and among the variants with the most significant 
associations, which were visualized in SynthesisView plots51. 

3. Results

The PMBB had 43,589 individuals with genetic data that passed initial QC and were analyzed using 
QDA to infer genetic ancestry. Using our approach, we identified 10,631 individuals that clustered 
with the AFR super population and 17,495 individuals that clustered with the EUR super population 
from the 1,000 Genomes reference panel. Figure 2 shows the individuals from PMBB in the PCA 
projection of the 1,000 Genomes. Following analysis-specific QC of these individuals, there were 
10,631 individuals and 6,792,866 variants in the AFR analyses, 17,495 individuals and 4,910,840 
variants in the EUR analyses, and 28,126 individuals and 5,652,287 variants in the MEGA analyses. 
Of these variants, 4,184,455 were shared between AFR and EUR cohorts and could be included in 
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meta-analyses and 3,334,796 
were only found in a single 
ancestry after QC. Table 1 
shows the final sample sizes. 

The AFR-specific 
GWAS of CKD replicated a 
known signal in the APOL1 
gene (rs73885319) on 
chromosome 22 (p-value = 
7.92e-11) (Figure 3, Figure 
4)31. This signal was not
detected in the EUR-specific 
analysis as the MAF of this 
variant was 0.00869% and 
therefore did not pass QC. This 
signal was detected in the 
MEGA analysis with a p-value 
of 1.43e-7, which is below the 
genome-wide significance 
threshold. Due to the 
monomorphic nature of this 
allele in the EUR population, the variant was not included in any of the meta-analyses. The meta-
analyses identified additional associations in the ANXA5 gene on chromosome 4 and downstream 
of LOC124900539 on chromosome 2. 

The T2D GWAS replicated four known signals in the TCF7L2 gene on chromosome 10 
(rs35011184, rs7901695, rs7903146, rs34872471), and one upstream of the CRYBA2 
gene/downstream of the MIR375 gene on chromosome 2 (rs113414093) (Figure 3, Figure 5)35,36,38–

44,44,52. rs7903146 reached genome-wide significance in the AFR-specific GWAS (p-value = 6.59e- 
10) and the EUR-specific GWAS (p-value = 5.23e-9). This signal was detected in the MEGA and
meta-analyses but was below genome-wide significance. rs34872471 was genome-wide significant
in the EUR-specific GWAS (p-value = 5.00e-9) but not in the other analyses. rs35011184 and
rs7901695 were detected in all GWAS iterations but were not genome-wide significant, with the
EUR-specific GWAS having the lowest p-values (rs35011184 p-value = 4.05e-8, rs7901695 p-
value = 1.19e-6). rs113414093 was only detected in the EUR-specific GWAS and was not genome-
wide significant (p-value = 9.97e-7). This variant was not present in the other analyses as the MAF
was 0.909% in the AFR-specific cohort and 3.70% in the MEGA cohort. The meta-analysis
identified additional associations in the PTPRG gene on chromosome 3, and upstream of
LOC105374348/downstream of FAM53A on chromosome 4.

 In the GWAS of CKD, majority of the variants with the most significant p-values changed 
direction of effect in at least one analysis (Table 2). There was variability in the T2D analyses, but 
the trend was not as extreme (Table 2).  

Phenotype Case  Control Total Sample Size

T2D 3,184 6,448 9,632

CKD 2,659 7,543 10,202 

Figure 2: PCA of PMBB samples (right) projected onto the 1,000 
Genomes reference panel (left). Colors indicate clustering with 

1,000 Genomes super-population (AFR, AMR, EAS, EUR, SAS). 

Table 1: Final Sample Sizes for both Ancestry groups.
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Figure 3: Significance Levels and Effect Sizes for Chronic Kidney Disease (left) and Type 2 
Diabetes (right). The most significant variants for each phenotype are displayed. Variants 
highlighted in red are known signals. Variants are annotated with gene names (left axis). 

CKD Synthesis View T2D Synthesis View 

258



 

 
 

Figure 4: Chronic Kidney Disease Stacked Manhattan Plot. Top plot is AFR-specific 
GWAS, followed by MEGA GWAS, EUR-specific GWAS, and meta-analysis using modified 

random effect framework (RE2_corrected). 

Additionally, direction of effect flipped less when comparing multi-ancestry methods (Table 2). 
When investigating variants genome-wide, there is a decrease in variability in CKD, but an increase 
in variability in T2D (Supplementary Table 1). Additionally, 84-98% of the most significant 
variants’ effect sizes in multi-ancestry analyses had a value within the range of ancestry-specific 
effect sizes (Supplementary Table 2). This trend was less extreme in variants genome-wide, as 

Phenotype All 
Analyses 

AFR vs. 
Multi-

Ancestry 
Analyses 

EUR vs. 
Multi-

Ancestry 
Analyses 

MEGA 
vs. Meta 
Analyses 

Fixed Effect 
vs. Random 
Effect Meta 

Analyses 

Percentage of 
CKD Variants 86.36% 80.30% 56.06% 50% 7.58% 

Percentage of 
T2D Variants 54.05% 47.30% 18.92% 12.16% 9.46% 

Table 2: Proportion of Top Variants that Changed Direction of Effect. 75 variants were included in 
the T2D comparison, and 66 variants were included in the CKD comparison. 
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nearly 50% of effect sizes in multi-ancestry analyses were within the range of ancestry-specific 
effect sizes. 

Figure 5: Type 2 Diabetes Stacked Manhattan Plot. Top plot is AFR-specific GWAS, followed by 
MEGA GWAS, EUR-specific GWAS, and ancestry-balanced meta-analysis using modified random effect 

framework (RE2_corrected). 

4. Discussion

Our aim was to assess how different approaches of combining genetic data from individuals of 
diverse ancestries change the outcome of a GWAS. To test this, we conducted GWAS of CKD and 
T2D in individuals of African and European ancestry in the PMBB. We compared the differences 
in GWAS results through changes to the p-value and effect sizes for ancestry-specific analyses (AFR 
or EUR only), multi-ancestry mega-analysis (MEGA), and meta-analysis using fixed-effect (FE), 
random-effect (RE), and modified random-effect (RE2_INITIAL and RE2_CORRECTED). We 
hypothesized that while most genetic associations are shared across human populations, we would 
observe specific genetic associations that were statistically significant in only one ancestry and that 
the different multi-ancestry approaches would have inconsistent results for these variants. The 
results support our hypothesis as shown in Figures 3-5 and Table 2. 

260



 In the GWAS of CKD, variants within the APOL1 gene were found to be significantly 
associated with CKD in the AFR-specific GWAS31. In the mega-analysis GWAS, these variants 
dropped below genome-wide significance, providing evidence that multi-ancestry mega-analysis 
can diminish ancestry-specific signals. We also note that the use of a meta-analysis tool such as 
METASOFT will exclude the association observed in the AFR-specific GWAS due to this variant 
not passing QC in the EUR cohort. Additional variants in the ANXA5 gene and downstream of 
LOC124900539 were significantly associated in the meta-analysis (RE2_CORRECTED) but may 
be spurious due to genomic inflation in this approach (Supplementary Figure 4).  

In the AFR and EUR-specific GWAS of T2D, a well-known variant (rs7903146) within the 
TCF7L2 gene was significantly associated with T2D35,43,44,52, while it dropped below genome-wide 
significance in all multi-ancestry analyses. The GWAS of T2D illustrates how the composition of a 
multi-ancestry approach can diminish the significance of ancestry-specific signals. However, we 
acknowledge the limitation that smaller number of cases per ancestry might have had in the multi-
ancestry approaches. Additional variants in the PTPRG gene and upstream of LOC105374348/ 
downstream of FAM53A were significantly associated in the meta-analysis (RE2_CORRECTED) 
but may be spurious due to genomic inflation in this approach (Supplementary Figure 5). 

Across both phenotypes, effect sizes flipped direction on many occasions, especially among 
variants with the lowest p-values (Table 2, Supplementary Table 1). This occurred more often 
when comparing ancestry-specific approaches to multi-ancestry approaches, rather than within 
multi-ancestry approaches, suggesting that observed ancestry-specific effect sizes can be altered 
when using multi-ancestry GWAS approaches. Additionally, effect size values in multi-ancestry 
results were commonly within the range of ancestry-specific effect size value for variants with the 
lowest p-values (Supplementary Table 2).  

Meta-analyses can be performed using different approaches, with fixed-effect (FE) and 
random-effect (RE) models being most common. Fixed-effect meta-analysis assumes a homogenous 
effect size between studies, meaning any variation in the observed effects is attributed solely to 
sampling error27. In contrast, random-effect meta-analysis assumed that the effect size varies 
between studies due to differences in population or study designs, allowing for more flexibility in 
capturing heterogeneity across datasets27. We employed the RE2 method developed by Han and 
Eskin (2011) because it improves statistical power by relaxing the conservative assumptions of the 
traditional random-effect model, enabling better detection of associations in the presence of 
heterogeneity27.  

Our study had several limitations. Our sample sizes were limited due to down sampling to 
match case and control numbers across ancestry groups, so many variants did not reach genome-
wide significance. This is of particular importance when considering changes to the signal in the 
TCF7L2 gene in T2D between approaches. Although a higher sample size would be ideal, down 
sampling was a crucial step to isolate the impact of ancestry on GWAS approaches rather than 
sample size and statistical power. Additionally, down sampled groups were not matched by age, sex 
or other clinical characteristics. In addition, the modified meta-analysis in the RE2_CORRECTED 
analyses produced slightly inflated results which often had the most significant associations and 
identified several signals for CKD and T2D that had not been reported in ClinVar or the GWAS 
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catalog3,53. Due to the low sample sizes in our study compared to previously reported GWAS of 
T2D and CKD that had not detected these associations, it is plausible these associations may be 
spurious. Our meta-analyses also only included variants that intersected between the ancestry-
specific GWAS, which led to the exclusion of several important ancestry-specific signals in the 
meta-analysis results. This can be overcome through the inclusion of more cohorts in a meta-analysis 
but highlights an important limitation of the meta-analysis approach under our framework for 
directly comparing two studies. Additionally, our method to assess variability in effect sizes was 
unable to fully quantify observed variability. The pattern of sample overlap between the GWAS 
approaches in our study violated assumptions of independence or matched dependence between 
studies. Quantification of this variability using a well calibrated statistical methodology is a logical 
next step to investigate the differences observed between approaches.  

In a typical GWAS, multi-ancestry mega-analysis, or meta-analysis approaches benefit from 
increased sample size. Our study, however, maintained consistent sample size across approaches to 
isolate ancestry’s impact. We found that multi-ancestry methods can diminish ancestry-specific 
signals, which can significantly impact downstream analyses like TWAS, PWAS, or PGS. This 
raises questions about the optimal approach for generating summary statistics, as results differ in 
meaningful ways based on initial GWAS method. Notably, many variants show striking changes in 
effect direction, both among those with significant p-values and genome-wide. These effect size 
flips are crucial, as they influence downstream analyses and biological/clinical interpretations. 
While many variants show consistent results across approaches, a notable subset are impacted by 
the choice of analysis method.  As we see with variants in APOL1, some of these variants showing 
variable results or which could not be fully assessed in all approaches are essential for understanding 
differences in disease risk between populations. Thus, new methods that consider the ancestry-
specific variants in conjunction with the multi-ancestry shared variants need to be developed. 

5. Acknowledgements

We acknowledge the Penn Medicine BioBank (PMBB) for providing data and thank the patient- 
participants of Penn Medicine who consented to participate in this research program. We would also 
like to thank the Penn Medicine BioBank team and Regeneron Genetics Center for providing genetic 
variant data for analysis. The PMBB is approved under IRB protocol# 813913 and supported by 
Perelman School of Medicine at University of Pennsylvania, a gift from the Smilow family, and the 
National Center for Advancing Translational Sciences of the National Institutes of Health under 
CTSA award number UL1TR001878. Additional funding support was provided to MDR by 
AI077505, EY023557, AG066833, and HL169458. Additional funding was provided to SAT by 
ADA 1-19-VSN-02, and NIH grants 1R35GM134957, R01AR076241, and 1X01HL139409-01. 

6. Supplementary Material

All supplemental data can be found at: 
https://ritchielab.org/publications/supplementary-data/psb-2025/jonescardone 

262

https://ritchielab.org/publications/supplementary-data/psb-2025/jonescardone


References 
1. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primer 1, 1–21

(2021).

2. Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing down. Nat.

Commun. 11, 5900 (2020).

3. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource.

Nucleic Acids Res. 51, D977–D985 (2023).

4. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations:

opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

5. Truong, V. Q. et al. Quality Control Procedures for Genome-Wide Association Studies. Curr.

Protoc. 2, e603 (2022).

6. The 1000 Genomes Project Consortium et al. A global reference for human genetic variation.

Nature 526, 68–74 (2015).

7. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–

1320 (2005).

8. Li, C. C. Population subdivision with respect to multiple alleles. Ann. Hum. Genet. 33, 23–29

(1969).

9. Lander, E. S. & Schork, N. J. Genetic dissection of complex traits. Science 265, 2037–2048

(1994).

10. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide

association studies. Nat. Genet. 38, 904–909 (2006).

11. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in

large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

263



12. Hellwege, J. et al. Population Stratification in Genetic Association Studies. Curr. Protoc. Hum.

Genet. 95, 1.22.1-1.22.23 (2017).

13. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in

unrelated individuals. Genome Res. 19, 1655–1664 (2009).

14. Qin, X., Lock, T. R. & Kallenbach, R. L. DA: Population structure inference using

discriminant analysis. Methods Ecol. Evol. 13, 485–499 (2022).

15. Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nat. Rev.

Genet. 11, 356–366 (2010).

16. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health

disparities. Nat. Genet. 51, 584–591 (2019).

17. Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and

challenges of mapping in diverse populations. Genome Med. 6, 91 (2014).

18. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The Missing Diversity in Human Genetic

Studies. Cell 177, 26–31 (2019).

19. Ju, D., Hui, D., Hammond, D. A., Wonkam, A. & Tishkoff, S. A. Importance of Including

Non-European Populations in Large Human Genetic Studies to Enhance Precision Medicine.

Annu. Rev. Biomed. Data Sci. 5, 321–339 (2022).

20. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human

populations. Nat. Commun. 10, 3328 (2019).

21. Fatumo, S. et al. Diversity in Genomic Studies: A Roadmap to Address the Imbalance. Nat.

Med. 28, 243–250 (2022).

22. Bick, A. G. et al. Genomic data in the All of Us Research Program. Nature 627, 340–346

(2024).

264



23. The H3Africa Consortium et al. Enabling the genomic revolution in Africa. Science 344,

1346–1348 (2014).

24. Gaziano, J. M. et al. Million Veteran Program: A mega-biobank to study genetic influences on

health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

25. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 590, 290–299 (2021).

26. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex

traits. Nature 570, 514–518 (2019).

27. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis

of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

28. Han, B. & Eskin, E. Interpreting Meta-Analyses of Genome-Wide Association Studies. PLOS

Genet. 8, e1002555 (2012).

29. Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385

(2002).

30. Kenny, E. E. et al. Melanesians blond hair is caused by an amino acid change in TYRP1.

Science 336, 554 (2012).

31. Genovese, G. et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in

African-Americans. Science 329, 841–845 (2010).

32. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl.

J. Med. 369, 2183–2196 (2013).

33. Pollak, M. R. & Friedman, D. J. APOL1 and APOL1-Associated Kidney Disease: A Common

Disease, an Unusual Disease Gene − Proceedings of the Henry Shavelle Professorship.

Glomerular Dis. 3, 75–87 (2023).

265



34. Fawcett, K. A. & Barroso, I. The genetics of obesity: FTO leads the way. Trends Genet. 26,

266–274 (2010).

35. Grant, S. F. A. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type

2 diabetes. Nat. Genet. 38, 320–323 (2006).

36. Haddad, S. A. et al. A novel TCF7L2 type 2 diabetes SNP identified from fine mapping in

African American women. PloS One 12, e0172577 (2017).

37. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes.

Nature 445, 881–885 (2007).

38. Uribe-Salazar, J. M., Palmer, J. R., Haddad, S. A., Rosenberg, L. & Ruiz-Narváez, E. A.

Admixture mapping and fine-mapping of type 2 diabetes susceptibility loci in African

American women. J. Hum. Genet. 63, 1109–1117 (2018).

39. Chang, Y.-C. et al. Association study of the genetic polymorphisms of the transcription factor

7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 56, 2631–2637

(2007). 

40. Ng, M. C. Y. et al. Replication and identification of novel variants at TCF7L2 associated with

type 2 diabetes in Hong Kong Chinese. J. Clin. Endocrinol. Metab. 92, 3733–3737 (2007).

41. Lehman, D. M. et al. Haplotypes of transcription factor 7-like 2 (TCF7L2) gene and its

upstream region are associated with type 2 diabetes and age of onset in Mexican Americans.

Diabetes 56, 389–393 (2007).

42. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals.

Nature 582, 240–245 (2020).

43. Zeggini, E. et al. Replication of Genome-Wide Association Signals in UK Samples Reveals

Risk Loci for Type 2 Diabetes. Science 316, 1336–1341 (2007).

266



44. Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular

outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52,

680–691 (2020).

45. Verma, A. et al. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning

Healthcare System to Accelerate Precision Medicine in a Diverse Population. J. Pers. Med. 12,

1974 (2022).

46. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer

datasets. GigaScience 4, 7 (2015).

47. Hinrichs, A. S. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34,

D590–D598 (2006).

48. Patterson, N., Price, A. L. & Reich, D. Population Structure and Eigenanalysis. PLoS Genet. 2,

e190 (2006).

49. Shuey, M. M. et al. Next-generation phenotyping: introducing phecodeX for enhanced

discovery research in medical phenomics. Bioinformatics 39, btad655 (2023).

50. Turner, S. D. qqman: an R package for visualizing GWAS results using Q-Q and manhattan

plots. J. Open Source Softw. 3, 731 (2018).

51. Pendergrass, S. A., Dudek, S. M., Crawford, D. C. & Ritchie, M. D. Synthesis-View:

visualization and interpretation of SNP association results for multi-cohort, multi-phenotype

data and meta-analysis. BioData Min. 3, 10 (2010).

52. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-

density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

53. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and

human phenotype. Nucleic Acids Res. 42, D980-985 (2014).

267
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Uterine leiomyomata, or fibroids, are common gynecological tumors causing pelvic and menstrual 

symptoms that can negatively affect quality of life and child-bearing desires. As fibroids grow, 

symptoms can intensify and lead to invasive treatments that are less likely to preserve fertility. 

Identifying individuals at highest risk for fibroids can aid in access to earlier diagnoses. Polygenic risk 

scores (PRS) quantify genetic risk to identify those at highest risk for disease. Utilizing the PRS software 

PRS-CSx and publicly available genome-wide association study (GWAS) summary statistics from 

FinnGen and Biobank Japan, we constructed a multi-ancestry (META) PRS for fibroids. We validated 

the META PRS in two cross-ancestry cohorts. In the cross-ancestry Electronic Medical Record and 

Genomics (eMERGE) Network cohort, the META PRS was significantly associated with fibroid status 

and exhibited 1.11 greater odds for fibroids per standard deviation increase in PRS (95% confidence 

interval [CI]: 1.05 – 1.17, p = 5.21x10-5). The META PRS was validated in two BioVU cohorts: one 

using ICD9/ICD10 codes and one requiring imaging confirmation of fibroid status. In the ICD cohort, a 

standard deviation increase in the META PRS increased the odds of fibroids by 1.23 (95% CI: 1.15 – 

1.32, p = 9.68x10-9), while in the imaging cohort, the odds increased by 1.26 (95% CI: 1.18 – 1.35, p = 

2.40x10-11). We subsequently constructed single ancestry PRS for FinnGen (European ancestry [EUR]) 

and Biobank Japan (East Asian ancestry [EAS]) using PRS-CS and discovered a nominally significant 

association in the eMERGE cohort within fibroids and EAS PRS but not EUR PRS (95% CI: 1.09 – 

1.20, p = 1.64x10-7). These findings highlight the strong predictive power of multi-ancestry PRS over 

single ancestry PRS. This study underscores the necessity of diverse population inclusion in genetic 

research to ensure precision medicine benefits all individuals equitably. 
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1. Introduction

Uterine fibroids, or uterine leiomyomata, are benign tumors of the uterine smooth muscle that affect a 

substantial proportion of people with uteruses. While nearly all of these individuals will develop at least 

one fibroid in their lifetime, only about 50% will experience symptoms, leading to a condition with 

considerable variability in presentation.1,2 Fibroids are recognized as a health disparity, with a higher 

prevalence reported among individuals identifying as Black compared to those identifying as White.1,3 

Additionally, fibroids impose a significant financial burden to the healthcare system, being the leading 

cause of hysterectomy and gynecological hospitalizations in the United States.4 

Despite their common occurrence, the genetic factors contributing to fibroid development remain 

complex and multifactorial. Genome-wide association studies (GWAS) have enhanced our 

understanding of the genetic underpinnings of uterine fibroids, revealing that the condition is influenced 

by multiple genetic variants, each contributing a small amount to the overall risk.5,6 This polygenic 

nature of fibroids means that identifying individual genes of interest through single-gene studies is 

insufficient. To better estimate genetic risk for polygenic diseases like fibroids, polygenic risk scores 

(PRS) have been developed. A PRS aggregates an individual’s genetic risk across various loci, 

providing an overall estimate of their risk for the disease or other clinically relevant outcome.7 In the 

context of uterine fibroids, PRS can refine diagnostic accuracy, help identify individuals at high genetic 

risk for fibroids, and predict the likelihood of treatment resistance or recurrence.8 This personalized 

approach allows for more targeted interventions and pre-clinical monitoring, potentially leading to 

earlier and more effective management.  

PRS development has traditionally relied on GWAS data from populations of European ancestry, 

which limits the applicability of these scores to populations of other ancestries.9 The use of single 

ancestry GWAS also exacerbates issues with generalizability. There are several programs for PRS 

construction, and a review of the different programs and methodologies has been published elsewhere.10 

However, PRS-CSx is an approach which uses linkage disequilibrium (LD) reference panels matched 

to the ancestry of the GWAS population to perform continuous shrinkage across summary statistics.11 

This approach integrates multiple multi-ancestry GWAS summary statistics from different ancestry 

groups allowing for more genetic variability to be captured in the score. In 2022, our group published 

a PRS for fibroids using a European ancestry GWAS and validated it in a population of European 

ancestry.12 Here, we aim to extend previous work by developing a multi-ancestry PRS for fibroids 

applicable to a diverse cohort. By using this method to construct a portable PRS, we hope to address 

and mitigate racial disparities in precision medicine by overcoming existing limitations in capturing 

polygenic traits. 

2. Materials and Methods

2.1.   Study populations 

The Electronic Medical Records and Genomics (eMERGE) Network (2007 – present) is a national 

network of DNA repositories that are linked to electronic health records (EHRs). A detailed description 

of the organization of the eMERGE Network has been previously published.13 Data contained in the 

EHR include International Classification of Disease (ICD) diagnostic and procedure codes, basic 
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demographics, discharge summaries, progress notes, health history, laboratory values, imaging reports, 

medication orders, and pathology details. Participants in the eMERGE network were genotyped 

separately, then imputed and merged. A detailed description of the genotyping, imputation, and quality 

control of the eMERGE phase III array dataset has been previously reported.14  

The BioVU DNA Repository is a deidentified database of EHRs that are linked to patient DNA 

samples at Vanderbilt University Medical Center (VUMC). A detailed description about the database 

and its maintenance has been published elsewhere.15 The EHR for BioVU contains the same 

information as stated above for eMERGE. This study also obtained Institutional Review Board (IRB) 

approval and was conducted in accordance with ethical standards. 

While BioVU is a member of eMERGE, samples included in this study are unique to BioVU. 

BioVU participants were genotyped on a custom MEGA array with genotypes aligned to the forward 

strand. Initial quality control of both study populations excluded samples or variant sites with 

missingness above a 2% threshold. Samples were also excluded if consent had been withdrawn, if the 

sample was duplicated, if there was a failure in sex concordance, or if there was a discrepancy between 

reported race and genetically determined race. Genetic males were censored from analysis. Imputation 

was performed on the Michigan Imputation Server using Minimac4 and the 1000 Genomes Phase 3 

combined reference panel.16,17 

Phecodes within the EHR were based from ICD9 and ICD10 codes. Fibroid status in eMERGE was 

extracted based on phecodes recorded in EHR data.18 Two cohorts were created in BioVU using 

different case and control definitions: BioVU-ICD and BioVU-imaged. The BioVU-ICD cohort 

classified fibroid status similarly to eMERGE, derived from phecodes, while the BioVU-imaged cohort 

used a previously published algorithm to identify cases or controls based on imaging records indicating 

the presence or absence of fibroids.19 In the eMERGE and BioVU-ICD cohorts, cases had at least one 

code for fibroid diagnosis or a history of fibroid treatment, while controls had no such records. In the 

BioVU-imaged cohort, cases were identified by a history of fibroids or treatment procedures and at 

least one imaging procedure confirming fibroid presence. Controls in the BioVU-imaged cohort 

required two or more imaging events on separate dates without fibroid findings and no history of 

diagnosis or treatment. Race and ethnicity were determined via reporting through categorical options. 

The multi-ancestry group was comprised of all individuals that reported as White, Black, or Asian race 

and Hispanic or non-Hispanic ethnicity. The other two groups were based on either White or Black 

reported race and Hispanic or non-Hispanic ethnicity. The counts of each strata are given in Table 1. 

2.2.   Polygenic risk score development 

Genetic effect weights for PRS construction were derived from uterine fibroid GWAS summary 

statistics from FinnGen r8 and BioBank Japan.20,21 Both biobanks determined case and control status 

based on the presence or absence of ICD9/ICD10 codes or equivalent codes in their healthcare systems. 

For the multi-ancestry (META) PRS, posterior genetic effect weights were calculated using PRS-CSx, 

while weights for the single-ancestry scores, European (EUR) and East Asian (EAS) PRS, were 

calculated using PRS-CS.11,22 We used linkage disequilibrium (LD) reference panels from the 1000 

Genomes Project, with the EUR panel for the FinnGen cohort and the EAS panel for the BioBank Japan 

cohort. Both PRS-CS and PRS-CSx use a high-dimensional Bayesian framework that calculates a 

continuous shrinkage prior tailored to a target population, based on the selected LD reference panel. 
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This shrinkage prior is applied to the raw genetic weights from the source GWAS to derive posterior 

genetic effect weights, which are then summed to create the PRS. PRS-CS is designed for a single 

GWAS from a single population, whereas PRS-CSx integrates results from multiple GWAS summary 

statistics. The programs were applied to three target populations: eMERGE, BioVU-ICD, and BioVU-

imaged. Posterior effect weights calculated for each population were summed to create a PRS using 

PLINK 2.0.23,24 

2.3.   Statistical analysis 

All statistical analyses were performed using R Statistical Software (v4.2.2).25 Samples remaining after 

exclusion in eMERGE and BioVU were used for ten-fold cross validation. Analysis of variance 

(ANOVA) test was used to determine if age and BMI differed within racial groups between all cohorts. 

These covariates were chosen because prior literature has revealed associations between uterine fibroid 

risk with both age and BMI.1 Student’s T-test was used to determine if mean META, EUR, and EAS 

PRS significantly differed between cases and controls for each racial group within the cohorts. Densities 

of each PRS stratified on case/control status, were visualized using ‘ggplot2.’26

2.4.   Ten-fold cross validation 

Ten-fold cross validation was performed using the R package ‘caret.’27 Each PRS (META, EUR, EAS) 

was tested for validation in each of the racial groups for every cohort, resulting in nine different 

Cohort 

Reported Race N BMI (SD) Age (SD) Controls (%) Cases (%) 

eMERGE 

All 23,183 29.07 (7.49) 65.30 (18.69) 21,212 (91) 2,290 (9) 

White 20,408 28.68 (7.19) 66.52 (18.52) 18,398 (91) 1,784 (9) 

Black 2,775 32.44 (8.66) 56.94 (18.73) 2,306 (84) 439 (16) 

BioVU - ICD 

All 33,391 29.27 (7.84) 52.53 (18.61) 32,764 (97) 1,076 (3) 

White 27,141 28.69 (7.53) 54.64 (18.20) 25,812 (98) 596 (2) 

Black 6,250 32.03 (8.72) 45.19 (18.19) 5,700 (93) 420 (7) 

BioVU - imaged 

All 9,182 29.21 (8.08) 44.86 (17.33) 7,910 (84) 1,463 (16) 

White 7,294 28.55 (7.69) 46.96 (17.45) 6,082 (86) 975 (14) 

Black 1,888 31.90 (9.17) 38.02 (15.41) 1,464 (78) 410 (22) 

Table 1. Racial breakdown of cohorts and population characteristics. Listed below are total counts, mean and standard 

deviation (SD) of body mass index (BMI) and age, and numbers of cases and controls for each of the three groupings within 

all cohorts. Race consists of White reported race and non-Hispanic ethnicity (White), Black reported race and non-Hispanic 

ethnicity (Black), and all the above (All). 
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validation groups in total. Each of the nine groups was split into 80/20 training and testing sets. For 

each PRS, three models were applied to each of the nine validation groups. The adjusted model 

constructed the PRS as the main predictor with adjustments for age, BMI, and ten principal components 

(PCs). The unadjusted model estimated the PRS singularly, while the covariate model analyzed the 

model created by the covariates—age, BMI, and ten PCs—without the PRS. Odds ratios (OR) and 95% 

confidence intervals (CI) and pseudo-R2 were calculated for each model. Area under receiver operator 

curve (AUROC) for the testing set was calculated using the ‘pROC’ R package.28  

3. Results

3.1.   Population characteristics 

Out of 52,548 females in the eMERGE cohort, 23,502 samples passed quality control measures and 

exhibited fibroid status determinable by ICD codes (eMERGE). The average BMI of the overall group 

was 29.07 (standard deviation [SD] = 7.49), with 28.68 (SD = 7.19) for the White-reported race strata 

and 32.44 (SD = 8.66) for the Black-reported race strata. The overall average age was 65.30 (SD = 

18.69), with 66.52 (SD = 18.52) for the White-reported race strata and 56.94 (SD = 18.73) for the Black-

reported race strata. There were 2,290 fibroid cases in the multi-ancestry group. There were 1,784 cases 

in the White-reported race strata and 439 cases in the Black-reported race strata to make the prevalence 

of fibroids 9% and 16%, respectively (Table 1).  

BioVU had 51,715 female samples of which 33,840 samples passed quality control and exhibited 

fibroid status determinable by ICD codes (BioVU-ICD). The average BMI of the multi-ancestry group 

was 29.27 (SD = 7.84). For the White-reported race strata, the average BMI was 28.69 (SD = 7.53), 

and for the Black-reported race strata, it was 32.03 (SD = 8.72). The average age of the overall group 

was 52.53 (SD = 18.61), while it was 54.64 (SD = 18.20) for the White-reported race strata and 45.19 

(SD = 18.19) for the Black-reported race strata. There were 1,076 cases in the multi-ancestry group. In 

the White-reported race strata, there were 596 cases, and in the Black-reported race strata, there were 

420 cases, for a fibroid prevalence of 2% and 7%, respectively (Table 1). 

Of the 51,715 female individuals in BioVU, 9,373 samples passed quality control and had fibroid 

status as determined by the imaging algorithm (BioVU-imaged). The average BMI of the overall group 

was 29.21 (SD = 8.08). In the White-reported race strata, it was 28.55 (SD = 7.69), and in the Black-

reported race strata it was 31.90 (SD = 9.17). The average age of the overall group was 44.86 (SD = 

17.33). The White-reported race strata had an average age of 46.96 (SD = 17.45), and the Black-reported 

race strata had an average age of 38.02 (SD = 15.41). There was a fibroid prevalence of 16% out of 

1,463 cases in the multi-ancestry group, whereas it was 14% of 975 cases in the White-reported race 

strata and 22% of 410 cases in the Black-reported race strata (Table 1). 

3.2.   Polygenic risk score validation 

3.2.1. Multi-ancestry (META) PRS 

The META PRS was validated in the multi-ancestry group of the eMERGE, BioVU-ICD, and BioVU-

imaged cohorts. Student’s T-tests for difference in means found mean META PRS to be significantly 

different between cases and controls in all multi-ancestry cohorts: p = 9.85x10-9 for eMERGE, p = 
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2.50x10-10 for BioVU-ICD, and p = 3.07x10-12 for BioVU-imaged (Table 2). For a one standard 

deviation increase in PRS, the OR for fibroid diagnosis was 1.11 (95% CI: 1.06 – 1.17, p = 2.43x10-5) 

in eMERGE, 1.23 (95% CI 1.15 – 1.32, p = 9.68x10-9) in BioVU-ICD, and 1.26 (95% CI: 1.18 – 1.35, 

p = 2.4x10-12) in BioVU-imaged (Figure 1A). The META PRS performed best in the BioVU-imaged 

cohort with an AUROC of 0.74 (95% CI: 0.71 – 0.77), while the AUROC was 0.67 (95% CI: 0.64 – 

0.69) in the eMERGE cohort and 0.66 (95% CI: 0.63 – 0.69) in the BioVU-ICD cohort (Figure 2A). 

The AUROCs for the covariate models were 0.73 (95% CI: 0.71 - 0.76), 0.66 (95% CI: 0.63 - 0.68), 

and 0.65 (95% CI: 0.62 - 0.69), respectively. 

When the META PRS was applied to each reported race strata separately, it was validated in the 

White-reported race strata of each cohort but not in the Black-reported race strata (Figures 1B and 1C). 

The ORs for the White-reported race strata were 1.15 (95% CI 1.09 - 1.22, p = 6.83x10-7) in eMERGE, 

1.25 (95% CI: 1.15 – 1.39, p = 5.63=10-7) in BioVU-ICD, and 1.34 (95% CI: 1.23 – 1.44, p = 1.34x10-

12) in BioVU-imaged. The META PRS performed best in the White-reported race strata of the BioVU-

imaged cohort with an AUROC of 0.70 (95% CI: 0.66 - 0.73), while the AUROC was 0.63 (95% CI:

0.60 – 0.66) in eMERGE and 0.63 (95% CI: 0.58 – 0.68) in BioVU-ICD (Figure 2B). The AUROCs of

the covariate model were 0.68 (95% CI: 0.65 – 0.72), 0.63 (95% CI: 0.60 – 0.65), and 0.58 (95% CI:

0.53 – 0.64), respectively. When the META PRS was modeled with covariates in the Black-reported

race strata, the model itself had predictability, but the META PRS did not contribute any of the

predictability (Figure 2C).

Cohort 

Reported Race META PRS EUR PRS EAS PRS 

eMERGE 

All 9.85x10-9 1.89x10-7 7.67x10-17 

White 2.49x10-9 0.002 9.90x10-12 

Black 0.57 0.14 0.06 

BioVU - ICD 

All 2.50x10-10 4.10x10-13 4.64x10-6 

White 7.06x10-10 1.06x10-7 0.00063 

Black 0.07 0.21 0.06 

BioVU - imaged 

All 3.07x10-12 6.91x10-11 2.75x10-8 

White 1.77x10-13 2.49x10-10 2.21x10-6 

Black 0.65 0.85 0.12 

Table 2. Polygenic risk score (PRS) T-test results. Student’s T-tests were used to determine if mean PRS was significantly 

different between cases and controls. Significance level is 0.002 (0.05/27 tests). Cases and controls in the multi-ancestry 

(META), European ancestry (EUR), and East Asian ancestry (EAS) PRS were stratified according to race: White reported 

race and non-Hispanic ethnicity (White), Black reported race and non-Hispanic ethnicity (Black), and all the above (All).  
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3.2.2. European ancestry (EUR) PRS 

The EUR PRS was validated in the multi-ancestry and White-reported race strata but not in the Black-

reported race strata for both BioVU cohorts. The EUR PRS was only validated in the multi-ancestry 

strata of the eMERGE cohort. Mean EUR PRS was significantly different between cases and controls 

for all multi-ancestry cohorts: p = 1.89x10-7 for eMERGE, p = 4.10x10-13 for BioVU-ICD, and p = 

6.91x10-11 for BioVU-imaged (Table 2). In the multi-ancestry cohorts, the ORs were 1.18 in both 

BioVU-ICD (95% CI 1.09 – 1.26, p = 8.94x10-6) and BioVU-imaged (95% CI: 1.10 – 1.26, p = 1.89x10-

6) (Figure 1D). The EUR PRS was not associated with the risk of fibroid diagnosis in the eMERGE

cohort (p = 0.30). The EUR PRS performed best in the BioVU-imaged cohort with an AUROC of 0.74

(95% CI: 0.71 – 0.77), while the AUROC was 0.63 (95% CI: 0.60 – 0.66) in eMERGE and 0.67 (95%

Fig. 1. Polygenic risk score (PRS) ten-fold cross validation results stratified by race for each cohort. Race refers to White 

reported race and non-Hispanic ethnicity (WHITE), Black reported race and non-Hispanic ethnicity (BLACK), and all the 

above (ALL). Odds ratios (ORs) are calculated for one standard deviation increase in PRS for adjusted and unadjusted 

models. A/B/C) ORs for all multi-ancestry (META) PRS cohorts. D/E/F) ORs for all European ancestry (EUR) PRS 

cohorts. G/H/I) ORs for all East Asian ancestry (EAS) PRS cohorts. Created with Biorender.com. 
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CI: 0.63 – 0.70) in BioVU-ICD (Figure 2D). The AUROCs for the covariate model were 0.73 (95% CI: 

0.71 – 0.76), 0.66 (95% CI: 0.63 – 0.68), and 0.65 (95% CI: 0.62 – 0.69), respectively. 

The EUR PRS was applied to the White-reported race strata of the cohorts, but it did not show an 

association with the risk of fibroid diagnosis in the eMERGE cohort (p = 0.01) because it did not reach 

the significance level of our ten-fold cross-validation for the EUR PRS (p < 6.17x10-4). The ORs for 

the EUR PRS in the BioVU cohorts were 1.21 (95% CI: 1.10 – 1.32, p = 5.59x10-5) in BioVU-ICD and 

1.29 (95% CI: 1.19 – 1.40, p = 4.69x10-10) in BioVU-imaged (Figure 1E). The EUR PRS performed 

best in the BioVU-imaged cohort with an AUROC of 0.69 (95% CI: 0.66 – 0.72), while the AUROC 

was 0.63 (95% CI: 0.63 – 0.60 – 0.68) in eMERGE and 0.62 (95% CI: 057 – 0.67) in BioVU-ICD 

(Figure 2E). The AUROCs of the covariate model were 0.68 (95% CI: 0.65 – 0.72), 0.63 (95% CI: 0.60 

– 0.65), and 0.58 (95% CI: 0.53 – 0.64), respectively. The EUR PRS did not associate with risk of

Fig. 2. Polygenic risk score (PRS) ten-fold cross validation results stratified by race for each cohort. Race refers to White 

reported race and non-Hispanic ethnicity (WHITE), Black reported race and non-Hispanic ethnicity (BLACK), and all the 

above (ALL). A/B/C) Area under receiver operator curve (AUROC) plots for each multi-ancestry (META) PRS cohort. 

D/E/F) AUROC plots for each European ancestry (EUR) PRS cohort. G/H/I) AUROC plots for each East Asian ancestry 

(EAS) PRS cohort. Created with Biorender.com. 
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fibroid diagnosis in the Black-reported race strata of any cohort nor did the models have predictability 

for fibroid status (Figures 1F and 2F). 

3.2.3. East Asian ancestry (EAS) PRS 

The EAS PRS was validated in the multi-ancestry and White-reported race strata but not the Black-

reported race strata for all cohorts. There was a significant difference in mean EAS PRS between cases 

and controls for all multi-ancestry cohorts: p = 7.67x10-17 for eMERGE, p = 4.64x10-6 for BioVU-ICD, 

and p = 2.75x10-8 for BioVU-imaged (Table 2). In the multi-ancestry cohorts, the ORs were 1.14 for 

both eMERGE (95% CI: 1.09 – 1.20, p = 1.64x10-7) and BioVU-ICD (95% CI: 1.06 – 1.22, p = 3.00x10-

4) cohorts, while the BioVU-imaged cohort had a slightly larger OR of 1.19 (95% CI: 1.11 – 1.27, p =

3.31x10-7) (Figure 1G). The EAS PRS performed best in the BioVU-imaged cohort with an AUROC

of 0.73 (95% CI: 0.71 – 0.76), while the AUROC was 0.68 (95% CI: 0.65 – 0.70) in eMERGE and 0.66

(95% CI: 0.62 – 0.69) in BioVU-ICD (Figure 2G). The AUROCs for the covariate model were 0.73

(95% CI: 0.71 – 0.76), 0.66 (95% CI: 0.63 – 0.68), and 0.65 (95% CI: 0.62 – 0.69), respectively.

When the EAS PRS was applied to the White-reported race strata of each cohort, the ORs were 

similar: 1.19 (95% CI: 1.12 – 1.26, p = 1.26x10-9) in eMERGE, 1.17 (95% CI: 1.07 – 1.28, p = 1.00x10-

4) in BioVU-ICD, and 1.18 (95% CI: 1.09 – 1.28, p = 4.20x10-5) in BioVU-imaged. While the effect

size of the EAS PRS was consistent across cohorts, the PRS had the most predictability in the BioVU-

imaged cohort with an AUROC of 0.69 (95% CI: 0.66 – 0.72). Next was the eMERGE cohort with an

AUROC of 0.64 (95% CI: 0.61 – 0.67) followed by the BioVU-ICD cohort with an AUROC of 0.60

95% CI: 0.54 – 0.65) (Figure 2H). The AUROCs of the covariate model were 0.68 (95% CI: 0.65 –

0.72), 0.63 (95% CI: 0.60 – 0.65), and 0.58 (95% CI: 0.53 – 0.64), respectively. The EAS PRS was not

associated with risk of fibroids in the Black-reported race strata of any cohort, nor did it exhibit

meaningful predictability (Figures 1I and 2I).

4. Discussion

Using current approaches to estimate PRSs and publicly available resources, we constructed and 

validated a multi-ancestry (META) PRS in two separate biobanks. META PRS performed better than 

the single ancestry PRSs, European ancestry (EUR) PRS and East Asian ancestry (EAS) PRS, in all 

cohorts. These findings show the utility of using a multi-ancestry approach over a single ancestry 

analysis for PRS. A PRS constructed from the same summary statistics may work in one target 

population but not others due to a variety of factors including differences in data structures, genotyped 

variants, and ancestry.5 By enabling the use of two ancestries over one to construct a PRS, more genetic 

variation is included in the model, which is precisely what PRS-CSx was created to accomplish.11 

Including multiple different genetic ancestries in a PRS should enable the model to be transferrable to 

other racial groups, further attempting to answer a problem that has led to portability failures of past 

PRS models.  

PRSs have suffered from an inability to transfer across racial and ethnic groups, resulting in 

concerns that use of PRS in precision medicine may further contribute to disparities observed in disease 

trends.8 When our PRS was evaluated by Black-reporting and White-reporting racial strata, there were 

differences in validating the findings. The META PRS strongly associated with fibroid status in the 
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White-reported race strata among all cohorts but failed to validate in any Black-reported race strata. 

Yet, the AUROC of the modeled covariates in the Black-reported race strata was close to, and in some 

cases better than, the AUROC for the adjusted META PRS applied to the White-reported race strata. 

While the META PRS showed no association or predictability with fibroid diagnosis, adding the 

covariates of age, BMI, and ten PCs were sufficient for a prediction model. Additionally, the pseudo-

R2 was higher in the multi-ancestry group than in the racial strata, demonstrating how adding Black-

reporting individuals to the overall model enhances the explained variation. We acknowledge that the 

smaller sample size of Black-reporting individuals may have limited statistical power, potentially 

affecting the precision of effect size estimates and the detection of significant associations. However, 

this limitation is common when studying underrepresented populations, underscoring the need for 

future efforts to increase sample sizes and improve cohort diversity to enhance the generalizability and 

accuracy of PRS in Black-reporting individuals. Excluding these populations from prediction modeling 

only serves to perpetuate health disparities among traditionally underrepresented populations. Thus, 

while META PRS does not hold any predictive power for Black-reporting individuals alone, their 

inclusion in the model remains essential for accurate risk assessment based upon clinical factors for all 

populations.  

A major strength of this study is the use of publicly available resources to construct a multi-ancestry 

fibroid PRS, making it accessible for a broad audience. Utilizing large-scale biobank GWAS summary 

statistics from the FinnGen research project and the Biobank Japan, which have performed GWAS on 

thousands of traits, we demonstrated that these projects are sufficient for future PRS studies, sparing 

researchers from conducting their own on smaller populations. Despite this, we acknowledge the 

'messiness' of clinical data used in these studies is often due to case-control definitions based on the 

presence or absence of a phenotype in an individual's EHR. In particular, case-control definitions based 

on EHRs are often reliant on the presence or absence of a clinical phenotype, which introduces potential 

inaccuracies. For example, fibroid cases may be underdiagnosed in individuals who are asymptomatic, 

resulting in the inclusion of false negatives among controls and subsequently impacting the accuracy 

and robustness of GWAS associations. A more stringent, precise set of case-control criteria, such as 

those incorporating diagnostic imaging, would likely improve both GWAS outcomes and PRS 

performance. This is demonstrated in the study, where the BioVU-imaged cohort, which confirmed 

fibroid diagnoses through imaging, showed improved AUROC and pseudo-R2 compared to the ICD-

defined cohort, demonstrating enhanced predictability and stability from more precise phenotyping.  

Additionally, we observed significant heterogeneity across the populations studied. For instance, 

the Finnish population's unique genetic background, stemming from a founding bottleneck and relative 

isolation, may limit transferability to other populations, thereby affecting PRS-CSx program 

compatibility. This study primarily utilized European and East Asian ancestry data from the FinnGen 

research project and the Biobank Japan, but did not include African genetic ancestry, despite its known 

risk factor for fibroids. This highlights a broader issue in genetic research, where populations of 

European ancestry are often overrepresented, limiting the generalizability of findings. There has been 

one successful fibroid GWAS in individuals of African ancestry, which identified a unique locus 

associated with fibroids.  This may indicate the genetic architecture of fibroids differs significantly 

across ancestries.29,30 Expanding genetic studies into these underrepresented populations should help 

fill in this missing variance, thus increasing the predictability of PRS. We were unable to use the African 
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ancestry summary statistics, as that study was performed by our group with samples from BioVU. 

Removing the overlapping samples from the source population in the BioVU validation cohorts resulted 

in further insufficient sample sizes for the Black-reported race strata in this study. 

In summary, we developed and validated a multi-ancestry (META) PRS in two biobanks, 

demonstrating superior performance compared to single ancestry PRSs (European and East Asian) 

across all cohorts. This underscores the advantage of a multi-ancestry approach, which incorporates a 

broader genetic variation and potentially increases model transferability across different racial groups. 

Despite the META PRS's strong association with fibroid status in White-reported race strata, it showed 

limited predictive power for Black-reported race strata, highlighting a persistent challenge in PRS 

models' applicability across racial groups. Nonetheless, including diverse ancestries in the PRS model 

improved overall prediction accuracy and addressed disparities in health risk assessment. Strengths of 

this study include the use of large-scale biobank data and imaging validation to enhance PRS 

robustness. However, limitations such as inaccurate case-control definitions and a lack of African 

genetic ancestry in the data underscore the need for more inclusive and precise research methodologies. 

Ultimately, while multi-ancestry PRS models hold promise for reducing health disparities, further 

efforts are needed to integrate diverse genetic ancestries and improve predictive accuracy for all 

populations. 
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Uterine fibroids show evidence of shared genetic architecture with blood pressure traits 
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Uterine leiomyomata (fibroids, UFs) are common, benign tumors in females, having an estimated 
prevalence of up to 80%. They are fibrous masses growing within the myometrium leading to 
chronic symptoms like dysmenorrhea, abnormal uterine bleeding, anemia, severe pelvic pain, and 
infertility. Hypertension (HTN) is a common risk factor for UFs, though less prevalent in 
premenopausal individuals. While observational studies have indicated strong associations 
between UFs and HTN, the biological mechanisms linking the two conditions remain unclear.�
Understanding the relationship between HTN and UFs is crucial because UFs and HTN lead to 
substantial comorbidities adversely impacting female health. Identifying the common underlying 
biological mechanisms can improve treatment strategies for both conditions. To clarify the 
genetic and causal relationships between UFs and BP, we conducted a bidirectional, two-sample 
Mendelian randomization (MR) analysis and evaluated the genetic correlations across BP traits 
and UFs. We used data from a multi-ancestry genome-wide association study (GWAS) meta-
analysis of UFs (44,205 cases and 356,552 controls), and data from a cross-ancestry GWAS meta-
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analysis of BP phenotypes (diastolic BP [DBP], systolic BP [SBP], and pulse pressure [PP], 
N=447,758). We evaluated genetic correlation of BP phenotypes and UFs with linkage 
disequilibrium score regression (LDSC). LDSC results indicated a positive genetic correlation 
between DBP and UFs (Rg=0.132, p<5.0x10-5), and SBP and UFs (Rg=0.063, p<2.5x10-2). MR 
using UFs as the exposure and BP traits as outcomes indicated a relationship where UFs increases 
DBP (odds ratio [OR]=1.20, p<2.7x10-3). Having BP traits as exposures and UFs as the outcome 
showed that DBP and SBP increase risk for UFs (OR =1.04, p<2.2x10-3; OR=1.00, p<4.0x10-2; 
respectively). Our results provide evidence of shared genetic architecture and pleiotropy between 
HTN and UFs, suggesting common biological pathways driving their etiologies. Based on these 
findings, DBP appears to be a stronger risk factor for UFs compared to SBP and PP. 

Keywords: uterine fibroids; hypertension; Mendelian randomization; genetic correlation;

women’s health

1. Introduction

Uterine leiomyomata (fibroids, UFs) is a highly prevalent and genetically complex disease.1,2 UFs are 

the most common benign tumors in premenopausal individuals, having an estimated cumulative 

prevalence of up to approximately 80%, with Black women being up to three times more likely to 

develop UFs than White women.2,3 Black women also experience earlier onset, more severe symptoms, 

greater challenges in accessing timely and effective treatment, and higher rates of surgical interventions 

like hysterecomy.3,4 Uterine fibroids are characterized by the presence of fibrous masses growing in and 

on the smooth muscle of the uterus. People with UFs present symptoms of dysmenorrhea, heavy or 

abnormal uterine bleeding, and anemia, and pelvic pain.2 Uterine fibroid symptoms have substantial 

overlap with other gynecologic conditions, such as ovarian cysts, endometriosis, and menstrual 

disorders.1 Inevitably, the overlap in symptomology between these conditions present challenges for 

UFs to be accurately and timely diagnosed and treated. Studies report that up to 41% of females with 

UFs visit two or more providers and experience a three to five year deferment in treatment of UFs.4,5 

Nonsurgical and fertility-preserving interventions for UFs are limited; treatment strategies commonly 

aim at controlling symptoms or surgeries to remove the affected reproductive tissues/organs altogether. 

Furthermore, myomectomy surgeries are not 100% effective as reoccurrence of UFs occurs in 

approximately 59% of patients.6,7 As a consequence, UFs result in over a $10-billion annual national 

economic burden due to direct and indirect costs associated with doctors office visits, treatments, 

hospitalizations, surgeries, and wage losses.8  

UFs are associated with many comorbidities, including hypertension (HTN), which also 

disproportionately affects Black women. HTN is a major risk factor associated with increasing risk of 

UFs. Individuals with UFs are at 1.44 fold increased risk of having HTN.9 For complex diseases such 

as UFs and HTN, multiple factors influence their onset, progression, and severity, with health inequities 

further compounding these risks. The most recent published GWAS estimated single nucleotide 

polymorphism (SNP)-heritability of UFs to be 13%, which is much lower than pedigree-based 

heritability estimates ranging between 26 and 69%, suggesting that many factors, including social 

determinants of health, are involved in UFs development and are not fully captured by GWAS.10–13  
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Although there are many epidemiological studies indicating strong associations between UFs and 

HTN, the origins and links between the two conditions remain poorly understood. Emerging evidence 

suggests that females with treated HTN are at a reduced risk of UFs than those with untreated HTN.14,15 

However, these studies are not without limitations, such as collider bias, selection bias, and possible 

incomplete covariate assessment, reducing their reliability. The limitations of these observational 

studies underscore the need for more robust methodologies, such as Mendelian randomization, which 

can better account for confounding factors and help elucidate causal relationships. 

Elucidating the shared genetic architecture across UFs and HTN can help capture the biological 

factors contributing to disease risk. Additionally, further research is needed to determine whether these 

conditions are causes or consequences of one another, or perhaps arising in part from some common 

causes. Our study aims to clarify the genetic correlations and pleiotropy of HTN and UFs. To help 

clarify the potential causal association between UFs and HTN, we conducted a Mendelian 

randomization analysis and evaluated the genetic correlations using data from two large, multi-ancestry 

UFs and blood pressure (BP) trait GWAS meta-analyses. 

2. Methods

2.1  Study populations 

We used cross-ancestry, meta-analyzed uterine fibroid GWAS summary statistics from an unpublished 

study as well as summary statistics from a cross-ancestry GWAS meta-analysis of BP phenotypes 

(including diastolic BP [DBP], systolic BP [SBP], and pulse pressure[PP], [N = 447,758]).16–18 The UFs 

multi-ancestry meta-analysis included diverse cohorts of female participants (with the inclusion of 

individuals having African/Black, European/White, and Asian ancestry or self-reported race) who were 

18 years of age or older from BioVU, eMERGE, All of Us, Coronary Artery Risk Development in 

Young Adults, Black Women’s Health Study, FinnGen, and Biobank Japan18–25. The BP multi-ancestry 

meta-analysis included cohorts of individuals in the Million Veteran Program and UK Biobank. The BP 

meta-analysis also included people having African/Black, European/White, and Asian ancestry or self-

reported race. To ensure independent meta-analysis summary statistics for BP and UFs, summary 

statistics from UK Biobank were excluded from the UFs meta-analysis to avoid overlapping and 58,832 

cases and 295,991 controls samples remained.  

2.2  Linkage disequilibrium score regression analysis 

With the GWAS summary statistics for UFs and BP traits, we conducted Linkage Disequilibrium Score 

Regression (LDSC) analyses to assess pairwise genetic correlations and estimate heritability.26 

Summary statistics were filtered under the following default parameters: imputation quality > 0.9, 

minor allele frequency (MAF) between 0.01 and 0, strand ambiguous SNPs, SNPs with duplicated ‘rs’ 

numbers, multi-allelic variants, insertion/deletions were removed as determined by the LDSC program. 

Alleles were merged with the HapMap 3 reference panel and LD scores were precomputed from 1000 

Genomes European GWAS data.27,28 
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2.3  Bidirectional, two-sample mendelian randomization 

Bidirectional, two-sample Mendelian randomization (MR) was performed with the “TwoSampleMR” 

R package (version 0.5.7).29 Using the MR approach, we evaluated the relationships between UFs and 

BP traits. MR uses genetic variants robustly associated with exposures of interest as genetic 

instrumental variables to estimate the causal and unbiased association between the exposure with the 

outcome. The MR approach assumes the following: (1) the genetic instrument is strongly associated 

with the trait; (2) the genetic instrument only affects the outcome via the trait; and (3) the genetic 

instrument is not associated with confounders of the exposure-outcome association.30 Bidirectional MR 

allows users to investigate the direction of the relationship between two phenotypes (e.g., determining 

if HTN is a cause or a consequence of UFs). The genetic instruments for the analysis were selected 

from the meta-analyzed summary-level data of BP traits and UFs by linkage disequilibrium clumping 

of genome-wide significant SNPs (p<5x10-8) with an r2 threshold of 0.01. The inverse variance 

weighted (IVW) method was utilized to obtain initial estimates of the associations. In addition to the 

standard IVW Mendelian randomization estimate, we used MR-Egger to detect directional pleiotropy 

and F-statistics were calculated to assess genetic instrument strength. All F-statistics of genetic 

instruments used in the analysis were >29. 

2.4  Functional annotation and gene set analysis 

The Functional Mapping and Annotation (FUMA) is a web-based tool that analyzes GWAS summary 

statistics in various post-GWAS analysis31. We used FUMA to conduct pathway analysis of the UFs 

genetic instruments used for MR. Gene mapping of SNPs present in the genetic instrument was 

completed using the SNP2GENE process. The UFs GWAS summary statistics were used as the GWAS 

input file and the UFs genetic instrument file was input as pre-defined independent lead SNPs. We 

utilized default parameters for SNP2GENE and opted out of the identification of additional independent 

lead SNPs. After the SNPs were annotated and mapped to their respective genes, we used the 

GENE2FUNC function, under default parameters, to obtain insight of the biological mechanisms of our 

prioritized gene set. GENE2FUNC uses biological information from multiple databases for each gene 

annotated in SNP2GENE to identify biological pathways associated with the gene set.  
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3. Results

3.1  Genetic correlation across uterine fibroids and blood pressure traits  

To determine whether UFs and BP associations are due to shared genetic architecture or arise from 

independent genetic contributions to risk, we first used genetic correlation analysis. LDSC results 

(Table 1) indicated a positive genetic correlation between DBP and UFs (Rg = 0.132, p < 5.0x10-5), and 

SBP and UFs (Rg = 0.063, p < 2.5x10-2 0.025). Genetic correlation between pulse pressure and UFs was 

nonsignificant (Rg = 0.006, p > 0.050). Ancestry-stratified analysis of European/White cohort displayed 

a similar trend where significant positive genetic correlations estimated between DBP and UFs (Rg= 

0.114, p < 5.2 x 10-6) and SBP and UFs (Rg= 0.08, p < 1.1 x 10-3). Genetic correlations of UFs and BP 

traits in the African/Black cohort were greatly inflated, had large standard errors, and were therefore 

inconclusive and omitted.  

3.2  Assessment of potential causal associations between uterine fibroids and blood pressure traits 
using bidirectional, two-sample mendelian randomization 

Having UFs as the exposure variable and BP traits as the outcomes indicated a moderate, positive 

relationship between UFs and DBP (odds ratio [OR] = 1.20, 95% confidence interval [CI]: 1.08-1.32, 

p < 2.7x10-3) (Table 2). SBP and PP as outcomes and did not provide significant results. Using BP traits 

as exposure variables and UFs as the outcome showed that DBP increases risk for UFs (OR = 1.04, 

95% CI: 1.01-1.06, p < 2.2x10-3) (Table 2). With DBP as the exposure, a significant MR Egger 

Table 1: LDSC Results of Uterine Fibroids and Blood Pressure Traits. This table depicts results of genetic 

correlations of uterine fibroids and blood pressure traits. There were positive genetic correlations between 

DBP and UFs and SBP and UFs. Multi-Ancestry: includes results from GWAS summary statistics of 

individuals of African/Black, European/White, and Asian ancestry or self-reported race. European/White: 

includes results from GWAS summary statistics of individuals of European/White ancestry or self-

reported race only. DBP: diastolic blood pressure; SBP: systolic blood pressure; PP: pulse pressure.

Multi-Ancestry European/White 

Genetic Correlation 
(Rg) 

p-value Genetic Correlation 
(Rg) 

p-value

DBP 0.132 5.0x10-5 0.114 5.2 x 10-6 

SBP 0.063 2.5x10-2 0.080 1.1 x 10-3 

PP 0.006 0.830 0.011 0.669 
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regression p-value (p < 3.8x10-2) indicated horizontal pleiotropy in the analysis. Leave-one-out 

sensitivity analysis depicted that the DBP IVW estimate was largely influenced by a single SNP, 

rs78378222 with DBP as the exposure. Excluding SNP rs78378222 reduced the IVW OR estimate by 

0.08 (OR = 1.12, 95% CI: 1.01-1.22, p < 4.4x10-2) with DBP as the outcome (Table 3). A similar change 

in IVW estimate was observed with excluding SNP rs78378222 (OR=1.02, 95% CI: 1.01-1.04, p < 

2.8x10-3) with DBP as exposure and UFs as outcome and there was no horizontal pleiotropy (MR egger 

p=0.52).  

Table 2. Bidirectional, Two-Sample Mendelian Randomization Results of Uterine Fibroids and Blood Pressure 

Traits. There were significant relationships between uterine fibroids and systolic blood pressure with systolic 

blood pressure as the exposure variable. There was a bidirectional relationship between uterine fibroids and 

diastolic blood pressure. OR: odds ratio; SE: standard error; Egger p-value: test for horizontal pleiotropy. 

Exposure Outcome 
No. of 

Genetic 
Instruments

Mendelian Randomization 
IVW
OR SE p-value 

Egger
p-value

Uterine Fibroids 

Diastolic Blood Pressure 108 1.20 0.061 2.7x10-3 0.180 

Systolic Blood Pressure 110 1.15 0.111 0.220 0.892 

Pulse Pressure 110 0.91 0.089 0.310 0.289 

Diastolic Blood Pressure 

Uterine Fibroids 

99 1.04 0.012 2.2x10-3 3.8x10-2

Systolic Blood Pressure 407 1.00 0.002 4.0x10-2 0.400 

Pulse Pressure 411 0.99 0.004 9.8x10-3 0.090 

Table 3. Changes in Inverse Variance Weighted Estimate After Removing SNP rs78378222 in Genetic 

Instruments. The IVW estimates decreased for diastolic blood pressure after removing SNP rs78378222 from the 

genetic instruments. Pleiotropy originally detected by the MR Egger test was eliminated. OR: odds ratio; SE: 

standard error; Egger p-value: test for horizontal pleiotropy. 

Exposure Outcome
No. of 

Genetic 
Instruments

Mendelian Randomization  
IVW
OR SE p-value 

Egger
p-value

Uterine Fibroids 

Diastolic Blood Pressure 107 1.12 0.055 4.4x10-2 0.433 

Systolic Blood Pressure 109 1.20 0.113 0.098 0.487 

Pulse Pressure 109 1.01 0.082 0.524 0.347 

Diastolic Blood Pressure

Uterine Fibroids 

98 1.02 0.008 2.8x10-3 0.524 

Systolic Blood Pressure 407 1.00 0.002 3.5x10-2 0.400 

Pulse Pressure 410 0.99 0.003 0.061 0.773 
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3.3  FUMA pathway analysis  

We used the UFs genetic instruments from the MR analysis as the pre-defined lead SNPs supplementary 

input file for FUMA. FUMA identified 22 biological pathways, derived from Canonical Pathways, that 

were associated with our prioritized gene set (Table 4)32. There were multiple overlapping genes 

associated with TP53 mediation, P53 regulation and signaling, and cellular senescence dysfunction.

Other overlapping genes are present in pathways related to androgen biosynthesis, cell cycle, DNA 

damage responses, and breast cancer. FUMA also identified genes previously reported from studies 

present in the GWAS catalog that are associated with DBP, SBP, and PP (Table 5)33. There were 19, 35, 

and 22 genes in our gene list that are significantly associated with DBP, SBP, and PP; respectively.  

Table 4. FUMA Results of Biological Pathways Significantly Associated with Our Prioritized Gene List. The 
gene list was created from the uterine fibroid genetic instruments used for Mendelian randomization. N: number 
of genes; Adjusted p-value: p-value after correcting for multiple comparisons.  

Gene Set N Adjusted 
p-value Genes

Reactome Regulation of TP53 
Activity Through Methylation 5 1.08x10-2 MDM4, ATM, TP53, CHEK2, EP300 

WP Glioblastoma Signaling 
Pathways 8 1.55x10-2 

PIK3C2B, MDM4, PDGFRA, CDKN1A, ATM, 
FOXO1, TP53, EP300 

Biocarta G2 Pathway 5 1.55x10-2 CDKN1A, ATM, TP53, CHEK2, EP300 

PID HDAC Class III Pathway 5 1.55x10-2 CDKN1A, SIRT3, FOXO1, TP53, EP300 

WP miRNAs Involved in DNA 
Damage Response 4 3.46x10-2 CDKN1A, ATM, RAD52, TP53 

WP Male Infertility 9 3.67x10-2 
PARP1, CLOCK, ESR1, CYP17A1, ATM, YBX2, 

HORMAD2, TCN2, EP300 

Reactome Sumoylation 10 3.67x10-2 
PARP1, DNMT3A, THRB, ESR1, NCOA2, RAD52, 

TP53, EP300, L3MBTL2, RANGAP1 

Biocarta BLK3 Pathway 3 3.67x10-2 ATM, TP53, CHEK2 

PID P53 Regulation Pathway 6 3.67x10-2 MDM4, ATM, NEDD8, TP53, CHEK2, EP300 

Reactome RHO GTPases 
Activate PAKs 4 3.67x10-2 CDC42, MYH11, MYH10, NF2 

Biocarta ATM Pathway 4 3.67x10-2 CDKN1A, ATM, TP53, CHEK2 

Biocarta P53 Hypoxia 
Pathway 4 3.67x10-2 CDKN1A, ATM, TP53, EP300 

WP ATM Signaling Pathway 5 4.43x10-2 MDM4, CDKN1A, ATM, TP53, CHEK2 

PID ERA Genomic Pathway 6 4.68x10-2 GREB1, ESR1, NCOA2, NEDD8, XBP1, EP300 
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WP Breast Cancer Pathway 9 4.68x10-2 
WNT4, PARP1, KIT, CDKN1A, ESR1, WNT2, 

FGF8, ATM, TP53 

WP NAD Metabolism in 
Oncogene Induces Senescence 

and Mitochondrial 
Dysfunction Associated 

Senescence 

4 4.68x10-2 PARP1, SIRT3, SLC2A4, TP53 

Reactome G1 S DNA Damage 
Checkpoints 6 4.68x10-2 MDM4, CDKN1A, PSMD13, ATM, TP53, CHEK2 

Reactome Androgen 
Biosynthesis 3 4.68x10-2 POMC, SRD5A3, CYP17A1 

Reactome Regulation of 
FOXO Transcriptional 
Activity By Acetylation 

3 4.68x10-2 SIRT3, FOXO1, EP300 

KEGG P53 Signaling Pathway 6 4.82x10-2 MDM4, CDKN1A, SESN1, ATM, TP53, CHEK2 

WP DNA Damage Response 6 4.82x10-2 CDKN1A, SESN1, ATM, RAD52, TP53, CHEK2 

Reactome Circadian Clock 6 4.82x10-2 
USP46, CLOCK, NCOA2, BTRC, ELOVL3, 

EP300 

Table 5. FUMA Results of Genes Reported in the GWAS Catalog Significantly Associated with Blood Pressure 
Traits. The gene list was created from the uterine fibroid genetic instruments used for Mendelian randomization. 
N: number of genes; Adjusted p-value: p-value after correcting for multiple comparisons.  

Gene Set N Adjusted
p-value Genes 

Diastolic Blood 
Pressure 19 1.69x10-2

DNM3, MDM4, OCIAD2, PDLIM5, HSPA4, ESR1, RGS17, PAX2, 
BTRC, ARL3, CYP17A1, CNNM2, NT5C2, SLK, SORCS3, SLC2A4, 

TP53, ZNRF3, TNRC6B 

Systolic Blood 
Pressure 35 2.17x10-8

RNF207, WNT4, DNM3, MDM4, ITPR1, TEC, SLAIN2, OCIAD1, 
OCIAD2, PDGFRA, TERT, ESR1, RBPMS, KANK1, PAX2, FGF8, 

SUFU, ARL3, WBP1L, CYP17A1, AS3MT, CNNM2, NT5C2, RPEL1, 
SLK, SORCS3, ARL14EP, RAD52, ITGA11, SLC2A4, ZNF208, 

TTC28, ZNRF3, C22orf31, TNRC6B 

Pulse Pressure 22 2.06x10-3

RNF207, TEC, SLAIN2, CHIC2, PDGFRA, PDLIM5, CDKN1A, 
ESR1, TRIM8, ARL3, WBP1L, CYP17A1, CNNM2, NT5C2, RPEL1, 

SLK, SORCS3, WT1, MYH11, SLC2A4, TP53, TNRC6B 
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4. Discussion

Our study utilized summary statistics from the largest multi-ancestry UFs GWAS meta-analysis to date 

and a BP trait multi-ancestry GWAS meta-analysis with 447,758 individuals.16,17 Here we report that 

UFs and BP have significant, positive genetic correlations and there is a bidirectional, causal 

relationship between UFs and BP traits. We provide evidence that genetic predisposition to UFs 

increases BP. We also report novel associations between DBP and UFs.  

Blood pressure is a modifiable risk factor for cardiovascular disease. Approximately 20% of 

reproductive-aged female individuals have high BP worldwide.34,35 HTN is often underdiagnosed in 

female populations, and less than 25% have this condition under control.36 Approximately one in five 

deaths in females is attributed to high BP in the United States.37 There are notable parallels between the 

disparities of HTN and UFs. For both conditions, Black women have the highest prevalence, the most 

severe symptoms, and have the poorest health outcomes.4,5,34 So far, the epidemiological relationship 

between UFs and BP has been mainly evaluated by retrospective and observational studies. Some of 

these studies have identified that individuals being treated for HTN (specifically with angiotensin-

converting enzyme [ACE] inhibitors and beta adrenoceptor antagonist [beta blockers]) are at reduced 

risk of UFs, implicating the renin angiotensin pathway and angiogenic processes in UFs pathology.14,38 

Yet, ACE inhibitors are prescribed less to Black patients due to poor BP responses to treatments.39 

Combination therapies that include ACE inhibitors and a calcium channel agonist or diuretic are highly 

effective at reducing BP in Black patients.40 Currently, there is one U.S. Food and Drug Administration 

(FDA) approved combination therapy for UFs.41,42 The causal associations identified in our study may 

aid in discovering new targets for developing more combination therapies for UFs. 

In this study, the LDSC indicated a positive genetic correlation between UFs and SBP, UFs and 

DBP, but not UFs and PP, which is consistent with findings from prior research9,43. UFs and DBP were 

more correlated than SBP and UFs, implying that DBP and UFs have a stronger, common underlying 

genetic background. A similar trend was also observed in the MR data. In both directions, DBP 

exhibited a stronger relationship with UFs than SBP. SBP and DBP have differing biological 

mechanisms driving their pathologies. SBP is largely influenced by arterial stiffening. Elevated and 

high SBP are indicative of decreased compliance of the arteries, which can be attributed to the aging 

process or arteriosclerosis44,45. Conversely, DBP is a measure of arteriolar peripheral resistance. High 

DBP is attributed to the thickening of the vascular wall and increased tone of the smooth muscle in the 

arterioles.44,46 This causes an increase in the pressure blood exhorts within the arteries the during the 

diastole. The relationship demonstrated in our results suggests that the shared genetics between UFs, 

SBP, and DBP are also through different mechanisms.  

FUMA provided biological context to this study. Pathways identified by FUMA involve p53 
regulation and signaling, TP53 mediation, and cellular response to hypoxic stress, all of which are

associated with vascular alterations and endothelial dysfunction in hypertension.47 Furthermore, TP53 
and p53 are regulators of important cellular processes including DNA repair, cell cycle arrest, cellular

senescence, and apoptosis.48,49 Tumor suppressor genes have been implicated in mediating the induction 
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of sex hormone-binding globulin and other steroid binding factors and their mutations are associated 

with increased cancer pathogenesis.50,51 This suggests that the vascular changes observed in HTN may 

intersect with the hormonal pathways influencing UFs formation, providing a plausible explanation for 

the shared genetic mechanisms observed between DBP, SBP, and UFs. Further investigation into the 

TP53 pathway and its role in both vascular and fibroid pathology could elucidate additional therapeutic 

targets for managing these conditions. 

UFs have been associated with increasing BP in numerous studies.43,43,52 However, the direction of 

the relationship remained unclear. Based on the IVW estimate in our study, the causal relationship 

between BP and UFs is more distinct having UFs as the exposure, suggesting that genetic predisposition 

to UFs increases risk for HTN. Prior studies showed that individuals with severe and symptomatic 

fibroids requiring surgical intervention are at higher risk of hypertension.53 Thus, it is possible that UFs 

may increase BP over time. UFs depend on uterine arteries for blood supply and uterine angiogenic 

dysregulation  plays an important role in fibroid pathophysiology.54,55  Genetic alterations,  hormonal 

factors, and hypoxic conditions caused by tumor growth promote angiogenesis within fibroids56–58. This 

vascular remodeling tends to be to be zone specific where more vasculature is present on the superficial 

layers of fibroids than in deep layers58. Similarly, HTN is associated with changes in artery structure 

and function. The arterial wall is sensitive to changes in tension and stress caused by BP elevation and 

it is hypothesized that arterial thickening is involved in a positive feedback loop.59,60 This maladaptation 

to increased BP may drive subsequent arterial fibrosis and diminishes vascular function. Furthermore, 

our study demonstrates a positive genetic correlation and causal relationship between DBP and UFs, 

whereas previous research had only indicated SBP.61 Interestingly here, the genetic correlation and 

relationship are stronger between DBP and UFs than SBP. The stronger correlation between DBP and 

UFs found here suggests that UFs pathophysiology shares more underlying biological mechanisms with 

DBP than SBP. 

This study’s major strength is the utilization of highly diverse and large study populations. However, 

there are some limitations. GWAS of UFs in African and Asian ancestry cohorts are greatly limited. 

Despite the large overall sample size of our study, the proportion of non-European populations were 

smaller, limiting the power of ancestry-stratified analyses. Therefore, the ancestry-stratified analysis 

could not produce reliable results. Future studies should aim to expand GWAS for these groups, 

particularly given the disparities in HTN and UFs burdens. Also, MR can indicate causal relationships, 

but results should be validated in larger-scale longitudinal studies and clinical trials. Moreover, future 

research should also confirm findings by exploring underlying molecular and biological mechanisms. 

Last, this study relies on GWAS summary statistics from published studies. Other confounding and 

mediating factors, such as fibroid size and number or oral contraceptive use, could not be taken into 

consideration.  
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5. Conclusions

The findings of our study provide evidence for shared genetic architecture across BP traits and UFs 

risk. Our analysis identified the direction of the relationship between BP and UFs where genetic risk of 

UFs significantly increases risk for high BP. In addition, risk for UFs influences DBP more than SBP. 

Clinically, UFs contribute significantly to morbidity and healthcare costs for reproductive-aged 

females. Accumulating information about the genetic and biological processes driving UFs formation 

will enhance our understanding of the disease and pave the way for improved therapeutic decisions and 

personalized treatments. 
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Abstract 
Women's health conditions are influenced by both genetic and environmental factors. Understanding these 
factors individually and their interactions is crucial for implementing preventative, personalized medicine. 
However, since genetics and environmental exposures, particularly social determinants of health (SDoH), 
are correlated with race and ancestry, risk models without careful consideration of these measures can 
exacerbate health disparities. We focused on seven women’s health disorders in the All of Us Research 
Program: breast cancer, cervical cancer, endometriosis, ovarian cancer, preeclampsia, uterine cancer, and 
uterine fibroids. We computed polygenic risk scores (PRSs) from publicly available weights and tested the 
effect of the PRSs on their respective phenotypes as well as any effects of genetic risk on age at diagnosis. 
We next tested the effects of environmental risk factors (BMI, lifestyle measures, and SDoH) on age at 
diagnosis. Finally, we examined the impact of environmental exposures in modulating genetic risk by 
stratified logistic regressions for different tertiles of the environment variables, comparing the effect size of 
the PRS. Of the twelve sets of weights for the seven conditions, nine were significantly and positively 
associated with their respective phenotypes. None of the PRSs was associated with different ages at diagnoses 
in the time-to-event analyses. The highest environmental risk group tended to be diagnosed earlier than the 
low and medium-risk groups. For example, the cases of breast cancer, ovarian cancer, uterine cancer, and 
uterine fibroids in highest BMI tertile were diagnosed significantly earlier than the low and medium BMI 
groups, respectively). PRS regression coefficients were often the largest in the highest environment risk 
groups, showing increased susceptibility to genetic risk. This study’s strengths include the diversity of the 
All of Us study cohort, the consideration of SDoH themes, and the examination of key risk factors and their 
interrelationships. These elements collectively underscore the importance of integrating genetic and 
environmental data to develop more precise risk models, enhance personalized medicine, and ultimately 
reduce health disparities. 

Keywords: Polygenic Risk Scores, Social Determinants of Health, Health Disparities, Genetic Risk, Disease 
Prediction, Women’s Health, Breast Cancer, Endometriosis, Ovarian Cancer, Preeclampsia, Uterine Cancer, 
Uterine Fibroids
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1 Introduction 

Since the completion of the Human Genome Project in 2003, countless studies have 
been conducted to associate genetic variants with diseases1–3. However, genetic factors 
accompanied by environmental factors collectively contribute to pathogenesis and progression 
of diseases. Therefore, quantifying the effects of multimodal risk factors separately and 
together will help to improve disease risk models. Accurate stratification of individual disease 
risk is an essential step in the way to reduce the burden of health disparities and implement 
personalized preventative care. 

For many highly heritable diseases, such as coronary artery disease and type 2 diabetes, 
PRSs are useful for stratifying patients into risk groups based on their genetics. However, in 
the context of women's health diseases, which have historically been underfunded4 and 
understudied5, the predictive accuracy of PRSs has been inconsistent, especially across diverse 
populations6. Globally, large efforts have been undertaken to build diverse resources to support 
such studies, including the UK Biobank7, Finngen8, BioVU9, BioBank Japan10, the Penn 
Medicine Biobank11, and a newer resource funded by the NIH, the All of Us (AOU) Research 
Program12. The growth of large genomic datasets has enabled not only the detection of disease-
associated genetic variations but also the possibility of using genetic and non-genetic risk 
factors to predict disease risk before the onset. Numerous studies, like the WISDOM trial13 
focusing on breast cancer and the eMERGE network examining PRS results for 10 disease 
outcomes14, are underway to investigate how PRSs can be incorporated into clinical practice.  

Environmental risk factors are multi-faceted, including lifestyle measurements as well 
as social determinants of health (SDoH). Most of these variables are measured through survey 
participation. Lifestyle aspects, like alcohol use, smoking, and physical activity, have been 
linked to disease risk for endometriosis15, breast cancer16, and uterine fibroids17, respectively. 
SDoH are define measurements for social inequities which can impact a person’s health. These 
include neighborhood disorder, stress, and loneliness. Chronic stress and loneliness have been 
shown to increase lifetime risk of many serious diseases, like Alzheimer’s18, cardiovascular 
disease19, etc. Additionally, SDoH impact diseases affecting women specifically20–22. 
Interactions between genetic and environmental effects have been studied previously, with 
respect to both individual genetic variants23 and PRSs24. It has been shown that incorporating 
PRS with environment measurements such as stress improves model performance for other 
complex disorders25. Therefore, understanding the influence of lifestyle and environmental 
factors alongside genetic factors is crucial for predicting women's health outcomes. 

One important aspect of predictive modeling in personalized medicine is to examine 
the disease progression, including the onset of diseases. Both categories of risk factors (genetic 
and environmental) are most often studied in the context of lifetime disease risk. Time-to-event 
analyses are growing in popularity to evaluate longitudinal risk, utilizing survival analysis 
methodologies to evaluate the impact of risk factors on disease progression, including the onset 
of the disease. 

The aim of this study is to identify and quantify interactions between genetic risk of 
women’s health conditions and external variables in a diverse cohort of women within the 
AOU. We hypothesize that an individuals’ susceptibility to disease risks is not solely dictated 
by their genetic composition but is greatly influenced by these environmental and social 
determinants. Understanding how environmental contexts impact the efficacy and clinical 
utility of PRSs will help to ensure that they are implemented in equitable ways. 
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2 Methods 

2.1 Study Dataset – All of Us Research Program 

The All of Us Research Program (AOU) is a dataset supported by the NIH comprised of 
409,420 participants with electronic health record (EHR) data, 245,400 of whom have short-
read whole genome sequencing (WGS) data. In our study, we included 145,563 of the WGS 
individuals who were assigned female at birth26  For study individuals, genetic ancestry was 
assigned by the AOU data team, who computed genetic similarity with the 1000 genomes 
reference populations based on genetic principal components. 

The EHR data for AOU are stored as billing codes in tables that follow the Observational 
Medical Outcomes Partnership (OMOP) structure27. For our focus on women’s health 
conditions, we selected breast cancer (BC), cervical cancer (CC), endometriosis (Endo), 
ovarian cancer (OC), preeclampsia (PE), uterine cancer (UC), and uterine fibroids (UF). Each 
of these diseases has ICD-9 and ICD-10 diagnosis codes (Results, Table 1). Case/control status 
was determined by the presence of one or more ICD codes for each phenotype. 

2.2 Calculating PRSs for women’s health outcomes 

The PGS Catalog28 is a public repository of PRS weights that have been published and 
validated. We browsed the PGS catalog for PRSs for each condition. In cases when more than 
one PRS was available, we prioritized sets of weights that had been tested on large, multi-
ancestry validation cohorts and that have shown promising results based on metrics such as 
AUROC. The accession numbers for the weights we selected are shown in Figure 1. We 
computed all 12 scores from the downloaded files in genome build 38 with Plink 2.0’s --score 
function29. The scores for each phenotype were then standardized by genetic ancestry group. 

2.3 Environmental variables (SDoH and lifestyle measures) 

AOU issued several surveys to its participants, including SDoH and Lifestyle questionnaires, 
combining instruments from other well-studied surveys. To compute continuous scales for 
neighborhood physical disorder, neighborhood social disorder, stress, and loneliness, we 
followed procedures as described in Tesfaye et al 202430. The other two survey-derived 
lifestyle variables were smoking and alcohol use. For smoking, there were seven questions. For 
the three quantitative questions (ranging from 0-99), we assigned these values: responses of 
zero (1), then the remaining quartiles (2-5). For the other four smoking questions, we assigned 
numeric values to the responses: Not At All (1), Some Days (3), Every Day (5). There were 
three questions pertaining to alcohol use, and we assigned responses numerical values of one 
to five, with five corresponding to heavier drinking. 

We aimed to capture other health measurements using biometrics and wearables data. 
Per individual, we used median Body Mass Index (BMI) measurement over time. We 
quantified activity levels using two Fitbit-derived measurements: daily steps (ST) and daily 
sedentary minutes (SM), as both have been linked to health risks31,32. Similarly to BMI, we 
took the median across each day that had measurements to obtain one value per individual. 
Once we computed each of the nine continuous environmental factors, we visualized the 
Pearson correlation between them to examine how they relate to each other and potentially 
eliminate any that were highly correlated. 
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2.4 Statistical analyses 

2.4.1 Stratified time-to-event analyses for age at diagnosis 

For each case of the six phenotypes, we assigned the age of first diagnosis code of a 
condition as “age at diagnosis”. This age variable was used as outcome for time-to-event 
analyses. Time-to-event analyses were performed in two different contexts: stratified by 
genetic risk and stratified by environmental variable level. For each phenotype, we looked at 
three curves defined by the tertiles of the stratifying variable (low/medium/high). Those curves 
(1 = low, 2 = medium, 3 = high) were fit to survival functions33 using KaplanMeierFitter from 
the lifelines Python package34. The three survival functions were compared in a pairwise 
scheme using the log rank test, which results in a chi-squared test statistic. 

2.4.2 Quantifying effects of PRSs in environmental contexts 

Association testing was performed for each of the twelve PRSs with their corresponding 
phenotype. The odds ratio (OR) coefficient was estimated using a logistic regression (with an 
intercept) in which the outcome was the phenotype, the risk score was the independent variable, 
and age at the time of the EHR data extraction was included as a covariate (Equation 1).  

𝐿𝑜𝑔𝑖𝑡(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒)  ∼  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑃𝑅𝑆  +  𝐴𝑔𝑒  (1) 
For the phenotypes with more than one set of PRS weights (breast cancer, endometriosis, 
ovarian cancer, and uterine fibroids), we selected the PRS with the largest regression 
coefficient, resulting in six phenotypes with significant PRS effects (Results, Figure 1). 

Next, for each phenotype and environmental risk factor, we divided our study 
population into nine groups based on environmental variable tertiles (low, medium, high) and 
genetic risk tertile (low, medium, high). To illustrate the differences in risk levels among 
various environmental and genetic risk groups, we used the medium/medium subgroup as a 
reference and computed the odds ratio (and 95% confidence interval) for the phenotype in each 
of the other eight subgroups, displayed in 3x3 grids for comparison. 

Finally, to examine whether the impact of the polygenic risk score (PRS) on disease risk 
varied across different levels of environmental risk, we conducted stratified regression 
analyses. By dividing the study population into subgroups based on environmental factors, we 
assessed how the association between PRS and disease outcomes changed within each 
subgroup, allowing us to determine if the PRS effect size was influenced by the level of 
environmental risk. Each environmental variable was divided into tertiles, and then the logistic 
regression was performed as described previously (Equation 1) for each of the three sub-
groups. In a similar manner, we tested the effect of each environmental risk factor on the 
phenotypes, stratified by genetic risk tertile (Equation 2). 

𝐿𝑜𝑔𝑖𝑡(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒)  ∼  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡  +  𝐴𝑔𝑒  (2) 

3 Results 

3.1 PRSs for women’s health phenotypes 

Our study cohort consisted of female AOU participants with short-read WGS (N = 145,563). 
We assigned case/control phenotypes in AOU using hierarchical diagnosis billing codes, 
Table 1considering both ICD-9 and ICD-10 codes, as shown in Table 1. 
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12 sets of weights selected from PGS catalog with reported associations to our phenotypes of 
interest were selected (Table 2). 

Table 2 : The PRSs evaluated along with their reported traits, number of variants, and the percentage of the 

population reported as European in development/training (dev) and testing set. Those reported as “Unspecified” 

did not provide ancestry specific population reporting 

Score Reported Trait Year Number of Variants % EUR in Dev % EUR in Validation 

PGS000004 Breast Cancer 2018 313 100 76.4 

PGS004611 Breast Cancer 2023 76 58.6 Unspecified 

PGS001299 Cervical cancer 2022 24 100 40 

PGS003447 Endometriosis 2021 14 98 54.5 

PGS002077 Endometriosis 2022 14 100 37.5 

PGS001866 Endometriosis 2022 399 100 37.5 

PGS002250 Epithelial ovarian cancer 2022 27,240 100 60 

PGS003394 Epithelial ovarian cancer 2022 36 100 50 

PGS004593 Preeclampsia 2022 1,102,059 Unspecified 100 

PGS001795 Uterine cancer 2023 911,692 83.9 100 

PGS001032 Uterine fibroids 2022 161 100 40 

PGS002263 Uterine fibroids 2022 4,457 100 100 

We tested logistic regressions for each of the 12 sets of weights selected from the PGS catalog. 
The PRS for each phenotype with the most significant positive effect was chosen for 
downstream analysis (Figure 1). 

Table 1: The seven women’s health phenotypes tested. The root ICD codes used for case definitions, the 

number of cases in the female AOU WGS dataset, and the mean age at diagnosis (Dx) for those cases. 

Phenotype ICD-9 Code ICD-10 Code AOU Cases Dx Age Mean (std) 

Breast Cancer (BC) 174 C50 6,444 58.4 (11.7) 
Cervical Cancer (CC) 180 C53 546 51.1 (13.3) 
Endometriosis (Endo) 617 N80 4,306 43.5 (11.6) 
Ovarian Cancer (OC) 183 C56 815 55.1 (13.2) 
Preeclampsia (PE) 642 O14 1,966 30.3 (7.0) 
Uterine Cancer (UC) 182 C55 715 59.1 (11.1) 
Uterine Fibroids (UF) 218 D25 10,829 48.2 (11.1) 
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Figure 1: Testing the effects of the PRSs on the women’s health outcomes. (a) Coefficients (in odds ratio scale) 

for logistic regressions based on each PRS. The left axis labels indicate phenotype and PGS Catalog Weights. The 

right axis labels show the p-value. Scores that were not considered in downstream analyses have a red “X”. (b) 

Time-to event analyses with one curve per PRS risk tertile. Pairwise log rank comparison p values are indicated 

as text. X-axes above and below each panel are age at diagnosis (Dx). BC: Breast Cancer; UF: Uterine Fibroids; 

CC: Cervical Cancer; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia.  

Based on the logistic regression coefficients for each of the 12 PRSs, we dropped any PRS with 
odds coefficient <1 (PGS004611 for breast cancer35) and any PRS whose p-value for the 
coefficient was >0.05 (PGS001299 for cervical cancer36, PGS003394 for ovarian cancer37, and 
PGS002263 for uterine fibroids38). Since Cervical cancer PRS could not meet these filtering 
criteria, the phenotype was removed from downstream analysis. In addition, although both 
PGS00207739 and PGS00186639 were significantly associated with endometriosis, only the 
score that had the strongest effect (PGS00344740) was retained. 

3.2 Environmental risk factor measurements 

The influence of environmental factors, namely, stress level (SL), loneliness level (LL), 
neighborhood physical disorder (NPD), and neighborhood social disorder (NSD), one 
biometric measurement (median BMI), two lifestyle scores — alcohol use (AU) and smoking 
(SK), and two Fitbit measurements — daily steps (ST) and daily sedentary minutes (SM) were 
tested on susceptibility to genetic risk. We tested these variables for correlation (Figure 2a). 
Since some measurements were unavailable on all participants, we report the smaller case 
numbers for each phenotype-measurement combination in Figure 2b. 

The most highly correlated variables were NSD and NPD (0.73). Since a higher/greater 
number of daily steps (ST) is beneficial to health, it was found to be negatively correlated with 
all other variables except AU. LL was moderately correlated with three other measures, NSD 
(0.28), NPD (0.21), and SL (0.29). Since some measurements were unavailable for some 
participants, we report the smaller case numbers for each phenotype-measurement 
combination. The Fitbit measurements had the fewest participants, so the numbers of cases 
were small, especially for the rarer phenotypes such as cervical cancer, uterine cancer, ovarian 
cancer, and preeclampsia. Nearly every participant had BMI measurements, so tests with BMI 
had the largest sample sizes. 
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Figure 2: (a) heatmap showing correlation between all nine measurements considered. Correlation values 

significantly different from zero (p < 0.05) are marked with an asterisk. (b) heatmap showing the number of cases 

for a given phenotype (column) and measurement (row) combination. BC: Breast Cancer; UF: Uterine Fibroids; 

CC: Cervical Cancer; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia. BMI: 

Body Mass Index; AU: Alcohol Use; SK: Smoking ; SM: Sedentary Minutes; ST: Steps; LL: Loneliness; NSD: 

Neighborhood Social Deprivation; NPD: Neighborhood Physical Deprivation and SL: Stress Level. 

3.3 Environmental effects on age at diagnosis with time-to-event curves 

We estimated the effect of different levels of environmental exposures, categorized into 
low/medium/high tertiles, on the age at diagnosis for each phenotype. Among the four social 
determinants of health (SDoH) factors, Neighborhood Social Deprivation (NSD) was removed 
from the analysis due to its high correlation with Neighborhood Physical Deprivation (NPD), 
as illustrated previously in Figure 2a. The survival functions, which depict the probability of 
remaining disease-free over time for each tertile of environmental exposure, are presented in 
Figure 3. Additionally, the pairwise p-values indicate the statistical significance of the 
differences between the survival curves for each tertile, highlighting the impact of varying 
levels of environmental exposures on disease onset. 
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Figure 3: Time-to-event analyses for BMI and the SDoH themes (a - BMI, b - loneliness, c - neighborhood physical 

disorder, and d - stress). Each panel shows three “survival” curves per phenotype, stratified by the value of the 

environmental measure where 1 is the lowest tertile and 3 is the highest tertile. The x-axes represent age at 

diagnosis (Dx). Also indicated in each grid cell are the p-values of pairwise log rank comparisons between those 

three curves. Any p-values less than 0.05 are annotated with an asterisk. BC: Breast Cancer; UF: Uterine Fibroids; 

UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia. 

Of all the environmental risk factors, BMI had the most significant effect on the age at 
diagnosis. High BMI corresponded to earlier diagnoses of uterine cancer and uterine fibroids 
(three out of three pairwise comparisons significant), breast cancer and ovarian cancer (two out 
of three significant), and preeclampsia (P = 1.8 x 10-3 comparing first and third tertiles). Those 
with high LL scores tended to have earlier diagnoses of endometriosis, ovarian cancer, and 
uterine fibroids. The high NPD tertile (3) resulted in a significantly earlier diagnosis than the 
other tertiles for breast cancer, endometriosis, ovarian cancer, and uterine fibroids. No 
phenotypes had three out of three significant comparisons between the SL tertiles, but the 
highest SL tertile was associated with earlier diagnosis of endometriosis, while the lowest SL 
tertile was associated with a later diagnosis of uterine fibroids. 

Next, we performed the same time-to-event analyses for the lifestyle variables: AU, 
SK, ST, and SM (Figure 4).  The different AU tertile groups didn’t show significant differences 
for age at diagnosis, except for between the first and second tertiles in breast cancer (P = 2.2 x 
10-3); those who drink lightly get diagnosed with breast cancer earlier than those that drink
moderately. Similarly, different levels of sedentary minutes also didn't significantly impact
diagnosis except for between the first and third tertiles in breast cancer (P = 4.4 x 10-2), with
those in the high SM curve, get diagnosed later than the low SM group. Smokers in the third
tertile get diagnosed with uterine fibroids earliest (P vs Low = 2.3 x 10-3, P vs Medium = 1.8 x
10-11). Breast cancer cases in the lowest tertile of steps get diagnosed latest (P vs Medium =
8.6x10-5, P vs High = 1.4x10-2), this could be confounded by age as older women likely take
fewer daily steps. For preeclampsia and uterine cancer cases, those in the third tertile of steps
get diagnosed latest.
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Figure 4: time-to-event analyses for lifestyle measurements (a - alcohol use, b - sedentary minutes, c - smoking, 

and d - steps). Each panel shows three “survival” curves per phenotype, stratified by the value of the environmental 

measure where 1 is the lowest tertile and 3 is the highest tertile. The x-axes represent age at diagnosis (Dx). Also 

indicated in each grid cell are the p-values of pairwise log rank comparisons between those three curves. Any p-

values less than 0.05 are annotated with an asterisk. BC: Breast Cancer; UF: Uterine Fibroids; UC: Uterine Cancer; 

Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia 

3.4 Genetic risk effects vary by environmental context 

We assigned every individual to a genetic risk tertile (low, medium, high) and an environmental 
exposure level (low, medium, high), the combinations of which resulted in nine sub-groups. 
Within each of the sub-groups, we computed the odds ratio of the phenotype relative to the 
medium-medium group. We also performed stratified logistic regressions to estimate the PRS 
and environmental measurement effects. Because NPD and NSD scores were highly correlated, 
we only tested NPD. First, we focused on the three remaining SDoH and BMI (Figure 5). 
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Figure 5: All odds ratio and logistic regression tests performed for BMI and SDoH. The environmental factors are 

(a) BMI, (b) loneliness, (c) neighborhood physical disorder, and (d) stress. The upper left 3x3 grid in each pane

shows the odds ratios of the phenotypes in each cell. The rightmost column shows regression coefficients stratified

by environmental tertile. The bottom row shows regression coefficients stratified by genetic risk. The bottom right

cell shows a histogram of the environmental variable, with the cutoffs between the tertiles marked. BC: Breast

Cancer; UF: Uterine Fibroids; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia

The BMI tertiles were split at 25.7 and 32.3, which are near the conventional cutoffs for 
overweight (25) and obese (30). At all levels of genetic risk (low, medium, and high), BMI was 
positively associated with preeclampsia, uterine cancer, and uterine fibroids. BMI was 
negatively associated with breast cancer. Chronic loneliness and stress are known to be 
detrimental to long-term health. In the lowest genetic risk group, loneliness was positively 
associated with endometriosis. Those in the medium and high loneliness groups were more 
susceptible to genetic risk of ovarian cancer, preeclampsia, and uterine cancer. 

Next, we focused on modulating effects of lifestyle factors, including the two Fitbit 
variables, smoking, and alcohol use (Figure 6).  
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Figure 6: All odds ratio and logistic regression tests performed for the lifestyle variables. The environmental 

factors are (a) alcohol use, (b) sedentary minutes, (c) smoking, and (d) steps. The upper left 3x3 grid in each pane 

shows the odds ratios of the phenotypes in each cell. The rightmost column shows regression coefficients stratified 

by environmental tertile. The bottom row shows regression coefficients stratified by genetic risk. The bottom right 

cell shows a histogram of the environmental variable, with the cutoffs between the tertiles marked. BC: Breast 

Cancer; UF: Uterine Fibroids; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia 

AU had a highly skewed distribution, so the cutoffs between the three tertiles were close 
together (1.7 vs 2.0). The effect sizes of the PRSs for breast cancer, endometriosis, and uterine 
cancer were strongest in the tertile with the highest drinking scores. Notably, SK had an inverse 
effect on breast cancer and uterine fibroids at all levels of genetic risk. Since the models were 
adjusted for age, it is unlikely that age is confounding these results. Additionally, within the 
lowest smoking group, the PRS coefficient was not significant, but it was significant for the 
medium and high smokers. SM had a bimodal distribution. Due to the smaller sample size of 
the Fitbit data, most of the test statistics were not significant. However, the breast cancer PRS 
was significantly associated with breast cancer for those who were the most sedentary. 
Similarly, most of the effect sizes for the steps tests were not significant, but the effect of the 
breast cancer PRS was significant in the group that took the fewest daily steps on average. 

4 Discussion 

In this study, we evaluated the effects of environmental variables on women’s health 
outcomes. Specifically, we looked at effects on age at diagnosis and modulation of genetic risk. 
In 145,563 women in AOU, we analyzed six risk models for women’s health diseases. From 
there, we calculated stratified effect sizes for each PRS for tertiles of each environmental 
measurement. Overall, we showed that genetic risk models are significantly impacted by 
different environmental contexts. In general, the most severely affected group of the 
environment had the strongest effect of the PRS and often resulted in the earliest. These 
findings underscore the necessity of integrating diverse environmental and social factors into 
disease risk models to capture the full spectrum of influences on health. 

Of the 12 PRSs tested based on their performance in the PGS catalog, nine showed 
significant positive associations with their respective phenotypes, with breast cancer 
demonstrating the strongest association. The disparity between the sample population used to 
create these risk scores and the AOU biobank likely influenced these results, as PRS 
performance is highly sensitive to population mismatch41. There were differences between the 
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derivation datasets and AOU's unique composition, with about half of the genomic dataset 
comprising participants of non-European ancestry42. This highlights a key drawback of existing 
PRSs, which are often based on European populations, limiting their relevance for non-
European individuals. Notably, genetic risk did not significantly affect age at diagnosis for the 
six best risk scores, aligning with expectations, as these scores were derived from studies 
evaluating lifetime disease risk rather than onset. Factors such as SDoH and environmental 
influences, often correlated with race and ancestry, also play a role in disease susceptibility. 

BMI has been significantly associated with a multitude of gynecological conditions43. 
In the current study, we have demonstrated that high BMI can serve as a risk factor for earlier 
diagnosis of breast, ovarian, and uterine cancer as well as uterine fibroids. Furthermore, BMI 
was found to be associated with preeclampsia, uterine cancer and uterine fibroids, across all 
genetic risk groups. Preeclampsia is a pregnancy-related condition, so it is possible that several 
of the environmental risk factor measurements (BMI, activity levels) may not be representative 
of the woman’s environment at the time of onset as these variables are affected by pregnancy. 
However, we aimed to evaluate average lifestyle trends, including time leading up to 
pregnancy. These findings, in conjunction with previous reports on metabolism-related genes 
on various female cancer types44,45, emphasize the importance of incorporating environmental 
factors, especially BMI, for a holistic understanding of disease risk and health outcomes. 

The lowest genetic risk groups for endometriosis, preeclampsia, ovarian cancer, and 
uterine cancer showed positive associations at multiple levels of loneliness. This highlights the 
profound impact that social and psychological factors can have on physical health. By 
considering and stratifying risk factors based on both genetic and environmental factors, we 
can potentially facilitate earlier detection of health burden across diverse population groups. It 
allows us to identify individuals who, despite having a low genetic risk, may still be at high 
overall risk due to adverse environmental or social conditions, and ultimately enhance health 
outcomes for a broader spectrum of the population. 

Our study has several limitations. One limitation is that EHR-based phenotyping can 
be challenging for complex disorders, especially in women’s health diseases which are often 
under-diagnosed, such as uterine fibroids46 and endometriosis47. Phenotyping algorithms have 
been previously designed to compute phenotypes more accurately than ICD codes alone. Their 
use in our study is restricted by reliance on clinical notes48, which are not available in AOU. 
Other large genomic biobank studies, have leveraged ICD- or PheCode-based case-control 
phenotyping1,49,50. While the accuracy of ICD codes alone varies across the phenotypes, a key 
advantage of large biobank data is that the substantial sample size can help mitigate the impact 
of noise introduced by imprecise phenotyping, leading to more robust statistical associations51. 

Another limitation of our study was that we used age at the first diagnosis code of a 
condition as a proxy for disease onset. Depending on how patients move between healthcare 
systems, a common occurrence in the EHR is that a condition may have been diagnosed earlier 
at a different facility, but the corresponding diagnosis code is entered into the EHR only after 
the patient joins a new healthcare system. This introduces potential noise into the age variable, 
as the true onset might have been recorded elsewhere or at a different time.  However, since 
many of our sample sizes were large enough to yield significant effects, which should have 
counteracted the noise. We found that higher-risk environmental groups typically had earlier 
diagnoses. Given the EHR data, it can be hard to disentangle earlier diagnosis due to earlier 
onset versus earlier diagnosis due to increased vigilance based on existing risk factors.  
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Survey data are notoriously challenging to work with, so we were also limited by 
potential noise introduced by the self-reporting process. To mitigate error, we divided the 
participants into subgroups by environmental variable tertiles rather than relying on the exact 
quantitative measures. However, stratifying the individuals into subgroups reduced the sample 
size and statistical power for each regression. The observations that smoking levels seemed to 
have non-monotonic effects (medium smokers get diagnosed later with breast cancer, 
endometriosis, and uterine fibroids) may stem from confounders in the survey measurements. 
Our overall approach, though it has a few limitations, has provided a practical and scalable way 
to examine multi-modal predictive and progression models of women’s health diseases. 

Due to systemic challenges faced by marginalized communities, such populations find 
themselves exposed to environmental stressors at greater rates52. Differing odds ratios for those 
with similar levels of genetic risk but different levels of environmental risk suggest that not 
including environmental risk factors in predictive models utilizing PRS could lead to inaccurate 
risk assessments and potentially overlook significant contributors to disease susceptibility. The 
current study identifies the dangers in reductionist approach to disease stratification and risk 
prediction, based solely on either genetics or environmental factors. This suggests that 
integrating both the genetic and environmental components into a specific disease model would 
help better classify individual risk.  

In the future, using nonlinear approaches for risk modeling which capture variable 
interactions such as multilayer perceptron could aid in more accurately representing complex 
relationships between genetics, environmental risk factors, and the phenotypes. While those 
types of models are harder to train, we can now take advantage of growing data repositories, 
including AOU, to develop generalizable models that capture important modalities of risk 
variables. We included eight environmental risk factors, four SDoH and four lifestyle 
measurements, which capture some, but not all, external influences. Future methodologies may 
include more risk factors but also should account for potential missing data, as it can be 
challenging to administer surveys and/or collect wearables data on a large scale. In the future, 
we also hope to replicate these results in additional biobanks. 

Complex systems approaches to incorporate multi-directional interactions between 
patients and their environment, such as those modeled here, are better suited to leverage the 
power of genomic data in making widely applicable, clinically relevant tools. Further attempts 
to strengthen the predictive ability of PRS models need not focus solely on improving the 
identification of relevant loci, but also relevant environmental risk factors including SDoH. By 
improving our understanding and application of PRSs, especially in underrepresented areas 
like women's health, we can enhance disease prediction, prevention, and personalized treatment 
strategies. 
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assessment of clinical predictors in community health centersa 
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We leveraged electronic health record (EHR) data from the Accelerating Data Value Across a 

National Community Health Center Network (ADVANCE) Clinical Research Network (CRN) to 

identify social risk factor clusters, assess their association with obstructive sleep apnea (OSA), and 

determine relevant clinical predictors of cardiovascular (CV) outcomes among those experiencing 

OSA. Geographically informed social indicators were used to define social risk factor clusters via 

latent class analysis. EHR-wide diagnoses were used as predictors of 5-year incidence of major 

adverse CV events (MACE) using STREAMLINE, an end-to-end rigorous and interpretable 

automated machine learning pipeline. Analyses among over 1.4 million individuals revealed three 

major social risk factor clusters: lowest (35.7%), average (43.6%) and highest (22.7%) social burden. 

In adjusted analyses, those experiencing highest social burden were less likely to have received a 

diagnosis of OSA when compared to those experiencing lowest social burden (OR 

[95%CI]=0.85[0.82-0.88]). Among those with OSA and free of prior CV diseases (N=4,405), 

performance of predicting incident MACE reached a ROC-AUC of 0.70 [0.03] overall but varied 

when assessed within each social risk factor cluster. Feature importance also revealed that different 

clinical factors might explain predictions among each cluster. Results suggest relevant health 

disparities in the diagnosis of OSA and across clinical predictors of CV diseases among those with 

OSA, across social risk factor clusters, indicating that tailored interventions geared toward 

minimizing these disparities are warranted. 

Keywords: Health disparities; Social risk factors; sleep disorders; cardiovascular risk; electronic 

health records. 
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1. Introduction

Sleep problems disproportionally affect populations experiencing health disparities1. Racial, ethnic 

and socioeconomically disadvantaged minorities are more likely to experience insufficient sleep2-8, 

sleep disorders9, and negative cardiovascular (CV) outcomes10,11. Yet, many of these conditions go 

unnoticed in these populations, largely due to lack of healthcare access focused on diagnosing and 

treating sleep disorders. Consequently, pathways linking health disparities to sleep disturbances and 

CV outcomes are largely underexplored, particularly among underrepresented populations. 

Obstructive sleep apnea (OSA) is a heterogeneous sleep disordered breathing condition and one 

of the most prevalent sleep disorders, affecting approximately 1 billion adults worldwide12. 

Epidemiological and experimental evidence supports a major role of OSA towards increasing CV 

risk13-16. However, prior studies were mostly focused on population or community-based cohorts that 

generally underrepresented important groups known to be at greater risk of experiencing health 

disparities. The identification of clinical predictors of major adverse CV events (MACE) in these 

populations is a necessary step towards design tailored and equitable sleep-promoting interventions 

towards improved CV health. 

Efforts supporting the integration and availability of electronic health record (EHR) data linked 

with relevant social risk information is essential to better characterize the effects of health 

disparities. Towards that goal, initiatives such as the Accelerating Data Value Across a National 

Community Health Center Network (ADVANCE) Clinical Research Network (CRN) led by the 

OCHIN network of community health organizations enable such studies17, with a great potential to 

inform public health. As such, the current study leveraged data from the ADVANCE CRN and 

demonstrated an approach to dissect the heterogeneity of geographically informed social risk factors 

by applying clustering techniques and identifying social risk factor clusters. This data-driven 

approach supports the identification of population subgroups experiencing similar levels of social 

exposures and can offer an exploratory perspective on the impact of socio-environmental burden on 

health. We further assessed the association between social risk factors clusters and evidence of OSA 

diagnosis. Next, by employing a robust, end-to-end, and interpretable automated machine learning 

(ML) pipeline, we assessed clinical predictors of 5-year incidence of new onset MACE among

individuals with OSA belonging to different clusters. We hypothesized that 1) individuals

experiencing higher social burden were less likely to have received a diagnosis of OSA; and 2)

clinical predictors of incident MACE varied across social risk clusters, likely reflecting different

pathways towards CV risk depending on socio-environmental exposure.

2. Methods

2.1.  Study Design and Population 

This is a retrospective clinical cohort study of patients at risk for sleep disorders that were part of 

the ADVANCE CRN with available geographically informed social risk factor data ascertained 

between 2012 and 2021. Data was sourced from the OCHIN Epic EHR system. Data is 

representative of outpatient community-based health care organizations delivering high-quality 

primary care services for communities impacted by health disparities in the U.S. Clinical institutions 
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include Federally Qualified Health Centers or other federally supported community health centers. 

The ADVANCE CRN is part of PCORnet®, the National Patient-Centered Clinical Research 

Network, thus data is organized according to the PCORnet® Common Data Model. Access was 

requested and facilitated by the Artificial Intelligence/Machine Learning Consortium to Advance 

Health Equity and Researcher Diversity (AIM-AHEAD) program. The study has been approved by 

Institutional Review Boards from the University of Kansas Medical Center and Harvard Medical 

School with non-human subjects determination, as only de-identified data was made available.  

Out of a dataset of over 3.2 million adults (age ≥18 years), we identified a cohort with at least 

one year of interactions with community health centers, a minimum of 3 encounters, and non-

missing geographically informed social risk factors. Among those patients, we further created a 

subset of those with evidence of OSA and at least 5 years of interaction with the community health 

centers and without prior evidence of CV diseases to determine clinical predictors of incident 

MACE. 

2.2.  Geographically informed social risk factors 

Geographically linked neighborhood-level indicators at census tract and/or ZCTA levels18 were 

made available through OCHIN as part of the ADVANCE CRN data warehouse. Linkage was 

performed by matching participant’s address ZIP code with publicly available data sources from the 

U.S. Census Bureau and American Community Survey, and used to impute the following area-level 

social indicators: income inequality coefficient, or Gini coefficient, a measure ranging from 0 

(perfectly equal geographical region where all income is equally shared) and 1 (perfectly unequal 

society where all income is earned by 1 individual)19,20; median household income (in U.S. dollars); 

percent of adults age >25 years who graduated from college; percent of total population in poverty 

(<100% federal poverty level [FPL]); and rate of unemployment among population age ≥16 years. 

These indicators were categorized into quartiles prior to downstream analyses.  

2.3.  Computable phenotypes for OSA 

A validated EHR algorithm was used to identify individuals with evidence of OSA, as described by 

Keenan et al. 202021. Individuals with 2 or more International Classification of Diseases (ICD)-9 or 

10 codes for OSA at different dates were classified as having OSA (ICD-9: 327.20, 327.23, 327.29, 

780.51, 780.53, 780.57; ICD-10: G47.30, G47.33, G47.39). This algorithm presented optimal 

predictive performance across six health systems in the U.S., with overall positive predictive value 

(95% CI) of 97.1% (95.6, 98.2) and negative predictive value of 95.5% (93.5, 97.0)21. Individuals 

not meeting these criteria were defined as not having evidence of OSA diagnosis. 

2.4.  Phecode mapping 

The phecode framework22 is a high-throughput EHR phenotyping method with the goal of 

representing a wide range of clinical phenotypes. Structured as an ontology-based classification 

system, phecodes combine groups of ICD codes into clinically relevant groups, thus minimizing the 

dimensionality of clinical diagnosis. In this study, we focused on phecodes observed in at least 1,000 
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participants in our final cohort, resulting in a total of 932 phecodes included as predictors in our ML 

analyses.  Phecode maps can be queried elsewhere (https://www.phewascatalog.org/phecodes). 

2.5.  Study outcomes 

We report the results of two analyses. Our primary analysis consisted of investigating the association 

between social risk factors clusters and evidence of OSA. Thus, our outcome was prevalence of 

OSA. Secondly, we assessed clinical predictors of 5-year incidence of MACE, defined as a 

composite of myocardial infarction, coronary artery disease, cerebrovascular disease, heart failure 

or stroke, using validated computable phenotypes as previously described23-29. A list of ICD and 

Current Procedural Terminology codes used to define these conditions are available elsewhere 

(https://raw.githubusercontent.com/RWD2E/phecdm/main/res/valueset_curated/vs-osa-

comorb.json).  

2.6.  Statistical analyses 

All analyses were conducted within the AIM-AHEAD Service Workbench cloud infrastructure. 

Initial cohort characterization was performed through a data request with OCHIN. A database 

schema was created in Microsoft SQL Server and access was provided to the author. A series of 

tables resulting from this database schema were generated to capture the following data domains: 

patient demographics, social risk factors, diagnosis, and procedures. Queries used to create analysis-

ready can be found elsewhere (https://github.com/mazzottidr/AIMAHEAD_Fellowship_Mazzotti). 

First, we determined univariate associations between OSA and sociodemographic characteristics 

(sex, race, ethnicity, gender identity, current FPL, marital status, homeless status, and sexual 

orientation), as well as between OSA and quartiles of geographically informed social risk factors 

(Gini coefficient, median household income, percent of college graduates; percent of total 

population in poverty; and rate of unemployment) using chi-squared tests or t tests. Next, we used 

latent class analysis (LCA) to identify clusters of social risk factors using quartiles of the 

geographically informed social risk factors listed above. Due to the large computational 

requirements of performing LCA on large datasets, we assessed the optimal number of clusters by 

sub-setting the data into 10 random subsamples of N=5,000 participants and performing LCA using 

1 through 5 clusters. We used the Bayesian Information Criterion and the elbow method to 

determine the optimal number of clusters. Based on these analyses, we determined that a 3-cluster 

solution was as the optimal in all 10 iterations. We further re-ran LCA in the complete dataset using 

only this solution, setting the maximum number of iterations through each estimation algorithm 

(maxiter) as 1,000 and the number of times to estimate the model with different class-conditional 

response probabilities (nrep) as 25, with default parameters otherwise. We used the poLCA package 

in R30. Cross-sectional associations between social risk factor clusters and OSA were assessed using 

chi-squared test and unadjusted and adjusted logistic regression. Covariates included age, sex, 

language, race, marital status, ethnicity, and urban/rural status. 

We proceeded to determine whether different social risk factor clusters would prioritize different 

clinical risk factors towards predicting MACE risk among a cohort of individuals with evidence of 

OSA. For this analysis, we included only participants with evidence of OSA, at least 5 years of 
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follow-up data, to allow for ascertainment of MACE incidence. Phecode feature sets were used as 

predictors of 5-year incidence of MACE (binary outcome) using STREAMLINE, an end-to-end 

rigorous and interpretable auto-ML pipeline (https://github.com/UrbsLab/STREAMLINE)31,32, 

which has been implemented in a SageMaker instance of the AIM-AHEAD Service Workbench. 

Data were split into training/testing (90%) and validation (10%), maintaining proportions for both 

the outcome and social risk factor clusters. For each cluster, we optimized four different ML 

methods (logistic regression [LR], random forest [RF], Light Gradient Boost Machine [LightGBM], 

and Extreme Gradient Boosting [XGB]), as well as evaluated models with area under the receiver 

operating characteristics curve (ROC-AUC) and area under the precision-recall curve (PRC-AUC) 

using a 3-fold cross-validation design. Feature importance scores were determined, along with social 

risk factor cluster-specific final models for independent validation. The top performing features in 

each subgroup were then selected and compared across clusters. Analyses were conducted using R 

(v 4.1.3) and Python (v 3.10.8). 

3. Results

3.1.  Sample characterization 

In our initial analysis focused on assessing the association between social risk factors and prevalence 

of sleep disorders, our primary cohort consisted of 1,476,358 adults with encounters in community 

health centers across the U.S. Figure 1 represent the study flowchart. 

Figure 1. Study flowchart representing sample sizes for each included study cohort. 

Among those, 63.2% were female, 69.9% spoke English as the primary language, 67.4% were 

White, 20.9% were Black, 5.1% were Asian, 67.8% had a current FPL <100%, 3.3% reported being 

homeless and 16.5% lived in rural areas. These characteristics highlight the sociodemographic 

diversity of the included cohort. Table 1 provides descriptive statistics of the overall sample, as well 

as by evidence of OSA status. Individuals with evidence of an OSA diagnosis represented 2.3% of 

the included cohort (N=33,064), and univariate analyses suggest they were older, more likely to be 

males and with male gender identity, more likely to speak English as primary language, more likely 

to be White, less likely among those who were single, less likely among those with current FPL 
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<100%, less likely to be Hispanic or Latino, less likely among those reporting homelessness, more 

likely among those reporting heterosexual orientation, and more likely among those living in rural 

areas. Geographically informed social risk factors mostly differ between those with and without 

evidence of OSA, suggesting that those with a diagnosis are more likely to live in areas with lower 

social risk (Table 1). 

Table 1. Sample characteristics, overall and stratified by evidence of obstructive sleep apnea (OSA). 

Variable Category 
Overall 

(N=1,476,358) 

Evidence of OSA 

pa No 

(N=1,443,294) 

Yes 

(N=33,064) 

Age, years 44.3 (15.9) 44.1 (15.9) 52.1 (12.8) <0.001 

Sex 
Female 932,903 (63.2) 917,179 (63.6) 15,724 (47.6) <0.001 

Male 543,036 (36.8) 525,703 (36.4) 17,333 (52.4) 

Primary 

language 

English 1,031,528 (69.9) 1,002,947 (69.5) 28,581 (86.4) <0.001 

Spanish 354,107 (24.0) 350,674 (24.3) 3433 (10.4) 

Other 90,723 (6.1) 89,673 (6.2) 1,050 (3.2) 

Race 

White 993,964 (67.4) 969,574 (67.3) 24,390 (73.9) <0.001 

American Indian or Alaska Native 12,696 (0.9) 12,335 (0.9) 361 (1.1) 

Asian 75,552 (5.1) 74,646 (5.2) 906 (2.7) 

Black or African American 307,628 (20.9) 301,653 (20.9) 5,975 (18.1) 

Multiple Race 20,259 (1.4) 19,774 (1.4) 485 (1.5) 

Native Hawaiian or Other Pacific Islander 9,899 (0.7) 9,622 (0.7) 277 (0.8) 

Refuse to answer 54,396 (3.7) 53,771 (3.7) 625 (1.9) 

Marital 

status 

Current Partnership 363,381 (24.6) 355,745 (24.6) 7,636 (23.1) <0.001 

Divorced/Separated 86,176 (5.8) 83,422 (5.8) 2,754 (8.3) 

Single 496,312 (33.6) 488,703 (33.9) 7,609 (23.0) 

Unknown 497,609 (33.7) 483,544 (33.5) 14,065 (42.5) 

Widowed 32,880 (2.2) 31,880 (2.2) 1,000 (3.0) 

Current FPL 

101-150 % 217,701 (14.7) 212,929 (14.8) 4,772 (14.4) <0.001 

≤100 % 1,000,448 (67.8) 979,666 (67.9) 20,782 (62.9) 

151-200 % 94,042 (6.4) 91,871 (6.4) 2,171 (6.6) 

>200 % 164,167 (11.1) 158,828 (11.0) 5,339 (16.1) 

Ethnicity 
Not Hispanic or Latino 912,928 (62.8) 886,753 (62.4) 26,175 (80.5) <0.001 

Hispanic or Latino 540,075 (37.2) 533,727 (37.6) 6,348 (19.5) 

Gender 

identity 

Female 535,485 (36.3) 523,697 (36.3) 11,788 (35.7) <0.001 

Male 316,468 (21.4) 304,107 (21.1) 12,361 (37.4) 

Transgender, Gender Queer, Other 19,768 (1.3) 19,591 (1.4) 177 (0.5) 

Unknown 604,637 (41.0) 595,899 (41.3) 8,738 (26.4) 

Homelessness 

status 

No/Unknown 1,427,117 (96.7) 1,394,342 (96.6) 32,775 (99.1) <0.001 

Yes 49,241 (3.3) 48,952 (3.4) 289 (0.9) 

Sexual 

orientation 

Heterosexual 731,141 (49.5) 710,476 (49.2) 20,665 (62.5) <0.001 

Homosexual 24,422 (1.7) 23,584 (1.6) 838 (2.5) 

Bisexual 15,222 (1.0) 14,837 (1.0) 385 (1.2) 

Other 6,006 (0.4) 5,856 (0.4) 150 (0.5) 

Unknown 699,567 (47.4) 688,541 (47.7) 11,026 (33.3) 

Rural/urban 

status 

Urban 1,233,127 (83.5) 1,209,391 (83.8) 23,736 (71.8) <0.001 

Rural 243,231 (16.5) 233,903 (16.2) 9,328 (28.2) 

Geographically informed indicators 

Unemployment rate, % 7.33% (3.41) 7.33% (3.42) 7.14% (3.29) <0.001 

Median household income, U.S. dollars $53,994 (20,242) $53,968.92 (20,269) $55,086 (19,020) <0.001 

% of college graduates 26.91% (15.06) 26.91% (15.07) 26.86% (14.63) 0.518 

Gini coefficient 0.45 (0.05) 0.45 (0.05) 0.45 (0.05) <0.001 

% of population below FPL 18.89 (9.37) 18.92 (9.38) 17.68 (8.68) <0.001 
a Chi-squared tests or t-tests. Categorical variables are represented as N (%) and continuous variable as mean (SD). 

Abbreviations: OSA, obstructive sleep apnea; FPL, Federal Poverty Level; SD: standard deviation. 
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3.2.  Clusters of social risk factors 

Results of LCA revealed three major social risk factor clusters: lowest (N=489,191; 35.7%), average 

(N= 642,973; 43.6%) and highest (N=335,194; 22.7%) social burden. Table 2 describes the 

differences between each geographically informed social risk factor and the 3-cluster solution used 

to inform the names of each cluster. The highest social burden cluster had the greatest proportion of 

the highest quartiles of unemployment rates, Gini coefficient, and proportion of individuals living 

below poverty level, and the lowest quartiles of median household income and proportion of 

individuals that are college graduates. 

Table 2. Association between social risk factor quartiles and identified social risk clusters. 

Social risk factor quartiles Category 

Lowest Social 

Burden 

(35.7%) 

Average Social 

Burden 

(43.6%) 

Highest Social 

Burden 

(22.7%) 

pa 

Unemployment rate Q1 [<5.1%] 299,777 (60.2) 61,207 (9.5) 8,503 (2.5) <0.001 

Q2 [5.1-6.6%] 139,264 (28.0) 202,799 (31.5) 23,253 (6.9) 

Q3 [6.6-8.9%] 51,053 (10.2) 267,651 (41.6) 49,361 (14.7) 

Q4 [≥8.9%] 8,097 (1.6) 111,316 (17.3) 254,077 (75.8) 

Median household income Q1 [<40.7k] 424 (0.1) 56,959 (8.9) 313,600 (93.6) <0.001 

Q2 [40.7-50.0k] 1,856 (0.4) 343,123 (53.4) 21,594 (6.4) 

Q3 [50.0-63.8k] 135,449 (27.2) 230,266 (35.8) <11 

Q4 [≥63.8k] 360,462 (72.4) 12,625 (2.0) <11 

% of college graduates Q1 [<16.7%] 17,317 (3.5) 144,164 (22.4) 205,989 (61.5) <0.001 

Q2 [16.7-23.1%] 46,037 (9.2) 247,449 (38.5) 74,078 (22.1) 

Q3 [23.1-33.5%] 146,377 (29.4) 179,683 (27.9) 39,874 (11.9) 

Q4 [≥33.5%] 288,460 (57.9) 71,677 (11.1) 15,253 (4.6) 

Gini coefficient Q1 [<0.42] 204,591 (41.1) 140,407 (21.8) 20,896 (6.2) <0.001 

Q2 [0.42-0.45] 104,607 (21.0) 199,895 (31.1) 63,231 (18.9) 

Q3 [0.45-0.48] 93,785 (18.8) 169,999 (26.4) 104,347 (31.1) 

Q4 [≥0.48] 95,208 (19.1) 132,672 (20.6) 146,720 (43.8) 

% below poverty level Q1 [<12.1%] 355,133 (71.3) 1,4870 (2.3) 1,067 (0.3) <0.001 

Q2 [12.1-17.6%] 130,118 (26.1) 236,982 (36.9) <11 

Q3 [17.6-23.7%] 4,322 (0.9) 349,902 (54.4) 14,214 (4.2) 

Q4 [≥23.7%] 8,618 (1.7) 41,219 (6.4) 319,913 (95.4) 
a Chi-squared tests. Categorical variables are represented as N (%). 

3.3.  Associations between social risk factors clusters and OSA 

We proceeded to determine the association between social risk factors clusters and evidence of OSA. 

Univariate analysis indicated that individuals with evidence of OSA were less likely to belong to 

the highest social burden cluster (16.8%) when compared to those without evidence of OSA (22.8%, 

p<0.001). On the other hand, those with evidence of OSA were more likely to belong to both the 

lowest and average social burden clusters when compared to those without evidence of OSA (34.9% 

vs. 33.7% and 48.3% vs. 43.4%, respectively, both p<0.001). Logistic regression adjusted for 

relevant confounders, including individual level social risk factors, indicated that individuals 

belonging to the lowest social burden cluster were less likely to have received a diagnosis of OSA 

(OR [95%CI] = 0.85 [0.82-0.88]) when compared to those belonging to the highest social burden 

cluster. On the other hand, individuals belonging to the average social risk burden were slightly 

more likely to have received a diagnosis of OSA (1.03 [1.01-1.06]) compared to those in the highest 
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social burden cluster. Results suggest important socio-environmental contributions to potential 

disparities in the diagnosis of OSA in community health centers. 

3.4.  MACE prediction among individuals with OSA 

Next, we proceeded to understand the clinical factors contributing to increased CV risk among 

individuals with OSA in the included sample, without taking into consideration their social risk 

cluster. A cohort of 4,045 individuals with OSA, without prior evidence of MACE and with at least 

5 years of follow-up since their first OSA diagnosis was included in this analysis. Among those, 

327 (8.1%) individuals had evidence of a MACE within the 5-year follow-up. 

Using a robust ML pipeline, we proceeded to create our training (90%) and testing (10%) sets, 

maintaining the proportions of incident MACE cases and social risk clusters. Our training dataset 

consisted of 3,641 individuals (294 [8.1%] cases) and our testing dataset consisted of 404 

individuals (33 [8.2%] cases). We determined these training/testing splits to allow greater 

representation of the dataset during training, due to the limited sample size of the cohort. 

First, we assessed the performance of clinical risk factors (represented as phecodes) to predict 

incident MACE in the training and testing datasets, regardless of social risk cluster membership, 

using four different ML methods (LR, RF, LightGBM, and XGB). Figure 2 summarizes the 

prediction performances in terms of ROC-AUC and PRC-AUC across the four methods. While 

XGB demonstrated the best performance in the training dataset for both performance metrics (mean 

[SD across cross-validation] ROC-AUC = 0.67 [0.03]; PRC-AUC = 0.14 [0.02]), LR was the best 

performing method in the testing dataset (ROC-AUC = 0.70 [0.03]; PRC-AUC = 0.19 [0.02]). 
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Figure 2. Summary of incident MACE prediction performance and feature importance (top 10 features). 

Inspection of normalized and balanced accuracy-weighted feature importance plots (Figure 2) 

indicates that age was the most important predictor across all methods, except for LR. For this 

method, the most important feature was phecode 416 (cardiomegaly). Other relevant features 

listed among the top 10 included phecodes 411.4 (coronary atherosclerosis), 401.1 (essential 

hypertension), 428.1 (congestive heart failure), 496 (chronic airway obstruction), 586 (other 

disorders of the kidney and ureters), 681 (superficial cellulitis and abscess), 573.9 (abnormal 

serum enzyme levels) and ethnicity. 

3.5.  MACE prediction after social risk factor cluster stratification 

Finally, we proceeded to explore how these models would perform within specific subgroups 

according to the assigned social risk factor clusters, and whether top clinical predictors would be 

similar or different across clusters. For this analysis we trained and evaluated ML models using the 

same methods described above, but within each social risk factor cluster. Training and testing 

dataset sample sizes for each cluster were as follows: lowest social burden cluster (N train=1,136; N 

test = 126), average social burden cluster (N train =1,791; N test = 199), and highest social burden cluster 

(N train = 467; N test = 52). 
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Table 3 summarizes the results of the predictive performance in the testing dataset from 

models trained and evaluated within each social risk factor cluster separately. According to the 

ROC-AUC, within participants assigned to the lowest social burden clusters, LR was the best 

performing method, while RF performed the best in both the average and highest social burden 

clusters. According to the PRC-AUC, within participants assigned to the lowest social burden 

clusters, LR was also the best performing method, while XGB performed the best in both the 

average and highest social burden clusters. 

Table 3. Summary of prediction performance metrics in the testing datasets using models trained within social risk 

factor clusters. 

Method Metric 

Cluster 

Lowest social 

burden 

Average social 

burden 

Highest social 

burden 

XGB 
ROC-AUC 0.500 0.617 0.564 

PRC-AUC 0.117 0.133 0.189 

LightGBM 
ROC-AUC 0.616 0.606 0.504 

PRC-AUC 0.126 0.098 0.177 

LR 
ROC-AUC 0.689 0.631 0.522 

PRC-AUC 0.213 0.114 0.103 

RF 
ROC-AUC 0.634 0.634 0.628 

PRC-AUC 0.163 0.127 0.141 

Abbreviations: XGB, Extreme Gradient Boosting; LightGBM, Light Gradient Boost Machine; LR, logistic regression; RF, 

random forest; ROC-AUC, area under the receiver operating characteristics curve; ROC-PRC, area under the precision-

recall curve. 

We then inspected differences in the normalized and balanced accuracy-weighted feature 

importance plots (Figure 3) across the models and social risk factor clusters to investigate whether 

clinical risk factors that predict incident MACE would be different depending on individuals’ 

socio-economic exposures. Results suggest that while age at diagnosis of OSA was an important 

predictor across all social risk factor clusters, being listed among the top 10 features in all groups, 

there were important differences in the comorbidity profile linked to incident MACE within each 

group. For example, among those with lowest social burden, some more conventional CV 

comorbidities or risk factors were observed, such as essential hypertension (401.1), nonspecific 

chest pain (418) and both type 1 and 2 diabetes (250.1 and 250.2). However, among those with 

highest social burden, top predictors included symptoms such as malaise and fatigue (798), pain in 

joint (745), and dizziness and giddiness (light-headedness and vertigo, 386.9), in addition to a 

more metabolic comorbidity profile (244.4, hypothyroidism and 250.2, type 2 diabetes). Among 

those with average social burden, features included both conventional ones (401.1, essential 

hypertension and 416, cardiomegaly) as well as other infectious and parasitic diseases (136) and 

Lyme disease (130.1). Anxiety disorder (300.1) was also observed as an important predictor 

among  those with lowest and average social burden. 
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Figure 3. Top feature important comparison across models evaluated within different social risk factor 

clusters. 

4. Discussion

Our main findings highlight important social disparities related to the identification and diagnosis 

of OSA in community health centers, as well as important differences in clinical factors that 

contributed to the prediction of incident CV diseases among participants with a diagnosis of OSA. 

We applied an innovative approach to identify social risk factor clusters derived from relevant 

geographically informed social indicators estimated from national surveys. We identified three 

clusters (lowest, average, and highest social burden), consistent with observed individual-level 

sociodemographic characteristics. Individuals belonging to the highest social burden cluster were 

less likely to have received a diagnosis of OSA, even after adjusting for relevant confounders such 

as sex, race, and ethnicity – factors that have been consistently demonstrated to affect health 

disparities within sleep disorders1-8. Our study also demonstrated that a LR-based incident MACE 

prediction model trained on hundreds of clinical features (i.e., phecodes) had a reasonable, yet not 

optimal performance in testing sets. Nevertheless, performance varied across subgroups defined by 

social risk factor clusters, as well as the top features contributing to those predictions, suggesting 

different pathways towards CV risk depending on socio-environmental exposure. 

The study provides novel insights about the clinical prevalence and recognition of OSA within 

community health centers in a diverse population at greater social burden. Our dataset was 

composed of a large proportion of underrepresented minorities according to sociodemographic 

characteristics, including race, ethnicity, gender and sexual identity. More importantly, 67.8% of 

the cohort were below the Federal poverty level. In this context, the observed clinical prevalence of 

OSA (2.3%) is lower than other clinical cohorts defined using EHR-based methods, such as within 

the National COVID Cohort Collaborative (3.9%), comprised of a sample of individuals that have 
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been tested positively for SARS-CoV-2 through encounters within academic health systems33. The 

prevalence is even lower than the expected population prevalence of OSA, estimated to affect nearly 

1 billion people worldwide12. It is well-established that OSA is underdiagnosed34,35, and our analysis 

in community health centers identified even further differences. Clustering of geographically 

informed social indicators revealed that individuals at greater social burden (i.e., highest social 

burden cluster) were significantly less likely to have received a diagnosis of OSA, even after 

adjusting for other established individual-level social risk factors. When assessing individual-level 

sociodemographic characteristics, those receiving a diagnosis of OSA were more likely to speak 

English as primary language, more likely to be White, less likely to be among those with current 

FPL <100%, less likely to be Hispanic or Latino, less likely to report homelessness, although more 

likely to live in rural areas. These findings suggest important socio-environmental contributions to 

potential disparities in the diagnosis of OSA in community health centers and that underrepresented 

minorities may not be receiving adequate sleep care. Thus, screening of sleep disorders particularly 

within this subgroup at greater risk is necessary. While it might seem impractical to offer screening 

and treatment of chronic sleep disorders such as OSA in community health centers, preventing high 

risk individuals from obtaining access to quality sleep health care might exacerbate disparities 

related to metabolic, neurological, and psychiatric conditions, all of which have been associated 

with OSA36. 

In this context, CV diseases are particularly relevant due to the worsening of CV disparities over 

several decades, despite efforts of addressing health needs of vulnerable populations37. Due to the 

major epidemiological and experimental evidence supporting the role of OSA towards increasing 

CV risk13-16, understanding and addressing these needs are of high importance. Towards this goal, 

we assessed whether an incident MACE prediction model trained on a broad range of clinical 

features within individuals with OSA had adequate performance and could be used to prioritize 

clinical profiles based on most relevant features. Despite our best model, a LR with a ROC-AUC of 

0.70 and a PRC-AUC of 0.19, not being necessarily optimal for deployment, it helped us identify 

important features contributing to the prediction, many of them with established associations with 

OSA. For example, in our overall analysis, top features included cardiomegaly, atherosclerosis, 

essential hypertension, congestive heart failure, chronic airway obstruction, disorders of the kidney 

and ureters, and abnormal serum enzyme levels. Many of these features are established CV risk 

factors, supporting internal validity of our approach. More importantly, therapies focused on 

mitigating the effects of OSA have been demonstrated to improve some of these risk factors38. 

When assessing the prediction performance of models across strata of social risk factor clusters, 

we continued to identify similar, although slightly lower performance across groups with testing 

ROC-AUC ranging from 0.63 to 0.69 and PRC-AUC ranging from 0.13 to 0.21 for the best models. 

This is likely explained by the smaller sample size used for training in the stratified analyses, 

preventing models from learning relationships between clinical features and outcome. Some key 

clinical factors contributing to these predictions are observed across all social risk factor clusters, 

such as age at OSA diagnosis, cardiometabolic conditions (e.g., type 2 diabetes, hypertension), and 

anxiety disorders. However, among those with highest social burden, top predictors included 

symptom-related factors such as malaise and fatigue, pain in joint, and light-headedness and vertigo, 

while among those with average social burden, features included infectious and parasitic diseases. 

These presentations might reflect primary reasons or exposure to different healthcare specialists. In 

this context, the study provided a systematic data driven approach to identify these factors, where 
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future studies could further explore, under a more hypothesis-driven methodology whether these 

conditions could be suggestive of higher CV risk within vulnerable populations. 

Our study has several strengths, such as providing an analysis in a large, racial, ethnic, and 

socioeconomically diverse clinical cohort of individuals observed in community health centers, a 

target population often neglected from epidemiological and experimental studies. In addition, we 

use a robust ML pipeline comparing, in a systematic way, different sets of ML methods and features 

towards understanding clinical factors of incident CV diseases. However, our study also present 

important limitations that should be considered when interpreting the findings. Access to OSA 

therapies, such as continuous positive airway pressure or mandibular advancement devices are likely 

not offered by this care modality and therefore not necessarily recorded in the ADVANCE EHR 

data warehouse, thus they could not be considered as confounders. More granular information about 

severity of OSA based on the apnea-hypopnea index or other metrics was not available, as it required 

parsing of clinical sleep study reports. Similarly, phecodes are not necessarily always precise, 

granular measures of diagnoses and may lack sensitivity and specificity of validated computable 

phenotypes. However, as part of a data-driven EHR-wide analysis, they may offer an initial set of 

hypotheses that could be assessed with more robust phenotypes in future investigations. Despite our 

observed signals, incidence rates of MACE were relatively low, possibly due to the relative short, 

5-year follow-up time, resulting in a very imbalanced classification problem. However, longer

follow-up windows would substantially reduce sample size and was not a feasible alternative.

In conclusion, this study leveraged heterogeneous EHR data from community health centers in 

the United States and described sociodemographic and geographically informed social disparities 

as they relate to diagnosis of OSA. Prediction models of incident MACE among individuals 

experiencing OSA also disparities in across clinical predictors of CV diseases. Thus, tailored 

interventions geared toward minimizing these disparities are warranted. 
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Detecting clinician implicit biases in diagnoses using proximal causal inference
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Clinical decisions to treat and diagnose patients are affected by implicit biases formed by
racism, ableism, sexism, and other stereotypes. These biases reflect broader systemic dis-
crimination in healthcare and risk marginalizing already disadvantaged groups. Existing
methods for measuring implicit biases require controlled randomized testing and only cap-
ture individual attitudes rather than outcomes. However, the ”big-data” revolution has led
to the availability of large observational medical datasets, like EHRs and biobanks, that
provide the opportunity to investigate discrepancies in patient health outcomes. In this
work, we propose a causal inference approach to detect the effect of clinician implicit biases
on patient outcomes in large-scale medical data. Specifically, our method uses proximal
mediation to disentangle pathway-specific effects of a patient’s sociodemographic attribute
on a clinician’s diagnosis decision. We test our method on real-world data from the UK
Biobank. Our work can serve as a tool that initiates conversation and brings awareness to
unequal health outcomes caused by implicit biases.∗

Keywords: Implicit bias, proximal causal inference, fairness, healthcare

1. Introduction

Implicit bias refers to unconscious and automatic associations that affect how we perceive,
evaluate, and interact with people from different social groups.1 Outside of mere cognitive
distortions, these biases held by healthcare professionals influence clinical decisions and alter
a patient’s quality of care. Implicit biases have been shown to be both harmful and pervasive
in modern-day medicine, exacerbating existing inequality in the treatment and health out-
comes of marginalized groups.2,3 For instance, unconscious attitudes held by clinicians result
in disparate outcomes where women are less likely then men to be diagnosed with myocar-
dial infarction,3 Black women in the UK and US experience higher maternal mortality than
White women,4 and low socioeconomic (SES) and non-White patients receive sub-optimal
pain management treatment compared to high SES and White patients.5,6

The recent integration of machine learning (ML) models into clinical decision-making has
highlighted the prevalence of biases in medicine. By replicating the patterns from real-world
medical data, ML models perpetuate and risk amplifying existing disparities in the medical
treatment of marginalized groups.7,8 While much attention has been given to the statistical

∗Our method is available at https://github.com/syrgkanislab/hidden_mediators

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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objectives of fairness and the development of fair models, there has been comparatively less
focus on investigating the biases present in the underlying data. A method capable of detecting
implicit clinician bias in observational datasets would prevent ML models from unintentionally
perpetuating biased decisions.

However, measuring implicit bias is challenging. Existing methods for quantifying implicit
bias rely on the Implicit Association Test (IAT)9 and randomized psychological experiments
like affective priming.10 While these tests are useful for initiating dialogue, they only provide
a snapshot of individual clinician attitudes and do not guarantee a causal link to behavior or
larger systemic discrepancies of care.10

In this work, we propose a computational tool to detect clinician implicit bias in observational
datasets by measuring the causal effect of patient attributes, like race, SES, and other social
determinants of health (SDoH), on medical diagnoses. By decomposing the causal effect into
two pathways, we can separate the biological effect (the influence of a demographic attribute
on diagnosis as mediated by valid biological traits) from the implicit bias effect (how the
patient’s attribute affects a clinician’s judgement independent of their actual health state).
As it is unlikely to observe a patient’s true health state, we use observed medical data as
proxies using proximal causal inference.11 To estimate the effect of implicit bias, we propose
a novel proximal mediation method that guarantees identifiability under several assumptions.
Using real patient data from the UK Biobank, we validate our method can robustly detect
several clinician implicit biases identified from prior works. We aim for the proposed method
to serve as a bias-detection tool in dataset audits and initiate discussion on reducing systemic
discrimination in medicine.

Disclaimer: While we use the UK Biobank data for method validation, we emphasize that this
work is not a commentary on specific examples of discrimination within the UK healthcare
system. Additionally, it is crucial to clarify that our method of estimating implicit bias is not
intended to target clinicians but rather reflect on clinician behaviors within the context of
discriminatory healthcare systems.

2. Method

2.1. Background

2.1.1. Overview

According to the Hippocratic Oath, clinicians should base their diagnostic decisions on each
patient’s history and current health status, unaffected by biases or stereotypes of the perceived
patient identity. However, even in the ideal scenario of unbiased treatment, patient sociode-
mographic attributes will still influence diagnosis. Attributes including race, sex, or SES have
been shown to influence a patient’s true health status via mechanisms like genetics, lifestyle,
and weathering from systemic oppression.12–14 These biologically-mediated effects increase
the risk of certain medical conditions. For instance, patients from lower SES backgrounds
experience higher levels of stress and reduced access to healthcare, increasing their risk of
cardiovascular disease.15 In light of these known biological influences, the causal effect of a
patient’s sociodemographic attribute on their diagnosis by a clinician is therefore comprised
of two pathway effects: the biological effect and the implicit bias effect, the latter referring to
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the clinician’s subjective biases of the sociodemographic attribute not mediated through the
patient’s actual health state.

We present the assumed causal relationships between variables as the directed acyclic graph
(DAG) in Figure 1. Dashed arrows denote optional edges, and bi-directional arrows denote
indirect confounding paths through latent variables. Let D be the binary sociodemographic
attribute and Y the diagnosis decision we wish to measure implicit bias with respect to. M
represents the latent variables encoding a patient’s true underlying health state. However,
as M is typically unknown, we instead observe Z and X as multivariate proxies of M . We
differentiate these proxies into the variables Z that do not affect the diagnostic decision Y but
could be affected by the attribute D; and the variables X which are not directly affected by
the attribute D but can influence diagnosis Y . For example, X could be recent lab reports a
clinician uses to make their diagnosis, and Z could be a patient’s survey responses to a sleep
questionnaire (assuming the survey does not influence the clinician’s diagnosis). Finally, let
W be sociodemographic confounders to control for.

We can now reframe biological and implicit bias effects using pathway causal effects. The
biological effect of attribute D on diagnosis Y is the indirect effect as mediated through the
true underlying health state M : D → M → Y . The implicit bias effect we wish to measure
is the direct effect of D → Y that flows through the edge θ and is defined as the residual of
the biological effect. We formally define bias in terms of controlled direct effects in Equation
(D.1).

Fig. 1: Assumed causal graph.

2.1.2. Related works

Measuring implicit biases requires detecting the unconscious and automatic attitudes that
shape behavior. The predominant method for implicit bias measurement thus far has been
the Implicit Association Test (IAT),9 a questionnaire developed in 1998 intended to measure
group association through word categorization. To capture clinician biases, several works have
linked clinician attitudes via their IAT score to behavioral manifestation.10,16 Other methods
for detecting implicit clinician bias include affective priming, which measures biased associa-
tions after stimulus priming; and the assumption method, which surveys clinicians’ decisions
after reading patient vignettes.17 While association tests like the IAT have been integral in
bringing awareness to medical biases, they are criticized for their arbitrary scoring system, in-
ability to predict real-world patient outcomes, and context-dependency.3,10,16,17 Furthermore,
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administering these controlled tests in every clinical encounter is impractical and unscalable.

Computational methods present a promising and scalable alternative for detecting implicit
bias in real-world medical data. While the field of ML fairness has explored bias detection, the
focus has been on identifying and mitigating bias in models rather than the data.7 In causal
inference, disentangling a causal effect into natural indirect and direct pathway effects has led
to methods that control for “fair” and “unfair” causal pathway effects. [18–21] propose metrics
for measuring fair pathway influence on outcomes and develop methods that mitigate the effect
of unfair pathways on the predicted outcome. [22] leveraged the Fairness-Aware Causal paThs
(FACTS)23 algorithm to quantify disparate pathway influence of SDoH attributes on mortality
using real-world health data. While these methods recognize an attribute’s influence on an
outcome contains both fair and unfair effects, prior works are limited to simple scenarios where
all variables are known and observed. Our work is the first to extend pathway inference to
large-scale observational data with potentially unobserved variables.

Finally, a few recent methods have explored proximal mediation analysis, where pathway
effects can be measured despite unobserved mediators by using proxy variables.24,25 However,
by relying on natural direct and indirect pathway effects, these works rely on more stringent
assumptions, require learning complicated bridge functions, and limit their analysis to simple
datasets. In comparison, our method makes several relaxations that enable application to
observational data. First, we identify controlled instead of natural effects, which presents an
equally good measurement of a biased decision yet lends to a much simpler statistical problem.
Additionally, we assume partially linear equations instead of requiring the identification of a
complex bridge function. Finally, we do not require uniqueness of the parameters unrelated to
implicit bias (i.e., the nuisance parameters for the outcome bridge function). These relaxations
enable our approach to be effective at analyzing large-scale real-world medical data.

2.2. Our method

Our goal is to identify and estimate the following controlled direct effect:

θ =

ˆ
m,w

E[Y (1,m)− Y (0,m) |W = w] p(m,w) dm dw (1)

where Y (d,m) is the potential (or counterfactual) outcome when we intervene on the attribute
D and the mediator M and set them to values (d,m); and p(m,w) is the natural probability
distribution in the data. If the controlled direct effect is nonzero, then there exists a direct
influence of the attribute D on the outcome Y , which is evidence of implicit bias.

If we observe M , the above controlled direct effect can be identified by a simple g-formula
that “controls” for M and W : θ = E[E[Y | D = 1,M,W ]− E[Y | D = 0,M,W ]]. Unfortunately,
this equation is intractable if M is unobserved. However, we show that under a few reasonable
assumptions the controlled direct effect is still identifiable.

Theorem 1 (Identification). a Consider a non-parametric structural causal model (SCM)
that respects the causal relationships encoded in Figure 1 (see Appendix D.1) and assume
there exists a “bridge function” q that solves E[Y | D,M,W ] = E[q(D,X,W ) | D,M,W ]. Then

aWe present more intuitive interpretations of each theorem and lemma in the Appendix.

333



q also solves the Non-Parametric Instrumental Variable (NPIV) problem defined by the set of
conditional moment restrictions

E[Y − q(D,X,W ) | D,Z,W ] = 0 (2)

and the controlled direct effect can be identified as θ = E[q(1, X,W )− q(0, X,W )].

Identifying parameters θ using a bridge function q (where q also solves an NPIV problem)
has been extensively studied in proximal causal inference literature.26–38 However, these ap-
proaches rely on solving saddle-point problems with adversarial training or require learning
conditional density functions, both of which are statistically daunting.

We can avoid these difficult statistical tasks if we assume that the bridge function is partially
linear in D and X. The following lemma shows that partial linearity of q is implied by a more
primitive assumption of partial linearity of two other functions (proof in Appendix D.4).

Lemma 1 (Identification under partial linearity). Consider a non-parametric SCM
that respects the constraints encoded in Figure 1 and assume that X has dimension pX at
least as large as the dimension pM of M . Moreover, assume that the following functions are
partially linear:

E[Y | D,M,X,W ] = D c+MT b+XT g + fY (W ) (3)

E[X |M,W ] = F M + fX(W ) (4)

where F is a pX × pM matrix, b is a pM -dimensional vector, g is a pX-dimensional vector
and fY , fX are arbitrary non-parametric functions. If we assume the matrix F has full column
rank, then there exists a partially linear outcome bridge function

q(D,X,W ) = Dθ +XTh+ f(W ) (5)

that satisfies Equation (2), where parameter h = F+b+ gb and θ = c.

Under the assumption of partial linearity, we can simplify the estimation problem by first
removing the effect of W from all the remaining variables (see Appendix D.5), where for any
variable V we define the residual Ṽ = V − E[V | W ]. Partial linearity of q from Equation (5),
when combined with the NPIV Equation (2), implies that θ can be identified using linear
instrumental variable (IV) regression where (Z̃; D̃)c are the instruments and (X̃; D̃) are the
treatments:

E

(Ỹ − X̃Th− D̃ θ)

(
Z̃

D̃

) = 0 (Primal Equation)

Unique identification of θ seemingly requires unique identification of the other “nuisance”
parameters like h, which might be difficult to achieve as the covariance matrix E[(X̃; D̃) (Z̃; D̃)T ]

is usually not full rankd. We invoke and simplify ideas from the recent proximal inference

bF+ is the Moore-Penrose pseudoinverse of F .
cWe denote (A;B) to be concatenation of vectors A and B.
dThis could be the case if the number of proxies is much larger than the dimensionality of the latent
mediator M .
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literature35,39 to show that θ can be point-identified even if h is not. To achieve this, we
construct a moment restriction equation that is Neyman orthogonal to the nuisance parameters
h but still point-identifies θ, given sufficient quality of the proxy Z. Intuitively, we learn a new
instrument V = (D̃− γ⊤Z̃) such that V is uncorrelated with X̃ and thus estimation of θ is not
sensitive to h. Existence of such a γ is sufficient for point-identification of θ. We provide the
proof for the point identification of θ in Appendix D.7 and for Neyman orthogonality in D.8.

Theorem 2. Let h∗ be the minimum norm solution to the (Primal Equation) and assume
that the following dual equation also admits a solution γ∗:

E[X̃ (D̃ − γT Z̃)] = 0 (Dual Equation)

Furthermore, assume E[D̃ (D̃ − γT∗ Z)] ̸= 0. Then the solution θ∗ to the equation:

E[(Ỹ − X̃Th∗ − D̃ θ) (D̃ − γT∗ Z̃)] = 0 (6)

uniquely identifies the controlled direct effect θ. Furthermore, this moment restriction is Ney-
man orthogonal with respect to nuisance parameters γ∗, h∗.

Theorem 2.2 allows us to invoke the general framework of [40] to construct an estimate and
confidence interval for the controlled direct effect θ. The full estimation algorithm is presented
in Appendix D.9.

2.3. Testing and Removing Weak Instruments

Our method for uniquely identifying the controlled direct effect θ relies on several assumptions,
e.g., (Z̃; D̃) are good instruments for (X̃; D̃). To assess the validity of these assumptions, we
developed a suite of tests that must pass for the estimate θ to be valid and can be used as
validity checks by practitioners. These tests are further described in Appendix C:

(1) Primal equation violation - We develop a χ2-test to check if the primal equation admits
a solution, i.e., E[(Ỹ − X̃Th∗ − D̃ θ∗)(Z̃; D̃)] ≈ 0. Intuitively, violation of the primal test
implies either the variables X are insufficient proxies of the health state M or the residual
proxy Z̃ has a direct path to Ỹ .

(2) Dual equation violation - We develop a χ2-test to check if the dual equation admits a solu-
tion, i.e., E[X̃(D̃− γT∗ Z̃)] ≈ 0. Violation of the dual implies the variables Z are insufficient
proxies of the health state M or that the residual proxy X̃ has a direct path from D̃.

(3) Strength of identification - We perform two tests to check if V = (D̃ − γT Z̃) is a good
instrument for (i.e., retains enough information about) D̃. (a) We develop an effective
F-test41,42 to check the correlation strength of V with D̃. (b) We develop a z-test to check
if the quantity E[D̃(D̃−γT∗ Z̃)] is substantially bounded away from zero (see assumption in
Theorem 2.2). Intuitively, these tests will fail if the hidden mediator is a very deterministic
function of the attribute D.

(4) Proxy covariance rank test - To ensure the health proxies are sufficiently related, we check
the rank of the covariance matrix of X̃ and Z̃ by identifying the number of statistically sig-
nificant singular values. This rank can be viewed as an upper bound on the dimensionality
of the hidden mediator M that we can control for.
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2.3.1. Proxy selection algorithm

In practice, the initial selection of proxies X,Z may violate key assumptions, which can be
detected by the failure of one or more of the aforementioned tests. In Appendix B, we provide
an algorithm for identifying subsets ofX and Z that satisfy the necessary assumptions and thus
produce valid estimates. This proxy selection algorithm should be performed on a separate
dataset from the one used to estimate θ.

3. Experiments

3.1. Data

To validate our approach, we use the UK Biobank, a rich and accessible repository containing
genomic, imaging, and tabular health data from over 500,000 patients. Our work uses its
tabular data, which includes survey questions and biometrics collected upon an individual’s
enrollment into the biobank. In addition, several health outcomes, including medical diagnoses
via ICD10 codes, have been linked to most patients. We note and discuss the caveats of
applying our method to biobank data in Section 5.2.

Prevalence in
UK Biobank
(n=502411)

Prior works
on implicit bias

Sociodemographic attribute D Race - Asian 2.4% 43–45
Race - Black 1.8% 3–5,46,47
Gender - Female 54.4% 3,48
Disability status - On disability allowance 6.2% 49,50
Income - Household income <18,000£ 20.3% 5,14,15,51
Education - No post-secondary education 67.3% 5,51
Weight - BMI >30 24.3% 52,53
Insurance - Not on private insurance 31.4% 54

Medical diagnosis Y Osteoarthritis 18.0% 47,49
Rheumatoid arthritis 1.9% 55
Chronic kidney disease 5.0% 56,57
Complications during labor 2.4% 3,4
Heart disease 10.7% 3,15,48
Depression 6.0% 46,58
Melanoma 1.2% 59,60

Table 1: Selected sociodemographic attributes D and diagnoses Y

Prior works have proposed sociodemographic attributes that might bias clinical decisions. For
example, [48] showed that clinicians exhibited greater uncertainty when diagnosing coronary
heart disease in women compared to men. We list in Table 1 most of the attributes D and
diagnoses Y we test for implicit bias, and present the full list of the 102 (D,Y ) pairs in
Appendix E.2. To highlight the influence of clinician subjectivity, we concentrate on diagnoses
that require clinician interpretation of patient-reported symptoms, e.g., chronic pain.

Selecting health proxies for Z and X relies user intuition and medical expertise to determine
which variables have a direct relationship with attribute D and outcome Y , respectively. In
general, proxies X could be observed by the clinician during their diagnostic decision, and
proxies Z are not accessible during diagnosis but might have a direct causal relationship with
attribute D. In the UK Biobank, we select X to be the biometric variables collected by the
biobank at patient enrollment, which includes lab results and blood pressure readings. For
Z, we use survey responses of self-reported pain levels, mental health, and sleep. We list all
variables, including the sociodemographic confounders W , in Appendix E.1. Note our data
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contains a mix of binary, integer, and continuous variable types.

3.2. Evaluation metrics

3.2.1. Semi-synthetic data validation

We test if our method can retrieve a known implicit bias effect using semi-synthetic data. We
use real data from the UK Biobank for attribute D, confounders W , and health proxies X,Z.
We develop a model that computes M and a synthetic diagnosis Y with a known implicit
bias effect θ = 0.5 using linear structural equations. We test against fully continuous (Experi-
ment 1) and both binary and continuous (Experiment 2) semi-synthetic data, the latter being
more realistic in real-world medical data. Our semi-synthetic data generation method is fully
described in Appendix A. As a baseline, we compare two variants of ordinary least squares
(OLS): (a) given we know M , we fit an OLS model over W,D,X, and M to predict Y ; (b) in
the more realistic scenario where M isn’t known, we learn over W,D,X, and Z. We compute
the average effect estimate and confidence interval based on ±1.96 σ where the average and
standard deviation σ is taken over K=100 iterations.

3.2.2. Calculating the implicit bias effect in the UK Biobank

We next run our method on the full UK Biobank data. We compute the residuals of Z,X, Y,D

fitted on W using Lasso regression. For all models, the regularization term is chosen via semi-
cross fitting61,62 over 3 splits. We fit all models using the scikit-learn Python package. For
nuisance parameters h∗ and γ∗ we used regularized adversarial IV estimation35,63 with linear
functions and a theoretically driven penalty choice that decays faster than the root of the
number of samples.

In cases where the data may not meet the method’s assumptions, we developed a proxy
selection algorithm (see Section 2.3.1) that identifies an optimal subset of X,Z proxies for each
(D,Y ) pair using the assumption tests from Section 2.3. Although we recommend separate
data splits for proxy selection and effect estimation, we use the same dataset as our intent
is method demonstration rather than robust effect estimates. Details of the hyperparameters
used for the selection algorithm are provided in Appendix B.

For each of the 102 pairs of attribute D and diagnosis Y , we report seven metrics: the implicit
bias effect θ, the 95% confidence interval, as well as our five proposed tests from Section 2.3:
(1) the primal and (2) dual violation, (3-4) the strength of identification, and (5) the Z̃, X̃

covariance rank test. In addition, we also run the following five analyses:

Weak identification confidence interval - If the instrument identification tests from 2.3
are violated, then effect estimation can be unstable and normality-based confidence inter-
vals inaccurate. We thus compute an alternative confidence interval62 developed under the
assumption of weak instruments (see Appendix C.5 for the description).

Bootstrapping analyses - We perform several bootstrapping analyses to test the sensitivity
of the estimate. In the first analysis, given the computational complexity of recomputing the
full estimate, we compare K=10 bootstrapped iterations re-estimating the full pipeline (stage
1); K=100 iterations using the pre-computed residuals but re-estimating all other parameters
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(stage 2); and K=1000 iterations re-computing only the final Equation (6) (stage 3). Each
iteration samples 50% of the data without replacement. In the second analysis, we compare
sampling 10%, 25%, 50% or 75% of the original data for K=10 bootstrapped iterations, re-
estimating over full pipeline (stage 1). Finally, we compare different sample sizes for K = 1000

iterations re-estimating from stage 3 of the pipeline.

Influence points - Inspired by [64], we analyze influence scores, which measure how in-
fluential each data point is in the effect estimate. A significant change to the estimate after
removing a small set of highly-influential points indicates the implicit bias calculation is highly
sensitive to a few (potentially) outlier patients. We also include a preliminary interpretability
analysis that explores the distinguishing phenotypes of highly influential patients, which could
aid in determining if these subsets of patients correspond to some interpretable outlier group.
We describe how we calculate the influence score and identify highly-influential patient sets
in Appendix C.6.

Income stratification - To investigate intersectionality in implicit biases, we perform a
stratified effect estimate over different income groups where D ̸=Income.

Partial non-linearity of W - Our identification theorem allows for partial non-linearity in
the effect of W . We thus re-compute the point estimate allowing for non-linear interactions
with W using XGBoost65 models instead of Lasso.

4. Results

4.1. Synthetic data validation

The results in Table 2 demonstrate that our method is able to retrieve the true implicit
bias effect θ = 0.5 with high certainty for both fully continuous and mixed-type data, with
comparable performance to the best-case OLS where M is known. We report our method’s
coverage, RMSE, bias, standard deviation, mean confidence interval, and performance on our
five tests (from Section 2.3), as well as testing other values of θ, in Appendix F.1.

θ Our method OLS(D, W, M, X) OLS(D, W, Z, X)

Experiment 1: Continuous 0.5 0.54 ± 0.003 0.5 ± 0.01 1.10 ± 0.01
Experiment 2: Continuous and binary 0.5 0.53 ± 0.003 0.5 ± 0.01 1.385 ± 0.01

Table 2: Semi-synthetic data estimates θ and confidence interval over K=100 iterations.

4.2. Calculating the implicit bias effect in the UK Biobank

In Appendix F.2, we show the effect estimates for the (D,Y ) pairs using all proxies Z, X,
adjusting the confounders W by excluding the column corresponding to the attribute D.
However, as evidenced by the failure of the dual and primal tests, we found the initial sets
of proxies Z, X did not meet our method’s necessary assumptions. As discussed further in
Appendix F.3, we believe these test failures indicate there might exist some features in X with
a causal path from D that does not go through M or features within Z with a causal path to
Y that doesn’t flow through M . Such paths invalidate the resulting effect estimates.
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We thus found applying our proxy selection algorithm (see 2.3.1) necessary for producing valid
effect estimates. After running the algorithm to select subsets of admissible X,Z proxies (the
description and interpretation of the selected proxies can be found in Appendix F.3), we found
34 (D,Y ) pairs that pass all tests with narrow confidence intervals. We report six in Table 3
and include the remaining estimates in Appendix F.4. Note that θ > 0 implies a patient with
D is more likely to be diagnosed with Y due to clinician bias, and conversely θ < 0 implies a
patient is less likely to be diagnosed. In Section 5.2, we offer a framework for interpreting the
implications of these results.

4.2.1. Weak instrument confidence interval

As shown in Figure 2A, the confidence interval predicted under the weak instrument regime
consistently aligns with the interval under our method, thus indicating our estimate’s robust-
ness to weak instruments.

(D,Y ) θ ± 95% CI
(1) Primal

statistic < critical
(2) Dual

statistic < critical
(3) E[D̃V ] ̸= 0

statistic > critical
(4) V strength F-test
statistic > critical

(5) Cov(X̃, Z̃) rank

Low income, Depression 0.03 ± 0.02 59.9<60.5 31.9<40.1 84.1>0.4 3332.1>23.1 3
Disability insurance, Rh. Arthritis 0.06 ± 0.0 67.3<75.6 3.4<11.1 29.2>0.4 801.1>23.1 3

Female, Heart disease -0.19 ± 0.06 115.8<118.8 23.3<23.7 18.8>1.3 92.5>23.1 4
Black, Chronic kidney disease 0.14 ± 0.03 56.9<58.1 10.6<21.0 9.8>0.3 23.3>23.1 4

Obese, Osteoarthritis 0.09 ± 0.02 90.5<100.7 24.8<28.9 76.5>1.7 254.9>23.1 3
Asian, Osteoarthritis -0.06 ± 0.03 94.7<101.9 33.1<33.9 13.9>0.3 74.6>23.1 5

Table 3: Six of the 34 valid UK Biobank implicit bias effect estimates after applying our X,Z proxy
selection algorithm. Tests (1-5) are detailed in 2.3, where statistic is the given data’s statistic and

critical is the necessary critical value to be greater or less than to pass. V = D̃ − γT Z̃.

Fig. 2: Comparing effect estimates for six (D,Y ) pairs using all data with: A) weak instrument and
influence set removal (where the numbers next to the yellow bar reflect the set size of high-influence

points); B) bootstrapped subsampling 50% of the data at different stages of re-estimation.
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4.2.2. Bootstrapping analyses

In Figure 2B, we show the results of the first bootstrap analysis comparing different stages
of re-estimation. We observe that, regardless of the estimation stage, bootstrapped estimates
are consistent with the estimate from the full dataset. The consistency of the bootstrapped
estimates over different sample sizes, as shown in Appendix F.6, further support the robustness
of our method.

4.2.3. Influence points

In Figure 2A, we see that removing only a few highly-influential points leads to a significant
decrease in the magnitude of the estimated effect. To investigate, we run a preliminary in-
terpretabilty analysis where we analyze the univariate differences between patients with high
influence and those with low influence. In Figure 3A patients that strongly influence the nega-
tive implicit bias estimate for (D=Female, Y=Heart disease) are more likely to be low income,
unemployed due to disability, and suffer from depression. It is plausible such patients are the
“outliers” driving the strong negative bias estimate.

Fig. 3: A) Interpretability into high influence points. B) Income stratification

4.2.4. Income stratification

In Figure 3B we analyze the effect of stratification based on income. We see a general increase
in bias effect estimate for the low income strata and a corresponding decrease in effect for
high income strata, demonstrating potential evidence of intersectional discrimination.5,66

4.2.5. Partial non-linearity of W

In Appendix F.9, we show our implicit bias estimate with non-linear W interactions leads to
a similar effect estimates of θ.

5. Discussion

5.1. Limitations

In this work, we propose a robust causal inference method designed to detect clinician implicit
bias by estimating pathway-specific causal effects. We demonstrate the applicability of our
approach to large-scale medical data by validating on both semi-synthetic and real-world
datasets.
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However, our work contains several limitations. First, while the UK Biobank is a rich and
accessible source of medical data, most patient information is collected once upon signing up
for the biobank. Although UK Biobank has synced their records to a handful of outcomes
provided by EHR data (like ICD10 codes), it is unclear to what extent the available proxies
for X (which were collected at patient enrollment) are used by clinicians for diagnoses. Addi-
tionally, the synced ICD10 codes are from hospital records, thus excluding primary care visits.
We plan to validate our method with time-series EHR data in follow-up work.

Second, while the assumption of partially linear structural equations is crucial for enabling
better identifiability of the outcome bridge function under minimal conditions, it is possible
the ground truth equations are non-linear.

Finally, it is well known that intersectional identities shape complex patterns of discrimination
in healthcare.5,66 A more comprehensive analysis on the effect of implicit bias from intersec-
tional attributes on patient treatment would be valuable for improving equity in healthcare
outcomes.

5.2. Interpretation and application of results

While we re-iterate the intent of this work is not to diagnose specific cases of implicit bias
in the UK Biobank, our method did flag several areas of clinical inequity that have been
reported in literature. For instance, many works have reported gender-based inequality in
cardiovascular health,67 and we similarly detected an estimate of θ = -0.19 indicating clinicians
are less likely, due to implicit biases, to diagnose D=Females with Y=heart disease. In another
example, our estimate θ = -0.06 suggested clinicians are less likely to diagnose D=Asian
patients with Y=osteoarthritis, and many works have highlighted both patient- and clinician-
stigmas regarding pain-associated disorders, like osteoarthritis, in Asians.68–70

However, we did find several estimates contrary to what we expected. For example, our esti-
mate θ = 0.14 indicated clinicians are positively biased towards diagnosing Black patients with
chronic kidney disease. However, at the time of UK Biobank data collection, many doctors
relied on a race-based equation for kidney function now known to have under-detected kidney
disease in Black patients.71

To understand a discrepancy between a produced estimate and literature (or user intuition),
we recommend (1) ensuring the data used contains sufficient health proxies and satisfy all
assumptions (e.g., see biobank data limitations in 5.1); (2) investigating all mechanisms creat-
ing the medical outcome Y (e.g., hospital-specific diagnosis protocol); and (3) exploring how
the discovered bias estimate fits in context, rather than opposed, to those found in literature.
While our method does not offer a solution on how to tackle implicit biases, by bringing aware-
ness to potential areas of discrimination within a given healthcare system, detecting biases is
the first step towards creating systemic-level change through interdisciplinary collaboration
and targeted anti-bias training programs.

6. Appendix

The appendix can be found at https://github.com/syrgkanislab/hidden_mediators.
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In the Carolina Breast Cancer Study (CBCS), clustering census tracts based on spatial
location, demographic variables, and socioeconomic status is crucial for understanding
how these factors influence health outcomes and cancer risk. This task, known as spatial
clustering, involves identifying clusters of similar locations by considering both geographic
and characteristic patterns. While standard clustering methods such as K-means, spectral
clustering, and hierarchical clustering are well-studied, spatial clustering is less explored due
to the inherent di!erences between spatial domains and their corresponding covariates. In this
paper, we introduce a spatial clustering algorithm called Gaussian Process Spatial Clustering
(GPSC). GPSC leverages the flexibility of Gaussian Processes to cluster unobserved functions
between di!erent domains, extending traditional clustering techniques to e!ectively handle
geospatial data. We provide theoretical guarantees for GPSC’s performance and demonstrate
its capability to recover true clusters through several empirical studies. Specifically, we
identify clusters of census tracts in North Carolina based on socioeconomic and environmental
indicators associated with health and cancer risk.

Keywords: Census tracts; Gaussian process; Socioeconomic status.

1. Introduction

There is growing research suggesting that socioenvironmental factors can play a key role
in a!ecting health outcomes, potentially contributing to health disparities in marginalized
groups, and may even predictably impact outcomes at the molecular level with diseases such as
cancer.1,2 However, identifying areas of such risk can be a di"cult task. In the community-wide
socioeconomic and environmental indicators dataset, the spatial locations of North Carolina
census tracts were paired with socioeconomic data from the American Community Survey3 from
2014 chosen to reflect socioeconomic advantage and disadvantage,4 as well as environmental
pollution data from the U.S. Environmental Protection Agency (EPA) National Air Toxics
Assessment (NATA2,5). This then poses the problem: how can geographically spread NC
census tracts be clustered together based on risk factors including socioeconomic indicators and
environmental pollution? North Carolina is known to be an ethnically diverse state,6 with a wide
range of spatially dependent di!erences in socioeconomic status such as access to healthcare,
poverty rates, and education, while meaningful clusterings must take into consideration all
these di!erences.6 A standard clustering algorithm applied to the data collected from the
patients in each tract or to the environmental variables alone fails to necessarily capture the

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.

346



significant spatial dependence inherent in the data collected in the studies. This problem is
known as spatial clustering or geospatial clustering.7

Fig. 1: Socioeconomic and environmental advantage-disadvantage latent class map of NC.

In spatial clustering, the goal is to identify clusters of similar locations based on region-
alization, as well as patterns in characteristics over those locations. Clustering of geospatial
data is a common unsupervised learning problem with many applications to areas, e.g., public
health,8 urban planning,9 or transportation,10 where geography plays an essential role.

Furthermore, spatial data, also known as geospatial data, is commonly characterized by
having a distinct geographic component.11 Unlike traditional data that only include observations
as a single set of features x, spatial data may be considered as a vector [s, x], where s → R2

represents the spatial location of the observation and x → Rp is the set of features or covariates.
The analysis of such spatial datasets poses challenges, such as accurately capturing the relative
e!ects between the spatial and covariate domains.11 Importantly, geographically close areas
may still have very di!erent patterns of characteristics, while separated areas may share
similarities and constitute a single functional cluster. Together, this can pose challenges to
traditional clustering methods that equally treat the separate domains inherent to geospatial
data such as K-means, as the geographic locations of distinct clusters may be well mixed, or
the measurements themselves of di!erent variables at those locations may be well mixed.

Without the spatial component, clustering itself is a well-studied problem with many estab-
lished techniques such as K-means clustering,12 spectral clustering,13 hierarchical clustering,14

and density-based spatial clustering of applications with noise (DBSCAN15), to name a few
popular algorithms. Each of these algorithms o!ers distinct advantages based on their modeling
assumptions when performed on di!erent types of data. Additionally, common extensions of
these algorithms include supervised fuzzy C-means,16 spatial hierarchical clustering,17 and
the generalized DBSCAN (GDBSCAN18) algorithm. These algorithms are able to better
incorporate either response labels or spatial data directly through customized distance metrics
or connectivity constraints.

However, in this paper, we consider the case of supervised spatial data, with observations
consisting of three components (s, x, y), where s → R2 is the spatial component, x → Rp is the
feature component, while y → R is the response variable of particular interests. Assuming that
in the data there is a relationship between features x, or between features and geography (s, x),
and the response y, we propose a new spatial clustering algorithm based on Gaussian Processes
(GPs), called Gaussian Process Spatial Clustering (GPSC), which groups together clusters
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based on each group’s ability to predict the response variable y. We focus on single-output
cases in this paper for simplicity, but the extension to multi-output cases where y → Rd with
d > 1 is straightforward.

For the motivating example from NC census tracts data, s is the longitude/latitude pairs
defining each state census tract, x is the set of environmental pollution variables such as levels
of hexane, lead, mercury, etc, as well as average socioeconomic indicators such as unemployment
rates, poverty rates, or education, and the y response to be predicted is a previously defined
latent class2 measuring socioeconomic and environmental advantage-disadvantage .

In order to do so, GPSC leverages the flexibility of GPs, well-studied near-universal function
approximators,19,20 to fit the true functional relationships within each clustering and to cluster
tract locations and features pertaining to socioeconomic status. Simulation studies show
that the GPSC algorithm is capable of accurately recovering and clustering these functional
relationships even in cases of limited spatial dependencies such as in the case of irregular cluster
shapes or sizes, and regardless of any dependencies in the covariate domain. This is important
because, as in Figure 1, clusters may not always be completely separated, so it is essential to
control the relative influence of each domain in the clustering done in GPSC by choosing the
kernel. Furthermore, GPSC is less sensitive to dependencies in the covariate domain compared
to traditional clustering methods such as K-means clustering. We prove that GPSC is able to
find the true clusters as long as the functional relationships between the clusters are distinct.
When applied to community-wide study, GPSC successfully clusters tracts in NC with finer
detail than traditional methods and can be interpreted by domain experts.

In summary, our contributions in this paper are 1) a novel spatial clustering GPSC algorithm,
2) theoretical support to GPSC and 3) application to NC tract level data with new interpretable
discoveries. Full proofs of theorems, implementation details, as well as extended simulations are
presented in the Supplementary Material at https://github.com/hong-niu/gpsc-psb25.

2. Model

2.1. Gaussian Process Regression

In this section, we review the GP model and its application towards regression and classification.
By definition, a GP is a random function for which any finite realization follows a multivariate
Gaussian distribution:21

Definition 2.1. f follows GP in domain ! with mean function µ and covariance function K,

denoted by f ↑ GP (µ,K), where µ : ! ↓ R, K : !↔ ! ↓ R, if for any x1, · · · , xn → !,

[y1, · · · , yn]→ := [f(x1), · · · , f(xn)]→ ↑ N(v,”),

where v = [µ(x1), · · · , µ(xn)]→ and ”ij = K(xi, xj).

A GP is completely determined by the mean function µ and the covariance function K,
also known as the kernel. In this paper, we assume µ = 0 for simplicity and use the radial
basis function (RBF), also known as the squared exponential kernel, defined as: K(x, x↑) =

ω
2
e
↓ d2(x,x→)

2b , but our model can be extended to other kernels. The two parameters, i.e., spatial
variance ω

2 and length scale b are estimated by maximizing the likelihood (MLE). Given
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training data (xi, yi)ni=1 with MLE εn = (ω2
n, bn) and a new observation x↔, the best unbiased

linear predictor (BLUP22) of y↔ = f(x↔) is given by ŷ↔ = Kωn(x↔, X)Kωn(X,X)↓1
Y, where

Kωn(x↔, X)i = Kωn(x↔, xi), Kωn(X,X)ij = Kωn(xi, xj) and Y = [y1, · · · , yn]→ → Rn. As a flexible
regression algorithm, GP can be modified into a classifier using a link function21 for a discrete
response variable y, so we will not distinguish between Gaussian process regression (GPR) and
Gaussian process classification (GPC) in this paper.

2.2. GP Spatial Clustering

Now we will consider observations {(si, xi, yi)}ni=1, where si → S ↗ R2 is the spatial location,
xi → ! → Rp is the covariate, and yi is the response variable. Let li → {1, · · · , L} be the unobserved
cluster label such that li = j ↘≃ si → Sj ↗ S, where S1, · · · ,SL is a partition of !. We focus on
the following model. yi =

∑L
j=1 1{si↗Si}fj(xi) =

∑L
j=1 1{li=j}fj(xi), where fj is unknown function

on ! in certain function class that will be discussed in Section 3. That is, the functional relation
between yi and xi varies across spatial clusters supported by Si. The goal is to recover the
cluster label li, called spatial clustering since the clusters are rooted in the spatial domain S.

For example, in the NC tracts data, each Si consists of tracts in NC, while the relationship
between the latent class and the socioeconomic and environmental covariates varies across the
tracts spatially. The goal is to partition NC into several clusters so that each cluster admits a
unique functional relationship.

For a given observation xi in cluster j with response yi, we expect the prediction error of
fj to be the lowest among all fj’s, and hence we can assign xi to the cluster with the lowest
prediction error. However, neither the cluster label li or domain partition Si, nor the functions
fj is observed. Motivated by the flexibility of GP models, we use GP to approximate the
unobserved functions fj , denoted by f̂j , and assign xi to the cluster labeled by l̂i with the lowest
prediction error: l̂i = argminj (f̂j(si, xi)⇐ yi)2. Then we update the cluster and f̂j iteratively.
The GPSC algorithm is summarized in algorithm 1.

Algorithm 1 Gaussian Process Spatial Clustering
Input: data (si, xi, yi)ni=1, number of clusters L, maximum number of iterations T

Initialize l̂i = randomInt(1, 2, · · · , L)
for t = 1 to T do

for j = 1 to L do

(Sj , Xj , Yj) = {(si, xi, yi) : l̂i = j}, f̂j = GPR(([Sj , Xj ], Yj))

end for

for i = 1 to n do

l̂i = argminj (f̂j((si, xi))⇐ yi)2

end for

end for

In this flexible construction, it is also possible to extend the reassignment function for
di!erent applications, such as reinforcing spatial contiguity constraints as is common in
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geographical clustering:

l̂i = argmin
j=1,··· ,L

{(f̂j(si, xi)⇐ yi)
2 + ϑ⇒si ⇐ Cj⇒}.

Here, Cj is the center in the spatial domain of the current cluster Sj, while ϑ is a tuning
parameter that controls the penalization of assigning points to clusters that are spatially
distant. For the rest of the paper, we will focus on the case ϑ = 0, but will demonstrate the
e!ects of adding such penalties in the simulation studies.

In summary, the inputs to the algorithm are observations {(si, xi, yi)}ni=1, along with tuning
parameters including the number of iterations T and the number of clusters L. In practice the
number of iterations T need not necessarily be large, and can be replaced with the stopping
criterion when the cluster assignments stabilize. The proper choice of the number of clusters L

is a typical challenge in the field of clustering,23 which is beyond the scope of this paper. The
choice of L often requires domain expertise specific to the application at hand, see Section 5 for
more detailed discussion. In practice, we also typically bound the parameters of the covariance
function during optimization to prevent overfitting.

3. Theory

In this section, we provide theoretical support to the GPSC algorithm. We start with the
necessary definitions to state the assumptions and theorems.

Definition 3.1. Let K be a positive definite kernel on ! ↗ Rp, then FK(!) := span{K(·, x) :
x → !} with inner product form

(∑n
i=1 aiK(·, xi),

∑m
j=1 bjK(·, x̃j)

)

K
:=

∑
i,j aibjK(xi, x̃j), so that

FK(!) is a pre-Hilbert space with a reproducing kernel K. The linear mapping # : FK(!) ↓
C(!) : #(f)(x) := (f,K(·, x))K , is injective. Then the image of #, NK(!) := #(FK(!)) is a Hilbert

space with a reproducing kernel K equipped with the inner product (f, g)K := (#↓1
f,#↓1

g)K .

For simplicity, we fix Kω to be the RBF kernel with ε = (ω2
, b) from now on.

Definition 3.2. Given observations X and x0 with unobserved y0 to be predicted. Let ϖX,x0
:

Y ⇑↓ Kω(Y )(x0, X)→Kω(Y )(X,X)↓1
Y , where ε(Y ) = argmaxω N(Y |0,K(X,X)) is the maximum

likelihood estimator of ε based on potential observations Y . That is, ϖ is the BLUP of y0 based

on observations (X,Y ). By the definition of ϖ, the smoothness of the Gaussian density function

and the linearity of BLUP, ϖ is di!erentiable.22 We also introduce the following assumptions:

(A1) ! ↗ Rp is compact and p(x) > 0, ⇓x → !, where p(x) is the density function of x.
(A2) fj → NK(!), j = 1, · · · , L.

Theorem 3.3. Under assumptions (A1)-(A2), at any iteration in Algorithm 1, let njk :=∣∣∣{i : li = j, l̂i = k}
∣∣∣, nj :=

∣∣∣{i : l̂i = j}
∣∣∣ then the current xi is a assigned to the correct cluster if

for any k ⇔= j,

∑
m ↘=j nmj∑
m ↘=j nmk

<
DlEl

DuEu
⇐ ⇒f⇒Ke

↓c1n
1
p
j + ⇒f⇒Ke

↓c2n
1
p
k

DuEun22
, (1)
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where c1 and c2 are constants, and

Dl := inf ⇒↖ϖ(Y )⇒ ↙ Du := ⇒↖ϖ(Y )⇒≃,

El := inf
x↗!,j,k=1,··· ,L

|fj(x)⇐ fk(x)| ↙ Eu := sup
x↗!,j,k=1,··· ,L

|fj(x)⇐ fk(x)| < ∝.

In particular, let L = 2, j = 1, k = 2 and let n1, n2 ↓ ∝, Equation (1) becomes:
n21

n22
<

DlEl

DuEu
.

That is, the mis-clustered proportion is small enough.

The right-hand side of inequality (1) is highly interpretable. The ratio Dl

Du
measures the

robustness of the BLUP, that is, how the BLUP changes with training data Y . The less robust
the BLUP, the smaller the ratio, and the harder it is to find the correct clusters. The ratio El

Eu

measures the separation between functions f1, · · · , fL. The smaller the separation, the smaller
the ratio, and the harder it is to find the correct clusters. Theorem 3.3 also implies that the
state of correct clustering is an absorbing state, that is, if the current clusters are close enough
to the true clusters, then perfect clustering results will be achieved in the next iteration. Note
that even if the inequality does not hold, the algorithm may still converge to a better state
with more correctly clustered data, although not within one single step. This is because even
when the right-hand side of Equation (1) is small, there might be some region !0 ↗ ! where
the fj’s are relatively well separated so that the right-hand side is relatively large on !0, so
that samples within !0 will be assigned to true clusters. Meanwhile, for the region where fj’s
are well mixed, it is challenging for all clustering algorithms.

In practice, the response variable y is often subject to measurement error, leading to a
more realistic model: y = f(x) + ϱ, where ϱ ↑ N(0, ς2) represents noise. The following theorem
serves as the counterpart to Theorem 3.3 in the presence of Gaussian noise:

Theorem 3.4. Under the same assumption and notation as of Theorem 3.3, with the addition

of Gaussian noise, the current xi is assigned to the correct cluster if for any k ⇔= j,

∑
m ↘=j nmj∑
m ↘=j nmk

<
DlEl

DuEu
⇐ ⇒f⇒Ke

↓c1n
1
p
j + ⇒f⇒Ke

↓c2n
1
p
k + φ

DuEun22
, (2)

where φ is the sum of independent ↼-distributions with degrees of freedom 1, n1 and n2 rescaled

by 2ς , ς and ς respectively.

In particular, when L = 2, j = 1, k = 2, and n1, n2 ↓ ∝, the right-hand side simplifies to
DlEl

DuEu
with probability one. When ς = 0, that is, the noise vanishes, then φ = 0 so Theorem 3.4

coincides with Theorem 3.3.

4. Simulation Studies

To evaluate the performance of GPSC, we present three simulation studies in this section,
with detailed implementation details in the Supplementary Materials. The first simulation
will demonstrate an application of Algorithm 1 in the case of responses generated by linear
functions with two clusters, while the second simulation shows the performance of GPSC
in the case of responses generated by nonlinear functions. The third simulation shows the
robustness of GPSC to noisy data and overspecified number of clusters. In all simulations, we
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compare the performance of GPSC with traditional clustering algorithms: K-means, spectral
clustering, hierarchical clustering, and DBSCAN, as well as spatial or supervised analogs:
supervised fuzzy C-means, spatial hierarchical clustering, generalized GDBSCAN, and also the
Gaussian mixture model (GMM24). We evaluate the performance using the adjusted Rand
index (ARI25) and adjusted mutual information (AMI26) against the true labels. The data used
in these simulations take the form {(si, xi, yi)}ni=1, where si → R2 is the spatial domain, xi → R2

is the covariate domain, and yi → R is the response domain, taken for visualization purposes.
Note that for all algorithms, including GPSC and the aforementioned traditional, nonspatial
clustering algorithms, the input is taken to be the full vector (s, x, y) with the spatial domain
included, so that all competitors always use the full information. The results can be directly
extended to higher p and multivariate responses.

4.1. Simulation 1 - Linear Functions

In this simulation, y is a linear function of x for visualization purposes, where both si and xi are
generated from independent uniform distributions. After generating the data {(si, xi)}ni=1, the
spatial domain is subdivided into two clusters, the center ball and the background region. The
yi → R are then generated as distinct linear functions of xi for each cluster. For visualizations
of the resulting clusters in the XY domain and all ARI/AMI scores, see Supplement D.1.

Fig. 2: [Left] GPSC results for Simulation 1, colored by cluster. The first column plots the
spatial domain si → R2, the second column plots the covariate space xi → R2, the third column
plots the response space yi → R , while the right-most column plots yi → R against xi → R2. The
first row shows the ground truth generated data. The second row shows the predicted clusters
from GPSC after randomized initialization. [Right] Clusters for Simulation 1 by nine clustering
algorithms visualized in the spatial domain.

It can be seen that this simulation is challenging for several reasons. First, there is almost
no separation considering any dimension s, x, or y on its own as in the first three columns
in Figure 2 (left); the separation is solely in the functional domain XY . As a result, most
traditional algorithms cannot capture this functional relationship, as supported by Panels 3-7
in Figure 2 (right). Although it can seen that the Gaussian mixture model is able to rediscover
the clusters in this case (Panel 2), this is due to GMM’s ability to estimate the pairwise
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linear correlation between each domain. However, we expect GMM to fail to capture nonlinear
functional relationships, as shown in the following Simulation 2. It is also noted that DBSCAN
and GDBSCAN (Panels 8 and 9) also perform reasonably well, but have challenges of their
own such as GDBSCAN greatly overestimating the number of clusters.

4.2. Simulation 2 - Nonlinear Functions

In this simulation, we will show that in an irregular spatial distribution with nonlinear
relationships between the covariates and the response variable, GPSC is still able to recover
the true functional relationships in contrast to the competitors. After generating the data
{(si, xi)}ni=1 from independent uniform distributions, the spatial domain is subdivided into
two clusters, the ring and the background region. The yi → R are then generated as distinct
nonlinear functions of xi for each cluster (the first row of Figure 3).

Fig. 3: [Left] Results for Simulation 2 with true generated data (top) and results of GPSC
(bottom). [Right] Clusters by nine di!erent algorithms visualized in the spatial domain.

It can be seen that in this more challenging simulation, only GPSC is able to recover the
true functional clusters, with the results of each clustering algorithm plotted in the spatial
domain in Figure 3 (see Supplement D.2 for more details).

4.3. Simulation 3 - Model Robustness

In Simulation 3, we present a more realistic scenario of three clusters that have some degree
of spatial separation. Motivated by our real-world application of clustering North Carolina
census tracts, the sun and moon clusters could be interpreted to represent two urban centers
surrounded by a larger rural region. By applying the spatially penalized version of GPSC, we
will show that the clustering results remain stable across both increasing levels of noise, as
well as to overspecification of the input number of clusters. Full visualization and comparisons
can be found in Supplement D.3, D.4 and D.5.

After generating the data {(si, xi)}ni=1 from independent uniform distributions, the spatial
domain is subdivided into the three clusters, the sun and moon shape, and the background
region. The yi → R are then generated as distinct nonlinear functions of xi for each cluster with
varying degrees of zero-mean Gaussian noise. For an extension of Simulation 3 to nonlinear

353



functions of both si and xi, see Supplement D.5.

Noisy Responses

We first show that GPSC works under noisy conditions as per Theorem 3.4. In Figure 4, we
present Simulation 3 with noise variance = 100, showing that the spatially penalized version of
GPSC still performs well under noisy conditions. In particular, GPSC is able to outperform
competitors at all tested noise levels, where no other competitor is able to recover the true
clusters (with exact ARI/AMI scores and additional details in Supplement D.3).

Fig. 4: [Left] Results for Simulation 3 with true generated data (top) and results of GPSC
(bottom). [Right] Clusters by nine di!erent algorithms visualized in the spatial domain.

Overspecified Number of Clusters

Finally, we show that GPSC is stable when the number of clusters is overspecified. Specifically,
it can be seen in Figure 5 when the number of specified clusters is 5, the sun (teal) and moon
(yellow) clusters remain stable, while the background cluster (originally purple) is split into
three purple, indigo, and light green clusters. In contrast, the competitors are unable to recover
the true clusters when the number of clusters are overspecified, while further visualizations
and comparisons to the competitor models are presented in Supplement D.4.

Fig. 5: [Left] GPSC results for Simulation 3 with overspecified number of clusters as 5. [Right]
Results of nine algorithms with overspecified input presented in the spatial domain.
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5. Applications to NC Tract Data

This dataset consists of 29 community-wide covariates aggregated by census tracts in North
Carolina. Such covariates ranged from measures of environmental pollution to averages of
socioeconomic indicators such as unemployment, housing environment, education, etc (see
Supplement E for a full list). Each census tract is associated with a single (longitude, latitude)
pair of coordinates. The overall socioeconomic indicators were previously aggregated using
latent class analysis into a single advantage/disadvantage class with 8 categories.2

Based on the distribution of the full latent classes seen in Figure 1, we can see
that there is some degree of separation in the spatial domain between certain groups.
Thus, we initialized our GPSC algorithm by performing traditional K-means cluster-
ing on solely the spatial domain. We then applied our GPSC algorithm using this la-
tent class as the response variable, taking all other features as the set of covariates.

Fig. 6: Baseline aggregate groups of socioeco-
nomic and environmental latent class indicator.

Here, we focus on K-means clustering for
comparison due to its interpretable results
from previous studies,2 with results from
other clustering algorithms presented in
Supplement E. Based on our results, we
find that L = 3 produced the most inter-
pretable clusters, and thus aggregated the
8 latent classes into 3 as a baseline against
GPSC seen in Figure 6. Using the language
of Larson et al. (2020)2 for our predicted 3 clusters, we will consider the overall socioeconomic
and environmental advantage to be three levels: low (pink), medium (gray), and high (green).

Fig. 7: Clusters by GPSC and K-means for tract data, interpreted as overall socioeconomic
and environmental advantage between levels of low (pink), medium (grey), and high (green).

At first glance, the general spatial distribution of our GPSC and K-means algorithms tends
to agree. However, the GPSC predicted clusters di!er from K-means and baseline in several
meaningful ways. First, in the central region depicted in the first row of Figure 8, GPSC
identifies more areas of high advantage (green). Notably, this includes the area surrounding
cities such as Chapel Hill, Cary, and the capital city Raleigh (Research Triangle Park), as well
as Greensboro and High Point (the Piedmont Triad), which are known to be wealthier and
more urbanized regions of the state, whereas the K-means algorithm puts tracts within this
region in the medium (gray) advantage group.
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Towards the edges of the state we can also see significant di!erences as the GPSC algorithm
tends to further di!erentiate tracts around the extremities between low and medium advantage.
Most notably, around Asheville and Wilmington, two more prominent cities in North Carolina,
we are able to distinguish further di!erences between low and medium advantage tracts, as
seen in the second and third rows in Figures 8. Considering the ARI and AMI scores between
the two clusterings, we find the scores to be both 0.002, suggesting that clusterings, despite
visually seeming to separate the tracts spatially in similar patterns, are actually very di!erent.
One challenge of K-means clustering when determining the original 8 latent classes2 was

Fig. 8: GPSC and K-means cluster results for NC tracts. Column 1: Central NC; Column 2:
Western NC (Asheville); Column 3: Southeastern NC (Wilmington)

a potential lack of finer detail from the K-means predicted clusters. However, here we have
shown that despite using the same L = 3 clusters, GPSC is able to further di!erentiate between
areas of low and medium disadvantage, in less dense areas of the state along the coast and the
western region. Furthermore, there is reason to believe that not all 8 classes are necessary to
describe the di!erent advantage groups. In the original grouping, the latent class 2 is actually
an empty group, as seen in Figure 1. Thus, the results from GPSC in comparison to K-means
and baseline suggest that the algorithm is able to better balance nuance against a traditional
clustering algorithm, while also retaining simpler interpretability by using fewer clusters.

6. Discussion

Spatial clustering o!ers unique challenges in comparison to traditional clustering problems due
to the spatial domain inherent to geographic data. In our application, the census tract data
have distinctly di!erent properties compared to the measured covariates over the tracts. In
this paper, we propose a GP-based clustering algorithm and demonstrate its performance in
both simulation studies and a real data application. The advantages of GPSC include being
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able to capture the relative e!ects between the spatial domain and the measured covariates,
largely independent of intersections in the covariate domain as long as the clustered functions
themselves have some degree of separation. We also provide theoretical guarantees to the
convergence of GPSC and extend it to noisy settings.

GPSC can also be highly scalable; the complexity of the algorithm stems from the fitting
of each GP in each iteration, where standard Gaussian processes regression is O(n3) in the
size of the input. In our case, we applied a standard Gaussian process regression model from
the scikit-learn package27 since our sample size was relatively small. However, in cases of large
sample size, scalable GP methods can be applied for a reduction in runtime to O(n log n).28

The GPSC model also has few tuning parameters, notably the number of clusters, optional
spatial penalty for data thought to contain spatially contiguous clusters, and and can also
be highly flexible through the choice of GP kernel. Although the form of our theorem is
independent of the specific choice of kernel (only the convergence rate will di!er), in practice
more nuanced anisotropic or nonstationary kernels may be more suitable for datasets with
strong heterogeneity, for which the actual design of such kernels remains an open problem.

In the real-world application, we applied GPSC to a North Carolina socioeconomic and
environmental indicator dataset and found distinct patterns of advantage-disadvantage across
the state that captured finer details around the less dense outer regions of the state in
comparison to K-means and other clustering methods (presented in Supplement E), while
our method also o!ered simpler interpretability than previous analysis. When utilized by
domain experts, the goal of the results of these models is to supplement the identification of
marginalized communities, which could be targeted with interventions. Furthermore, in context
of our long-term goal of designing interventions, ensuring the accuracy of these models is also
of high ethical importance. Therefore in our case, before any application, we can perform
sensitivity analyses that tile the geographic region with alternative regional classifiers (county,
AHEC region, latitude and longitude tiles of uniform size) to confirm that the same areas
arise in multiple boundary definitions. This will confirm that the boundary definitions are
not driving artifactual associations. More broadly, it is important that in these high-stakes
applications we do not over-rely on any one method. We envisage the possibility of using these
clustering results (and GPSC in general) as a supplementary tool for experts to potentially
better identify marginalized communities and areas that may be otherwise overlooked.
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Patients experiencing adverse drug events (ADE) from polypharmaceutical regimens present a huge 
challenge to modern healthcare. While computational efforts may reduce the incidence of these 
ADEs, current strategies are typically non-generalizable for standard healthcare systems. To address 
this, we carried out a retrospective study aimed at developing a statistical approach to detect and 
quantify potential ADEs. The data foundation comprised of almost 2 million patients from two health 
regions in Denmark and their drug and laboratory data during the years 2011 to 2016. We developed 
a series of multistate Cox models to compute hazard ratios for changes in laboratory test results 
before and after drug exposure. By linking the results to data from a drug-drug interaction database, 
we found that the models showed potential for applications for medical safety agencies and improved 
efficiency for drug approval pipelines. 
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1. Introduction

1.1.  Electronic health record data to overcome health disparities in precision medicine 

Population-wide electronic health record (EHR) data present an important source to overcome 
health disparities in precision medicine. Adverse drug events (ADEs) describe known and yet 
unknown effects of a drug that may be due to undiscovered drug effects in specific population 
subgroups, or due to an unexpected interaction with one or more additional drugs. This is a particular 
area of interest within pharmacovigilance since most drugs are only clinically tested as 
monotherapies and additionally mostly on healthy men.1,2  

As such, population-wide EHR data present an important source to identify potential ADEs 
among users of healthcare irrespective of e.g. co-morbidity burden and socioeconomic status. 
Models for detection of ADEs based on EHR data could overcome health disparities in precision 
medicine by identification of potential ADEs in real-world settings. Generally, only 10% of ADEs 
are reported and several studies have stated that up to 30% of ADE-related hospital admissions are 
preventable.3–7 As the risk of ADE increases with the burden of polypharmacy, the phenomenon 
translates into an additional risk in multi-morbid patients. Therefore, methods for detection of ADEs 
are an integral aspect of overcoming health disparities in precision medicine.   

Denmark’s comprehensive laboratory, pharmaceutical, and disease registries represent a unique 
opportunity to explore associations between polypharmaceuticals, laboratory data and potential 
ADEs (pADEs).8,9 To our knowledge, only one study, conducted in South Korea, has directly 
investigated ADE risk within drug-laboratory test pairs, but with the goal of identifying new signals 
for known ADR events.10 We present a potential strategy for large-scale monitoring of drug effects 
when administered in combinations, which is of increasing interest in ageing, multi-morbid 
populations.11–13 

2. Materials and Methods

2.1.  Data Availability and Sources 

Population-wide laboratory healthcare and pharmaceutical data from two of the five Danish 
healthcare regions (approximately 50% of the entire population) were collected and processed for 
this study. Data covered all in-patient, out-patient, and emergency room settings at public hospitals, 
in total 1,987,180 patients. As only 1% of healthcare costs originate from private hospitals in 
Denmark, these data were considered population-wide.14 Due to Denmark’s person identification 
system (initiated in 1968) we were able to completely link data records across hospitals and data 
sets, fully integrating the laboratory and pharmaceutical data for the study cohort.15,16  

We defined the study period from 2011-10-28 to 2016-06-30 corresponding the period where 
all relevant hospital system data overlapped in an ideal manner. The cohort was further reduced, 
removing tourists and other short-term residents with unknown study exit dates and standing. It is 
important to note, that as of 2014 it was possible to legally change your person identification number 
to reflect a change in self-identified gender (restricted to a binary system of male/female), our data 
reflects the gender that was legally registered at the time of hospital interaction. 
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2.2.  Laboratory Healthcare Data 

The processed laboratory data applicable in this study consisted of 1,924,869 patients and 
310,455,299 laboratory measurements. These data were systematically cleaned and conformed to a 
more centralized naming and coding system of which is thoroughly described in Muse et al.17,18 In 
summary, typos and symbols (=, >, < etc.) were removed or corrected and naming systems were 
conformed and translated to English.19–23 Typical test coding systems made use of the 
Nomenclature, Properties, and Units (NPU) classifications as is common in the Nordic countries. 
Failed or incomplete tests were removed from the data set.19  

Tests were categorized as within range, normal (0), or out of range, abnormal (-1 or 1), based 
on the test result within national health authorities reference intervals that are calculated to be the 
95% confidence interval for healthy patients. Tests were labelled as “-1” if the value was below the 
reference interval or “1” if they were above it, or otherwise abnormal for binary testing only 
(positive vs. negative). This labelling system was used throughout the study and in figures to 
distinguish an adverse change when the laboratory test in question was decreased (-1) or increased 
(1) in relation to the relevant reference interval. A unique laboratory test was defined as a unique
analyte taken from a unique source: for example, B-LEUKOCYTES-1 indicates leukocytes taken
from blood were abnormally low in relation to the given reference interval that may be age-
dependent for some tests.

2.3.  Pharmaceutical Data 

The pharmaceutical data were matched to the timeframe and patient IDs of the laboratory data. The 
pharmaceutical data used for this study is the first and last date of the confirmed administration of 
the drug and the respective Anatomical Therapeutic Chemical (ATC) group classification code. The 
data set only included drugs administered at the hospital (in-patient, out-patient, and emergency 
room data).24,25 ATC codes are alpha-numeric codes used internationally as a tool for drug utilization 
monitoring and research. The codes are formula specific meaning that ATC codes may be the same 
for certain drugs, even though the route of administration differs. For example, the ATC code for 
the antibiotic drug moxifloxacin is J01MA14 irrespective of route of administration, e.g. orally or 
intravenously.26 

ATC codes are seven characters long (representing the anatomical main group, therapeutic 
group, pharmacological subgroup, chemical subgroup, and chemical structure, respectively), but 
may in practice be registered with fewer characters. This study made use of the most specific codes 
available (i.e. preferably ATC codes containing seven characters) as to pinpoint possible relevant 
drug mechanisms. Dosing information was available, but not used or needed for the purpose of this 
study. 
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2.4.  Multistate Cox Model, Monotherapies 

The core model of the study was developed using a multistate approach Cox model.27,28 In this 
model, the main hazard ratio (HR) calculation is defined as 𝜆12/	𝜆 02, outlined in Figure 1.This risk 
can be intuitively understood as the increased risk of an event given an exposure, compared to those 
who never had the exposure (Figure 1). Here, we considered drug administrations and exposure and 
extrapolated from abnormal laboratory tests events. That is, the first position in the subscript 
indicates in the study whether the subject was exposed (0: “no”; 1: “yes”).  

Figure 1: Schematic overview of potential pathways for each patient to take. The labeled paths exemplify the hazard at 
time t for a given individual. This study specifically examines the hazard ratio of 𝜆12 / 𝜆 02 for any given time t. 
Different model state assumptions are clarified in Table 1. 

The second position indicates if the event happened (2: “event) (Table 1). Two versions of the model 
were established: Model A based on abnormal tests followed by drug administration within a certain 
number of days, and Model B based on drug administration followed by a newly returned abnormal 
test (i.e., it was not documented as abnormal before the medication started) within a certain number 
of days, further detailed in Table 1. To capture the different types of pADEs that can develop within 
hours, days, weeks, or months, each model was created for different time frames: 24 hours, 48 hours, 
72 hours, 7 days, 14 days, 30 days, 60 days, and 90 days.29,30 Time was calculated from the first date 
of exposure; drug administration duration was therefore not included in these models. 

In addition, only the earliest known administration of a drug within the time frame of the study 
was included. Similarly, only the first instance a patient had an abnormal test was retained. In Model 
A, the calculated HRs should follow typical diagnostic protocols. Model B included the inverse 
approach where single drugs can be investigated for their pADEs.  

Table 1: Defined states for each model as outlined in figure 1 

*x can be any of the defined time frames listed in Methods

State Model A Model B 

0. Entry Entering study with normal lab test 
and no drug administration 

Entering study with normal lab test and no 
drug administration 

1. Exposure An abnormal lab test result Being administered a drug 

2. Event Being administered a drug within x* 
days of exposure date 

Receiving an abnormal lab test result 
within x* days of exposure date 

0. ENTRY 1. EXPOSURE

2. EVENT

Monotherapy Model

! 12
 (t)!

02  (t)

! 01 (t)
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2.5.  Monotherapy Model Parameters 

For the monotherapy multistate Cox model there are two required entries: time to exposure and time 
to event. Patients can have four paths, 1: never having the exposure or the event, 2: having the 
exposure but not the event, 3: having the exposure and the event, or 4: never having the exposure 
but having the event (Figure 1). The patients in the cohort were therefore always included in the 
model in question because they would always be categorized in one of these four paths. Times 
associated to each input was calculated as the patients age at the time, correcting for immortal time 
bias and accounting for age in the model. The HR outputs of these iterated models over the different 
time frames were corrected for multiple testing using the false discover rate (FDR) (full results for 
all models provided in supplemental Table 1). Models of all ATC codes and test combinations were 
run if at least 100 unique patients experienced both during the study window, removing drugs and 
laboratory tests that are least common, increasing the power of the study and relevance of the results. 

2.6.  Multistate Cox Model, Polypharmaceutical Therapies 

The same core multistate Cox model approach was used to study pADE in the context of 
polypharmacy, here modelled by simultaneous administration of two different drugs. Figure 2 shows 
a schematic outline for the polypharmaceutical model where patients experiencing monotherapies 
and polypharmacy can be accounted for in the same design.  

Figure 2: Schematic diagram of the polypharmaceutical model. All patients begin the study at state 0. The double-sided 
arrows indicate that a patient can move back to state 0 one time, the single sided arrows indicate a uni-directional path 
for patients. The event/exit indicates that the study window is over either with a patient incurring an adverse outcome, 
or the study window ending. Further details of each possible path are found in supplemental table 2. * Symbol indicates 
the patient can only move to state 4 after moving back to 0 (i.e. monotherapy exposures not considered after concomitant 
administration).  

Again, this model only considered the first time an abnormal test was recorded for each patient. 
This means that the model only “counts” an abnormal test after concomitant therapy if the patient 
in question had no previous record of that abnormal test occurring. Drug pairs studied included only 
those listed in the Danish Drug-Drug Interaction (DDI) database (maintained by the Danish 
Medicines Agency) due to computational feasibility limitations (it would require ~6 months to 
compute all possible iterations).25,31 Data from this database is then used to analyze results from this 
model. Other conditions for this model can be related to time frames. Drugs administered 

0. ENTRY

1. DRUG A

2. DRUG B

3. DRUG A+B 4. EVENT

Polypharmaceutical  Model

!	 01
 (t)

!	02  (t)

! 03 (t)

!	13 (t)

!	 23
 (t)

!	14 (t)

! 04 (t)

! 34 (t)

!	24 (t
)

0*

1

1
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sequentially were considered in the model if the two drugs were administered within six hours of 
each other (from last administration of the first drug). This is done under the assumption that the 
pharmacokinetic (PK) profile of a given drug will remain in the patients’ blood stream for at least 
several hours and therefore has an interaction with the second drug in question.32 Given the 
complexity of the system, the polypharmaceutical model only examined possible ADEs after 24 
hours after co-administration time (i.e., when the second drug was administered). 

2.7.  Polypharmaceutical Model Parameters 

As the case for the monotherapy model, there are several paths a patient can take in the multistate 
model. To adjust for potential immortal time bias, each patient record was broken into several 
records that account for a patient’s movement between states as outlined in Figure 2. As exemplified 
there, every patient enters at state 0 and can move to state 1, 2, or 3. In this model, patients can also 
move back to state 0 from state 1 or 2 if no ADE was detected, and then move back into any state 
again. This event can only happen once per patient to consider if the patient in question did not 
experience a monotherapy induced ADE. From any of the states, the given patient can move to state 
4, i.e., the exit state as this indicates an ADE occurred (or end of study) and the patient “exits” the 
study window. Patients’ ages for each pathway were recorded for all patients and used as inputs to 
the Coxph model; this approach therefore integrates age into the model directly.28 Because of the 
complexity of this approach, patients can have their record broken up into up to five entries in 
preprocessing steps. All possible pathways are summarized in supplemental table 2. Models of all 
possible ATC code pairs and test combinations were run if at least 5 unique patients experienced 
both during the study window, as per research approval guidelines (see data approval section). The 
HR outputs of these iterated models were corrected for multiple testing using FDR (processed results 
of reported models provided in supplemental table 3). All analyses were performed in R version 
4.0.0 with the “The Coxph package” as the main resource.33 

2.8.  Correlations between Laboratory Tests and Polypharmaceutical Drug Dosage Changes 

To substantiate the results of our multistate Cox models, we compared our findings with the results 
of a recent study published by Rodríguez et al.24 In brief, in a data set of 77,494 potential drug pairs, 
Rodríguez et al. identified 694 drug pairs where drug dosage changes are more likely to happen 
during co-administration, compared to when they were administered as a monotherapy. Moreover, 
these 694 drug pairs had not previously been reported in 15 different drug-drug interaction 
databases. We assessed the overlap of drug pairs identified in the present study and the drug pairs 
identified by Rodríguez et al. 

3. Results

A total of 1,634,655 patients were included in the model for all interactions of 462 medications and 
323 possible biochemical outcomes at the 90-day time frame, decreasing for the other time frames 
due to cohort restrictions (see Methods). All possible iterations of these data were fed through multi-
state Cox models A and B as outlined in Figure 1 and detailed in Table 1. Resulting HRs were 
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analyzed and presented in Figures 3-5; all monotherapy HRs and corresponding p values are 
reported in supplemental table 1.  

Figure 3: The total detected pADEs across the study period, in relation to medication start date (day 0). Figure 3a 
summarizes the total pADEs identified in the cohort for significant pADEs with HR > 2 (pval<0.05, FDR corrected). 
The same data is then assessed using relative percentage of pADEs as compared to day “-30” by ATC group in Figure 
3b. The colors indicate the different ATC groups. Full legend provided in supplemental figure 1. 

Figures 3a and 3b combine results from model A and B to visualize total HR counts and 
cumulative counts, respectively. In Figure 3b we can see expected trends in laboratory value 
changes, where more significant pADEs are identified before drug administration start dates than 
after which reflects the diagnostic period followed by reduced symptoms (after day 0) as the 
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medication takes effect; this finding serves as a proof-of-principle for the method approach. Further, 
the proportion of HRs after the drug start date increases in group L (Figure 3b) which mainly consists 
of cancer-fighting drugs; chemotherapies are widely known to cause severe side-effects, namely in 
white blood cell counts. Lastly there is a notable short increase in group G proportionally around 
days 1-7 post medication date of misoprostol (G02AD06), an abortion medication which typical 
involves several side effects that subside within a few days to a week.34 

Figure 4: A time-frame overview of pADEs to each laboratory test over selected timeframes. The selection of tests 
highlighted here are selected white blood cell count tests and platelets, with results for both abnormally high and low 
counts. Grayed out pie charts indicate that no significant pADEs (HR>2, pval <0.05, FDR corrected) were detected at 
the given time point and lab test combination. Coefficient values for all data are reported in supplemental table 1. Full 
legend provided in supplemental figure 1. 

Figure 4 expands on pADEs identified in Figure 3 by looking at specific laboratory tests by 
specified timeframes. The figure provides a trajectory over time of newly abnormal laboratory tests 
and their relation to different anatomical groups. 
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Figure 5: Heatmap providing a summary of sex-driven differences of pADEs that occur within two days of medication 
start. X-axis: Blood tests. Y-axis: Drugs. Bluer colors indicate a higher HR value for male vs female patients, while 
redder colors indicate the inverse. White: No significant difference between HRs for sexes or no pADEs were identified 
by the model (pval >0.05, FDR corrected). The actual HR values for all data can be found in supplemental table 1. Full 
legend provided in supplemental figure 1. 
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The timeframes of this pADE development are clearer here as the trends from hourly, daily, 
weekly, and monthly pADEs are elucidated, again primarily in group L around the 7-to-14-day mark 
in various white blood cell and platelet count tests. Except for lymphocytosis (high lymphocytes), 
the number of drugs that associates with an abnormal lab test increases as the time from exposure 
increases for all blood tests. However, the compositions of drug classes are only similar across time 
for some tests, e.g., thrombocytotosis (high platelets). Generally, the trajectories for leukocytes and 
neutrophils resemble each other, reflecting the fact that 40-60% of leukocytes are neutrophils. In 
both cases, drugs in anatomical groups J and L compromise at least 50% of the pairs, consistent with 
the characteristics of the population where these drugs are typically administered (i.e., treatment of 
infections and malignancies). Notably, the trajectory for lymphocytopenia remains constant over 
the observation time.  

Figure 5 examines pADEs detected within 48 hours of drug administration by sex. Notably, HRs 
for hemoglobin, C-reactive protein, and albumin were generally higher for males than for females 
(left columns). Conversely, associations for antibiotics often administered as second or third line of 
treatment have many associations with abnormal lab values where HRs are higher for females 
(bottom rows). Yet, the trends for C-reactive protein, hemoglobin and leukocytes show higher HRs 
for males. In contrast, procalcitonin generally associates with higher HRs for females. In sum, these 
observations are consistent with existing knowledge of differences in inflammatory responses 
between sexes.35–37 Importantly, the observed trends are evidence that these differences also affect 
treatment response.  

Drug pairs are investigated in Figure 6 where a network approach is used to summarize the 
overlap between findings from the multi-state Cox model approach and known DDIs as reported by 
public health authorities. Generally, the network is dominated by drugs from ATC groups A, B, C, 
J, and N consistent with the trends in Figure 3. I.e., these drug classes are also the drugs classes that 
correlated with most abnormal lab tests when administered as a monotherapy. The figure shows that 
the severity of pADE is high for several drug pair therapies from the J chapter, when combined with 
drugs from the A and B chapter. Specifically, the J01 and J02 groups have a lot of edges (which we 
loosely denote “hub”) with a relatively large fraction being dark and indicating that there is a high 
risk of pADE when antibiotics for systemic used are combined with drugs used to treat bacterial and 
fungal infections. Further, Figure 6 illustrates that there likely are underreported drug pair therapies 
with pADE as indicated by “hubs” within the J chapter and chapter N. In addition, some of the 
trends displayed in the figure reflect clinical practice. For example, there is a dark edge between 
fentanyl (N01AH01) and triazolam (N05CD05) which are often administered jointly to patients 
subjected to surgery. Overall, there are a lot of thick and dark connections with ciprofloxacin 
(J01MA02) and similar group J drugs.  

In addition, corticosteroid for systemic use (H02) is represented in four nodes making it the most 
prevalent drug class from chapter H (80% of drugs from chapter H). While the analysis does not 
present evidence that the indication for corticosteroids in these cases were allergic reactions, it is 
worth noting that voriconazole (J02AC03) pairs with corticosteroid for systemic use (H02). 
Voriconazole is a systemic antimycotic drug with a narrow therapeutic index often used to treat 
invasive aspergillus in immunocompromised patients.  
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Figure 6: Circle network overview of pADEs by drug pairs. Line thickness correlate to the total number of pADEs 
detected using the model shown in figure 2, while the coloring corelates to the known severity of the drug interaction 
in accordance with the Danish Drug-Drug interaction database (lighter= less severe, darker= more severe). Data used 
to create this figure are provided in supplemental table 3. Only pADEs with HR>3 are included in this figure; any 
interactions that were known to not cause side effects (level = “ingen”) were removed. A minimum of 4 pADEs were 
also required for each pair to be included in this visualization. Full legend provided in supplemental figure 1.  

Another interesting pair is the amiodarone (C01BD01) and metronidazole (J01XD01), which 
has no documented DDI warning (therefore hidden from Figure 6) but has 46 pADEs listed in 
supplemental table 3. Owing to the risk of pro-arrythmias, amiodarone treatment is typically 
initiated under tight monitoring38. The fact that co-administration of amiodarone and metronidazole 
correlates with many abnormal blood tests might indicate that administration of amiodarone to 
infected patients presents yet another risk. 

To assess if the trends identified in the present study were also reflected in drug dosage changes, 
we compared the 694 pairs defined as pADE in the present study with the potential undescribed 
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drug interaction pairs identified by Rodríguez et al.24 Of the 694 pairs, there were 357 that were also 
identified as pADE in the present study. The most prevalent pADE was ampicillin and 
dexamethasone, which was also described by Rodríguez et al. The fact that this drug combination 
was identified in both studies is consistent with the fact, that infections and inflammatory responses 
are not necessarily trivial to distinguish in clinical practice. For example, in cancer patients you 
would expect dexamethasone discontinuation, if antibiotics (e.g. ampicillin) is initiated. We also 
noted that the co-administration of, for example, morphine and insulins was overlapping in the two 
datasets. 

4. Discussion

In this study, we have developed and presented an approach that systematically assesses correlations 
of drug impact on laboratory test results for secondary care patients managed at hospitals. Outcomes 
shown in Figures 3 and 4 present positive control cases of the model providing initial validation for 
the statistical approach. These results build the foundation for Figure 5 where the model directly 
compares pADEs for male vs female patients in cases where one sex experiences a significant risk 
as compared to the other sex. Notably inflammation markers were most consistently different 
between sexes which has been established in the literature previously.35–37 This is important because 
it highlights that the physiological response to drugs can be fundamentally different between sexes, 
emphasizing the need for improved representation in clinical trial approval protocols. Drugs have 
historically been mostly approved using men as test subjects and additionally at a singular dose, 
regardless of BMI or other differing features.39 Reasonings from these findings, with similar 
findings in the literature, suggest that in several instances it is likely that physicians are over or 
under medicating females as opposed to their male counterparts for the same disease.40 Further, 
since gender changes are included in this dataset starting from 2014, it is possible that there are 
some hidden transgender population trends that would be interesting to investigate separately once 
a more robust data set is developed. Transgender populations are often identified as a group that 
suffers greatly from health disparities and as such should be a focus in similar studies going forward 
as data availability increases .  At this time, we are also unable to stratify by race or ethnicity in this 
dataset, but this would be an important future research question as well.   

In Figure 6, the first attempt is made to model pADEs driven by concomitant therapies using a 
multi-state Cox model, whose use is validated using the monotherapy model presented here and 
confirmed results in Figures 3-5. Figure 6 takes a network view of drug pairs already known in the 
Danish DDI database and overlaid with the results generated in the model overviewed in Figure 2. 
These results open the door for future applications of this method where specific sub-groups of 
patients can be compared for increased risk of certain ADEs, better informing their physicians when 
determining the proper therapeutic approach to follow. Additionally, the polypharmaceutical model 
captures pADEs at both the monotherapy and polypharmaceutical level in the same statistical test, 
allowing for more direct assessments for additive, synergistic, or antagonistic drug pairs.  

While still a preliminary approach, this study demonstrates the potential for identifying and 
alerting authorities more efficiently to possible DDIs that are yet unknown especially when new 
drugs enter the market. Technically, we introduced model restrictions in the multistate Cox models 
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(cf. Methods) to reduce the impact of potential bias from the physicians who had already seen and 
reacted to the respective patient’s symptoms or side effects, effectively focusing the model on 
pADEs associated to first time drug exposures. We further identified overlapping trends in lab 
values and drug dosage changes, which exemplifies a novel way of assessing potential drug effect 
and adverse drug effects. In a population with an increasing age and prevalence of polypharmacy, 
we argue that it is of uttermost importance to develop methods for monitoring drug effects.  

The method also provides the foundation for a tool for exploring which targets and mechanisms 
of action are more prone to severe ADEs and can therefore be studied more thoroughly when testing 
new drugs in the pre-clinical phase, as to avoid costly human trials that eventually may end in the 
removal of drugs from the market.  

In summary, this study presents the first retrospective study investigating how a patient’s 
laboratory data history can be used to investigate possible drug-induced biochemical changes within 
specific population groups, improving their safety and health in the long run. Further potential 
benefits include reduced hospital admittance for the treatment of these same ADEs, reducing both 
the cost and physical/mental toll on these patients.42  

Supplemental material 
Supplemental material is available at https://github.com/vmuse12/ADE_data 
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Precision medicine focuses on developing treatments and preventative strategies tailored to an 

individual’s genomic profile, lifestyle, and environmental context. The Precision Medicine sessions 

at the Pacific Symposium on Biocomputing (PSB) have consistently spotlighted progress in this 

domain. Our 2025 manuscript collection features algorithmic innovations that integrate data across 

scales and diverse data modalities, presenting novel techniques to derive clinically relevant insights 

from molecular datasets. These studies highlight recent advances in technology and analytics and 

their application toward realizing the potential of precision medicine to enhance human health 

outcomes and extend lifespan. 

Keywords: Precision medicine; variants; GWAS; genomics; proteomics; machine learning. 

1. Introduction

Precision medicine leverages data-driven approaches to personalize medical decisions and 

treatments for individual patients. Novel technologies enabling rapid and systematic production of 

molecular measurements and imaging data have facilitated new mechanistic insights into complex 

disease processes, ultimately translating into better clinical decision-making. Breakthroughs in 

genomic technologies, such as spatial transcriptomics and single-cell analysis, have enabled the 

discovery of genetic biomarkers associated with drug responses, disease susceptibility, and other 

key medical outcomes. Concurrently, the vast scale of these data has spurred the development of 
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novel computational techniques, exemplified by the surge in deep learning-based approaches for 

biological and medical data analysis. 

 

As the richness of datasets characterizing molecules, cells, and tissues grows, there are new 

opportunities to combine them across data modalities and scales. Methods to synthesize these data 

into mechanistic understanding and better biomarkers for clinically relevant outcomes are needed. 

In our 2025 session, we highlight ground-breaking research from a wide range of disciplines that 

integrate divergent data to offer novel insight into disease mechanisms, diagnosis, and treatment. 

These methods provide a preview of how computation can continue to advance precision medicine 

in the coming years.  

2.  Session Contributions 

2.1.  Integrating imaging data with genotype to investigate mechanism 

Imaging data is increasingly available and can provide valuable information about how genetic 

factors are linked to disease mechanism through effects on the organization of biological systems. 

Two papers in this collection showcase the use of imaging to study genotypes. In one, Blennemann 

et al use live cell imaging to obtain longitudinal and spatially resolved information about T cell 

interaction with tumor cells across 3 genotypes1. In the other, Chandio and colleagues use diffusion 

MRI-based tractometry to obtain 3D quantitative measurements of white matter tracts across 

individuals with different risk genotypes and diagnoses, finding different structural features in 

carriers of risk versus protective genotypes2. 

2.2.  Biological understanding through linked diseases 

This collection also includes two studies where investigators use known disease associations as a 

starting point to identify genes and pathways underlying shared mechanisms. To gain insight into 

genes driving the link between Down Syndrome and obesity, Nandi et al derive latent variables 

from RNA sequencing analysis and analyze them in the context of karyotype and BMI using causal 

inference3. Ball and team use multi-disease modeling to analyze transcriptomic data from brain 

samples of mouse models of AD, T2D, both simultaneously and postmortem human brain to 

uncover a link between these diseases mediated by estrogen and inflammatory pathways4. 

2.3.  Finding drug targets and mediators of adverse drug responses 

Identification of disease-specific drug targets and understanding of the mechanisms mediating drug 

resistance and adverse responses are essential to inform drug development and clinical matching of 

patients to drugs. Three papers address these aspects of precision therapy. Orlenko et al implicate 

putative drug targets for Alzheimer’s disease by integrating information about interaction partners 

of known Alzheimer's genes with known gene-drug associations from a drug database5. By 

integrating methylation QTLs with GWAS loci associated with drug response phenotypes, Smith et 

al identify a number of candidate genes where genetics and epigenetics converge to generate adverse 

drug response6. Wen et al propose spherical PCA for single cell imaging data as a strategy to identify 
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cancer cells that evade cell cycle blocking drugs7. They find that cells that evade arrest after 

treatment express key genes that may represent additional drug targets.  

2.4.  Using polygenic scores for molecular and intermediate phenotypes to uncover disease 

mechanisms  

Polygenic risk scores (PRS) have featured prominently in precision medicine research but have 

provided limited mechanistic understanding of disease due to their associative nature. Three papers 

in this session show that polygenic scores linked to protein levels or cellular activities, as opposed 

to disease incidence, can provide new biological insight. Phillips et al use genotype and RNA 

sequencing data to develop a polygenic score quantifying astrocyte activation, then use the PRS to 

study Alzheimer's-associated characteristics in a large cohort of elderly individuals8. They find that 

the score correlates with effects on memory and high-level cognition. By integrating information 

across genotype associations with protein versus gene expression levels, Moore et al reveal 

pathways underlying MRI-derived characteristics of heart function linked to heart failure9. Woerner 

et al show that PRS and polygenic predictors of protein levels can be combined to improve 

prediction of inflammatory bowel disease10. They find that polygenic protein scores are even more 

predictive when polygenic risk is high. 

2.5.  Identifying environmental modifiers of traits and risk 

Environmental variables can modify traits and disease risk. Two papers in our session use 

computational strategies to better understand environmental factors. The study by Rico et al uses 

“environment by environment” associations and lipid measurements to explore interactions among 

environmental factors that affect lipid phenotypes11. They find several cases where combinations of 

two environmental exposures associate with significant differences in HDL levels. To study the 

effects of salt intake on risk of chronic kidney disease (CKD), Shivakumar et al use polygenic risk 

scores for CKD to stratify individuals in the UKBioBank, then examine the association between salt 

consumption and incidence of CKD in each subgroup12. 

2.6.  Methods addressing computational challenges for multimodal health data analysis 

More broadly, the availability of rich multi-modal and sensitive health data presents new 

computational challenges for advancing precision medicine. Two papers in this session propose 

solutions to specific challenges in this space. Colombo and team develop a strategy to predict cancer 

type from a low dimensional representation of 2 data types, SNVs and CNVs, while ensuring 

preservation of spatial relationships between genes in CNV regions13. They further demonstrate that 

they can operate on encrypted data to ensure patient privacy which remains a major concern for 

precision medicine approaches that require genomic data. Golovanevsky et al propose a one-versus-

others attention approach to address computational bottlenecks in neural network-based integration 

across the rich array of data modalities available for clinical applications14. These advances address 

more general barriers to scaling and implementing computational approaches for precision 

medicine. 
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Genetic perturbation of T cell receptor (TCR) T cells is a promising method to un-
lock better TCR T cell performance to create more powerful cancer immunotherapies, but
understanding the changes to T cell behavior induced by genetic perturbations remains
a challenge. Prior studies have evaluated the effect of different genetic modifications with
cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and
robust approach to capture TCR T cell responses to cancer. Most methods to quantify T
cell responses in live-cell imaging data use simple approaches to count T cells and cancer
cells across time, effectively quantifying how much space in the 2D well each cell type covers,
leaving actionable information unexplored. In this study, we characterize changes in TCR
T cell’s interactions with cancer cells from live-cell imaging data using explainable artificial
intelligence (AI). We train convolutional neural networks to distinguish behaviors in TCR
T cell with CRISPR knock outs of CUL5, RASA2, and a safe harbor control knockout.
We use explainable AI to identify specific interaction types that define different knock-out
conditions. We find that T cell and cancer cell coverage is a strong marker of TCR T cell
modification when comparing similar experimental time points, but differences in cell aggre-
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gation characterize CUL5KO and RASA2KO behavior across all time points. Our pipeline
for discovery in live-cell imaging data can be used for characterizing complex behaviors in
arbitrary live-cell imaging datasets, and we describe best practices for this goal.

Keywords: Explainable AI, Grad-CAM, machine learning, live cell imaging.

1. Introduction

Since FDA approval in 2017, chimeric antigen receptor (CAR) T cell immunotherapies have
proven effective at treating advanced leukemias and lymphomas.1,2 CAR T cell therapy uses
ex vivo modification of native patient T cells to express a chimeric antigen receptor (CAR),
capable of binding to surface markers of cancerous cells, to enhance T cell immunological
response. T-cell receptor (TCR) therapy is a related method of treatment that uses naturally
existing TCRs, protein complexes that bind to a cell’s major histocompatibility complex
(MHC), as an alternative to CAR proteins. TCR therapy targets various cancers by recognizing
a specific antigen presented by a human leukocyte antigen (HLA) on cancer cell surfaces. This
reduces the risk of toxicity associated with CAR T cell therapy, which currently struggles
to distinguish between solid cancer cells and normal tissues.1 TCR therapy, in contrast, has
demonstrated effective responses against multiple solid cancer types such as melanoma and
lung carcinoma with reduced off-target effects.3

Genetic editing of CAR and TCR T cells with CRISPR-based tools is an emerging ap-
proach to engineer improved T cell therapies. CRISPR knock out of the RASA2 (RASA2KO)
or CUL5 (CUL5KO) genes, for example, has been demonstrated to improve T cell perfor-
mance against cancer cells in vitro.4 RASA2 is a signalling checkpoint in human T cells and
increases in response to chronic antigen exposure. TCR and CAR T cells without RASA2
show better activation, higher cytokine production, and increased metabolic activity, en route
to improved cancer cell removal. These RASA2KO T cells also have a survival advantage in
mouse models of leukemia and other cancers.4 CUL5 is known to be a negative regulator of
the signaling pathways in cytotoxic T lymphocytes. Knocking out CUL5 has been shown to
effectively inhibit tumor growth in mouse studies.5 Although these genes have been identified
as effective modifications in TCR T cells in in vivo mouse studies, understanding the biologi-
cal mechanisms underlying these positive outcomes remains a challenge due to the complex,
multi-scale nature of T cell and cancer cell interactions in humans.

Live-cell imaging is a common approach for evaluating the success of different types of
modified T cells. Live-cell imaging with high-resolution 2D imaging from one or more channels,
usually a bright field along with fluorescent marker channels, across days at fixed time intervals
(e.g., every four minutes) captures the dynamics of co-cultures of cancer and modified T cells.
Traditional analyses quantify the total amount of cancer cell-specific fluorescent markers as a
proxy of tumor response to treatment.4–6 Live-cell imaging has been used to identify dynamic
behavior such as morphological changes during T cell killing, or differences in response to
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liquid or solid tumors, using deep learning methods to segment sequential images.7 Even with
existing approaches, many questions about dynamic cellular behaviors are difficult to answer.

Computer vision, a subfield of AI, is advancing rapidly in biomedical imaging. Deep learn-
ing models, especially convolutional neural networks (CNNs), enable extraction of complex
phenotypes from live-cell imaging data. This includes cell segmentation, single-cell track-
ing, spatiotemporal pattern recognition, and predictive modeling, all of which may be used
to study the therapeutic behavior of these modified T cells. Efforts are underway to inte-
grate CNN-driven platforms with patient-derived organoids (PDOs) for personalized drug
research, exemplified by projects like OrganoID8 and OrBITS.9 While these tools are pow-
erful, their prediction processes are black-box and challenging to understand. Interpreting a
CNN’s decision-making process should provide important information for researchers attempt-
ing to gain biological insights from their live-cell experiments. Explainable AI techniques have
emerged that allow researchers to interrogate the features of images that most directly explain
deep learning models’ predictions and performance.10,11

In this work, we demonstrate the ability of explainable AI to characterize modified T cell
behavioral changes under genetic perturbation. We identify phenotypic differences between
TCR T cells with beneficial RASA2 or CUL5 knock-outs from live-cell imaging data versus
TCR T cell negative controls. We use a suite of CNN classifiers trained to predict one of three
genetic perturbations captured in live-cell imaging of TCR T cells co-cultured with cancer
cells. We use Grad-CAM, an image explainable AI technique that estimates the change in
prediction as a function of changes in pixel space, to identify the specific regions in held-out
live-cell images that inform prediction for control Safe Harbor KO, RASA2KO, and CUL5KO
TCR T cells. Grad-CAM highlights the regions of the image that contribute to classification
as each output class. By highlighting regions that contribute to classification decisions, the
Grad-CAM interpretation of images allows us to identify the cell-level phenotypic changes
associated with each TCR T cell experiment, and we use these interpretable image markers
to characterize the distinct T cell behaviors in the three experimental conditions. Our work
develops an interpretable deep learning workflow for the analysis of live-cell imaging data,
and we show the benefits of our approach by characterizing the differential behavior of SHKO
(control), RASA2KO, and CUL5KO TCR T cells.

2. Methods

2.1. Data Generation

2.1.1. Isolation of primary T cells from healthy donors

Leukopaks from deidentified healthy donors with approved IRBs were purchased from Stem-
Cell Technologies. Primary human T cells were isolated with the EasySep Human T Cell
Isolation Kit (StemCell Technologies) according to the manufacturer’s protocol. T cells were
seeded at a density of 1 million cells per mL maintained in X-Vivo-15 medium supplemented
with 5% fetal bovine serum, 50 µM beta-mercaptoethanol, and 10 mM N-acetyl-L-cysteine plus
100 IU/mL of IL-2 and activated with Dynabeads Human T-Activator CD3/CD28 (Gibco)
at a 1:1 bead-to-cell ratio.
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2.1.2. CRISPR KO in primary human T cells using Cas9–RNP electroporation

T cell transduction was accomplished by adding concentrated lentivirus directly to the T cells
24 hours after activation with Dynabeads Human T-Activator CD3/CD28, 40 µL virus per
1× 106 T cells in X-Vivo-15. At 48 h post-activation, Cas9–sgRNA–RNP electroporation was
conducted with the Amaxa P3 Primary Cell 96-well 4D-Nucleofector Kit (Lonza). The safe
harbor T cells were targeted using the AAVS1 sequence GGGCCACTAGGGACAGGAT, the
RASA2 -ablation T cells with the sequence AGATATCACACATTACAGTG, and the CUL5 -
ablation T cells with the sequence ATTGGAGTAAGAGAATCCTA. crRNAs and tracrRNAs
were then complexed 1:1 by volume and incubated for 30 minutes at 37C to form sgRNAs.
The sgRNAs were then mixed with Cas9 (stock concentration of 40 µM, QB3 Macrolab) at
1:1 by volume for 15 minutes at 37C to produce ribonucleoproteins (RNPs) complexes. After
counting, T cells were resuspended in P3 buffer at 1× 106 per 20 µl, mixed with 3 µl of RNPs,
and added to a 96-well electroporation plate. Electroporation was performed using using the
EH115 protocol and recovered by adding 80 µl T cell medium (X-Vivo-15, Lonza) at 37C for
15 min. Cells were transferred to appropriate culture vessels containing X-Vivo-15 medium
supplemented with IL-2 containing 100 IU per mL.

2.1.3. Repetitive stimulation assay

Tumor cells were maintained in a complete RMPI (Gibco) consisting of 1% penicillin-
streptomycin (Gibco), GlutaMAX supplement (Gibco) and 10% fetal bovine serum (Corning),
and then resuspended in T cell medium. T cells were seeded on top of the cancer cells at a
1:1 E:T ratio with IL-2 at 100 IU mL−1. Subsequent repeated co-cultures were set up every
48 h. For each co-culture, T cells were counted using the Cellaca MX High-throughput Cell
Counter (Revity), percentage of TCR+ cells was measured via flow cytometry, and T cells
were replated onto fresh tumor cells every 48 hours maintaining a 1:1 E:T ratio.

2.1.4. In vitro cancer killing assay by TCR T cells

Antigen-specific T cells were co-cultured in X-VIVO-15 plus supplements – 100 IU IL-2 per
mL and 1X Glucose (Gibco) – with mKate+ A375 cells pre-seeded in a 96-well flat-bottom
plates at a 1:1 E:T ratio. Images were captured every 4 minutes over a 24-hour span using
the IncuCyte S3 live-cell imaging platform (Essen Bioscience). The mKate+ object counts for
each well were recorded over time.

2.2. Model architecture, training, and evaluation

A convolution neural network was trained to identify the TCR T cell genetic perturbation –
RASA2KO, CUL5KO, or SHKO – from a single 300 by 300 pixel subsection of each image.
The network was trained on images from nine of the replicates, three from each condition, and
validated on the remaining three held-out wells. The model consists of a ResNet5012 block,
a fifty layer residual convolutional neural network (CNN), that feeds into a fully connected
linear layer to predict the weights for each class. ResNet50 is a CNN designed for image
classification tasks. The first stage consists of 64 7 × 7 convolutional filters, followed by four
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stages of residual blocks. These stages contain filters configured as follows: the first has 64,
64, and 256 filters; the second has 128, 128, and 512 filters; the third has 256, 256, and 1,024
filters; and the fourth has 512, 512, and 2,048 filters. The network ends with a fully connected
layer with one neuron per possible output class, which is three in our application. The initial
convolutional layer and first layer of each stage uses a stride size of 2, while all other layers
use a stride size of 1. The weights and biases of the final, fully connected output linear layer
were trained to minimize the cross-entropy loss of the predicted probability of each class, a
softplus of the linear output layer, to the true data label.

The untrained parameters of the ResNet50 block were initialized as the parameters of
ImageNet.13 These weights capture high-level features, such as edges and shapes, allowing us
to reach accurate classification faster. The last layer of the model was fine tuned on 12,600
unique frames of our training data, evenly split among the three conditions, with two frames
per batch. We use the quarter-sectioned 300 × 300 pixel images to minimize the effects of
downsampling, as ResNet50 takes as input 224 × 224 pixel images and downsamples larger
inputs. The brightfield phase images were converted from grayscale to RGB to match the
required input parameters of Resnet50. The CNN was fine tuned with the Adam optimizer14

for forty epochs with a learning rate of 1 × 10−3. The same procedure and architecture was
also used to train a CNN classifier on a subset of frames from between 800 and 9996 minutes
(frames 200 through 249 out of 350 total) into the experiment, a total of 1800 images, to
evaluate the time dependence of the predictions. The model was trained on an NVIDIA A30
GPU using CUDA, PyTorch, and PyTorch lightning.

To obtain “visual explanations” for the classification of each frame, we applied the gradient-
weighted class activation mapping (Grad-CAM) technique10 to the model for each frame
of the validation set. This technique computes the gradients of the target class score with
respect to the feature maps of the final convolutional layer of the network. These gra-
dients are pooled across the convolutional filter to provide a spatial-average importance
value for different regions of the input image that contribute to the target class score.
Grad-CAM returns an “importance” of each pixel to the final prediction that can be su-
perimposed onto the original images and visually inspected to identify relevant image de-
tails. Model training and analysis code is available at https://github.com/25marcusb/

Understanding-TCR-T-cell-knockout-behavior-using-interpretable-machine-learning.

3. Results

3.1. Convolutional neural networks can distinguish between different
genetic perturbations from a single frame

We first validate the predictive ability of the trained CNN classifier to distinguish the genetic
perturbation given a section of a live-cell imaging frame. The CNN was trained to distinguish
between three classes - RASA2KO T cells, CUL5KO T cells, and SHKO T cells. RASA2KO
and CUL5KO are known to improve T cell anti-cancer activity after repetitive stimulation.4,5

The SHKO T cells, with AAVS1 knockouts as a negative control, should be “exhausted”
after repetitive stimulation, leading to less anti-cancer activity.4 On held-out validation data,
the model assigns more than 50% probability to the correct class on 2,974 out of 4,200 test
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images evenly balanced across classes, an accuracy of 71%. The CNN model outperforms a
traditional support vector machine (SVM) classifier that predicts the perturbation from cell
counts from segmentation, which has a test accuracy of only 50%. We find that the model has
consistent precision around 70%, e.g., the fraction of true RASA2KO frames out of the set of
all frames predicted to be RASA2KO, across the genetic perturbations (Table 1). However, we
observe that the ability to recall the SHKO control condition is much worse than the ability
to recall the genetic perturbations (Table 1). While the “confusion” with the safe harbor
control indicates that many features of T cell and cancer cell dynamics are maintained after
perturbation, the relatively low number of incorrect cross predictions between the two genetic
knock-outs suggests the model can differentiate the changes from CRISPR perturbation and
be used as a tool to interrogate the different behaviors.

Predicted SHKO Predicted CUL5KO Predicted RASA2KO Recall

True SHKO 387 609 373 28%
True CUL5KO 67 1318 13 94%
True RASA2KO 114 7 1268 91%

Precision 68% 68% 76%

Table 1: Full prediction model confusion matrix. The rows represent the true labels
for the three experiment types; the columns represent the predicted labels. The last row and
column of the matrix are the precision and recall, respectively, for each experiment class label.

We observe a relationship between the collection time of the image and the ability to
accurately classify its genetic perturbations. For the control SHKO images, the model tends
to classify early time frames as CUL5KO and later images as RASA2KO (Figure 1). To
better understand how time affects classification performance, we trained a limited-time model
with the same architecture, but we restricted the training data to include only images from
frames 200 to 249, between 800 and 996 minutes post culture, around the inflection point of
RASA2KO and CUL5KO mis-classification. We find that this limited-time model has higher
validation accuracy of 89% on held-out data (also in the same time window), and makes
relatively few misclassifications (Table 2). CNN-based prediction again outperforms a cell
count based SVM classifier, which has an overall test accuracy of 64%. This model does not
generalize well to early time frames, but has above 75% accuracy in the 200 minute periods
before and after its training data (Figure 2). The inability to generalize well to early time
frames is expected given the lack of differentiation between all three conditions in the early
parts of the experiment. More generally, this change in predictive ability over time reveals
that genetic perturbations may affect the dynamics and timing of immune and cancer cell
interactions.

3.2. Explainable AI techniques reveal differences in T cell interactions
with cancer cells under genetic perturbation

To better understand the differences in behavior across genetic perturbations, we applied the
Grad-CAM technique10 to both full- and restricted-time models and testing with held-out
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Fig. 1: SHKO categorizations over time. Each point corresponds to the 50 frame time
bucket starting at that frame (time). A total of 200 images per time bucket are categorized.

Predicted SHKO Predicted CUL5KO Predicted RASA2KO Recall

True SHKO 184 9 6 92%
True CUL5KO 1 198 1 99%
True RAS2KO 41 1 154 77%

Precision 81% 95% 86 %

Table 2: Limited time (frames 200 - 250) test confusion matrix. Rows represent true
labels for the three experiment types; columns represent predicted labels. The last row and
column of the matrix are the precision and recall, respectively, for each experiment class label.

Fig. 2: Accuracy of the limited-time model across all held-out time points data.
These held-out test accuracy results (y-axis) were aggregated by time (x-axis) into five groups.

validation data. For an individual sample’s prediction, Grad-CAM combines the gradients of
the model’s weight to calculate the influence of each pixel feature to the prediction. These
values generate a “feature importance heatmap” that identifies the most important regions of
an image for classifications.

We analyzed the output of Grad-CAM across different time points and different conditions
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Fig. 3: Grad-CAM importance scores for the limited-time model across condition
and time on held-out images. Frame label indicates both the true label and associated
Grad-CAM class label. The purple areas represent the lowest impact areas, blue represents
the medium impact, and red represents the highest impact. This color gradient is consistent
for all of the Grad-CAM visualizations throughout this paper.

to identify changes recognized by CNN classifiers. For the model trained on all time points, we
observe that Grad-CAM highlights interactions between cancer cells and T cells, focusing its
attention on the cellular aggregates to recognize CUL5KO (Figure 3). In the RASA2KO Grad-
CAM visualizations, on the other hand, the highlighted regions are focused almost exclusively
on the areas between cells and cellular aggregates (Figure 3). Moreover, we observed that
the highlighted regions in the SHKO group seem to be distributed randomLy, but each time
focused on individual cancer cells (Figure 3). These Grad-CAM visualizations suggest specific
characteristics of behavior of each of the three experiments.

We quantified the enrichment of these patterns on a small scale in the three experiments by
manually annotating the number of healthy and interacting T cells in the highlighted regions of
each type on the frame interval 150-160 in the second quadrant from the full time frame model
in the held-out images. Across all three sets of heatmaps, the CUL5KO Grad-CAM heatmap
highlights the interacting cancer cells at a higher rate than the SHKO and RASA2KO Grad-
CAM heatmap (Table 3). This suggests that the difference between CUL5KO and RASA2KO
behavior is that CUL5KO T cells accelerate the rate of cancer cell-T cell interactions and the
formation of T cell aggregates around a cancer cell.

To better understand differences between the full-time and limited-time models, we com-
pared the Grad-CAM visualizations at the same time from the same position. We use to il-
lustrate one input frame from the CUL5KO held-out data at time point 220,880 minutes post
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Genetic perturbation Non-interacting cancer cells Interacting cancer cells

SHKO 10 5
CUL5KO 2 32
RASA2KO 12 7

Table 3: Number of healthy and interacting cancer cells from ten images between frames 150
and 160 highlighted by Grad-CAM on the full time frame model.

Fig. 4: Grad-CAM visualizations of frame 220 of the held out CUL5 images for the 200-249
frame model (left) and full 350 frame model (right).

culture (Figure 4). Both sets of Grad-CAM images focus on interacting cancer cells—which
often appear as large T cell aggregates that hide the seed cancer cell—but the interacting can-
cer cells they highlight are often different ones (Figure 4). The 200-249 frame model focuses
more on regions of the image without aggregates to inform its decision, indicating that overall
T cell/cancer cell coverage is an important signature during this 50-frame time window. Al-
though both visualizations appear to focus on similar proportions of the image, the 200-249
frame model’s heatmap has a larger area of limited attention across the full image (Figure 4).

To more broadly interrogate the influences on the limited-time frame model, we used Grad-
CAM to visualization importance heatmaps across the three different genetic perturbation on
held-out frames (Figure 5). Like the full-time model (Figure 3) the limited-time model focuses
on interacting cancer cells, which we define as T cells adjacent to or overlapping with cancer
cells in the CUL5KO held-out frames. The limited-time model, however, has more diffused
highlighted regions of importance for predicting all three conditions than the full time model,
capturing most of the cells. This suggests that total cell coverage, or the proportion of the
area of the image covered by cells, is a more defining signature of the CUL5KO limited-time
model than the full-time model. When comparing shorter time intervals, CUL5KO can be
characterized by its total cell coverage, but, over longer intervals, the specific interactions
between cells proves to be the most important distinguishing feature.

Taken together, our findings indicate that the model trained on later limited time frames
takes a larger proportion of the image into account when performing classification, whereas the
full model focuses on more limited regions of the image. The greater spread of “attention” and
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Fig. 5: Grad-CAM importance scores for the limited-time model across condition 
and time on held out images. Frame label indicates both the true label and associated 
Grad-CAM class label.

the focus on multiple cancer cells and T cells in the limited-time model suggests that the model 
is effectively counting the number of cells to make a prediction; at limited time points, given 
the known differences in killing progression, this featurization would be effective for separating 
the classes as indicated by the limited-time model’s accuracy. In contrast, the model trained 
on the full data cannot rely on the number of cells to differentiate genetic perturbations, and 
so focuses more on a small number of cell interaction regions to distinguish the knock-outs.

4. Conclusion

Our work analyzes the behaviors of CRISPR-modified TCR T cells interacting with cancer
cells in live-cell imaging studies. Most studies count the total area covered by cancer cells
across time to characterize the cancer cell killing efficacy of the modified T cells, ignoring the
behavior changes in T cell, cancer cells, and their interactions. We identified specific changes
in cell behavior across the three experiment types by using Grad-CAM,10 a visual explainable
AI technique, to understand how a deep learning classifier would differentiate the experimental
conditions from live-cell images, highlighting the behavioral changes in modified T cells beyond
simple cancer cell death rate.

By using Grad-CAM to analyze classification models trained on three types of modified
TCR T cells, we found that the amount of T cell or cancer cell coverage differentiates CUL5KO
and RASA2KO modified T cells when comparing similar time points. We showed that cell
aggregation behavior is a reliable differentiating characteristic to distinguish CUL5KO ex-
periments from the others, and these CUL5KO experiments tend to have consistent T cell
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aggregates around cancer cells. We showed that larger empty spaces, suggesting a combi-
nation of larger (and fewer) cellular aggregates plus better cancer cell killing, distinguishes
RASA2KO experiments from the other two experiments. We found that the safe harbor ex-
periment is defined by no cellular aggregates and substantial coverage of cancer cells, with
the T cells both failing to latch on to the cancer cells and furthermore failing to stop their
proliferation. We note that coverage plots alone miss these important behavioral signatures.

Our study has a number of limitations, including considering only a single T cell donor and
cancer cell line, three genetic modifications, limited replicates, and limited variable titrations
of cancer cells to modified T cells. Emerging architectures and pretrained models may improve
accuracy relative to the ResNet architecture used here. The importance maps from Grad-CAM
are coarse regions over the image, and sometimes the difference between knockouts could
be hard to qualitatively observe. Grad-CAM is one of many interpretation approaches, and
alternatives such as saliency maps or Shapley Additive Explanations may provide different
features of interest. The lack of differences between knockouts may also be an interesting
indication of a lack of distinct mechanism changes that would limit downstream efficacy.

However, as a proof of concept, this analysis pipeline for future live-cell imaging experi-
ments will open the door to a more sophisticated interpretation of modified T cell behaviors.
We found that existing tools and pretrained image models like ImageNet are effective at clas-
sifying biological image samples when fine tuned using live-cell imaging frames. We observed
that fine tuning on frames from a wide stretch of time increases the models’ attention on
individual cellular dynamics, while fine tuning on short time samples later in the experiment
will use more characteristic image features for classification.

Overall, we demonstrated that explainable AI techniques are a practical tool for interrogat-
ing and understanding biological dynamics from live-cell image, and we developed a framework
for studying these dynamics in general live-cell imaging data. Future work pushes our methods
towards the clinic. By characterizing the complex behaviors of these possible T cell modifica-
tions, we hope to more rapidly identify T cell therapies for broad ranges of cancers, both liquid
and solid. Our interpretable classifiers specifically can be used by decision-making AI methods
to prioritize specific T cell therapies for new cancer patients by predicting the response of that
individual tumor to each type of therapy, and selecting the most effective therapy.
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Alzheimer’s disease (AD) is characterized by cognitive decline and memory loss due to
the abnormal accumulation of amyloid-beta (Aβ) plaques and tau tangles in the brain; its
onset and progression also depend on genetic factors such as the apolipoprotein E (APOE)
genotype. Understanding how these factors affect the brain’s neural pathways is important
for early diagnostics and interventions. Tractometry is an advanced technique for 3D quanti-
tative assessment of white matter tracts, localizing microstructural abnormalities in diseased
populations in vivo. In this work, we applied BUAN (Bundle Analytics) tractometry to 3D
diffusion MRI data from 730 participants in ADNI3 (phase 3 of the Alzheimer’s Disease
Neuroimaging Initiative; age range: 55-95 years, 349M/381F, 214 with mild cognitive im-
pairment, 69 with AD, and 447 cognitively healthy controls). Using along-tract statistical
analysis, we assessed the localized impact of amyloid, tau, and APOE genetic variants on
the brain’s neural pathways. BUAN quantifies microstructural properties of white matter
tracts, supporting along-tract statistical analyses that identify factors associated with brain
microstructure. We visualize the 3D profile of white matter tract associations with tau and
amyloid burden in Alzheimer’s disease; strong associations near the cortex may support
models of disease propagation along neural pathways. Relative to the neutral genotype,
APOE ϵ3/ϵ3, carriers of the AD-risk conferring APOE ϵ4 genotype show microstructural
abnormalities, while carriers of the protective ϵ2 genotype also show subtle differences.
Of all the microstructural metrics, mean diffusivity (MD) generally shows the strongest
associations with AD pathology, followed by axial diffusivity (AxD) and radial diffusivity
(RD), while fractional anisotropy (FA) is typically the least sensitive metric. Along-tract mi-
crostructural metrics are sensitive to tau and amyloid accumulation, showing the potential
of diffusion MRI to track AD pathology and map its impact on neural pathways.

Keywords: diffusion MRI, tractometry, Alzheimer’s disease, amyloid, tau
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive
cognitive decline and memory loss. Central to its pathology are the abnormal accumulation of
amyloid-beta (Aβ) plaques and tau tangles in the brain.1–3 The onset and progression of these
pathological processes are influenced by genetic factors such as the apolipoprotein E (APOE)
gene.4 AD pathology not only affects gray matter but also profoundly impacts white matter
tracts, which serve as the brain’s communication mechanism; these tracts connect different
brain regions and facilitate efficient signal transmission. Understanding how amyloid, tau,
and APOE influence white matter integrity is crucial for developing early diagnostic tools and
monitoring the effects of targeted interventions on the brain.

Amyloid-beta peptides aggregate to form plaques, primarily affecting gray matter5 but
also extending to white matter tracts by disturbing cellular function.6,7 Aβ deposition leads to
myelin degradation, which disrupts the insulating layer around nerve fibers, and axonal injury,
which impairs neurons’ ability to communicate effectively. Tau is a microtubule-associated
protein that stabilizes microtubules in neurons. In AD, tau becomes hyperphosphorylated and
forms neurofibrillary tangles,8 affecting microtubule stability, disrupting axonal transport, and
impairing neuronal function.9,10 The apolipoprotein E (APOE) gene plays a crucial role in lipid
metabolism and is a significant genetic factor influencing the risk of developing Alzheimer’s
disease.11,12 See footnote for APOE gene types. a

Diffusion MRI could offer a less invasive alternative to PET, helping identify affected
white matter tracts and leading to personalized therapeutic strategies. Diffusion MRI15–17

measures water diffusion in the brain, revealing the microstructural properties of the under-
lying tissue. Tractography, derived from diffusion MRI data,18–20 maps and visualizes white
matter pathways by tracking the directional profiles of water diffusion, providing a detailed
picture of brain connectivity. Tractometry enhances this by quantifying specific microstruc-
tural properties, such as fractional anisotropy (FA) or mean diffusivity (MD), along the length
of individual tracts. This technique maps microstructural alterations in the brain’s white mat-
ter tracts.21–25 It analyzes the coherence of neural connections, allowing for precise assessment
of characteristic changes in neurological conditions such as Alzheimer’s disease or Parkinson’s
disease.26

White matter (WM) microstructure changes with age, and there is a regional variation in
the age-dependent trajectories of maturation and decline for the major white matter metrics
across the lifespan.27,28 Several studies of regional microstructure in Alzheimer’s disease have
used tract-based spatial statistics (TBSS),29 to link microstructural metrics in specific brain
regions to amyloid positivity and clinical dementia severity.30–32 However, the resolution of

aAPOE gene has three common variants: ϵ2, ϵ3, and ϵ4. APOE ϵ2 is the least common, and
carriers have a lower risk of developing AD. It may have a protective effect on white matter
structure,13,14 leading to less degeneration, possibly due to enhanced lipid metabolism and
repair mechanisms. APOE ϵ3 is the most common variant and is considered neutral, while the
APOE ϵ4 variant is the greatest known common genetic risk factor for late-onset AD, roughly
tripling lifetime risk of AD per allele carried.11 APOE ϵ4 is less effective in clearing Aβ from
the brain, leading to greater Aβ plaque accumulation and subsequent white matter damage.12
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Fig. 1: BUAN Tractometry Pipeline: The brain’s major neural pathways are digitally recon-
structed using diffusion MRI and tractography techniques. Specific white matter tracts are then
extracted for visualization and detailed analysis, allowing for localized and focused examination of
brain pathways.

TBSS maps is limited by the regions defined in the atlases used.29 To address this, tractometry
methods such as BUAN (Bundle Analytics)23 map microstructural parameters along the length
of white matter tracts, mapping disease effects on neural pathways in 3D and at a finer
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anatomical scale.23,25,26,33,34 Recently, Ba Gari et al.33 used a tractography-based medial tract
analysis (MeTa) to enhance the sensitivity for detecting associations of AD, amyloid, and tau
with diffusion tensor imaging (DTI) derived microstructural metrics, compared to TBSS.

In this study, we applied our advanced tractometry method, BUAN (Bundle Analytics),
to evaluate the impact of amyloid, tau, APOE ϵ4, and APOE ϵ2 on the microstructure of
the brain’s white matter tracts. BUAN maps the microstructural properties of white matter
tracts, and fits along-tract statistical models to detect effects on microstructure that are as-
sociated with amyloid plaques, tau tangles, and different APOE genotypes. This is crucial
for understanding the effects of AD pathology on brain connectivity. Overall, we found that a
range of microstructural metrics were sensitive to tau and amyloid, the two key biomarkers for
detecting Alzheimer’s disease, supporting the role of diffusion MRI as a non-invasive measure
of AD pathology. Relative to APOE ϵ3/ϵ3 carriers, microstructural alterations were also iden-
tified in APOE ϵ4 carriers and, to a lesser extent, in ϵ2 carriers. Mean diffusivity (MD) was
most strongly associated with AD pathology, followed by axial diffusivity (AxD) and radial
diffusivity (RD). Fractional anisotropy (FA) was the least sensitive metric. The tendency to
detect stronger associations in tract regions closer to the cortex may support propagative or
”epidemic spreading” models of AD pathology,35 which argue that AD pathology spreads dy-
namically along neural pathways or in functionally synchronous networks; future longitudinal
studies are needed to verify this.

2. Methods

Data from 730 ADNI3 participants (phase 3 of the Alzheimer’s Disease Neuroimaging
Initiative; age range: 55-95 years, 349M/381F, 214 with mild cognitive impairment (MCI),
69 with AD, and 447 cognitively healthy controls (CN)) scanned with 7 acquisition proto-
cols (GE36, GE54, P33, P36, S127, S31, S55) were included. Tables 1 and 2 in Fig. 2 detail
demographic and acquisition protocol information. Aβ-status, i.e., positive (Aβ+) or nega-
tive (Aβ–), was determined by either mean 18F-florbetapir (Aβ+ defined as >1.11)36,37 or
florbetaben (Aβ+ defined as >1.20)38,39 PET cortical SUVR uptake, normalized by using a
whole cerebellum reference region. Tau positivity was defined as a tau SUVR > 1.23.

2.1. Diffusion MRI Processing

Raw diffusion MRI (dMRI) were preprocessed using the ADNI3 dMRI protocol.40,41 Pre-
processing of raw diffusion MRI (dMRI) data involved several steps: denoising raw dMRI data
using DIPY’s principal component analysis (PCA) for GE data, and Marchenko-Pastur PCA
for Siemens and Philips data denoising.42,43 Gibbs artifacts were corrected using MRtrix’s
degibbs tool,44,45 and extracerebral tissue was removed (skull stripping) with FSL’s BET.46,47

Eddy currents and motion were corrected using FSL’s eddy cuda tool with additional correc-
tions for slice-to-volume and outlier detection.47,48 Bias field inhomogeneities were corrected
using MRtrix’s dwibiascorrection ANTS function. Preprocessed T1w images from the ADNI
database were further processed and aligned to the dMRI data.45,49 ADNI3 dMRI data lacked
reversed phase-encode blips, so echo-planar imaging (EPI) distortion corrections were made
using nonlinear registrations to T1-weighted anatomical images. The processed dMRI data
were converted back to native space through a series of inversions of the registration matrices,
with final outputs visually inspected and manually adjusted as necessary. The DTI model was
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Fig. 2: Tables 1 and 2 detail demographic and scanner protocol information for the ADNI3 data used
in our experiments (data from Thomopoulos et al, 2021). The abbreviation table on the right lists
the 38 white matter tracts and four microstructural measures analyzed in this work.

used to extract 4 microstructural measures from processed dMRI: FA, MD, AxD, RD.

2.2. BUAN Tractometry

Fig. 7 illustrates the detailed steps of the BUAN tractometry pipeline, along with visualiza-
tions of the process. We applied a robust and unbiased model-based spherical deconvolution50

reconstruction method and a probabilistic particle filtering tracking algorithm that uses tissue
partial volume estimation (PVE) to reconstruct 51 whole-brain tractograms. For tracking, the
seed mask was created from the white matter (WM) PVE (WM PVE > 0.5), seed density per
voxel was set to 2, and step size was set to 0.5. We extracted 38 white matter (WM) tracts
from tractograms using RecoBundles 23,52 (see Fig. 2 for full names) using model bundles
from the HCP-842 tractography atlas.53

After extracting WM bundles, we nonlinearly registered each subject’s bundles to model
bundles in MNI-space using a streamline-based nonlinear registration method, BundleWarp.54

Optimal registration of tracts to atlas bundles is crucial for finding accurate segment corre-
spondences among subjects and populations. This enhances the sensitivity of group statistical
analyses by eliminating errors due to misalignment across subjects.

BUAN creates the bundle profiles for each bundle using 4 DTI-based microstructural
metrics: FA, MD, RD, and AxD calculated in the diffusion native space (see Figure 2 for
full bundle names). Bundle profiles are created by dividing the bundles into 100 horizontal
segments using the model bundle centroids along the length of the tracts in common space.
We cluster our model bundles using the QuickBundles55 method to obtain a cluster centroid
consisting of 100 points per centroid. We calculate Euclidean distances between every point
on every streamline of the bundle and 100 points in the model bundle centroid. A segment
number is assigned to each point in a bundle based on the shortest distance to the nearest
model centroid point. The streamlines are not resampled to have a specific number of points,
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and we do not change the distribution of points. Since the assignment of segment numbers
is performed in the common space, we establish the segment correspondence among subjects
from different groups and populations. Microstructural measures such as FA are then projected
onto the points of the bundles in native space. Note that the nonlinearly moved bundles are
only used to assign segment numbers to streamlines (and points on the streamlines) in the
bundles. Actual statistical analysis always takes place in the native space of the diffusion data.
The statistical analysis step uses bundles of the original shape and microstructural measures
in the native space using segment labels given during the assignment step for segment-specific
group analysis.

Bundle profiles are harmonized using the ComBat method56,57 to correct for scanner/site ef-
fects as described in the harmonized BUAN tractometry pipeline.58 After data harmonization,
we assume each bundle type has its own data distribution, which is considered independent
of the rest of the bundles in the brain. For each tract and metric, we pool bundle profiles for a
given tract across all subjects from CN, MCI, and AD groups. Pooled bundle profiles consist
of 100 segments, and each segment is modeled as a feature. Linear Mixed Models are applied
to WM bundles; age and sex are modeled as fixed effects and scanner and subject as a random
effect term, the response variable being each DTI metric. Though we harmonized the profiles
with ComBat, we further account for scanner and/or site effects by adding it as a random
term in the linear mixed models (LMMs)59 to eliminate any remaining artifacts contributed
by scanner/site. We used FURY60 software to visualize tractometry results in this paper. Fig.
7 provides a comprehensive view of how the bundle-specific nonlinear registration and data
harmonization are applied, leading to a focused analysis of specific regions along the tracts.

2.3. Statistics

We used LMMs to test the effects of amyloid positivity, tau positivity, and different APOE
variants on 38 white matter tracts. In each experiment, age and sex were modeled as fixed
effects, and the scanner and subject were modeled as random terms. Multiple testing correction
was performed using the False Discovery Rate (FDR)61 method at P -value < 0.05. See footnote
for details on FDR correction applied to WM tracts. b

bMultiple testing correction is a statistical adjustment process that can control the rate or likelihood
of false positives when performing numerous simultaneous tests.62 In neuroimaging studies, where
thousands of brain regions or voxels are analyzed for significant differences or correlations, this
adjustment is crucial. It ensures the integrity and reliability of the results by controlling the overall
rate of false positives. Common correction methods include the Bonferroni correction,63 which is
stringent and adjusts the significance threshold by dividing it by the number of tests, and the False
Discovery Rate (FDR)61 method, which limits the proportion of false positives among significant
findings. These corrections ensure that detected effects are truly significant and not due to random
variation. As white matter tracts generated by tractography are not as extensively studied as voxel or
ROI-based methods, selecting the appropriate multiple testing correction is challenging. We divided
each bundle into 100 segments; for tract-specific FDR correction, we use 100 p-values per bundle
to correct for multiple tests using the FDR method. We refer to this bundle-specific FDR corrected
threshold as the local threshold, as it only depends on statistics within that bundle. Additionally, we
performed multiple test corrections across all bundles in the brain by pooling 100 p-values from each
of the 38 tracts, yielding a total of 3,800 p-values to determine the global FDR-corrected threshold.
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3. Results

We ran the following five experiments to detect associations of various variables on 38 white
matter tracts of the brain. We tested microstructural associations (1) with amyloid positivity;
(2) with tau positivity; (3) comparing non ϵ4 carriers ϵ2ϵ3/ϵ3ϵ3/ϵ2ϵ2 with subjects carrying at
least one ϵ4 gene; ϵ2ϵ4/ϵ3ϵ4/ϵ4ϵ4, (4) comparing ϵ3ϵ3 with ϵ3ϵ4/ϵ4ϵ4, and (5) comparing ϵ3ϵ3
with ϵ3ϵ2/ϵ2ϵ2.

As an overview of the results, quantitative quantile-quantile (QQ) plots (Fig. 3) summarize
the overall association signal detected across all 38 white matter bundles between each of the
biomarkers (amyloid, tau, and APOE) and each of the DTI metrics (FA, MD, RD, and AxD).
These plots visually represent the strength of associations between these biomarkers and DTI
metrics, helping to identify which combinations show the most significant relationships. In
the visualization layout, the first row of QQ plots highlights which DTI metric exhibits the
strongest association with each biomarker. Here, the p-values of the 38 tracts were pooled
for each DTI metric and presented in these plots, allowing for a comprehensive assessment of
each metric’s sensitivity to changes in biomarker levels. The second focuses on the relationship
from the opposite perspective: for each DTI metric, it shows which biomarker shows significant
associations (the scale of the y-axis varies across the QQ plots to adapt to the observed range
of p-values).

Fig. 6 visualizes the p-values along the length of the 34 major tracts (4 tracts with mostly
null results were excluded from the plots). In this figure, the x-axis represents 100 segments per
tract, displaying the p-value for each segment, while the y-axis corresponds to the individual
bundles. Segments highlighted in green indicate p-values less than 0.05, signifying regions
of statistically significant associations detected between the metric and Alzheimer’s disease
biomarkers for that particular bundle and segment. This visualization provides a more detailed
view of where significant effects are localized within each tract.

3.1. Amyloid

We ran BUAN to assess the effect of amyloid positivity on 38 white matter tracts based
on data from 329 amyloid-negative (CN: 235, MCI: 86, Dementia: 8) (156M, 173F) and 277
amyloid-positive (CN: 139, MCI: 87, Dementia: 51) (131M, 146F) participants from the ADNI3
dataset. The following tracts and measures showed significant differences between amyloid neg-
ative and amyloid positive: cingulum left (AxD, MD), corpus callosum forceps major and mid-
dle sector (MD, RD), extreme capsule left (MD, RD) and right (AxD, MD, RD), frontopontine
tract left (AxD, MD) and right (AxD), inferior longitudinal fasciculus right (AxD, MD, RD),
middle longitudinal fasciculus left (AxD, MD) and right (AxD, MD, RD), occipito-pontine
tract left (MD), optic radiation right (MD), posterior commissure (AxD), and spinothalamic
tract left (RD). In significant tracts, diffusivity metrics increase while fractional anisotropy
decreases, in those with higher levels of amyloid pathology (this is in the same direction as
the known effects of dementia on these metrics).

We consider tract effects to be significant if they pass both local and global FDR thresholds.
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Fig. 3: QQ plots summarize the signal detected by each biomarker (amyloid, tau, and ApoE) and
DTI metric (FA, MD, RD, and AxD) across all 38 bundles, indicating which biomarkers and metrics
show the strongest associations. In the first row, the plots show which metric shows the strongest
association for each biomarker. P -values of the 38 tracts were pooled together for each DTI metric
and visualized in QQ plots. In the second row, we analyze for each metric which biomarker shows
significant associations. Note the y-axis range varies across the plots depending on the observed range
of p-values.

3.2. Tau

Fig. 4: Tau effects on tracts.

We ran BUAN to assess the effect of tau positivity on
38 white matter tracts based on data from 401 tau-negative
(CN: 293, MCI: 95, and Dementia: 13) (192M, 209F) and 168
tau-positive (CN: 60, MCI: 68, and Dementia: 40) (75M, 93F)
participants in the ADNI3 dataset.

The following tracts and measures showed significant as-
sociations between tau positivity and microstructure: Arcuate
fasciculus left (MD, RD), cingulum left and right (MD, RD),
corpus callosum - forceps major (MD, RD), forceps minor
(FA, MD, RD) and mid (AxD, MD, RD), corticospinal Tract
left and right (MD, RD), extreme capsule left and right (AxD,
MD, RD), frontopontine tract left (MD, RD) and right (FA,
AxD, MD, RD), inferior fronto-occipital fasciculus right (RD), inferior longitudinal fascicu-
lus left (MD, RD) and right (AxD, MD, RD), middle longitudinal fasciculus left (AxD, MD,
RD) and right (AxD, FA, MD, RD), occipito-pontine tract left (MD, RD) and right (AxD,
MD, RD), optic radiation left (RD) and right (AxD, MD, RD), and uncinate fasciculus right
(MD, RD). In significant tracts, most diffusivity metrics increase while fractional anisotropy
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Fig. 5: We compare the effects of amyloid and tau on white matter microstructure along the major
white matter tracts. Only tracts showing significant effects, passing both local and global FDR for
amyloid and tau, are visualized. Red highlights significant associations between the measures of
Alzheimer’s disease pathology and the microstructural metrics computed with DTI. We consistently
observe the strongest associations with tau in various white matter tracts, as seen in the QQ-plot
at the right end of the figure. Tau outperforms amyloid in terms of strength of association, for each
microstructural metric.

decreases, in line with the expected direction of microstructural abnormalities previously re-
ported in dementia. However, in some tracts, changes in AxD vary along the length of the
tracts.

We compare the impact on white matter tracts as influenced by amyloid and tau in Fig. 5.
Only tracts that demonstrate significant effects, meeting both local and global false discovery
rate (FDR) criteria for amyloid and tau, are included. Significant associations with each
biomarker in conjunction with DTI metrics are highlighted in red. We consistently observe
stronger associations with tau across various white matter tracts, as illustrated in the QQ-
plot at the right end of the figure. For all metrics assessed, tau shows stronger associations
compared to amyloid. MD metrics exhibit the strongest association signal for both amyloid
and tau. We illustrate the localized effects of tau on MD metrics in Fig. 4. Each tract is
color-coded based on p-values, with tracts showing p-values less than 0.05 highlighted in red.
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Fig. 6: P -values along the length of the 34 major tracts. The x-axis represents 100 segments for each
tract, showing the p-value for each segment, while the y-axis corresponds to the different bundles.
Green pixels indicate segments where p-values<0.05, highlighting regions of higher statistical signif-
icance detected by the metric in relation to Alzheimer’s disease biomarkers for that specific bundle
and segment.

3.3. APOE ϵ4 genotype

We ran BUAN to assess the impact of APOE ϵ4 - the major common risk gene for late-
onset Alzheimer’s disease - on 38 major white matter tracts, based on data from 358 non ϵ4
carriers ϵ2ϵ3/ϵ3ϵ3/ϵ2ϵ2 (CN: 224, MCI: 99, Dementia: 35) (168M, 190F) and 203 participants
with at least one ϵ4 gene; ϵ2ϵ4/ϵ3ϵ4/ ϵ4ϵ4 carriers (CN: 136, MCI: 54, and Dementia: 13) (90M,
108F) participants from the ADNI3 dataset. We found the following tracts and measures to
be significant: Corticospinal tract left (FA), frontopontine tract left (FA), inferior longitudinal
fasciculus right (MD), and middle longitudinal fasciculus right (AxD). MD, RD, and AxD
decrease. FA slightly increases.
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3.4. APOE ϵ3 vs. APOE ϵ4

We ran BUAN to assess the impact of ϵ4 on 38 major white matter tracts using 310
ϵ3ϵ3 (CN:191 MCI:85 Dementia: 34) (140M, 170F) and 192 ϵ3ϵ4/ϵ4ϵ4 (CN:129, MCI:50, and
Dementia:13) (88M, 104F) subjects from ADNI3 dataset. We found the following tracts and
measures to be significant: Frontopontine Tract left (FA), inferior Longitudinal Fasciculus
right (AxD, MD), and Middle Longitudinal Fasciculus right (AxD), and spinothalamic tract
left (MD), and right (AxD). MD decreases, AxD changes vary along the length of the tract,
with a slight increase in FA.

3.5. APOE ϵ3 vs. APOE ϵ2

We ran BUAN to assess the impact of the APOE ϵ2 genotype (which is protective against
Alzheimer’s disease) on 38 major white matter tracts using 310 ϵ3ϵ3 (CN: 191, MCI: 85, and
Dementia: 34) (140M, 170F) and 48 ϵ3ϵ2/ϵ2ϵ2 48, (CN: 33, MCI: 14, and Dementia: 1) (28M,
20F) participants in the ADNI3 dataset. We found the following tracts and measures to be
significant: Middle Longitudinal fasciculus right (AxD), spinothalamic tract right (FA, AxD),
and uncinate fasciculus right (AxD). FA increases, MD and RD decrease and AxD changes
vary along the length of the tracts.

4. Discussion

Our study employed the advanced tractometry method, BUAN (Bundle Analytics), to
investigate the effects of amyloid, tau, APOE ϵ4, and APOE ϵ2 on the microstructure of white
matter tracts in the brain. The results underscore the significant role of tau and amyloid as
biomarkers for Alzheimer’s disease (AD), revealing their profound impact on white matter
integrity. Tau and amyloid deposition are associated with marked changes in MD, AxD, and
RD, with FA being the least sensitive metric. This highlights the critical nature of these
biomarkers in the early detection and monitoring of AD progression.

Tau and amyloid significantly alter the microstructural properties of white matter tracts,
which are essential for neural communication. APOE ϵ4 carriers showed microstructural
changes consistent with poorer white matter integrity, compared to those with the ϵ3/ϵ3
genotype, in line with the heightened genetic risk for AD associated with APOE ϵ4. These
alterations are likely due to the reduced efficiency of amyloid clearance and increased inflam-
mation observed in ϵ4 carriers. Conversely, fewer white matter bundles were affected by APOE
ϵ2, perhaps in line with its protective role against AD-related white matter degeneration.13,14

The findings also revealed that MD is the most affected metric, followed by AxD and
RD, whereas FA is the least sensitive. This is consistent with prior literature studying the
association of DTI metrics with dementia.64,65 This differential sensitivity of diffusion metrics
highlights the importance of selecting appropriate imaging markers for assessing white matter
integrity in AD. MD, in particular, may serve as a more reliable indicator of microstructural
damage in the context of AD pathology.

Our results underscore the significant role of the key AD biomarkers in altering the mi-
crostructure of key neural pathways, with profound implications for understanding the pro-
gression and potential intervention points for AD. Some key tracts - the cingulum bundles
and components of the corpus callosum - showed significant alterations in MD and RD in
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Fig. 7: BUAN results for group differences between ϵ3ϵ3 neutral gene and subjects with either ϵ3ϵ4 or
ϵ4ϵ4 gene in white matter tracts. The first and third row shows p-value plots for each tract, where the
x-axis represents the segment number along the tract and the y-axis shows a negative logarithm of
p-values. The blue horizontal line in the plots represents the FDR corrected threshold. Segments that
pass the FDR corrected threshold are considered significant. The second and fourth rows visualize
p-values mapped onto the 3D tracts. Where dark pink and dark green colors imply lower p-values
and more significance.

the presence of both amyloid and tau. The increased MD and RD indicate water molecules
diffusing more freely in brain tissue - a sign of tissue degeneration and loss of cellular integrity
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typical in AD. This diffusion behavior reflects the structural breakdown of neural pathways,
which is critical in the progression of Alzheimer’s disease.

Amyloid and tau effects on key neural pathways like the cingulum and corpus callosum can
impair cognitive function and interhemispheric communication. The cingulum bundle is essen-
tial for cognitive and emotional processing, and its disruption weakens connectivity between
the frontal lobe and other brain regions, contributing to cognitive decline in AD patients.66,67

The corpus callosum (CC) is vital for interhemispheric communication, coordinating cognitive
and motor functions across both hemispheres.68 Additional tracts, such as the extreme capsule
(EMC), frontopontine tract (FPT), inferior longitudinal fasciculus (ILF), middle longitudinal
fasciculus (MLF), optic radiation (OR), and spinothalamic tract (STT), also showed signifi-
cant changes in diffusivity metrics. The EMC, involved in auditory and language processing,
affects communication abilities when damaged.69 The FPT connects the frontal cortex to the
pons, and damage can lead to motor control and executive function issues.19 The ILF links the
temporal and occipital lobes, contributing to visual processing and memory,70 with disrup-
tions leading to visual memory deficits. The MLF plays a role in language, semantic memory,
and integrating auditory and visual information,71 and its impairment may cause semantic
and memory deficits. The OR carries visual information from the thalamus to the visual cor-
tex, and impairment affects visual processing.72 The STT is critical for pain and temperature
sensation,73 and its impairment affects sensory processing. These findings indicate that AD
impacts multiple neural pathways, leading to diverse clinical symptoms.

Moreover, this study highlights the limitations of earlier methods such as TBSS,29 which,
despite identifying significant associations between amyloid positivity, clinical dementia sever-
ity, and specific brain regions,64 suffers from limited resolution due to predefined atlas re-
gions. The BUAN method overcomes these limitations by offering a finer-scale mapping of
microstructural changes along the length of white matter tracts, providing a more detailed
and accurate assessment of disease-related alterations. The pronounced effects detected in
specific bundles reveal the vulnerability of these white matter fiber pathways to Alzheimer’s
disease pathology, highlighting their potential as biomarkers for early detection and monitor-
ing of disease progression. Future work will integrate microstructural measures derived from
sophisticated modeling techniques, such as diffusion kurtosis imaging (DKI),74 or neurite ori-
entation dispersion and density imaging (NODDI)75 into BUAN.

4.1. Conclusion

In this study, we employ our advanced tractometry method, BUAN (Bundle Analytics),
to evaluate the impact of amyloid, tau, APOE ϵ4, and APOE ϵ2 on the microstructural prop-
erties of white matter tracts in the brain. Among these factors, we find that microstructural
alterations in white matter tracts are most significantly associated with tau and amyloid - the
two prominent biomarkers of Alzheimer’s disease. Fewer bundles are affected by APOE ϵ2,
and comparing APOE ϵ4 with APOE ϵ3/ϵ3 reveals stronger microstructural alterations than
comparing APOE ϵ4 with ϵ2 and ϵ3 variants combined. c
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G. Fox and F. Contributors, Fury: advanced scientific visualization, Journal of Open Source
Software 6, p. 3384 (2021).

61. Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful
approach to multiple testing, Journal of the Royal statistical society: series B (Methodological)
57, 289 (1995).

62. J. Neyman and E. S. Pearson, On the use and interpretation of certain test criteria for purposes
of statistical inference part i, Biometrika 20, 175 (1928).

63. O. J. Dunn, Multiple comparisons among means, Journal of the American statistical association
56, 52 (1961).

64. T. M. Nir, N. Jahanshad, J. E. Villalon-Reina, A. W. Toga, C. R. Jack, M. W. Weiner, P. M.
Thompson, A. D. N. I. (ADNI et al., Effectiveness of regional dti measures in distinguishing
alzheimer’s disease, mci, and normal aging, NeuroImage: clinical 3, 180 (2013).

65. Y. Feng, B. Q. Chandio, J. E. Villalon-Reina, S. I. Thomopoulos, T. M. Nir, S. Benavidez,
E. Laltoo, T. Chattopadhyay, H. Joshi, G. Venkatasubramanian et al., Microstructural mapping
of neural pathways in alzheimer’s disease using macrostructure-informed normative tractometry,
bioRxiv (2024).

66. S. E. Rose, F. Chen, J. B. Chalk, F. O. Zelaya, W. E. Strugnell, M. Benson, J. Semple and
D. M. Doddrell, Loss of connectivity in alzheimer’s disease: an evaluation of white matter tract
integrity with colour coded mr diffusion tensor imaging, Journal of Neurology, Neurosurgery &
Psychiatry 69, 528 (2000).

Pacific Symposium on Biocomputing 2025

410



67. Y. Yang, K. Schilling, N. Shashikumar, V. Jasodanand, E. E. Moore, K. R. Pechman, M. Bilgel,
L. L. Beason-Held, Y. An, A. Shafer et al., White matter microstructural metrics are sensitively
associated with clinical staging in alzheimer’s disease, Alzheimer’s & Dementia: Diagnosis, As-
sessment & Disease Monitoring 15, p. e12425 (2023).

68. S. E. Black, S. D. Moffat, C. Y. David, J. Parker, P. Stanchev and M. Bronskill, Callosal atrophy
correlates with temporal lobe volume and mental status in alzheimer’s disease, Canadian Journal
of Neurological Sciences 27, 204 (2000).

69. L. Concha, C. Beaulieu and D. W. Gross, Bilateral limbic diffusion abnormalities in unilateral
temporal lobe epilepsy, Annals of neurology 57, 188 (2005).

70. F. Agosta, R. G. Henry, R. Migliaccio, J. Neuhaus, B. L. Miller, N. F. Dronkers, S. M. Brambati,
M. Filippi, J. M. Ogar, S. M. Wilson et al., Language networks in semantic dementia, Brain 133,
286 (2010).

71. N. Makris, D. N. Kennedy, S. McInerney, A. G. Sorensen, R. Wang, V. S. Caviness Jr and D. N.
Pandya, Segmentation of subcomponents within the superior longitudinal fascicle in humans: a
quantitative, in vivo, dt-mri study, Cerebral cortex 15, 854 (2005).

72. H. Bridge, O. Thomas, S. Jbabdi and A. Cowey, Changes in connectivity after visual cortical
brain damage underlie altered visual function, Brain 131, 1433 (2008).

73. A. Craig, Pain mechanisms: labeled lines versus convergence in central processing, Annual review
of neuroscience 26, 1 (2003).

74. A. J. Steven, J. Zhuo and E. R. Melhem, Diffusion kurtosis imaging: an emerging technique for
evaluating the microstructural environment of the brain, American Journal of Roentgenology
202, W26 (2014).

75. H. Zhang, T. Schneider, C. A. Wheeler-Kingshott and D. C. Alexander, NODDI: practical in
vivo neurite orientation dispersion and density imaging of the human brain, Neuroimage 61,
1000 (2012).

Pacific Symposium on Biocomputing 2025

411



A Pathway-Level Information ExtractoR (PLIER) framework
to gain mechanistic insights into obesity in Down syndrome

Sutanu Nandi1, Yuehua Zhu2,3, Lucas A Gillenwater1,4,5,††, Marc Subirana-Granés6, Haoyu Zhang6, Negar
Janani6, Casey Greene4,6,†, Milton Pividori5,6,*,†††, Maria Chikina2,*, James C Costello1,4,5,6,*,†

1Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
2Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA

3School of Medicine, Tsinghua University, Beijing, China
4Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
5Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO,

USA
6Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO,

USA

*Co-Senior Authors
Email: milton.pividori@cuanschutz.edu, mchikina@pitt.edu, james.costello@cuanschutz.edu

Down syndrome (DS), caused by the triplication of chromosome 21 (T21), is a prevalent genetic
disorder with a higher incidence of obesity. Traditional approaches have struggled to differentiate
T21-specific molecular dysregulation from general obesity-related processes. This study introduces
the omni-PLIER framework, combining the Pathway-Level Information ExtractoR (PLIER) with
the omnigenic model, to uncover molecular mechanisms underlying obesity in DS. The PLIER
framework aligns gene expression data with biological pathways, facilitating the identification of
relevant molecular patterns. Using RNA sequencing data from the Human Trisome Project,
omni-PLIER identified latent variables (LVs) significantly associated with both T21 and body mass
index (BMI). Elastic net regression and causal mediation analysis revealed LVs mediating the
effect of karyotype on BMI. Notably, LVs involving glutathione peroxidase-1 (GPX1) and MCL1
apoptosis regulator, BCL2 family members emerged as crucial mediators. These findings provide
insights into the molecular interplay between DS and obesity. The omni-PLIER model offers a
robust methodological advancement for dissecting complex genetic disorders, with implications for
understanding obesity-related processes in both DS and the general population.

Keywords: Down syndrome, obesity, body mass index, matrix factorization, mediation
analysis, RNA sequencing, mechanisms of disease, genetic/genomic studies, pathway analysis

1. Introduction

Down syndrome (DS), also known as trisomy 21 (T21), is the result of the triplication of
chromosome 21 (chr21) and is the most frequent human aneuploidy1. Obesity, the result of
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disrupted metabolism leading to excessive adipose accumulation, is associated with increased
comorbidities and decreased life expectancy2. Obesity, defined by a body mass index (BMI) ≥ 30,
is more prevalent in individuals with DS than in the disomic population (D21)3. Multiple
molecular profiling studies demonstrate systemic dysregulation of obesity-associated processes,
including insulin resistance, oxidative phosphorylation, and lipid metabolism, in individuals with
T214–7. However, current approaches fail to adequately disentangle T21-specific from general
molecular dysregulation in the pathogenesis of obesity. Thus, elucidating molecular mechanisms
distinct to obesity in T21 will not only inform DS biology but also provide insights into
obesity-related processes in the general population.

Mechanistic insights into DS are complicated by the simultaneous upregulation of most
genes on chr21. While the mean overexpression of genes on chr21 is a 1.5X fold change, there is
great variability in gene expression across people with DS5. Moreover, thousands of genes outside
of chr21 are differentially expressed in people with DS. It is helpful to consider T21 in the context
of the omnigenic model8,9, which posits that gene regulatory networks are so highly interconnected
that potentially all genes expressed in phenotype-relevant cell types have either a direct or indirect
effect. Within this model, there are “core” genes that directly affect the phenotype and
“peripheral” genes that indirectly affect the phenotype by regulating these core genes. Integrating
gene co-expression modules and genome-wide association studies (GWAS) prioritizes genes
missed by standard procedures while aiding interpretation10. Thus, the omnigenic framework can
help understand the cascading effects in gene regulatory networks, which contribute to the
co-occurring conditions in DS, such as obesity, through altered mechanisms compared to the D21.

The Pathway-Level Information ExtractoR (PLIER) is a semi-supervised matrix
factorization framework11. It transforms an input matrix of high dimensional gene expression data
into a relatively small number of latent variables (LVs) and then aligns these LVs with pre-defined
pathway/geneset annotations. The LVs aim to maximize the variance within the data and the
associated gene loadings are aligned with pathways/gene sets. By leveraging pathway/geneset
annotations, PLIER achieves interpretable representations where LVs are more likely to align with
independent measurements of biological pathways and processes. The LVs can be plugged into
any supervised downstream analysis such as differential expression and eQTL discovery. The
PLIER framework has been extensively adapted and reused in various applications10,12–14.

Merging the omnigenic model with PLIER, we propose the omni-PLIER framework, a
methodological advance to gain mechanistic insights into how complex genetic disorders drive the
associated conditions. In the omnigenic model, gene co-expression modules impact downstream
gene regulatory networks. Here, we use the PLIER model to define LVs as modules. Working with
the hypothesis that a causal relationship between a genetic perturbation and a clinical phenotype
must be mediated through molecular networks, we combine an elastic net model with causal
inference methods to identify LVs derived from molecular data that are mediators in the formal
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statistical sense. We apply omni-PLIER to study the link between T21 and obesity and identify
known and novel pathway associations providing a foundation for detailed follow-up studies. The
omni-PLIER model is available at: https://github.com/CostelloLab/omni-PLIER

2.  Methods

2.1.  The omni-PLIER Framework

The omni-PLIER framework integrates gene expression data with clinical traits to identify latent
variables (LVs) associated with both karyotype and BMI. This framework extends the PLIER
model by applying elastic net regression and causal mediation analysis to uncover biological
pathways mediating the relationship between DS and obesity. The framework allows for the
discovery of mechanistic insights into how genetic perturbations drive phenotypic outcomes.

The omni-PLIER workflow, shown in Figure 1, proceeds as follows. 1) Input gene expression and
sample annotation from the Human Trisome Project. 2) Apply the PLIER model to extract LVs
aligned with known biological pathways. 3) Calculate elastic net regression and causal mediation
analysis to identify significant LVs that mediate the relationship between T21 and BMI. 4) Output
causal networks between LVs and phenotypes for further interpretation.

Fig 1. Overview of the omni-PLIER framework

2.2.  Human Trisome Project (HTP) RNA Sequencing Dataset

Under a study protocol approved by the Colorado Multiple Institutional Review Board (COMIRB
#15-2170), the Crnic Institute enrolled participants as part of the Human Trisome Project (HTP;
www.trisome.org). Demographic data for study participants were derived from participant and
caregiver surveys and the annotation of medical records. Clinical variables relevant to this study
include karyotype, age at visit, sex, and body mass index (BMI).

A detailed description of blood processing and molecular quantification for -omic profiling
performed by the Human Trisome Project is described by Galbraith et al. and Waugh et al.5,15.
Briefly, PAXgene RNA Tubes (Qiagen) were used to collect blood samples from 304 T21 and 95
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D21 individuals. Whole-blood paired-end RNAseq was performed using Illumina NovaSeq 6000
instrument (Novogene). Reads were filtered for low quality, and adapters were trimmed. Reads
were aligned to the human reference genome (assembly GRCh38) using STAR2 and quantified at
the gene level to transcripts per million (TPM).

2.3.  Gene Set Enrichment Analysis

The HTP RNA-seq dataset, along with the sample labels of karyotype or BMI ≥ 30, was input to
the ‘gseapy’ python package (v 1.1.2) for gene set enrichment analysis. We utilized the same
pathway information as in the PLIER model: Human Molecular Signatures Database (MSigDB
v4.0) collections, C2 (curated gene sets), C6 (oncogenic signature gene sets), C7 (immunologic
signature gene sets), bloodCellMarkersIRISDMAP and svmMarkers. These parameters were used:
min_size = 5, max_size = 500, method = ‘signal_to_noise’, and permutation_num = 100,000.

2.4.  PLIER model applied to HTP RNA-seq data

A gene-by-sample (g-by-s) matrix is factorized with k latent dimensions into . In addition𝑍
𝑔・𝑘

𝐵
𝑘・𝑠

to the g-by-s matrix, PLIER considers an additional input of prior knowledge given by a
gene-by-geneset binary matrix of pathway/geneset membership, C (g-by-p, where p is the number
of pathways/genesets). PLIER enforces correspondence between the loadings Z and C by
penalizing the distance between Z and its pathway-based prediction C・U (where U is a p-by-k
matrix subject to optimization). An elastic-net penalty on the U coefficients ensures that each
factor utilizes a small fraction of the pathways/genesets. The entire problem is optimized
end-to-end using block coordinate minimization.

We determined the number of LVs (k parameter) by identifying the number of significant
principal components using the num.pcs function in the PLIER R package (v0.1.6). The input
expression matrix for the PLIER function was the HTP RNA-seq dataset, which was z-score
transformed using the rowNorm function for genes. We incorporated prior information using the
genesets defined in Section 2.2. The default settings of the PLIER function, which automatically
configures the L1 and L2 parameters, were used to generate the LV (n=117) by sample matrix.

2.5.  Regression model for latent variable-trait associations

We integrated gene-trait associations from the PrediXcan family of methods and PLIER LVs
through generalized least squares (GLS) regression10. The PrediXcan family of methods was
utilized for gene-based associations, including S-PrediXcan (for gene-tissue-trait associations) and
S-MultiXcan (which combines S-PrediXcan results across tissues and computes gene-trait
associations). Our GLS regression model computes an LV-trait association by fitting the model:
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where is a vector of S-MultiXcan gene p-values for a trait; is a binary indicator vector𝑦 𝑠 𝑠
𝑙

= 1

for the top 10% of genes with the largest weights for LV and zero otherwise; is a gene property𝑙 𝑥
𝑖

used as a covariate (default covariates defined in Pividori et al.10); are effect sizes (with as theβ β
0

intercept); and are the error terms with a multivariate normal distributionϵ ∼ 𝑀𝑉𝑁(0, σ2𝑹)
(MVN) where 𝑹 is the matrix of gene correlations. The model tests whether genes with high
weights in an LV are more strongly associated with the phenotype than other genes with small or
zero loadings. For more details, see Pividori et al.10 Consequently, we computed associations for
five BMI traits in PhenomeXcan16 (a large-scale resource with PrediXcan associations across the
UK Biobank) across seven omni-PLIER LVs of interest. Due to the limited number of traits, we
used nominal significance levels to assess the associations between traits and LVs.

2.6.  Penalized Regression

The LV-by-sample matrix, B, generated from PLIER was batch corrected for the sample source
variable using the Combat python package (v 0.20), and then LVs were z-score transformed.
Karyotype and clinical variables (age, sex, BMI) were considered for downstream analysis.

We trained elastic net models for two prediction tasks, first to predict D21/T21 using
‘LogisticRegressionCV’, and second to predict BMI using ‘ElasticNetCV’, both from the sklearn
(v 1.4.2) in python (v 3.11.0). The input dataset was split on the samples into 80% training and
20% testing sets. Using only the training dataset and 5-fold cross-validation, we tuned the α (ratio
of L1 to L2 penalization) and λ (penalization weight) parameters using grid search across different
ranges. We identified the optimal model parameters using balanced accuracy (T21/D21) or root
mean squared error (BMI) over the 5-folds from the training dataset, trained the full model using
the training dataset, and evaluated the performance on the testing dataset. Additionally, the
contribution of each LV was calculated based on the best performing model coefficients. To
establish the model's consistency and reproducibility, we repeated the procedure 1000 times. We
then averaged the coefficients of all features from these 1000 models and ranked the features
based on these averaged coefficients.

To establish a null model for comparison, we randomly shuffled the target labels
(karyotype or BMI) and followed the elastic net model training above to evaluate model
performance on the shuffled data. We repeated this procedure 1000 times to establish a null
distribution of model performances, then the distribution of the model's performance on the
original (unshuffled) data and the shuffled data were compared using a Kruskal-Wallis test.
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2.7.  Causal mediation analysis between molecular and clinical variables

The mediation R package (v4.5.0) was used to estimate the causal mediation effects of karyotype
on BMI mediated through LVs, with sex and age as covariates. Outcome and mediator models
were linear. We performed 100 Monte Carlo draws for quasi-Bayesian approximation (sims=100).

We performed causal analysis on selected LVs, karyotype, BMI, age, and sex. For causal
discovery, we utilized the constrained continuous-optimization method PC-NOTEARS with a
python implementation of the Peter-Clark algorithm for causal discovery (PC)17 (causal-learn,
v0.1.3.8) and a NOTEARS (Non-combinatorial Optimization via Trace Exponential and
Augmented lagRangian for Structure learning)18 implementation in the bioCausal R package
(v0.1.0)19, both with the edge constraints option available. The LVs were z-score transformed for
input. PC is a conditional independence testing algorithm that has been extensively benchmarked
and shows favorable performance. However, it may not orient all edges, and it does not estimate
effects. NOTEARS continuous optimization is applied to maximize the joint multivariate
likelihood of the data under the constraint that the inferred relationships form a directed acyclic
graph (DAG). Additionally, they provide causal effects. In recent benchmarking work we showed
that a combination of PC and NOTEARS is optimal for biological network discovery 20. In this
setting, the continuous optimization is restricted to those edges returned by PC.

We manually set an edge constraint matrix to guarantee that karyotype, age, and sex do not
have causal regulators. We ran PC with kernel-based conditional independence tests 21 and α=0.01,
followed by NOTEARS with λ=0.01, for a total of 20 times with bootstrapped samples. The
output adjacency matrices were averaged to increase the robustness of the output.

The top 10 ranked LVs from the elastic net model based on both predicting karyotype and
BMI were used to filter the significant mediating LVs, which were then used for causal graph
reconstruction and visualization. To validate the connection between karyotype, LV, and BMI, the
correlation between karyotype and BMI was calculated before and after regressing out mediating
LVs or non-mediating variables.

3.  Results

3.1.  Baseline gene expression and PLIER analysis

To establish a baseline comparison, we contrasted two alternative workflows for finding
associations between phenotypes and pathways using identical input data. In the first workflow,
we ran gene set enrichment analysis (GSEA) to identify genesets that were differentially regulated
when comparing disomic (D21) to trisomic (T21) individuals. This comparison showed that there
were no significant genesets (FDR < 0.25). We additionally compared individuals with a BMI ≥
30 to those with a BMI < 30 and also found that there were no significant genesets identified.
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In the second workflow, we applied PLIER to identify 117 LVs across the HTP cohort. We
performed differential analysis using the LV-by-sample matrix and found LVs that were
significantly up and down in both karyotype and BMI ≥ 30 (Figure 2A). Directly comparing the
results from GSEA and PLIER showed that the PLIER LVs were highly enriched for phenotype
associations, while the GSEA results were not, suggesting that the PLIER model identifies
functionally relevant molecular patterns in the data that are differentially associated with the
clinical variables of interest in this study, which are karyotype and BMI (Figure 2B).

Fig 2. (A) Differential latent variable analysis performed for karyotype (T21 vs. D21) and BMI (BMI ≥ 30
vs. BMI < 30). (B) Comparison between a GSEA pathway analysis p-values and p-values from the differential latent

variable analysis. Each individual p-value represents a hypothesized pathway phenotype association.

3.2.  BMI and karyotype associated latent variables

Given the strong signal found with the PLIER-identified LVs, we performed elastic net regression
to first predict karyotype and second to predict BMI using the LVs. In both cases, the elastic net
model showed robust predictive performance. We trained the model using 80% of the data and
evaluated the held-out 20%. We performed this procedure over 1,000 iterations, randomly
sampling to define training and test datasets. To establish the random model, we shuffled the
sample labels and performed the same procedure. As shown in Figure 3A, the average balanced
accuracy is 0.9 for predicting karyotype compared to the expected 0.5 for the random model. For
predicting BMI, the RMSE is 6.0 compared to 7.5 for the random model. A significant difference
was seen for both prediction tasks (Kruskal–Wallis test, p<0.001). We next evaluated the LVs by
comparing the average coefficient over the 1,000 iterations of the karyotype and BMI trained
models. As shown in Figure 3B, 9 out of the top 10 LVs are unique in both conditions (BMI and
karyotype), with LV56 being common to both. The top LV annotations are shown in Figure 3C.
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Fig 3. (A) Comparison of model performance of 1000 elastic net models for karyotype and BMI prediction from the
PLIER LVs in the HTP cohort. (B) Absolute value of LV coefficients between the karyotype and BMI models. The
top 10 LVs are annotated by color. (C) The top 5 pathways associated with the top 10 LVs from the karyotype and

BMI models are shown with the color representing model coefficients in the U matrix from PLIER.
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3.3.  Identifying causal mediators from highly ranked latent variables

Figure 4A illustrates the workflow for the causal mediation analysis, which was performed to
estimate the average causal mediation effects (ACME) of karyotype on BMI mediated through
each LV, considering age and sex as covariates. Average direct effect (ADE) and total effect of
karyotype on BMI were also reported from each causal mediation test. LVs with p-values < 0.05
from the mediation test were defined as mediator LVs. We then intersected the elastic net model
top 10 LVs for both karyotype and BMI models with the mediation analysis to determine which
LVs were both causally mediating BMI though karyotype and were predictive of these conditions
(Figure 4B). We identified 7 top-ranking LVs as causal mediators including LV37, LV76, and
LV3. Figure 4C shows the causal mediation analysis result for LV37 and LV3.

3.4.  Causal discovery prioritizes key causal mediators for BMI

To obtain a comprehensive understanding of the relationships between LVs and obesity in the HTP
cohort, we performed causal analysis with all 16 mediating LVs using PCnt, a hybrid causal
discovery method with no causal regulator constraints on karyotype, age, and sex (Figure 4A). A
subgraph with seven selected LVs and clinical variables from bootstrapped output was visualized
in Figure 4D. We found three direct causal regulators for BMI in the subgraph. LV3 and LV37 are
the two mediating LVs in the directed path from karyotype to BMI, while age is an independent
cause for BMI change. To validate the mediation effect of LV3 and LV37, we adjusted BMI for
each of its direct regulators and calculated the correlation between karyotype and BMI (Figure
4E). A decrease in the karyotype-BMI correlation after regressing out mediating LVs, as opposed
to regressing out age, adds to the confidence in prioritizing LV37 and LV3 as causal mediators.

3.5.  Mechanisms underlying mediating latent variables

The omnigenic framework allows for the inference of both core genes that affect phenotypes and
peripheral genes that propagate their effects across networks or LVs. In this study, we identified
LV37 as the primary mediator of BMI through karyotype. Glutathione peroxidase-1 (GPX1) is the
top gene in LV37. Interestingly, GPX1 has been previously implicated in obesity22 and DS23. The
relationship between karyotype and LV37 is mediated by LV43 (Figure 4D). MCL1 Apoptosis
Regulator, BCL2 Family Member (MCL1) is the top gene in LV43. MCL1 has known
involvement in apoptosis 24 and associations with acute myeloblastic leukemia (AML)25. Children
with DS have a higher risk than the disomic population for AML26, and MCL1 was previously
identified as a target for treatment in leukemias in DS27. Furthermore, glutathione metabolism was
previously implicated in modulating the efficacy of BCL2 inhibitors28.

To interpret these results in terms of known DS biology, we identified which LVs in the
causal network contained superoxide dismutase-1 (SOD1) with high loadings. SOD1 is located on
chr21 and has been implicated in metabolic regulation of body weight and insulin levels29.
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Moreover, an altered SOD1/GPX1 ratio is observed in T21, contributing to the hallmark oxidative
stress observed across DS phenotypes23. SOD1 had higher rankings in LV76 and LV3 compared to
the other 117 LVs (ranking 5th and 13th, respectively). Interestingly, LV76 and LV3 were on
causal pathways distinct from LV37. Furthermore, the position of SOD1 within these LVs suggests
a peripheral role in the network, propagating effects that ultimately influence core genes.

Fig 4. Causal relationship between molecular and clinical variables. A) Causal analysis work flow. B)
Volcano plot for average causal mediation effect (ACME) between karyotype and BMI for each latent variable (LV).
C) ACME through LV37 and LV3, average direct effect (ADE) and total effect between karyotype and BMI. D)

Causal sub-network with key LVs. Directed edges between nodes represent causal directions. Edge weight represents
estimated causal effect size. E) Scatter plot for karyotype and BMI before and after regressing out key LVs from BMI.

LV3 was another mediator of BMI through karyotype (Figure 4C-E). The gene sets with
the highest loadings for LV3 included those implicated in protein translation and a geneset of
chr21 genes, supporting the mediation of karyotype (Figure 2C). The gene with the highest
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loading, EEF1A1, encodes an isoform of the alpha subunit of the elongation factor-1 complex
responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. Ribosomal
dysfunction was previously implicated in a study on the impacts of high-fat diets on a DS mouse
model (Ts65Dn)30.

Notably, LV28, which mediates the LV34-LV3 relationship in a causal path between
karyotype and BMI (Figure 4D), also has EEF1A1 as the highest loading gene. Since the PLIER
methodology optimizes for independent LVs, the high loading of EEF1A1 implicates a distinct
process related to protein translation as mediating the relationship between karyotype and BMI.
By integrating PrediXcan gene-trait associations with LVs using a regression model, we identified
a significant association between this LV and obesity (p<0.05) (Figure 5). This finding supports
the involvement of LV28 with obesity in an independent analysis.

Fig 5. The association between latent variables (LVs) and BMI PhenomeXcan selected traits regressed against the
omni-PLIER LVs. The columns represent traits, including Body mass index, Non-Alcoholic Fatty Liver Disease

(NAFLD), Obesity, Type 2 diabetes, and Weight. A significant association is marked by an asterisk (*).

4.  Discussion

The omni-PLIER framework presented here demonstrates how a complex network of phenotype-
genotype/molecular trait interactions can be broken down into interpretable components,
facilitating hypothesis formulation and validation. Disentangling disease co-occurrence in the
context of T21 demonstrates the benefits of the omni-PLIER workflow.

A critical aspect of the omni-PLIER framework is leveraging the PLIER model to interpret
gene expression through its latent components. Standard gene expression analysis performs
statistical tests in gene space, such as differential expression (DE), and then conducts pathway
level analysis, such as GSEA. This process requires defining groups for comparisons (contrasts)
and uses predefined annotations to project gene level measurements into pathway/geneset space.
In contrast, the PLIER model first performs sample annotation-agnostic latent variable extraction
using pathways/genesets as prior information. Next, LVs are used to test the contrast groups and
directly evaluate the LVs, which we have done here by treating the LVs as modules.
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The PLIER approach offers several advantages. LVs capture multiple axes of variation
while reducing redundant gene expression patterns. For example, a large group of highly
correlated genes can dominate the top of a DE list. In the case of PLIER, this group is reduced to a
single variable, allowing other less dominant pathways to receive consideration. Additionally, the
association between LVs and pathways/genesets is conducted through elastic net regression, so
pathways “compete” to explain LVs. This reduces the number of redundant pathways/genesets, as
multiple ones are included in the model only if they provide additional information.

The combination of these effects results in a considerable increase in contrast group-
to-pathway associations inferred from the dataset, as we showed in Figure 2. We additionally
combined PLIER LVs with causal modeling, which offers two advantages. First, we find that
many LVs are associated with a clinical phenotype of interest. Here, we leverage this observation
to gain mechanistic insights into how T21 can drive BMI. Second, causal modeling, a multivariate
technique, optimizes a network representation of the data's conditional (in)dependent structure.
PLIER analysis alone cannot address independence in the LVs. Similar to non-negative matrix
factorization, PLIER LVs are not guaranteed to be orthogonal and are often associated with each
other. Causal modeling provides a mathematical framework to organize these associations and
infer directionality, though learning causal models from observational data remains challenging 20.

An important aspect of our study design is that one of the variables of interest is genotype,
which provides a valuable constraint for learning directed causal models. Specifically, we look for
molecular traits (PLIER LVs) that mediate the effect of genotype on BMI. The final result is a
simplified network structure that lends itself to interpretation and candidate variable selection.
While the number of LVs associated with clinical variables can be large, the combination of
univariate mediation analysis and multivariate PC-NOTEARS analysis identified targeted LVs. In
our case, three mediating LVs (two direct: LV37 and LV3, and one indirect: LV43).

From the limited number of mediating LVs, we provided evidence that they both support
existing knowledge within DS and obesity, and find support for novel mechanisms. It is important
to note that, within T21, the ground truth is unknown. Although many findings align with
biological knowledge, we cannot directly verify if this approach yields actionable mechanistic
insights. Defining suitable benchmarking scenarios that reflect the complexity of a real dataset
while providing some notion of ground truth will be the focus of future work.

A particular challenge that is endemic to this area of research is that even well annotated,
controlled, and deep molecular datasets are snapshots in time of a complex biological system. We
face the same challenge with the HTP dataset. Additionally, the HTP study is based entirely on
blood profiling, which lacks important molecular details from other tissues and cell types.

Despite these limitations, the omni-PLIER framework demonstrated a computationally
efficient workflow that synthesizes a large number of observations, prior knowledge, and
state-of-the-art algorithmic approaches into a unified analytic method.
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Alzheimer’s disease (AD), the predominant form of dementia, is influenced by several risk factors, 
including type 2 diabetes (T2D), a metabolic disorder characterized by the dysregulation of blood 
sugar levels. Despite mouse and human studies reporting this connection between T2D and AD, the 
mechanism by which T2D contributes to AD pathobiology is not well understood. A challenge in 
understanding mechanistic links between these conditions is that evidence between mouse and 
human experimental models must be synthesized, but translating between these systems is difficult 
due to evolutionary distance, physiological differences, and human heterogeneity. To address this, 
we employed a computational framework called translatable components regression (TransComp-R) 
to overcome discrepancies between pre-clinical and clinical studies using omics data. Here, we 
developed a novel extension of TransComp-R for multi-disease modeling to analyze transcriptomic 
data from brain samples of mouse models of AD, T2D, and simultaneous occurrence of both disease 
(ADxT2D) and postmortem human brain data to identify enriched pathways predictive of human AD 
status. Our TransComp-R model identified inflammatory and estrogen signaling pathways encoded 
by mouse principal components derived from models of T2D and ADxT2D, but not AD alone, 
predicted with human AD outcomes. The same mouse PCs predictive of human AD outcomes were 
able to capture sex-dependent differences in human AD biology, including significant effects unique 
to female patients, despite the TransComp-R being derived from data from only male mice. We 
demonstrated that our approach identifies biological pathways of interest at the intersection of the 
complex etiologies of AD and T2D which may guide future studies into pathogenesis and therapeutic 
development for patients with T2D-associated AD. 

Keywords: Alzheimer’s disease, type 2 diabetes, preclinical translation, cross-species modeling, 
systems biology  

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory 
loss, confusion, and behavioral changes. With more than 6.9 million people living with AD in the 
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United States1, $360 billion dollars in health and long-term care costs is expected to be spent in 
2024, and projected to rise to $1 trillion by 20501. As the prevalence of AD is expected to increase 
with the country’s aging population, developing effective therapeutics proven to treat or cure AD 
becomes urgent. Despite the rapid increase of AD cases, studies to develop therapeutics for AD is 
difficult2,3. This difficulty is in part due to the development of AD occurring decades before 
diagnosis4 and the multi-factorial nature of the disease5–8. 

In efforts to identify risk factors for AD it was observed that individuals with type 2 diabetes 
(T2D), a metabolic condition distinguished by chronic hyperglycemia, have an elevated risk in 
developing AD9,10. The development of T2D occurs decades before the diagnosis of AD and is 
reported to increase the risk of dementia11. In the United States, more than 39 million people have 
T2D, and 116 million have pre-diabetes12. This population of people diagnosed with or at risk for 
developing T2D may face a heightened risk for developing AD in light of the comorbidity of the 
diseases13,14. In clinical studies, common features of both AD and T2D include chronic 
inflammation15,16, increased insulin resistance17, and alterations to mitochondria and energy 
metabolism18,19. Despite multiple studies supporting a link between T2D and AD risk, the biological 
mechanisms by which this occurs are not well understood. 

A critical challenge in understanding the mechanistic links between these conditions is that 
evidence must be synthesized and translated between experiments in mouse models and human-
based clinical studies. Translating information from pre-clinical models to human clinical contexts 
is difficult due to discrepancies in interspecies physiology20, timeline of disease development21, and 
heterogeneity of the human population22. In cases of precision medicine, where complex 
dependencies between clinical phenotypes are difficult to deconvolute, such as is the case with AD 
and T2D, there is an important role for computational approaches to resolve this heterogeneity into 
testable mechanistic hypotheses to guide therapeutic development23–25. 

To overcome this challenge, we developed a computational framework termed translatable 
components regression (TransComp-R) to identify omics-based signatures in mouse models 
predictive of AD conditions in human26–28. The TransComp-R model works by projecting human 
omics data into a mouse principal component analysis (PCA) space, followed by linear regression 
of mouse principal components (PCs) against human disease outcomes to identify translatable 
mouse PCs. The gene signatures encoded within mouse PCs that best separate conditions between 
human AD and control outcomes can be interpreted using biological pathway analyses such as gene 
set enrichment analysis (GSEA). These informed pathways can then be validated through literature 
and experimental studies. 

 Here, we aimed to perform a cross-species analysis using publicly available mouse and human 
transcriptomic data to determine biological pathways by which T2D contributes to AD. We 
developed a novel extension of TransComp-R that integrated PCs from multiple murine disease 
models: AD, T2D, and co-occurrence of both diseases (ADxT2D) in a single computational model 
to compare the predictive power of different murine models of disease and identify mouse-specific 
features predictive of human AD status. We also modified the existing TransComp-R method by 
incorporating human demographic variables such as sex and age variables into our model to inform 
the selection of translatable mouse PCs and better position the insights from the cross-species model 
to specific human patient subsets, an important goal of precision medicine. Our method synthesizes 
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mouse models with multiple disease etiologies with human information to prioritize biological 
pathways affected in disease and prospectively evaluate therapeutic avenues from pre-clinical to 
clinical contexts with high-throughput omics data.  

2.  Results 

2.1.  Selected mouse and human transcriptomic data were pre-processed for TransComp-R 

Publicly available mouse (GSE152539)29 and human (GSE48350)30,31 datasets of microarrayed 
brain tissue samples were selected from Gene Expression Omnibus (GEO). The mouse dataset 
uniquely included conditions of solely AD, only T2D, and simultaneous occurrence of both diseases 
from the hippocampus. The mouse models consisted of six-month-old male AppNL-F/NL-F knock-ins 
responsible for heightened amyloid-beta in the brain (Swedish KM670/671NL, Iberian I716F) and 
wild type (C57BL/6J) mice were fed with either a high-fat diet (custom diet, 40% kcal from fat, and 
0.15% from cholesterol) or regular diet (CA-1, 18.8% kcal from fat) for 12 months (n = 3 per 
condition) for the respective disease groups. The human dataset contains demographic variables of 
sex and age along with the transcriptomic data of AD (n = 80) and control (n = 173) subjects from 
four brain regions: hippocampus, entorhinal cortex, superior frontal cortex, and post-central gyrus. 

To prepare the data for the TransComp-R framework, both mouse and human transcriptomics 
datasets were matched for one-to-one homologs. From homolog matching, 13,428 genes were 
identified, and all other genes that did not have a matching homolog pair were excluded from the 
analysis. The human data was next filtered for the hippocampal region to account for brain-region 
variability. Any subjects below the age of 65 were removed from the study to reduce age bias (Table 
1). Both datasets were individually log2 transformed and normalized by z-score per gene. 
 

  Table 1.  Summary of the processed human data across disease condition, age, and sex. 

 
 

2.2.  TransComp-R modeling separates human samples in mouse principal component space 

Here, we applied the TransComp-R methodology, with the incorporation of LASSO to select PCs 
most predictive of AD outcomes26. The TransComp-R model begins with the projection of human 
data into the mouse PCA space (Figure 1A), followed by the evaluation of mouse PC translatability 
through LASSO and generalized linear model (GLM) regression. The significant mouse PCs that 
can distinguish between human AD and control are interpreted by GSEA of the gene loading 
coefficients on each PC (Figure 1B). The biological pathways identified from GSEA can provide 
insight on human biology translated by mouse PCs, which can then be validated through follow-up 
experiments and literature review.  

Condition Age (years) Sex (%) Total Sample 
Size (n) (Mean ± SD) Female Male 

Control 82.7 ± 9.5 11 (46%) 13 (54%) 24 
Alzheimer’s Disease 84.3 ± 6.6 9 (50%) 9 (50%) 18 
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Figure 1. The TransComp-R computational approach. (A) Homolog gene pairs between human and mouse datasets 
are selected for analysis. Human samples are projected into mouse PCA spaces to combine mouse and human 
information. (B) Principal component translatability from mouse to human is determined by performing a GLM 
regression against human AD outcomes with PCs selected from LASSO. The loadings from the significant PCs are 
analyzed via GSEA to identify enriched biological pathways. 
 

Implementing this approach, mouse data were separated into AD, T2D, and ADxT2D with 
controls prior to constructing separate PCA models, such that three groups of PCs encoded 
transcriptomic variation between healthy controls and AD, T2D, or ADxT2D mice. To avoid 
overfitting the mouse data, a threshold of 80% cumulative variance explained was set for each PCA, 
and as a result, a total of five PCs per disease group were selected (Supplementary Figure S1). 
Next, the human data was projected on the mouse PCA space.  

We then trained four separate LASSO models to identify PCs most predictive of binarized 
human disease outcomes. Using the combined dataset containing rows of human and columns of 
T2D PCs, we incorporated progressively included human demographic variables associated with 
the respective human subjects in LASSO such that we examined: models of only mouse PCs, PCs 
with human sex, PCs with human age, and PCs with both human sex and age main effects. This 
approach allows us to include human demographic variables in a cross-species translation model, 
prioritizing not just mouse PCs, but also how mouse PCs capture the heterogeneity of human sex 
and age when predicting AD outcomes. The PCs were next selected based on 100 rounds of 5-fold 
cross-validation, where PCs with a significant LASSO coefficient in greater than half of the models 
were carried forward to the GLM. 

From the LASSO models, we found T2D PC2 and ADxT2D PC3 to be consistently selected 
across all four LASSO models, while T2D PC3 was selected from all models except for the model 
with only mouse PC main effects (Figure 2A). Additionally, AD PC5 and T2D PC5 were selected 
from the LASSO model with only mouse PCs as main effect variables, but not in other LASSO 
models that included human demographic variables. The PCs identified by the LASSO model, 
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which were encoded with transcriptomic variance, were next evaluated for their respective ability 
to discern between human AD and control status through GLM.  

 
Figure 2. TransComp-R identifies translatable PCs predictive for AD outcomes in human. (A) Selection of PCs 
using LASSO across 100 rounds of 5-fold cross-validation. The four LASSO models included terms with just mouse 
PCs, PCs and human sex, PCs and human age, and PCs and human age and sex. PCs with a coefficient frequency greater 
than 50 rounds of 100 were selected for the GLM and regressed against binarized human disease outcomes (significance 
defined by simple regression model p value). (B) A principal component plot of human scores on the selected mouse 
T2D PC2, T2D PC3, and ADxT2D PC3 separating human control and AD outcomes (C) Mouse PCs were separated by 
disease cohort, comparing the variance explained in mice to the variance in humans explained by mouse respective 
mouse PCs. 
 

To evaluate the predictability of the selected mouse PCs for human AD , we constructed GLMs 
with all selected PCs predicting AD status in humans, but these multi-PC models were not 
significantly predictive due to multi-collinearity (Supplementary Figure S2). As a result, we 
constructed GLMs for each individual PC regressed against human disease outcomes. We found the 
three mouse PCs consistently selected from LASSO to be predictive of human AD outcomes 
individually (T2D PC2 p = 0.0047, T2D PC3 p = 0.0042, and ADxT2D PC3 p = 0.0130) (Figure 
2A). We also note that although AD PC5 and T2D PC5 satisfied the non-zero frequency greater 
than 50 in the LASSO model with only mouse PCs, the regression against human outcomes was not 
significant, and was excluded from further analysis (AD PC5 p = 0.275, T2D PC5 p = 0.443). 
Consistent LASSO selection of T2D PC2, T2D PC3, and ADxT2D PC3 as significant PCs indicates 
the importance of including human clinical and demographic variables in the TransComp-R model 
to detect translatable cross-species biology while controlling for clinical covariates. 

We visualized the two T2D mouse PCs and one ADxT2D mouse PC that were identified by 
TransComp-R as predictive of human AD status (Figure 2B). In all three PCs, there was visible 
separation between the control and AD groups. We next compared the translatability of the selected 
mouse PCs to their ability to explain the variance in human data (Figure 2C). Comparing the 
proportion of PC variance explained in mouse to the variance explained in human by the same 
mouse PC, we found that T2D PC3 and ADxT2D PC3 explained a similar ratio, whereas mouse 
T2D PC2 explained almost double the variance in human by mouse than the mouse PCs alone. This 
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could imply that certain pathways represented by mouse T2D PC3 and ADxT2D PC3 were 
conserved consistently across mice and humans, whereas mouse T2D PC2 may had a more 
pronounced effect in capturing information cross-species. 

2.3.  Mouse principal components selected genes contribute to human disease separation 

Having identified three mouse PCs predictive of human AD versus control status from TransComp-
R, we were interested in isolating genes that were contributing to the separation between human AD 
and control subjects. Filtering for human genes ranked with the top and bottom 25 loadings within 
their respective PCs, we identified genes in the model predictive of AD and control in humans 
(Figure 3A-C). While no genes were shared across the top and bottom 25 ranked on the three mouse 
PCs, we observed distinct patterns of gene expression among human AD and control groups.  

 
Figure 3. The top and bottom 25 genes of translatable PCs. Z-scored AD human transcriptomic data were filtered 
by genes with the 25 largest and smallest scores on (A) T2D PC2, (B) T2D PC3, and (C) ADxT2D PC3. Human samples 
were sorted by their respective PC scores with the most negative (left) to the most positive (right). 

2.4.  Gene set enrichment analysis identifies inflammatory and estrogen signaling pathways 
enriched in human Alzheimer’s disease outcome 

We performed GSEA on the selected T2D and ADxT2D PCs and identified pathways associated 
with inflammatory and estrogen signaling. From the KEGG database, we identified “Complement 
and Coagulation Cascades” and “Cytokine-Cytokine Receptor Interaction” on T2D PC2 (Figure 
4A). On T2D PC3, the “Phosphatidylinositol Signaling System” was the only pathway found to be 
enriched for AD (Figure 4B). There were no significant KEGG pathways on T2D PC3. On the 
Hallmark database, we identified “Interferon Gamma Response,” “Interferon Alpha Response,” 
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“IL6 JAK STAT Signaling,” and “Inflammatory Response” to be enriched for AD conditions by 
T2D PC2 (Figure 4C). Interestingly in the Hallmark database, we identified “Estrogen Response 
Early” was enriched for the control group in T2D PC2 (Figure 4C), while “Estrogen Response 
Late” was enriched for AD in T2D PC3 and ADxT2D PC3 (Figure 4D-E). 

 
Figure 4. Enriched biological pathways identified from GSEA. Significant KEGG pathways from (A) T2D PC2 and 
(B) ADxT2D PC3. No significant pathways were enriched in T2D PC3. Significant Hallmark pathways were identified 
for (C) T2D PC2, (D) T2D PC3, and (E) ADxT2D PC3. Enriched pathways were defined by a Benjamini-Hochberg 
adjusted p value < 0.25. Pathways enriched for AD are displayed with a negative normalized enrichment score.  
 

Based on our findings with the estrogen pathways, we were interested in distinguishing the genes 
that contributed to “Estrogen Response Early” and “Estrogen Response Late.” From GSEA, we 
identified 76, 77, and 49 core enrichment genes contributing to the estrogen-associated pathways in 
mouse T2D PC2, T2D PC3, and ADxT2D PC3, respectively. Comparing the genes that were 
contributing to the estrogen response, we found 23 shared genes between T2D PC3 and ADxT2D 
PC3 (PDZK1, LLGL2, KLK11, TOP2A, PTGES, FARP1, NAB2, CISH, MEST, KIF20A, LTF, 
ISG20, IMPA2, DUSP2, PLAC1, PRKAR2B, TNNC1, OPN3, AREG, ATP2B4, AGR2, CALCR, and 
RABEP1), 2 genes between T2D PC2 and ADxT2D PC3 (DHCR7 and MAPT), 10 genes between 
T2D PC2 and T2D PC3 (TPBG, FKBP4, GLA, NXT1, CD44, PGR, RAB31, AFF1, TFAP2C, and 
TJP3), and 5 genes shared across all three mouse PCs (SULT2B1, OVOL2, SIAH2, FDFT1, and 
RBBP8) (Supplementary Figure S3). Additionally, 19 genes enriched in ADxT2D PC3, 39 genes 
enriched in T2D PC3, and 59 genes enriched in T2D PC2 did not overlap with any other mouse PCs.  

2.5.  Male mouse-derived principal components significantly stratify female Alzheimer’s 
disease and control groups in human subjects 

Expanding upon the potential sex-based predictability, we were curious to see if the model was able 
to distinguish sex and disease status by the PC scores. Here, we separated the scores of each mouse 
PC by human sex and AD status and found that mouse T2D PC2, T2D PC3, and ADxT2D PC3 
significantly stratified human female AD and control groups, and not male AD and control groups, 
despite the mouse data originating from all male mice (Figure 5A-C). The ability of these PCs to 
distinguish between female AD and control groups shows the model’s ability in identifying human 
sex-based differences in the context of disease development. This is supported by the significance 
of the separation between the two groups (p value < 0.05). 
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Figure 5. Comparison of sex and disease status among the translatable PCs. Scores of each PC were separated by 
female (F) AD, female control, male (M) AD, and male control for (A) T2D PC2, (B) T2D PC3, and (C) ADxT2D PC3. 
A Mann-Whitney pair-wise test corrected by the Benjamini-Hochberg method (FDR q value < 0.05) was used to 
determine the significance among the groups. The mean of the distribution is labeled with the interquartile range.  

3.  Discussion 

In this work, we aimed to uncover potential biological mechanisms that connected T2D as a risk 
factor for AD development using mouse and human transcriptomic data. An obstacle in 
understanding the links between these diseases, in which multifactorial mechanisms interact in 
humans and biological mechanisms are isolated in animal studies, is that information from mouse 
models and human-based studies must be synthesized to inform clinical and therapeutic decisions. 
Currently, translating information from pre-clinical models to patient-specific contexts is often 
difficult due to discrepancies in interspecies physiology20, timeline of disease development21, and 
heterogeneity of the human population22. To overcome these challenges, we innovated on 
TransComp-R to identify potential biological pathways from mouse PCs that are predictable for AD 
outcomes. In the TransComp-R workflow, we fused multiple mouse disease models in a single 
computational model together with human data containing demographic sex and age variables to 
predict outcomes in AD. With our computational model, we pinpointed potential biological 
pathways associated with AD, and identified sex-specific differences, despite the mouse disease 
models being representative of only males.  

We identified inflammatory pathways that may link T2D as a risk factor for AD development. 
These links have the potential translational utility in bridging mouse and human biology to 
understand and develop therapeutic strategies for AD with T2D exacerbating factors. The mouse 
T2D PC2 identified several pathways on both KEGG and hallmark databases. From KEGG, 
“Complement and Coagulation Cascades” and “Cytokine-Cytokine Receptor Interaction” were 
enriched for AD. From the literature, studies report complement activation to be associated with 
insulin resistance and T2D32–34. Likewise, high complement levels are contributed by neurons and 
glial cells in AD35,36. In both T2D and AD, cytokines are found to actively participate in the 
progression of disease37,38.  

Using complementary pathway databases, we identified “Interferon Gamma Response,” 
“Interferon Alpha Response,” “IL6 JAK STAT Signaling,” and “Inflammatory Response” pathways 
on mouse T2D PC2 enriched in human AD. Interferon gamma39 and alpha40, key cytokines in the 
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innate immune response and response to viral infections, are altered in AD. However, we notice that 
interferon gamma41 is more associated with T2D, whereas interferon alpha42,43 is found to be 
elevated in subjects with type 1 diabetes instead44. IL6 JAK-STAT signaling has been reported to 
impair the insulin-degrading enzyme, a protein found to be associated with obesity and T2D45. In 
AD, IL6 signaling has been linked with cognitive impairment and metabolic alterations46. 
Collectively, these results may indicate that chronic inflammation could lead to downstream insulin 
resistance and cognitive deficits47.  

Our results also indicate that estrogen signaling may serve as a potential connection between 
T2D and AD. From GSEA, ranked genes in ADxT2D PC3 and T2D PC3 both identified “Estrogen 
Response Late” as pathways enriched for AD, whereas “Estrogen Response Early” was enriched for 
human control by T2D PC2. Among the three PCs, 49 genes were enriched for ADxT2D PC3, 77 
genes were enriched for T2D PC2, and 76 genes were enriched for T2D PC2. Of these, 59 were 
enriched in T2D PC2, and 23 were shared between ADxT2D PC3 and T2D PC3, in which we 
compared with previously published literature to potential associations with AD and T2D. 
Associated with AD in the mouse T2D PC2, we identified MED13L48 and XBP149 connected to 
cognitive deficits, changes in mitochondrial metabolism (PMAIP1)50, inflammation (RASGRP1)51, 
and the expression of NRIP152 reduced in AD. Similarly, we identified genes associated with insulin 
resistance (FASN and FKBP5)53,54, genetic variances of RAPGEF155 and increased expression of 
AQP356 related to T2D development. Interpreting genes shared across ADxT2D PC3 and T2D PC3, 
both PCs, we found MEST57 reported to alter Wnt signaling in AD, and KIF20A58, a gene found to 
be differentially expressed in AD. Likewise in T2D, we found CISH59 to be involved with 
gluconeogenesis, whereas beta-cells were preserved with upregulated AGR260. 

There were five genes shared across the three mouse PCs identifying estrogen signaling as a 
potential biological pathway, which included SULT2B1, OVOL2, SIAH2, FDFT1, and RBBP8. Of 
the five genes, all but RBBP8 were reported to have connections to AD or T2D in literature. 
SULT2B1, part of the sulfotransferase family that catalyzes the sulfate conjunction of hormones and 
neurotransmitters, was found to be upregulated in AD rat models61. In a T2D study, SULT2B1 
overexpressed in the liver inhibited hepatic gluconeogenesis in two separate diabetic mouse models: 
one induced by high-fat diet, and another via leptin-deficiency (ob/ob)62. Other genes related to T2D 
include OVOL2 and SIAH2. The presence of OVOL2 was found to be linked with beta cell 
dedifferentiation, a mechanism linked with pancreatic dysfunction63, and SIAH2 deficiency 
improved glucose and insulin tolerance64. Related to AD, inhibition of squalene synthase (FDFT1) 
inhibited by squalestatin reduced cellular prion protein in ScN2a, SMB, and ScGT1 (prion-infected 
cell lines)65, and protection against amyloid beta-induced synapse damage66. Further examination 
of these genes may be of potential interest to connect biological pathways between T2D and AD. 

Interestingly in both diseases, previous studies report that estrogen may play a protective role in 
AD67 and T2D68. In AD, estrogen provides protection from amyloid-beta toxicity, a hallmark of AD 
pathology69,70. In females that experienced menopause, hormone therapy with estrogen has been 
found to reduce the risk of T2D onset68. Although studies indicate estrogen to be protective, others 
report that estrogen may be deleterious depending on the timing and onset of T2D71,72. These 
differences could be a result of the varying roles that different genes may have: some genes may 
contribute to disease when upregulated, while others may serve a protective role that can lead to 
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disease if downregulated. This variability in genes could further explain the possible observation of 
estrogen appearing to have both harmful and protective effects. Therefore, further investigations are 
encouraged to further understand the role of estrogen as a shared pathway between AD and T2D. 

Finally, we found that the mouse PCs defined by T2D (PC2 and PC3) and ADxT2D (PC3) were 
able to distinguish between female AD and control subjects. Despite the mouse groups being entirely 
male, our model detected sex-based differences in females. This is interesting because females are 
at a higher risk of developing AD than males73. Observing this result, as well as PCs showing 
enrichment for estrogen, may suggest that despite the widespread lack of female animals in 
preclinical research, our model is able to detect biological signals in male mice predictive of female 
human disease biology, thereby enhancing the retrospective utility of prior animal studies that fell 
short of equitable design. In the specific case of our models, the pathways we identified on the male 
mouse PC’s predictive of human female AD pathology implicate our model’s ability to translate 
transcriptomic signatures across human sex demographics. 

There are limitations and opportunities to expand this study. Few research groups have explored 
the T2D-AD axis, and as a result, there are limited sample sizes available for mouse and human 
omics data. The incorporation of additional studies that satisfy the criteria of our selection process 
into the model may improve the confidence of these results. Second, our TransComp-R model only 
considers homologous gene pairs shared across mice and humans. As a result, we potentially omit 
genes in pre-processing that may be involved in the development of AD. Additionally, the GLM in 
our model only regresses against control or AD status without the incorporation of transient phases 
such as mild cognitive impairment. Finally, the TransComp-R framework has the opportunity to 
consider other clinical variables that may predict disease outcomes. Some additional factors include 
information on race, clinical neuropathological scores for AD severity, and current T2D biomarkers. 
Considering these potential factors may further enhance future cross-species modeling. 

Our work expanded upon the existing TransComp-R framework to identify potential biological 
pathways in which T2D may exacerbate AD development. We show that mouse PCs from T2D and 
ADxT2D were most predictive of AD outcomes in human. Interestingly, mouse PC’s derived from 
mice with AD alone were not predictive of human AD, which may indicate that metabolic 
dysfunction encoded on the mouse T2D and T2DxAD PCs plays a more significant role in human 
AD biology than is typically accounted for. Indeed, these results encourage future applications of 
TransComp-R to overcome barriers of pre-clinical to human studies and identify affected biological 
pathways in AD or different diseases. The implications of this work for precision medicine can be 
expanded to other disease models that may be difficult to synthesize between pre-clinical 
experiments and clinical studies. This platform could synthesize various omics data from pre-
clinical and patient-specific data to rationally select potential pathways to target, which may further 
enhance clinical studies or possible therapeutic avenues.  

4.  Materials and Methods  

4.1.  Data selection 

Mouse and human datasets were selected with the criteria of matching hippocampal brain region, 
information containing AD and T2D conditions in the mouse dataset, human sample size greater 
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than 12 per condition, and at least sex and age information in the human dataset. Additionally, 
datasets derived from similar sequencing platforms were prioritized. Search terms on GEO included 
phrases such as “hippocampus Alzheimer’s disease in human,” “mouse Alzheimer’s disease 
hippocampus,” and “mouse diabetes hippocampus.” Additional searches included the term “gene 
expression” on the GEO repository.  

4.2.  Pre-processing and normalization 

Publicly available transcriptomic human and mouse data were obtained from the GEO repository 
using Bioconductor tools in R (GEOquery 2.70.0, limma 3.58.1, and Biobase 2.62.0)74–76. Before 
processing, all human subjects with a reported age below 65 years old were removed from the 
analysis to prevent bias from younger age groups. The imported datasets were log2 transformed, 
then human and mouse gene lists were matched for homologous pairs (orthogene 1.8.0)77. The two 
datasets were filtered for the hippocampal brain region. The genes were then internally normalized 
by z-score prior to TransComp-R modeling.  

4.3.  Cross-species modeling and variable selection 

We applied TransComp-R by conducting PCA on the mouse data separated in AD, T2D, and 
ADxT2D groups with controls, such that three groups of PCs encoded transcriptomic variation 
between healthy controls and AD, T2D, or ADxT2D mice. To avoid overfitting, the number of PCs 
in its respective group was limited to an 80% cumulative variance explained. Human AD and control 
subjects were projected into mouse PCA space. Mouse PCs associated with AD outcomes in human 
were selected by performing LASSO across 100 rounds of 5-fold cross-validation regressing the 
human positions in mouse PC space against human disease status. Four sets of LASSO models were 
trained, including main effects of mouse PCs, PCs and human sex, PCs and human age, and PCs 
and human age and sex. PCs with a coefficient frequency greater than 50 of the 100 rounds were 
selected for GLMs with individual PCCs and human clinical covariates regressed against human 
AD outcomes. The significance of the PC was determined if the model p value was less than 0.05. 

4.4.  Variance explained in human by mouse principal components 

Human data containing subject information and gene lists, as well as mouse PCs with a matching 
gene list, was used to calculate the variance explained by mouse in human. Using mouse PCs in the 
columns of Q, we projected the human data matrix X onto the PCs via matrix multiplication and 
calculated the percent variance of mouse in X explained by a given column qi of Q (with T 
representing the matrix transpose) as: 

VarExpHuman(qi) = qi
T!XTX" qi

∑ diag$QTXTXQ%
                                                     (1) 

4.5.  Identifying genes contributing to human separation by mouse principal components 

Genes contributing to the most positive and negative scores were identified by selecting loaded 
genes with the top 25 and bottom 25 scores in each of the selected PCs. The selected genes were 
then used to filter the gene list of the human dataset containing z-scored gene expression data. A 
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heatmap, with the human subjects, clustered by their scores from the TransComp-R model, and the 
50 total genes were visualized to compare gene expression between AD and control. 

4.6.  Gene set enrichment analysis 

GSEA was performed on the loadings of selected PCs from the GLM in R (msigdbr 7.5.1, fgsea 
1.28.0, and clusterProfiler 4.10.1)78–80. From the Molecular Signatures Database, two human 
collections to perform GSEA included the KEGG and Hallmark databases. The parameters for the 
minimum gene set size and the maximum gene set size were set to 5 and 500, respectively. The 
tuning constant, epsilon, was established at 0. For both KEGG and Hallmarks databases, enriched 
biological pathways were determined significant if the Benjamini-Hochberg adjusted p value was 
less than 0.25.  

4.7.  Sex-based comparison across principal component scores 

As an approach to compare predictability across sex, scores of selected PCs were separated by sex 
and disease categories. A Mann-Whitney pair-wise test was used to determine significance among 
four groups (AD females, control females, AD males, and control males). To correct for multiple 
comparisons, p values were adjusted with the Benjamini-Hochberg factor. An adjusted p value less 
than 0.05 was considered significant for the analysis.  
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Given the complexity and multifactorial nature of Alzheimer’s disease, investigating po-
tential drug-gene targets is imperative for developing effective therapies and advancing our
understanding of the underlying mechanisms driving the disease. We present an explainable
ML model that integrates the role and impact of gene interactions to drive the genomic
variant feature selection. The model leverages both the Alzheimer’s knowledge base and the
Drug-Gene interaction database (DGIdb) to identify a list of biologically plausible novel
gene-drug targets for further investigation. Model validation is performed on an ethnically
diverse study sample obtained from the Alzheimer’s Disease Sequencing Project (ADSP), a
multi-ancestry multi-cohort genomic study. To mitigate population stratification and spu-
rious associations from ML analysis, we implemented novel data curation methods. The
study outcomes include a set of possible gene targets for further functional follow-up and
drug repurposing.

Keywords: genomics; Alzheimer’s disease; feature importance; informatics; epistasis.

1. Introduction

Alzheimer’s disease is the most common cause of dementia, and its prevalence is rapidly
increasing due to extended lifespans worldwide.1 With this surge, there is an urgent need
to identify therapeutic targets, potential biomarkers, and risk predictive strategies.2 Lack of
success in recent clinical trials confirmed that AD pathology is very complex and a greater
understanding of the underlying mechanisms that contribute to aging and neurodegenerative
processes is critical.3 AD is considered to have a large genetic component and is highly herita-
ble.4 The polygenic nature of AD presents an obstacle to early diagnosis and risk prediction.2
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Research on AD is a national priority, with 6.5 million Americans affected at an annual cost of
more than $250 billion and no definitive cure available.5–7 This places a significant priority on
discovery and approval of therapeutics treatment for AD.7–9 Drug repurposing involves finding
new therapeutic uses for existing drugs that are already on the market.10 This can lead to sig-
nificant savings in both time and cost compared to developing new drugs from scratch. Since
the safety profiles of these drugs are already well-established, the process can bypass many
early-stage trials, speeding up the timeline for reaching patients in need.10 The Alzheimer’s
knowledge base (AlzKB) has been developed as a computational AD resource with a particu-
lar focus on drug discovery and drug repurposing.7 It integrates data from 22 diverse sources
that spans genes, pathways, drugs, and diseases related to AD to form a specialized open
source graph-based knowledge base to aid discovery of complex translational associations for
AD drug discovery. The nodes denotes entities (such as genes, pathways, drugs, and diseases)
while the edges represent semantic relationships between nodes (entities) such as “chemi-
cal binds gene”, “gene interacts with gene”, “gene regulates gene”, etc. This work leverages
the AlzKB’s information on gene-gene interaction with known AD genes.

Understanding the role and impact of gene interactions on disease phenotypes is increas-
ingly recognised as an essential aspect of genetic disease research.11 Most disease-gene associ-
ation methods do not account for gene-gene interactions, despite their crucial role in complex,
polygenic diseases like AD.2 Exploring the action, function, regulation, and control of proteins
can elucidate a clearer understanding of disease processes, cellular functions, and regulatory
networks.12 This is critical in advancing towards precision medicine, given the necessity of an-
choring therapeutic targets to a disease mechanism substantiated by genetic evidence.13 Many
of the key functions and life processes in biology are maintained to some extent by different
types of protein-protein interactions (PPIs). Knowledge graphs, such as AlzKB, provide a rich
heterogeneous network structure that leverages biological and molecular prior knowledge, to
uncover possible novel gene-gene interactions that could aid the drug repurposing quest for
AD. Drug-gene knowledge sources, such as Drug-Gene interaction database (DGIdb),14 also
provides a rich resource of known interactions between drugs and genes aggregated from mul-
tiple sources. This offers additional insights into the molecular mechanisms of drug actions
and gene functions, aiding in understanding the underlying biology of diseases and outlining
clinically relevant genes.

Machine learning (ML) models in combination with genome-wide association studies
(GWAS) have shown promise for identifying novel genes that confer AD risk.1 To this date,
AD GWAS across multiple populations have identified more than 80 loci, with the majority
studies conducted in European ancestry cohorts primarily due to large sample sizes.4 The best
known genetic risk factor is the inheritance of the ϵ4 allele of the apolipoprotein E (APOE )
gene.15 Other AD candidate genes have also been identified such as amyloid precursor pro-
tein (APP), microtubule-associated protein tau (MAPT ).2,15,16 Though ML models have the
potential to exploit complex genetic interactions and provide insights into AD pathology,
the heterogeneous landscape of AD etiology presents a key challenge.15 Given the complex
biomedical phenotypes that often characterize human diseases, it is becoming increasingly
more accepted that epistatic interactions between genes could be more prevalent than previ-
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ously assumed.17,18 Epistatic interactions can be defined as interactions between two or more
gene loci where the phenotype cannot be accurately predicted by simply adding the effects of
individual gene loci.19 Epistatic interactions have been detected in multiple GWAS of various
disease phenotypes, including AD20 and other neurological diseases.21,22 Due to gaps in the
current understanding of AD etiology and the complex interactions between genomic and other
factors that contribute to its heterogeneity, a multi-modal approach is needed to promote a
better mechanistic understanding of the disease.

We present an explainable ML model enhanced by PPI knowledge, specifically epistatic
interaction, to identify potential novel non-AD genomic variants with drug targets for further
investigation. The underlying hypothesis is that we can leverage the AlzKB and other knowl-
edge sources to pinpoint a set of biologically plausible genes by exploring those with existing
drug targets that exhibit a “gene interacts with gene” relationship with known AD genes in
the knowledge graph. A key novelty of the ML model is integration of biological knowledge
at every level to yield meaningful explanations for model performance and genomic variant
(single nucleotide polymorphism (SNP)) feature selection.

2. Methods

We present an ML explainable model, enhanced by the biological knowledge of epistatic in-
teraction, to identify novel genomic variants that could be biomarkers for AD novel gene-drug
targets. This framework (see Figure 1) consists of three key phases: (i) druggable gene priority
feature selection leveraging AlzKB and DGIdb, (ii) AD study sample data curation, and (iii)
ML feature selection and epistasis analysis.

Fig. 1. Flowchart of overall study design.

2.1. Druggable Gene Feature Selection using AlzKB and DGIdb

The underlying hypothesis of this study is that nominated gene targets for identification of
therapeutic targets for AD can be obtained from the search space of the non-AD genes (i.e.
genes not currently known to be implicated for AD) that exhibit a gene-gene interaction with
known AD genes in the AlzKB and have at least one drug target. The drug target condi-
tion is defined by the edges “chemical binds gene”, “chemical upregulates gene” and “chem-
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ical downregulates gene”. (Note that in this work, AD genes imply all protein-coding genes
directly linked to the “Alzheimer’s Disease” node in AlzKB. ) The “gene interacts with gene”
edges in AlzKB are based on protein-protein interactions.23 82 AD genes were connected to
1,805 non-AD protein-coding genes with drug targets, resulting in a total of 2,835 gene pairs.
The 82 AD genes served as the baseline model gene list for the subsequent ML model analysis.

2.1.1. Priority Druggable Gene Selection based on Drug-Gene Interaction Score

To further prioritize the list of clinically relevant gene selection derived from the AlzKB,
we define an additional gene druggability criteria based on the interaction score metric from
DGIdb.14 DGIdb is one of the most comprehensive resources incorporating knowledge about
genomic modifications, diseases, and therapeutic targets.14 The database utilizes experts cu-
ration and text-mining of an extensive list of over 40 drug, gene, and interaction sources to
extract and rank drug-gene interactions. The interaction score is used to rank the significance
and relevance of interactions between drugs and genes. It is calculated based on evidence
strength (i.e., the strength of the evidence supporting the interaction from various sources),
source credibility, interaction type, the number of supporting sources, and disease relevance.
Hence, we retained (AD gene, non-AD gene) pairs from the AlzKB subset, if and only if,
the maximum value of the interaction score of the non-AD gene exceeded a 75th percentile
threshold (i.e., 11.76 in this work). This yielded a final set of 44 AD genes interacting with
181 non-AD genes, a total of 285 gene pairs (see Figure 2(a) in Results section).

2.1.2. Gene to SNPs Mapping

Ensembl REST API is used to obtain the GRCh38 coordinates for the coding regions of each
gene.24 For each gene of interest, we extract all SNPs located within the regulatory regions
(100kb upstream and 5kb downstream). The baseline model feature set consists of the union of
all the SNPs mapped to each of the 82 AD genes. For the (AD, non-AD) gene-gene interaction
datasets, the SNPs feature set is mapped per AD gene, i.e., the SNPs of the AD gene along
with all SNPs belonging to each of the non-AD gene interacting with that AD gene.

2.2. AD Data Sample and Curation

The AD genotype data utilized in this study is drawn from the Alzheimer’s Disease Sequencing
Project (ADSP).25 The ADSP aims to identify genetic variants that influence the risk of AD by
sequencing the genomes of individuals (from ethnically diverse populations), focusing primarily
on AD case/control phenotypes derived from clinical data. The study sample was extracted
from the ADSP R4 v11 2023 release VCF dataset which originally had 346,763,200 variants
and 36361 samples.

Pre-filtering quality control was done at two levels: at the variant level, based on sequenc-
ing statistics, and at the sample level, based on duplicate samples. To ensure the reliability
of genetic analyses and focus on more impactful genetic variants, additional filtering steps
were performed to remove singletons and exceedingly rare variants. Singletons imply variants
present in only one individual, thus less likely to be relevant to the disease. For exceedingly
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rare variants, the total number of counted alleles is very small relative to the number of
samples. Thus, subsequent analysis focus on variants with enough occurrences to allow for
meaningful statistical analysis. Variants with low call rates (missing call rate > 0.01) and
samples with poor genotyping rates (missing call rate > 0.05) were also excluded. Only com-
mon variants (minor allele frequency (MAF) >1%) were retained resulting in a final variants
count of 9,520,653 and 34971 samples. Imputation of missing values was done using mode-
based imputation to avoid false positive signals as a small set of 400 variants had almost no
homozygous calls.

2.2.1. Population Stratification using Propensity Score Matching

The ADSP R4 v11 2023 release spans 40 study cohorts made up of 5,218 subjects of African
ancestry, 2,791 of Asian ancestry, 10,398 of Hispanic ancestry, and 16,191 Non-Hispanic White.
Thus, another key consideration of the genomic data preprocessing is to insure that any bias
due to population stratification is mitigated before quantitative analysis. Population strat-
ification (PS) refers to the presence of systematic differences in allele frequencies between
subpopulations in a population due to different ancestries. These differences can confound
genetic association studies if not properly accounted for, leading to false associations or mask-
ing true associations between genetic variants and diseases.26 A commonly used method to
address PS is principal components analysis (PCA). This approach uses genotype data (inde-
pendent loci) to compute the principal components, which are assumed to represent features
of genomic ancestry that capture PS. The principal components are then used as covariates in
subsequent analyses. However for complex ML analysis, usage of covariates is not applicable.
To control for PS in this study, we developed a novel method that adjusts the dataset for
ancestral heterogeneity by performing propensity score matching (PSM) on genomic PCA.

To obtain the PCA of the independent genomic loci, we extract a subset of the data based
on these parameters: MAF > 0.02, Hardy-Weinberg Equilibrium (HWE) exact test p-value
> 1e-7, Linkage Disequilibrium (LD) with a variant window count of 100, a step size 10, and
R2 cutoff of 0.1. Subsequently, we apply the PSM procedure using the top eight principal
components derived from the PCA computation. The PSM conducts a logistic regression on
the 8 PCA covariates to compute the propensity score. The matching is performed using psmpy
package.27 A key novelty of the matching process is that it ensures that the individual from
the control subset has its closest counterpart in the disease subset based on the computed
propensity score using k nearest neighbors matching. The final matched dataset (see Table 1)
obtained had 22560 samples equally distributed between AD case and control phenotypes.

Table 1. Demographic summary of cases and controls in the final matched dataset

Female
(%)

Harmonized
Age*

Race (%) Ethnicity (%)

White AA Asian Native/Amer. Ind. Other N/A Hispanic/Latino Non-Hispanic N/A

Cases 60.48 33 to 90+ 66.55 13.95 1.61 0.41 14.73 2.75 26.45 69.34 4.21
Controls 66.33 30 to 90+ 47.81 25.61 1.25 0.33 16.11 8.89 36.54 61.99 1.46

*Harmonized Age: age at onset for cases, and age at last exam for controls (Age values of 90 or more are coded as ”90+”).
Race: uses NIH Racial Categories. AA denotes Black or African American, Native/Amer. Ind. denotes Native Americans and
American Indian/Alaska Native.
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2.2.2. Conditional Splits of AD Data for Robust ML Analysis

The last phase of the AD data curation involved an intentional split of the derived matched
data so that the key fairness characteristics (mitigating population stratification) are not lost
during the ML phase. Building a robust ML classifier model requires training and validation
datasets as well as a test hold out set, that is not seen by the model during the training
and validation phase, to ensure model generalization.28 The two conditions that had to be
preserved and consistent across the splits into three datasets were: (i) Matched case/control
pairs and propensity score distributions, (ii) Distributions of significant SNPs reported by
recent GWAS studies. The set of significant SNPs is based on the 2023 Lancet meta review4

studies that listed 101 unique SNPs with a significance threshold p-value < 5e-8. The variant
filtering for the matched dataset was based on these parameters: MAF > 0.1, HWE exact test
p-value > 1e-7, LD with a variant window count of 100, a step size 10, and R2 cutoff of 0.8.
Note that after the filtering phase, only 30 of the 101 SNPs were present in the matched data.

We designed an optimization algorithm using the Optuna platform29 that satisfied the
specified conditions for dataset splits. This entailed running 1000 Optuna trials by sampling
different random seeds for training, validation and testing sets splits in equal ratio 1/3:1/3:1/3
for the matched case/control sample pairs. During each trial, 2 objectives with equal weights
were evaluated: (i) maximizing the median –log(p) of 30 SNP set across splits; (ii) minimizing
the absolute difference between the median –log(p) of 30 SNP. At the end of the optimization
procedure, the best trial datasets were selected as the training/validation and test sets for
subsequent analyses.

2.3. ML feature selection and Epistasis Analysis

2.3.1. ML AD Case/Control Classifier and Feature Importance

To identify genomic biomarkers that may indicate potential gene-drug targets, we assessed
their predictive power in constructing a ML model for AD case vs control classification using
the ADSP matched data. We performed 44 experiments for the gene-gene interaction sets
using its corresponding SNPs PPI input feature set. Let GAD = gAD1

, gAD2
, ..., gADl

be the
set of AD genes, where l=44. GnonAD = gAD1

, gAD2
, ..., gADm

be the set of non-AD genes,
where m=181. I ⊆ GAD × GnonAD denotes the set of interacting (AD, non-AD) gene pairs;
I = {(gADi

, gnonADj
) | gADi

∈ GAD, gnonADj
∈ GnonAD}, where |I| = 285. Let SNP(g) be the set

of SNPs for gene g. For each AD gene gADi
∈ GAD, its SNPs PPI feature set is the union of

gADi
and the SNPs of all non-AD genes gnonADj

that interact with gADi
, Input SNPs(gADi

) =

SNP(gADi
) ∪

⋃
(gADi

,gnonADj
)∈A SNP(gnonADj

). This is the input data for each of the 44 AD gene

PPI experiments. The baseline performance was determined by building the AD case/control
with the SNPs derived from all the 82 AD genes, G+

AD (see Section 2.1). Baseline SNPs =⋃
gAD∈G+

AD
SNP(gAD).

The AD case/control classifier model was implemented using both automated ML with
tree-based pipeline optimizer 2 (TPOT230) platform and the Extreme Gradient Boosting (XG-
Boost) algorithm.31 TPOT2 allows for the selections of the best-performing ML model for a
given problem in an agnostic manner. The classification pipelines are generated from the sub-
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set of ML methods and data pre-processing operators imported from the scikit-learn Python
library. During the optimization process, various combinations of pre-processing operator are
combined with ML methods into a pipeline in a tree-based manner. XGBoost is a tree-based
model implementation of the gradient boosting framework, which combines the predictions
of multiple weak learners (usually decision trees) to produce a strong overall model. For fair
comparison of both models, the hyperparameters tuning for Xgboost was performed using
Optuna method29 with the objective function set to maximize Receiver Operating Character-
istic - Area Under the Curve (ROC AUC) metric across hyperparameters search space of the
TPOT2 configuration. For both methods, the training and validation datasets were used for
tuning and optimization, and once the final model and hyperparameter set was determined,
the final performance was evaluated using testing set.

To identify which variants were driving the predictive power of each model, we performed
permutation feature importance (PFI) to compute the univariate contribution of each variant
(feature). Note that the PFI coefficient value, which estimates the main effect of each SNP,
was calculated exclusively using the testing dataset.

2.3.2. Epistasis Analysis

The aim of the epistasis analysis was to compute the level of strength of interactions between
SNPs that contribute to the disease, rather than individual SNPs or the additive effects of
SNP subsets. Exhaustive searches of epistatic interactions are computationally expensive due
to the high dimensionality of genomic datasets, We computed the epistatic interaction using
BitEpi, a parallelized bitwise algorithm, which allowed for fast, exhaustive computation of
higher-order interactions between SNPs.32 The genotypes are encoded in bytes (8-bits) with
the first 2 bits denoting the combination (e.g. 0/0 → 00, 0/1 → 01) and the remainder bits set
as 0. Bitwise operations are subsequently applied to combine genotypes of up to 4 SNPs to
create contingency tables and compute the entropy-based metrics (association power (β) and
interaction effect size (α)). The β metric reflects the combined association power of the SNPs
considered, while the α metric indicates the gain in association power due to the epistatic
effect of those SNPs. The α (also known as information gain ) metric quantifies the level of
strength of interaction of the SNP sets. For all SNPs ∈ I gene pairs, we computed α for each
individual SNP (18778 variants) and its two way interactions (176,297,253 SNP pairs) using
the matched testing dataset.

2.3.3. Pooling & Model Interpretation

The final phase of the learning framework pools the results obtained from both the epistatic
interaction analysis and the ML feature selection to determine a final set of potential genomic
biomarkers for AD novel gene-drug targets. Though the ML classification models are able
to assess the predictive power of a set of SNP variants to distinguish AD case from control
phenotype, it may fall short in the explainability phase of the key drivers. Feature importance
scores, as quantified by PFI coefficient scores, are based on main effects of each feature (SNP
in this case). The goal is to extract the list of top ranking SNPs exhibiting relatively strong
level of interactions and assess their predictive power in distinguishing AD case from control
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phenotypes. This will provide additional evidence of their effect on the ML classification
models for each AD gene and its set of interacting non-AD gene pairs.

3. Results and Analysis

Figure 2(a) illustrates the outcome of druggable gene feature selection phase which yielded
285 (gADi

, gnonADj
) pairs.

(a) Network of 285 (AD, non-AD) gene
pairs (gene interacts with gene) filtered by
75th percentile drug interaction score from
DGIdb. Green dots denote the 44 AD genes
while red, the 181 non-AD genes.

(b) Visualization of network of top 5 epistatic in-
teractions, as quantified by information gain using
α values for the main effect and 2-way interactions
from BitEPI in ADSP dataset.

Fig. 2. Visualization of (a) 285 (AD, non-AD) gene pairs, (b) SNPs that exhibit high epistatic
interactions.

Table 2 illustrates the performance of all the AD case/control classification experiments for
both XGBoost and TPOT2 models. Out of the 44 experiments conducted for each of the AD
genes (and its set of interacting non-AD genes), only the top 15 best performing experiments
(based on XGBoost ROC AUC) are listed in Table 2. See Table S1 in Supplementary file a for
complete details of all experimental results. From Table 2, we observe that the baseline model
(union of all SNPs from 82 AD genes) outperformed all the other models, as expected, with
64.23% for TPOT2 model and 63.65% for XGBoost. While the TPOT2 models seemed to have
the better ROC AUC performance overall, the pipelines were very complex and hard to inter-
pret. Hence, based on complexity/performance trade-off, we selected the XGBoost models for
further evaluation of the individual contribution of each SNP variant to overall model perfor-
mance. Among the best performing models, we observe that APOC1, APOE, and TOMM40

aSupplementary information is available at: https://github.com/EpistasisLab/PSB25_ADSP_GIG
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Table 2. AD case/control classification (XGBoost vs TPOT2) performance outcomes
for baseline (all AD genes) model, top 15 gene-gene interaction sets, and subset of
non-AD genes SNPs that exhibit strong epistatic interaction. Gene-gene interaction
sets are sorted by ROC AUC scores from the final XGBoost model.

Gene set # non-AD
genes

# SNPs ROC AUC Recall Precision Accuracy
XGB TPOT2 XGB TPOT2 XGB TPOT2 XGB TPOT2

All AD genes - 9539 63.65 64.23 57.53 58.38 59.70 60.17 59.35 59.87

APOC1 1 57 63.15 64.13 53.16 53.94 60.96 61.98 59.56 60.43
APOE 4 389 63.05 64.10 55.53 52.74 60.50 62.10 59.64 60.28
TOMM40 1 141 62.79 64.18 53.40 52.15 60.30 61.98 59.12 60.08
ESR1 53 3399 60.03 52.28 64.63 54.10 56.95 50.05 57.89 50.05
GSK3B 15 1199 59.59 46.17 62.95 0.00 56.60 0.00 57.34 50.00
APP 64 5256 59.29 49.15 64.04 54.10 56.95 50.05 57.82 50.05
CASP3 15 884 59.04 59.80 62.31 70.59 56.39 56.15 57.06 57.73
DPYSL2 2 269 59.02 59.19 63.38 64.92 55.98 56.21 56.77 57.17
BCL2 10 558 58.98 58.94 62.71 70.72 56.18 55.07 56.90 56.52
A2M 14 1112 58.67 59.39 59.76 61.99 56.33 56.70 56.72 57.33
BAX 7 589 58.53 59.04 61.46 45.96 55.53 50.00 56.12 50.00
WWOX 1 1320 58.46 58.67 63.54 64.12 55.79 56.31 56.60 57.18
INSR 5 468 58.43 59.35 61.89 61.09 55.82 56.77 56.45 57.29
CALM1 11 1878 58.42 59.82 61.14 71.14 55.57 55.28 56.13 56.80
TF 8 593 58.36 59.82 61.81 62.23 55.69 57.51 56.32 58.13

non-AD genes* 104 1867 60.06 49.94 65.21 53.67 57.05 50.01 58.06 50.01

High α SNPs† 6 56 62.92 63.65 60.90 59.15 59.19 60.01 59.45 59.87

*non-AD genes SNPs set selected based on α >0.003 from BitEpi.
†High α SNPs selected based on top 50 α from BitEpi.

PPI gene sets had relatively high performance, though the number of their corresponding
interacting non-AD genes SNPs was very small. This suggests that model performance could
be attributed mainly to SNP(gAD). The gene sets for ESR1, GSK3B, APP, and CASP3 had
a larger number of interacting non-AD genes (and SNPs) and performed relatively well (ROC
AUC of 59− 60%).

Figure 3 reports the PFI values for each top performing gene sets based on the XGBoost
models. For APOC1, APOE and TOMM40 gene sets, SNP rs7259620G has the largest main
effect followed by rs769450G and rs449647A, with PFI values of 0.084, 0.057, 0.09 respectively.
The rs769450G is a known intronic variant associated with AD risk33 . There are limited stud-
ies demonstrating the association of rs7259620G with AD risk.33,34 However, the rs449647A
(TOMM40 intronic variant) currently has no GWAS, functional or clinical annotation avail-
able. For the remaining 12 gene sets, none of the SNPs exhibited an informative contribution
of significant value, with all contributions being less than 1%. Though the performance of
these models is 58 - 60% ROC AUC which is relatively close in performance to the top mod-
els with quantifiable independent effects (APOC1, APOE, TOMM40 ). This suggests that the
driver for the model performance is likely due to the interaction effect of its variants.

Figure 4(a) presents the PFI values for the baseline (SNPs(G+
AD)) model. The SNP with

the highest PFI score, by a large margin, is the same set of three SNPs from the APOC1,
APOE and TOMM40 gene sets (Fig. 3). This provides additional evidence that the key driver
of model performance for those gene sets were most likely due to the already know AD risk
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Fig. 3. Permutation feature importance scores for top 15 gene sets from XGBoost model.

(a) Baseline model (all AD) (b) Non-AD SNPs (α > 0.003) (c) High α SNPs (Top 50)

Fig. 4. Comparison of XGBoost permutation feature importance scores for selected SNPs sets

genomic variants.
The epistasis interaction analysis outcome is presented in Table 3 for the top 15 SNPs

ranked by the information gain of its two-way interaction (α). (see Table S2 in supplemen-
tary file for complete list b). The effect size of the top two-way SNP combinations, while
slightly smaller, was comparable to the top individual SNP effect size indicating that non-
additivity could be a contributing factor in explaining AD genomic mechanism. From Ta-
ble 3, we observe that the strongest pair of interacting SNP variants with α=0.0066 was
(rs7259620G, rs769450G). These two SNPs also had largest main effects (α=0.0096, 0.0053)
and were two of SNPs driving ML performance for the top 3 gene sets (APOC1, APOE and

bSupplementary information is available at: https://github.com/EpistasisLab/PSB25_ADSP_GIG
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TOMM40 ) and baseline model (see Figs. 3, 4(c) and4(a)) (see Table S3 in supplementary
file for complete list of PFI values b). There were also SNPs from non-AD genes that had
strong interaction values: (rs6660157T, rs11164787T α = 0.0064), (rs3851269G, rs11164787T
α = 0.0062), and (rs12133386T, rs11164787T α = 0.006). These were all affiliated with the
non-coding region of the CDC7 gene. A visualization of the network of the 7 SNP vari-
ants involved in the top 5 interactions (see Figure 2(b)) reveals two groups of interactions:
CDC7 non-coding region, and APOE intronic with non-coding TOMM40 intronic regions.
The visualization also reveals slightly weaker interactions (α =0.0012) present for CDC7 non-
coding (rs12133386T, rs3851269G ) and (rs3851269G, rs6660157T ), and for TOMM40/APOE
(rs1305062G, rs769450G).

Table 3. Top 15 epistatic interaction results from BitEpi

SNP A SNP B αAB αA αB βAB βA βB Gene A Gene B

rs7259620 G rs769450 G 0.0066 0.0096 0.0048 0.5162 0.5096 0.5049 APOC1, APOE, TOMM40 APOC1, APOE, TOMM40
rs6660157 T rs11164787 T 0.0064 4.60E-05 0.0002 0.5066 0.5000 0.5002 CDC7 CDC7
rs3851269 G rs11164787 T 0.0063 0.0001 0.0002 0.5065 0.5001 0.5002 CDC7 CDC7
rs1305062 G rs7259620 G 0.0062 0.0053 0.0096 0.5158 0.5053 0.5096 APOC1, APOE, TOMM40 APOC1, APOE, TOMM40
rs12133386 T rs11164787 T 0.0060 3.90E-05 0.0002 0.5062 0.5000 0.5002 CDC7 CDC7
rs11166498 G rs11164787 T 0.0060 6.00E-05 0.0002 0.5062 0.5000 0.5002 CDC7 CDC7
rs12816187 A rs9652000 T 0.0060 0.0001 0.0004 0.5064 0.5001 0.5004 CELA1 CELA1
rs1305062 G rs449647 A 0.0059 0.0053 0.0036 0.5113 0.5053 0.5036 APOC1, APOE, TOMM40 APOC1, APOE, TOMM40
rs2473295 T rs2501275 C 0.0059 0.0006 0.0002 0.5065 0.5006 0.5002 CDC42 CDC42
rs2473296 C rs2501275 C 0.0059 0.0005 0.0002 0.5065 0.5005 0.5002 CDC42 CDC42
rs7529485 C rs11164787 T 0.0059 2.70E-05 0.0002 0.5061 0.5000 0.5002 CDC7 CDC7
rs1883421 C rs2501275 C 0.0059 0.0005 0.0002 0.5064 0.5005 0.5002 CDC42 CDC42
rs12116952 G rs2501275 C 0.0059 0.0006 0.0002 0.5065 0.5006 0.5002 CDC42 CDC42
rs1063116 A rs2501275 C 0.0059 0.0005 0.0002 0.5064 0.5005 0.5002 CDC42 CDC42
rs2501291 G rs2501275 C 0.0059 0.0006 0.0002 0.5065 0.5006 0.5002 CDC42 CDC42

Figure 5 illustrates the estimated AD distribution for using contingency table plots for
selected 2-way interactions with large α values. These plots display the number of samples
for each genotype combinations for the selected SNPs in both case and control cohorts. The
plots for the (rs7259620G, rs769450G) pair have substantially increased AD rate when both
SNP are homozygous for the alternative allele. More complex associations were observed for
(rs6660157T, rs11164787T) pair. Increased AD risk is observed when rs11164787T is homozy-
gous for the reference allele and rs11164787 is homozygous for the alternative allele. When
both rs11164787T and rs6660157T are heterozygous, and when rs11164787T is homozygous for
the alternative allele and rs11164787 is homozygous for the reference allele. Select genotypes
combinations for non-coding region of CDC42 also associated with increased risk of AD: when
both rs760923G and rs760923G are homozygous for the reference allele, when both rs760923G
and rs760923G are heterozygous, and when both rs760923G and rs760923G homozygous for
the alternative allele.

When the SNPs from non-AD genes of meaningful α values from epistasis analysis are
pooled to build the AD case/control classifier, it yields a comparable performance (60.06%
ROC AUC) for the XGBoost model (see last row in Table 2). However, the PFI result (Figure
4(b)) which quantifies the univariate contribution of each SNP (< 2%) to model performance
still fall shorts in explainability of model performance. This provides additional evidence that
the key contributors for model performance is beyond univariate contributions of these SNPs.
The non-additive effects of these SNPs could be a factor.
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Fig. 5. Genotypes combinations for selected SNP pairs with high information gain (α values).

4. Discussion

In this study, we have implemented an ML SNPs feature selection model that integrates
epistatic interaction and leverages the Alzheimer’s knowledge base (AlzKB), Drug-Gene in-
teraction database (DGIdb) to identify a list of biologically plausible novel gene-drug targets
for further investigation. The prior biological knowledge of gene-gene interactions in AlzKB
is based on protein-protein interactions.23 The model is validated using an ethnically diverse
study sample obtained from the Alzheimer’s Disease Sequencing Project (ADSP). A primary
goal of the ADSP is to further the understanding of the genetic architecture of AD and re-
lated dementias and subsequently, turn genetic findings into meaningful therapeutic targets.25

Given the complexity of the dataset fueled by the multiple ancestry in the sample population,
ML analysis directly applied could yield spurious associations that are not related to the dis-
ease mechanism but possible ancestry differences. Hence, a key contribution of this work is
the extensive novel preprocessing steps applied on the AD case/control ADSP genomic data
to mitigate of population stratification. We applied a novel method that combines PCA with
propensity score matching. The mitigation of system bias was validated by computing the
genomic inflation factor using an external GWS study analysis.

The robustness and generalization of the ML model outcomes is enforced by the conduct-
ing conditional splits of the datasets into training, validation and testing sets such that the
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matching benefits are not compromised. Conducting the model performance evaluation, fea-
ture selection, and epistasis analysis exclusively on the test set, increases the confidence in
the generalization and reproduciblity of the results obtained. We utilized two ML methods:
TPOT2, an automated ML tool that explores multiple classification algorithms using genetic
algorithm and selects the most optimal, and XGBoost, a scalable and highly effective tree-
boosting algorithm. Though the TPOT2 performed better overall, subsequent analysis was
done based on the XGBoost models, as they were relatively simple and efficient compared
to the complexity of the TPOT2 pipelines. Permutation analysis of top models revealed that
some SNPs of known AD risk genes are drivers of the performance. Specifically, for the best
performing models (all AD genes, APOE, APOC1, and TOMM40 ) the most informative vari-
ant is rs7259620G located 2KB upstream from the APOE gene region. GWAS with 17,480
European individuals found an association of the APOE rs7259620 G allele with increased AD
risk (OR=1.68, p=2x10-2333). The second high ranking SNP (rs769450G) is a common intronic
variant associated with AD risk. Several large GWAS have also found highly significant asso-
ciations with various traits including AD.33 For the rs449647A, a TOMM40 intronic variant,
there was no GWAS, functional or clinical annotation available. Understanding the functional
implications of rs449647A could potentially shed light on its contribution to disease risk or
progression. However, for other top performing models, the PFI analysis could not quantify
any SNP has having substantial univariate contribution to explain model performance.

To identify whether the genotype combinations can better explain phenotype variance
in these experiments, we ran an exhaustive pairwise epistasis analysis with BitEpi, a highly
scalable and efficient method. Among the combinations of genotypes with strong informative
contributions are previously identified SNPs from intronic and noncoding upstream regions
of APOE and TOMM40, and novel SNPs from noncoding regions of CDC7 (linked to APP
through gene-gene interactions in AlzKb) and CDC42 (linked to A2M through gene-gene
interactions in AlzKb) (see Table 3, Fig. 5). The non-AD gene SNPs haven’t been previously
reported in GWAS studies and do not have any functional or clinically relevant affiliations
with AD. Epistasis analysis uncovered some novel SNPs, not related to the AD genes, which
when pooled into the ML analysis demonstrated comparable predictive power to baseline all
AD genes model (see Table 2, Figure 4(b)). This suggests a biological plausible set of genes
for further investigation as potential drug-target genes for AD.

This work highlights the limitations of basic ML model interpretation methods, which tend
to focus solely on main effects while overlooking impact of epistatic interactions that may
contribute to model performance. Evaluating model-based 2- and 3- way PFI is an exhaustive
procedure and not scalable for high-dimensional genomic data. We propose that integrating
ML analysis with epistasis detection could address this challenge and facilitate advancements
in uncovering disease mechanisms and identifying potential therapeutic targets.”
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Adverse drug responses (ADRs) result in over 7,000 deaths annually. Pharmacogenomic studies have 
shown that many ADRs are partially attributable to genetics. However, emerging data suggest that 
epigenetic mechanisms, such as DNA methylation (DNAm) also contribute to this variance. 
Understanding the impact of DNA methylation on drug response may minimize ADRs and improve 
the personalization of drug regimens. In this work, we identify DNA methylation sites that likely 
impact drug response phenotypes for anticoagulant and cardiometabolic drugs. We use instrumental 
variable analysis to integrate genome-wide association study (GWAS) summary statistics derived 
from electronic health records (EHRs) within the U.K. Biobank (UKBB) with methylation 
quantitative trait loci (mQTL) data from the Genetics of DNA Methylation Consortium (GoDMC). 
This approach allows us to achieve a robust sample size using the largest publicly available 
pharmacogenomic GWAS. For warfarin, we find 71 DNAm sites. Of those, 8 are near the gene 
VKORC1 and 48 are on chromosome 6 near the human leukocyte antigen (HLA) gene family. We 
also find 2 warfarin DNAm sites near the genes CYP2C9 and CYP2C19. For statins, we identify 17 
DNAm sites. Eight are near the APOB gene, which encodes a carrier protein for low-density 
lipoprotein cholesterol (LDL-C). We find no novel significant epigenetic results for metformin. 

Keywords: Pharmacogenomics; Pharmacoepigenetics, Biomarkers, DNA methylation, Electronic 
Health Records, Biobanks, Personalized Medicine.* 
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1.  Introduction 

Adverse drug reactions (ADRs) lead to hundreds of thousands of deaths and hospitalizations each 
year.1 Pharmacogenomic (PGx) studies show that genetic differences contribute to individual 
variance in response and are a source of ADRs because metabolic differences lead to higher-than-
expected or lower-than-expected drug levels.2 However, genetics alone do not explain all variance 
in drug response. Epigenetic modifications, such as DNA methylation (DNAm), have also been 
implicated.3 For example, clopidogrel resistance is associated with DNA methylation near the genes 
BTG anti-proliferation factor 2 (BTG2), proteoglycan 2 (PRG2), vault RNA 2-1 (VTRNA2-1), and 
Period Circadian Regulator 3 (PER3).4 While our DNAm profile may affect how we respond to many 
drugs, knowledge of specific interactions that allow prediction of variable drug response is limited.3 
Identifying methylation biomarkers for individual drugs may facilitate the reduction of adverse drug 
reactions. 
 PGx Genome-Wide Association Study (GWAS) reports have elucidated which genes and single 
nucleotide polymorphisms (SNPs) are associated with diverse drug response phenotypes.5 However, 
these studies are limited by the fact that they do not account for epigenetic modifications. 
Pharmacoepigenetic (PEGx) studies, such as epigenome-wide association studies (EWAS) identify 
associations between DNAm and drug response phenotypes. However, these studies are limited both 
in number and statistical power. For example, there is currently one EWAS study on statins (linking 
statin use and type 2 diabetes, N = 6,820) in the EWAS catalog.6,7 There are no studies on warfarin 
or metformin response.7 
 Instrument variable (IV) approaches are an alternative method to elucidate likely-causal 
interactions between an exposure (DNAm) and an outcome (drug response) from observational data.8 
Two sample methods allow researchers to integrate summary statistics from PGx GWAS studies 
with methylation quantitative trait (mQTL) data from separate sources to elucidate likely causal 
pharmacoepigenetic effects.9 Moreover, analysis frameworks that use multiple IVs are less prone to 
reverse causality and artifacts arising from linkage disequilibrium (LD) patterns.8 Mendelian 
randomization (MR) IV methods allow for the detection and elimination of pleiotropic markers while 
quantifying the direction and magnitude of causal effects (Figure 1).8 This is key for PEGx studies 
because DNAm patterns change over time, making it challenging to dissect the cause, consequence, 
and confounding of PEGx effects. 
 This approach allows for -omics integration with existing PGx GWAS, identifying causal 
biomarkers such as DNAm. However, many existing PGx GWAS studies are underpowered (median 
sample size = 1220) for a robust statistical analysis.10 While PGx GWAS statistics are more abundant 
than PGx EWAS reports, they still comprise only 10% of all GWAS entries in the GWAS catalog 
from 2016 to 2020.10 A novel alternative method uses Electronic Health Record (EHR) data to 
generate GWAS summary statistics (Figure 1).10 Biobank-generated summary statistics can have a 
large population size (UKBB N ~ 200,000) and have been shown to reflect PGx associations 
previously reported in traditional GWAS studies, albeit with weaker associations due to nosier 
phenotypes.10 
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Fig. 1. Schematic of study design. A) mQTLs are taken from GoDMC in source 1 (left) and EHR 
records are combined with genetic sequences from the UKBB to generate summary statistics for 
data source 2 (right). B) Sources 1 and 2 are combined in a two-sample MR-IVW framework to 
determine the effect of DNAm on drug response (lightning bolt). The necessary assumptions are 
shown in dashed lines. 

 
 We demonstrate the efficacy of this approach in identifying DNAm sites that affect individual 
response to anticoagulant and cardiometabolic drugs. First, we analyze the effect of DNA 
methylation on warfarin response. Individual genetic differences of several genes, including vitamin 
K epoxidase reductase complex subunit 1 (VKORC1), cytochrome P450 family 2 subfamily C 
member 9 (CYP2C9), and member 19 (CYP2C19) are known to affect warfarin response.11,12 
Methylation near VKORC1 has also been associated with differential warfarin response.13 We also 
investigate the effect of DNA methylation on response to cardiometabolic drugs. Specifically, 
b-Hydroxy b-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (common name: statins) and 
metformin. Individual response to these drugs is variable and is measured by low-density lipoprotein 
cholesterol (LDL-C) and total cholesterol (TC) levels for statins, and hemoglobin A1c (HbA1c) for 
metformin.14,15 Some of this variance is explained by genetic factors such as variants in the 
apolipoprotein E (APOE) gene for statins and solute carrier family 2 member 2 (SLC2A2) for 
metformin.16,17 In addition, metformin use is associated with genome-wide changes in DNAm levels, 
and a recent Swedish twin study revealed several DNAm sites associated with statin use.18,19 
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 We report 69 total DNAm sites with an effect on warfarin response. Eight are near the gene 
VKORC1, and 2 are near CYP2C19 and CYP2C9. Most (48) DNAm sites (also called CpGs) are not 
near known pharmacogenomic genes but are located on chromosome 6 near the HLA gene family. 
In the statin analysis, we find 8 CpGs near the apolipoprotein B (APOB) gene in addition to several 
CpGs near genes previously associated with cholesterol levels such as RING finger protein 39 
(RNF39).40,41 We find no novel significant epigenetic results for metformin. These findings allow us 
to better contextualize the role DNA methylation plays in individual drug responses. 

2.  Methods 

2.1.  Genome-wide association summary statistics from electronic health records 

Genome-wide association summary statistics were generated from the EHRs of ~200,000 
participants of the UKBB,20 as described in Sadler et al. 2024.10 Briefly, longitudinal medication 
patterns were analyzed to identify drug type, dose regimens, and drug adherence as well as baseline 
and post-treatment biomarker levels. We used the following pharmacogenetic phenotypes: average 
warfarin daily dose over the past five prescriptions (N = 4,554; McInnes and Altman), 21 cholesterol 
response to statins (N = 26,669 for TC, N = 17,063 for LDL-C),10 and HbA1c response to metformin 
(N = 4,119).10 GWAS on these quantitative traits were conducted with the REGENIE software 
(v3.2.4) in a whole-genome regression model for genetic markers with a minor allele frequency 
(MAF) > 0.05.22 SNPs in high LD regions were removed along with those not passing LD pruning 
at r2 < 0.9.8 

2.2.  Two sample summary statistic instrument variable analysis 

We conducted two sample summary statistic instrument variable analyses using an inverse variance-
weighted framework.8 We used the SMR-IVW software (v1.0) as it allows two-sample IVW analysis 
with GWAS summary statistics.8 The settings were: p-value (p) of mQTLs < 1´10-6, LD r2 < 0.01, 
cis window range of 1,000 kilobases (Kb), and the LD matrix was included in causal effect 
calculations. The tolerated allele frequency difference for each SNP between datasets was 0.1. A 
Steiger filter was implemented as described in Hemani et al. 2017 with a threshold set at -2, 
equivalent to a one-sided t-test p-value threshold of 0.023.23 This strict threshold diminished the 
likelihood of including reverse causal relationships. We used mQTL data from the GoDMC database 
(N = 32,851), which contains > 170,000 whole blood DNAm sites with at least one significant cis-
mQTL (p < 1´10-6, < 1 Mb from the DNAm site, N > 5,000).24 The LD reference panel was from 
the 1,000 Genomes Project.25 

2.3.  Multiple hypothesis correction 

To correct for multiple hypothesis testing, we used a false discovery rate (α = 0.05) calculated by the 
Benjamini-Hochberg method from the statsmodels.stats.multitest (v0.14.2) package for Python.26  
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2.4.  Sensitivity to pleiotropy and heterogeneity analyses 

All CpGs that passed the significant threshold were also pruned to ensure a minimum of 3 
instrumental variables. The remaining CpGs underwent sensitivity analysis. We first calculated a 
Cochran’s Q statistic using the Metagen R package (v4.9.6),27 and the corresponding Chi-Squared 
distribution p-value using the R Stats Chi-Square function (v3.6.2).28 We removed any CpGs with 
significant evidence of heterogeneity (p < 0.05). 8 Next, we calculated an F-statistic (F) and removed 
any results with evidence of weak instrument bias (F < 10). 8 We tested for evidence of horizontal 
pleiotropy by analyzing the intercept values of an MR-Egger regression using the 2SMR package 
(v0.6.6).23 Any CpGs showing significant evidence of pleiotropy (p < 0.05) were removed.  

3.  Results 

3.1 Warfarin MR-IVW results 

Genome-wide hypothesis correction revealed 76 CpGs which exceeded the significance threshold. 
Of these, 69 CpGs showed no evidence of pleiotropy, weak instrument bias, or heterogeneity and 
were considered for further analysis (Figure 2A, Table 1). Eight of these CpGs were cis (within 0.5 
megabases (Mb)) to the gene VKORC1 (Figure 2A). Four had a positive beta (β) value (causing a 
higher warfarin dose) and 4 had a negative β (causing a lower warfarin dose), with absolute value 
effect sizes ranging from |β| = 0.314 to |β| = 0.799. The average absolute-value effect size was "β#" 
= 0.554 with an average standard error (SE####) of 0.046. One CpG (cg15404570) was cis to CYP2C9 
and CYP2C19 and had a positive effect size β = 0.597 and SE = 0.127. Forty-eight CpGs (70% of 
all significant CpGs) were located on the short arm of chromosome 6, between 28.3 and 31.1 Mb 
(Figure 2B). These signals are cis to genes encoding the tripartite motif (TRIM) protein family and 
the HLA protein family (Figure 2B). Twenty-seven of these CpGs had a positive effect size and 21 

Table 1. Results of warfarin GWAS integration. For brevity, CpGs are displayed together if 
they are within approximately 1 Mb. When multiple CpGs are grouped, the CpG information 
represents the signal with the highest absolute value effect size. Full results are available on 
GitHub: https://github.com/smithdelaney/PGx-MR-from-EHR-GWAS. 

CpG Location Number of CpGs β  SE 
cg06617202 1: 205038787 2 0.289 0.071 
cg03935872 2: 17935919 1 0.349 0.086 
cg06197503 3: 36422406 1 -0.286 0.063 
cg10961486 4: 69959004 1 0.145 0.035 
cg27585641 5: 73024506 2 0.336 0.077 
cg15601071 6: 30078080 48 -0.768 0.183 
cg13455759 9: 119655874 1 0.128 0.032 
cg07530925 10: 90564681 1 -0.200 0.050 
cg15404570 10: 96943130 1 0.597 0.127 
cg03708694 11: 44489577 1 0.407 0.093 
cg05555928 11: 63887634 1 0.110 0.027 
cg08374890 16: 31117067 8 0.799 0.030 
cg04077706 19: 43442484 1 0.128 0.030 
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had a negative effect size ("β#" = 0.204, SE####)  = 0.0475). Absolute value effect sizes ranged from |β| 
= 0.057 to |β| = 0.768. 

 
Fig. 2. A) Display of 69 CpGs found in the warfarin analysis. CpGs with a positive effect, or 
higher warfarin dose, (β > 0) are shown in green, and those with a negative effect (β < 0) are 
shown in red. Nearby genes are also annotated. B) Zoomed-in representation of the short arm 
of chromosome 6. 

Pacific Symposium on Biocomputing 2025

462



 
 

 

3.2 Statin MR-IVW results 

GWAS integration results revealed 8 significant CpGs with LDL-C reduction as the outcome and 
10 additional CpGs for TC reduction. Following quality control testing, 17 CpGs were further 
analyzed (Figure 3, Table 2). The 8 CpGs derived from the LDL-C analysis (47% of all CpGs) 
were cis to the APOB gene, which encodes an LDL-C carrier protein. All effect sizes for these 8 
CpGs were negative, with an average absolute value of "β#" = 0.088, and an average standard error 
of SE#### = 0.018. In this case, a negative β means that statin efficacy is increased since the clinical 
goal of the therapeutic is to reduce cholesterol levels. The absolute value effect size ranged from 
|β| = 0.079 to |β| = 0.108. Two CpGs (cg05337441, cg24309555) were previously annotated for 
TC or LDL-C in the EWAS catalog.7 There were 3 CpGs (cg06028875, cg16908633, cg23752348) 
on the short arm of chromosome 6 which were cis to the RNF39 gene and near the HLA gene 
family (within 1 Mb) (Figure 3). All 3 had a negative effect ("β#" = 0.075, SE####  = 0.016). Five CpGs 
were on chromosome 10, four of which had a positive effect size ("β#" = 0.059, SE#### = 0.015). The 
magnitude of these effect sizes ranged from |β| = 0.031 to |β| = 0.158. Additional genes associated 
with TC CpGs were DPY30 domain-containing proteins 1 and 2 (DYDC1/C2), erythroblast 
transformation-specific (ETS) proto-oncogene 2 (ETS2), tetraspanin 14 (TSPAN14), and 
peroxiredoxin-like 2A (PRXL2A) (Figure 3). 

Table 2. Results of statin GWAS integration. For brevity, CpGs are displayed together if they 
are within approximately 1 Mb of each other. When multiple CpGs are grouped, the β is the 
absolute value average and the CpG name and location represent the signal with the highest 
absolute value effect size. Full results are available on GitHub: 
https://github.com/smithdelaney/PGx-MR-from-EHR-GWAS. 

 
CpG Location Number of CpGs β SE 

cg00673290 2:21266727 8 -0.108 0.020 
cg06028875 6: 30042295 3 -0.087 0.019 
cg02750471 10: 82179740 5 0.158 0.031 
cg15892280 21:40180000 1 0.088 0.019 
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Fig. 3. Display of 17 CpGs found in the statin analysis. CpGs with a positive effect (β > 0) are 
shown in green and those with a negative effect (β < 0) are shown in red. A negative effect in 
this study means increased statin efficacy. Nearby genes are also annotated. 

Discussion 

In this study, we provide evidence that DNA methylation plays a causal role in individual response 
to warfarin and statins. Probing PEGx effects using EWAS studies provides correlative associations 
between DNAm sites and drug response phenotypes. Our approach uses existing information to infer 
directional, causal, and quantitative effect estimates. In our warfarin analysis, 8 CpGs were cis to 
VKORC1. Warfarin’s mechanism of action targets VKORC1, and genetic variations in VKORC1 are 
known to modulate warfarin’s efficacy.11,12 Recent findings also implicate cis DNA methylation near 
VKORC1 in warfarin response.13 In addition, we find 8 CpGs cis to APOB in the statin analysis. 
APOB encodes an LDL-C carrier and has 187 GWAS associations in the GWAS Catalog with LDL-
C and 125 with TC.29 Two of the CpGs we identified also had previous annotations for LDL-C or 
TC.7 Thus, our approach captures the known effects of DNA methylation on drug response. We also 
show that in the case of metformin, no novel significant DNA methylation effects were detected. 
This could be because there is no biological effect or because the GWAS is underpowered.10 
 Our method depends on the assumptions underlying IV analysis. The first assumption is that 
there is a sufficiently strong relationship between the instrumental variables (SNPs) and the exposure 
(DNAm). The second assumption (independence) is that instrumental variables are independent of 
confounders. The third assumption (exclusivity) is that any effect the SNP has on the outcome is 
mediated only through the exposure (no horizontal pleiotropy). The first assumption can be tested by 
selecting highly significant mQTL effects (p < 1´10-6) and performing a weak instrument bias test 
(F-statistic).8 The second and third assumptions are violated when results show evidence of 
heterogeneity, horizontal pleiotropy, or the presence of invalid instruments. We use Cochran’s Q test 
to detect evidence of heterogeneity, and the presence of invalid instruments.30 MR-Egger regression 
intercepts detect the presence of horizontal pleiotropy.9 In addition, these assumptions may not hold 
in the presence of LD between the mQTLs and SNPs. The risk of ‘LD-hitchhiking’ leading to 
spurious results is managed by selecting CpGs with a minimum of 3 instrumental variables, filtering 
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out SNPs in high-LD regions, pruning for independence, and using a Steiger filter for directionality.8 
In our analysis, we excluded 7 warfarin CpGs and 1 statin CpG which did not pass all these controls. 
However, the possibility of horizontal pleiotropy can never be fully excluded.  
 Our results show DNA methylation CpGs cis to warfarin pharmacogenomic genes, VKORC1, 
CYP2C9, and CYP2C19.11,12 Therefore, individuals’ methylation profiles may account for some of 
the variability in warfarin response not captured in pharmacogenomic models. The 8 VKORC1 CpGs 
had effect sizes in both positive and negative directions, indicating that while the presence of some 
CpGs reduced the average daily dose of the patient, others likely led to an increase. Seventy percent 
(70%) of effect CpGs were located near the HLA and TRIM genes on chromosome 6 (Figure 2B). 
The CpGs were closest to several TRIM genes (TRIM26, TRIM27, TRIM31, and TRIM40). These 
genes encode proteins that have varied and widespread functionality. DNAm may regulate the 
expression of TRIM genes, which have many downstream effects, possibly including modulating 
blood clotting pathways. However, recent work on DNA methylation and gene expression shows 
that methylated sites can act distally to influence the expression of neighboring genes.3,24,31,32 Thus, 
an alternative hypothesis is that these CpGs impact the expression of the HLA genes, which are 
interlaced with TRIM genes on chromosome 6 (Figure 2B). Genetic polymorphisms in HLA genes 
have previously been associated with blood disorders including acquired hemophilia A, venous 
thrombosis, immune thrombotic thrombocytopenic purpura, and sickle cell disease.33-36 Therefore, 
the pre-existing association between HLA genes and blood diseases may manifest through altered 
warfarin response, which is affected by DNA methylation near these genes. 
 Our statin results show that causal CpG identified in this study are not located near known 
pharmacogenomic genes. Instead, 47% of CpGs are cis to APOB, which encodes an LDL-C carrier 
(Figure 3). These CpGs all have an average effect size of "β#" 0.087, all with a negative direction, 
meaning that methylation in this region causes a decrease in measured LDL-C in response to starting 
statin treatment. Therefore, the presence of these CpGs causes improved efficacy of statin treatment. 
 Another apolipoprotein gene, APOE, has over 20 variant annotations for statin efficacy in the 
PharmGKB pharmacogenomic database.37 Both APOB and APOE are carriers of LDL-C and other 
lipoproteins. While APOB does not have PharmGKB annotations for statins, there are several genetic 
variants within the gene associated with LDL-C and TC levels in the GWAS Catalog, as discussed 
above. Moreover, genetic variation in APOB has been associated with familial 
hypercholesterolemia,38 and levels of APOB are biomarkers of atherogenic particle concentration in 
the bloodstream (Figure 4).39 Since DNAm near the APOB gene causes decreases in LDL-C in 
response to statin treatment, these CpGs can be biomarkers of statin response, and the study of these 
CpGs can increase our understanding of atherogenic disease. 
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Fig. 4. The statin pharmacodynamic pathway and APOB-LDL-C pathway. Purple indicates statin, 
small molecules are in green, and light blue shapes represent protein-coding genes with HGNC 
standard names. Orange ‘Me’ probes represent DNA methylation occurring near the gene coding 
region (created with BioRender.com; adapted from PharmGKB37). 

 
 We propose a potential model of how DNAm near APOB may affect LDL-C levels in response 
to statin therapy (Figure 5). The 8 CpGs we identified near APOB are in the gene regulatory region. 
Five CpGs (cg16306978, cg16723488, cg24309555, cg25071744, cg25123895) are in the APOB 
promoter region, one in an enhancer region (cg05337441), and one (cg00673290) in a CpG island 
within the regulatory region. Generally, DNAm within the regulatory region of a protein-coding gene 
is associated with decreased expression.54 Reduced APOB can lead to an increased ratio of LDL-C 
to APOB.55-56 With statin therapy, LDL receptor expression increases as intracellular hepatic 
cholesterol decreases (Figure 5). Since APOB binds to the LDL receptor, more LDL-C is cleared 
from the plasma per APOB particle, leading to a greater decrease in measured LDL-C (Figure 5). It 
could also be that an individual with reduced APOB levels stores more LDL-C in other cholesterol-
carrying particles. If these particles are equally reduced with statin therapy, then folks with higher 
APOB levels will have higher post-treatment LDL-C levels. Moreover, cholesterol metabolism is an 
intricate pathway, and regulatory mechanisms are still being studied, so additional experiments 
would be required to test these hypotheses. 
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 The statin results also show that the gene RNF39 had 3 nearby CpG sites. RNF39 is involved in 
inflammatory responses throughout the body and has a SNP that has previously been associated with 
free cholesterol levels.40,41 We find 2 CpGs near DYDC1/C2. These genes are primarily studied for 
their role in spermiogenesis, but several SNPs in the gene have been previously associated with 
hypertension.42,43 One CpG was near the TSPAN14 gene, which is associated with Niemann-Pick 
disease, a genetic disorder that leads to the inability to break down fats, such as cholesterol and lipids, 
inside cells.14 Another CpG was near ETS2, which is a transcription factor. It regulates the 
transcription of proteasome assembly chaperone 1 (PSMG1) which has two SNPs associated with 
LDL in the GWAS catalog.7 Finally, the CpG with the largest absolute effect size (|β| = 0.158) was 
located near gene PRXL2A. This gene interacts with ST3 beta-galactoside alpha-2,3-sialyltransferase 
(ST3GLA4) which has 48 SNPs associated with LDL-C and 32 SNPs associated with TC in the 
GWAS catalog.29 These associations provide plausible pathways by which DNA methylation may 
impact response to statin treatment. 

 
 We observed that 5 of the LDL-C CpGs (cg16306978, cg24309555, cg25035485, cg25071744, 
cg25123895) and 3 TC CpGs (cg01528321, cg02750471, cg04043334) identified in the statin 
analysis (8 total, 47%) had previous annotations for inflammatory disease (inflammatory bowel 
syndrome (IBD) and Crohn’s disease) in the EWAS catalog.44 A comprehensive EWAS study has 
published approximately 3,633 CpGs associated with either disease, which make up about 2.1% of 
all CpGs in GoDMC.44 The number of overlapping annotations is significantly (p < 1x 10-8) greater 
than what is expected due to random chance alone. These findings, in combination with the warfarin 

Fig. 5. Lower APOB expression may lead to decreased LDL-C levels after statin 
therapy due to an increased ratio of LDL-C to APOB (created with BioRender.com). 
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CpGs located near HLA genes, suggest that there are shared pathways between immune response and 
response to common cardiovascular and clotting disorder treatments that may be influenced by 
DNAm patterns. This mirrors other recent findings that are beginning to dissect how these two 
systems interact outside of the epigenetic space.45-47 However, since the HLA gene region has high 
genetic diversity, it is possible that the signals detected reflect differences in ancestry and prevalence 
of HLA haplotypes. Thus, we also examined the overlap between the statin DNAm sites, and those 
annotated for inflammatory diseases, excluding the sites in the HLA region (non-HLA sites: 
cg16306978, cg24309555, cg25035485, cg25071744, cg25123895) and found that the overlap 
remained significant (p = 0.052). 
 This study had several limitations. First, we analyze whole-blood DNA methylomes. DNA 
methylation is tissue-specific and much of the pharmacokinetic and pharmacodynamic activity 
occurs in the liver. While some genes have similar DNA methylation patterns across blood and liver, 
this assumption cannot be generalized to all genes48. This means there may be tissue-specific signals 
we are not detecting. However, blood DNA methylation signal is an accessible diagnostic tool and 
DNA methylation sites from blood samples remain biologically relevant signals. Moreover, blood 
DNAm samples have been used to elucidate effects on other phenotypes, such as Alzheimer’s and 
Type 2 Diabetes.49-51 Another limitation is that both the UKBB and GoDMC sample predominantly 
European ancestries, which means there may be signals associated with non-European ancestry that 
are not being detected in this study. Thus, we plan to conduct a replicate analysis using the more 
genetically diverse biobank, All of Us.52 Finally, we measure the warfarin average daily dose over 
the past 5 days, which may be a less robust metric than the patient’s clotting time or time in the 
therapeutic range.57  
 While the longitudinal drug response model presented by Sadler et al. minimizes the risk of 
spurious signals unrelated to drug response,10 it would still be useful to test whether any of the statin 
signals are replicated in a study of cholesterol levels alone. In addition, the signals identified in this 
study are directional from DNA methylation to the outcome of drug response. However, we know 
that some drugs and diseases induce DNA methylation changes. Therefore, it would be interesting 
to conduct an explicit bi-directional MR study to identify reverse-causal effects.53 Moreover, we are 
learning that DNA methylation does not just regulate the nearest genes but has a more complex 
regulatory mechanism that may underlie these results.3,24,31,32 Finally, it is difficult to compare effect 
sizes generated in this analysis with genetic effects identified through GWAS, because of the 
different assumptions and experimental set-ups. However, this work does demonstrate that 
epigenetic considerations are important for advancing our understanding of drug response and ADRs. 
In summary, we address the problem of insufficient and correlative studies linking DNA methylation 
and individual drug response with a statistical inference approach. 
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CDK4/6 inhibitors such as palbociclib block cell cycle progression and improve outcomes
for many ER+/HER2- breast cancer patients. Unfortunately, many patients are initially
resistant to the drug or develop resistance over time in part due to heterogeneity among
individual tumor cells. To better understand these mechanisms of resistance, we used mul-
tiplex, single-cell imaging to profile cell cycle proteins in ER+ breast tumor cells under in-
creasing palbociclib concentrations. We then applied spherical principal component analysis
(SPCA), a dimensionality reduction method that leverages the inherently cyclical nature
of the high-dimensional imaging data, to look for changes in cell cycle behavior in resistant
cells. SPCA characterizes data as a hypersphere and provides a framework for visualizing
and quantifying differences in cell cycles across treatment-induced perturbations. The hyper-
sphere representations revealed shifts in the mean cell state and population heterogeneity.
SPCA validated expected trends of CDK4/6 inhibitor response such as decreased expression
of proliferation markers (Ki67, pRB), but also revealed potential mechanisms of resistance
including increased expression of cyclin D1 and CDK2. Understanding the molecular mech-
anisms that allow treated tumor cells to evade arrest is critical for identifying targets of
future therapies. Ultimately, we seek to further SPCA as a tool of precision medicine, tar-
geting treatments by individual tumors, and extending this computational framework to
interpret other cyclical biological processes represented by high-dimensional data.

Keywords: Manifold learning; Dimensionality reduction; ER+/HER2- Cancer.

1. Introduction

Despite promising results of CDK4/6 inhibitors for treating ER+/HER2- breast cancer, 10-
20% of patients show initial drug resistance, and all patients develop resistance over time.1

Resistance is thought to arise from the heterogeneity of molecular states in individual tumor
cells, and one potential source of this cell-to-cell heterogeneity is the cell cycle. In recent years,
single-cell studies have revealed that the cell cycle can show remarkable flexibility.2 For ex-
ample, individual tumor cells may progress through cell cycle phases with variable durations,
or show altered expression levels of core cell cycle regulators.3–5 The ability of cells to upreg-
ulate or downregulate certain protein signaling pathways is referred to as cell cycle plasticity.

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Prior studies of ER+/HER2- cells —both in a cell culture model and from a primary tumor
sample— have demonstrated how molecular differences allow individual tumor cells to evade
CDK4/6 inhibitor therapy through alternative cell cycle paths.6 Therefore, to mechanistically
understand how resistance develops, it is important to develop robust analytical methods for
characterizing the underlying manifolds along which cell cycle trajectories proceed.

Commonly, to more easily detect trends in increasingly high-dimensional single-
cell data, dimensionality reduction methods are used. Dimensionality reduction tech-
niques transform high-dimensional data into a low-dimensional space such that the
most valuable information, or original structure, of the data is preserved. Manifold
learning, a nonlinear approach to dimensionality reduction, is often applied to high-
dimensional data as a tool for visualization, data exploration, and statistical analysis.

Fig. 1. Pipeline for generating cell cycle mani-
fold from single-cell images. T47D tumor cells were
treated with increasing concentrations of palbociclib. 4i
was then performed using a panel of cell cycle-specific
markers, resulting in a tabular dataset after raw image
processing and segmentation. Because individual cells
are not synchronized, individual cells span a range of
cell cycle states. SPCA was then applied to estimate a
hypersphere manifold representation of the cell cycle in
a lower dimensional space. Each dot represents an indi-
vidual tumor cell in a specific cell cycle state.

In this study, we collected and an-
alyzed single-cell data of T47D, a
model human ER+/HER2- breast
cancer cell line,7 that we introduced
to varying doses of palbociclib, one
of three FDA-approved CDK4/6 in-
hibitors (Fig. 1). Complex molec-
ular signatures were obtained for
each cell by performing iterative in-
direct immunofluorescence imaging
(4i)8 using 20 cellular features rel-
evant to proliferation. The result is
a high-dimensional dataset that we
can broadly interpret as a represen-
tation of the cell cycle. We seek to re-
duce the high-dimensional represen-
tation and visualize it in a more in-
terpretable space. The selection of an
appropriate method for characteriz-
ing cell cycle data is a necessary and crucial step for both biological and statistical inter-
pretations. However, it is difficult to assess the performance of these methods as no fixed
statistics exist to directly compare the effectiveness of one method over another. Thus, we
must biologically interpret the results using known cell cycle markers and trends.

Here, we present spherical principal component analysis (SPCA) as an effective tool for
modeling the underlying cell cycle structure of single-cell ER+/HER2- breast cancer cell line
data (Fig. 1).a By assuming the data lie on a reduced spherical space, SPCA helps pre-
serve gradual cell state transitions and cell-to-cell heterogeneity. Using trajectory inference
approaches, we demonstrate how SPCA captures cyclical patterns of cell cycle regulators not

aAll code, additional experimental details, and full supplemental feature plots can be found at https:
//github.com/purvislab/SingleCell_HyperSphere. Data are available at https://doi.org/10.
5281/zenodo.13621367.
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found in potential of heat-diffusion for affinity-based transition embedding (PHATE) or prin-
cipal component analysis (PCA) models. Structural differences in spherical manifolds across
treatment conditions also point to driving factors of CDK4/6 inhibitor response, which can
help identify downstream clinical targets involved in treatment-resistant pathways.

2. Related Work

Manifold Estimation
Manifold learning is often a necessary step of high-dimensional data analysis. One branch of
manifold learning techniques is manifold estimation. Manifold estimation approaches iden-
tify a low-dimensional embedding that preserves local and global structures without imposing
assumptions about the structure of the data. PHATE is an example of a manifold estima-
tion approach that has been found to be successful in producing clean, denoised models of
biological data and preserving continuous trajectories.9 PHATE captures local and global re-
lationships by computing neighborhood relationships between cells, performing diffusion using
local affinities, and projecting diffusion distances to create a two- or three-dimensional embed-
ding. These embeddings can be used for hypothesis generation and visual comparison of cell
cycle progressions.6,10 However, because PHATE and other manifold estimation approaches do
not assume an underlying structure, no statistical inferences can be made on these embeddings
or between manifolds produced by different datasets.
Manifold Approximation
Other techniques, called manifold approximation, assume data to lie on an underlying struc-
ture. Thus, fitted values and error metrics can be computed. The most commonly used method
for manifold approximation11 is PCA.12 PCA identifies features that are responsible for the
most variance and projects the linearly transformed data onto a subspace of fewer dimensions.
PCA has a long history of use in the biological field and requires low computational power, but
is sensitive to noise, making it suboptimal for use with heterogeneous data such as single-cell
data.13,14

Other manifold approximation methods assume data to lie on a more complex surface.
SPCA, a variant of PCA, is one such method that assumes data lie on a sphere in a lower
dimensional space.15 For a dataset X reduced using SPCA, a spherical manifold M is param-
eterized by a radius r, a center c, and an affine subspace V . First, the subspace V where the
optimal sphere lies is estimated from the input dataset X. A loss function is minimized to
identify an optimal sphere by reducing the number of points that lie outside or inside the
surface of the sphere. The optimal center and radius are estimated from the minimization of
the loss function. From the parameters c (center), r (radius), and V (subspace), a projection
for X onto the sphere is defined. SPCA has previously been applied to cell cycle data of retinal
pigmented epithelial (RPE) cells and has been found to fit the data better than other meth-
ods.10,14 However, a deep dive of the exact cell cycle trends was not explored, nor were SPCA
manifolds of different datasets, such as cells of different treatment conditions, compared.
Trajectory Inference
Trajectory inference methods can be applied to high-dimensional, single-cell datasets to quan-
tify the progression of dynamic cellular processes.16 Revelio, a method that leverages PCA,
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revealed single-cell transcriptomic data to follow a 2D circular trajectory.17 However, this
method seeks to remove cell cycle effects whereas we aim to study them and the response of
proteomic states to forms of perturbation. Revelio also orders cells according to gene markers
of cell state transitions and is suboptimal when applied to cells that follow different dynam-
ics.18

One robust method for capturing dynamic cellular processes and representing noisy, single-
cell data is Slingshot, a curve-based trajectory inference method.19 Slingshot identifies single
or multiple branched trajectories using two main steps: (1) constructing a minimum-spanning
tree between clusters of data to identify a global lineage structure and (2) fitting smooth
principal curves to each lineage. Orthogonal projections of each data point onto the curve
assign a pseudotime, representing cell cycle progression, for each cell.

Slingshot also allows for various levels of supervision and flexibility in the choice of up-
stream data analysis methods. At a minimum, Slingshot requires data that has been clustered
and reduced, a list of cluster labels, and specification of the dimensionality reduction method
performed. Additional supervision can be achieved by specifying a start cluster, an end cluster,
or the number of lineages to infer. Previously, Slingshot has been found to identify smooth
cell cycle trends in PHATE embeddings.6 The flexibility of Slingshot and its success with cell
cycle data makes it an ideal method for comparing cell cycle paths inferred using different
manifold learning approaches.

3. Methods

Experimental Details
T47D ER+/HER2- breast cancer cells were obtained from the ATCC (catalog number HTB-
133) and maintained at 37°C with 5% CO2 in RPMI-1640 media supplemented with 10% fetal
bovine serum (FBS). Cells were plated on a glass 96-well plate coated with poly-L lysine at
25,000 cells per well. Cells were allowed to adhere for 24 hours at 37°C with 5% CO2 in RPMI-
1640 media with 10% FBS. After 24 hours, media and non-adherent cells were removed. RPMI-
1640 media with 10% FBS was added containing vehicle, or palbociclib at 0, 1, 10, 100, or 1,000
nM. Cells were incubated at 37°C with 5% CO2. After 24 hours of treatment, cells were fixed
with PFA, and iterative indirect immunofluorescence imaging (4i) was performed as described
below. Single-cell proteomic measurements for samples were obtained using 4i by adapting the
protocol previously described in Refs. 6,8. Following image and data preprocessing, cell cycle
phases were annotated using a three component Gaussian Mixture Model (sklearn v0.24.1) on
the log-transformed measurements of DNA content, cyclin A, and cyclin B1, as these features
were previously shown to minimally represent the cell cycle.20 The full and close-up 4i images
used for this study can be seen in Fig. S1, S2a.
Manifold Approximation with SPCA
SPCA15 was implemented in Python to identify the ci, ri, and Vi of the sphere that charac-
terizes cells from each treatment condition i. Three dimensions were chosen to aid in visual
comparison, but other methods, such as the identification of an elbow plot,15 exist to identify
the optimal lower dimension of a dataset. To identify a shared subspace VG for comparison
of all treatment conditions on a uniform scale, we applied SPCA using the complete dataset.
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20-feature cell signatures from each treatment condition i were projected onto spheres with
center ci and radius ri in subspace VG. Orientations of plots were selected based on the best
visual separation of phases or treatment conditions.
Manifold Comparisons with PHATE and SPCA
We visually and statistically compared the performance of the spherical manifolds approxi-
mated by SPCA to three-dimensional manifolds produced by PHATE and PCA. PHATE9 was
performed in Python (phate v1.0.11) on the complete dataset of all treatment conditions. A
k-nearest neighbor graph was constructed to create the three-dimensional PHATE structure
using the following hyperparameters: n components = 4, n jobs = -1, knn = 200, and t = 12.
The hyperparameters were tuned according to hyperparameters selected for previous PHATE
models of cell cycle data.6,20,21

Python was also used to perform PCA12 (scikit-learn v1.3.2). PCA was run using the
complete dataset such that all treatment conditions can be evaluated in the same space. To
produce a three-dimensional visualization, n components, the number of features to extract in
the reduced dataset, was set to three.
Cell Cycle Trajectory Inference Using Slingshot
To assess the recapitulation of temporal trends, we applied trajectory inference to infer cell
cycle paths. Slingshot was performed in R (slingshot v2.6.0) using each of the manifold learning
approaches (PHATE, PCA, and SPCA) as the upstream dimensionality reduction method.
Slingshot trajectories were inferred through cells from each of the treatment conditions. We
provided cell cycle phase annotations (G0, G1, S, G2/M) as cluster labels and specified G0 as
the start cluster. Pseudotimes were normalized to a scale of 0 to 1 to allow for the comparison
of lineages on a uniform scale. To identify feature expression trends over pseudotime, locally
estimated scatterplot smoothing (LOESS)22 curves were fit using Python (v2.1.2).

4. Results

Recapitulating the Cell Cycle
From the 20-feature proteomic signatures and cell cycle phase labels (G0, G1, S, G2/M)
of 64,502 T47D cells, we generated tabular datasets of cells from each treatment condition
(n0=10,366, n1=10,675, n10=13,051, n100=15,688, n1000=14,722). Each row describes a cell’s
unique molecular state, thus providing a complete representation of the cell cycle altogether.
To identify a lower dimensional manifold that preserves the cyclical nature of the cell cycle, we
performed SPCA15 for each palbociclib dose resulting in five three-dimensional hyperspheres
characterized by unique centers and radii projected onto a shared global reduced space.

We expect neighborhood relationships to be preserved such that cells in similar states, and
thus with similar molecular signatures, are located near each other on a lower-dimensional
manifold. Similarly, cells with different proteomic profiles are located far apart in 20-
dimensional space and should remain further away on a three-dimensional manifold. To assess
the ability of SPCA to capture differences in cell states, we visualized the distribution of cell
cycle phases across the SPCA hyperspheres (Fig. 2A). For each of the treatment conditions,
we obtained a spherical manifold that successfully captured differences between phases and
the canonical progression of cells through the cell cycle, from G0, G1, S, to G2/M. Across
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Fig. 2. SPCA captures shifts in cell cycle phases and regulators across treatment con-
ditions. Data points from each treatment condition were projected onto three-dimensional hyper-
spheres identified by SPCA in a shared subspace. Points are colored according to (A) their cell cycle
phase label or (B) normalized expression level of pRB/RB, E2F1, or cycB1.

all conditions, cells belonging to the same cell cycle phase were located near each other and
within distinct regions along the surface of the spheres. We observed the cell cycle phases to
be evenly distributed and occupy the same regions in the 0 nM, 1 nM, and 10 nM projections.
At 100 nM and 1,000 nM, we saw an increase in the proportion of G0 cells concentrated
mainly in the western hemisphere and along the vertical center axis, notably in the direction
of cells in proliferative cell states. The small proportion of proliferative (G1, S, G2/M) cells
was visible in a small region on the eastern hemisphere of the two manifolds. Additionally,
the hyperspheres representative of cells treated with 100 nM and 1,000 nM had smaller radius
sizes compared to the hyperspheres of lower palbociclib doses. Thus, we observed a delineation
between the lower (≤10 nM) and higher (≥100 nM) treatment conditions. For all figures, plots
for all features are available in the supplementa.

We next investigated the ability of SPCA to capture more gradual cell-to-cell transitions
by inspecting changes in the expression of each of the 20 cell cycle regulators (Fig. 2B).
The resulting plots visually recapitulated known trends in protein expression levels for every
feature. A high ratio of pRB to RB (pRB/RB) is needed to transition past the restriction point
in late G1 to S phase. RB, or retinoblastoma protein, is hypophosphorylated by CDK4/6 and
cyclin D1 complexes and hyperphosphorylated by cyclin E-CDK2.23 Therefore, we expected
cells in G0 and early G1 to have relatively lower pRB/RB values. In the G0 and G1 regions of
the ≤10 nM palbociclib-treated cells, we observed an increasing gradient of pRB/RB values.
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The cells with the highest pRB/RB ratios aligned with cells in the G2/M regions (Fig. 2A, B).
Known trends were also observed for E2F1 and cyclin B1.24,25 The highest values of E2F1 were
located in S and nearby G1 regions while G2/M and bordering S phase cells expressed the
highest values of cyclin B1. The 100 nM and 1,000 nM hyperspheres revealed more nuanced
results. Compared to the lower treatment conditions, the G0 cells in the two highest treatment
conditions expressed the lowest amounts of pRB/RB and E2F1, visible by the contrast in the
color intensities of the G0 regions. Although the expression of pRB/RB and E2F1 decreased to
a more extreme state, cyclin B1 followed a different trend. A subset of G0 cells demonstrated
low expression of cyclin B1 while another group, most notably under the 1,000 nM palbociclib
dose, had higher levels of cyclin B1 nearing those characteristic of proliferative G2/M cells.

Fig. 3. SPCA recapitulates cyclical protein level trends. (A) PHATE, (B) PCA, and (C)
SPCA were performed on untreated cells (0 nM palbociclib). Data points from each manifold learning
method were plotted in three dimensions and colored according to their cell cycle phase annotation.
Trajectories identified by Slingshot (black line) were overlaid onto their respective plots. (D) Ki67
expression of each cell was plotted according to the cell’s normalized Slingshot pseudotime. A LOESS
curve (black line) was fit through the points for each method. (E) LOESS curves fit through points
plotted according to Slingshot pseudotime and median levels of core cell cycle regulators (cyclin
A, cyclin B1, cyclin D1, cyclin E1, E2F1, and DNA content) were overlaid for PHATE, PCA, and
SPCA.
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Comparing Cell Cycle Structures from PHATE, PCA, and SPCA
SPCA successfully captured the overall structure of the cell cycle and known proteomic trends.
To validate the effectiveness of SPCA as a representative tool for modeling the cell cycle, we
compared SPCA to two other manifold learning methods, PHATE and PCA. Unlike SPCA,
PHATE does not allow for the projection of multiple datasets to a shared space. PCA does
have this capability but some uninterpretable alignment of principal component spaces is
required. Due to these limitations, both PHATE and PCA were performed on the entire
dataset such that all treatment conditions could be compared on a uniform scale. First, we
examined the distribution of cell cycle phases in untreated cells using all three methods (Fig.
3A-C). Overall, we found cells belonging to the same cell cycle phase to be concentrated in the
same region. However, the separation of phases varied. The least visual separation of phases
was observed in the structure for PCA. In the projections produced by PHATE and SPCA,
we saw greater separation between phase regions. We also observed a separation within phases
in the PHATE manifold, specifically in G0 and G1, showing a discontinuous progression of
phases. G0 cells occupied three main arms in one region of the PHATE structure while G1
cells were clustered in one of two regions on opposite sides of the manifold. One G1 cluster
was located along an arm of the structure shared with G0 cells and the other group bordered
the S phase region. Upon visual inspection, all manifolds suggested a canonical ordering of cell
cycle phases. To assess how well these structures represented temporal trends, we performed
Slingshot,19 a trajectory inference method, to infer cell cycle paths. For each method, Slingshot
identified a single trajectory through the canonical ordering of cell cycle phases - G0, G1, S,
and G2/M - when provided a starting phase of G0. However, while the trajectories identified
using PHATE and PCA proceeded in one direction from G0 to G2/M, the trajectory found
from SPCA returned to the G0 and G1 regions, indicating a cyclic pattern (Fig. 3D).

Using the normalized pseudotime assigned to each cell, we next examined how expression
levels of each feature fluctuated throughout the identified cell cycle paths (Fig. 3D). Ki67 is
a key proliferative marker that accumulates over the course of the cell cycle reaching a peak
in G2 and M.26,27 Temporal orderings of cells identified for PHATE, PCA, and SPCA all
followed an increasing trend of Ki67 expression (Fig. 3B). While each method ordered cells
from G0, G1, S, to G2/M, cells in the SPCA pseudotime ordering returned to a state of G0
or G1 following the G2/M phase. Similarly, Ki67 expression decreased to a level consistent
with that of the initial G0 cells. Cells were also more evenly distributed over pseudotime time
for SPCA compared to PHATE, which had a separation between arrested and proliferating
cells, and PCA, which had a majority of cells concentrated in the first half of the trajectory.
Thus, SPCA successfully captured the gradient of protein accumulation we observed for key
cell cycle regulators (Fig. 2, S3)a whereas PHATE and PCA identified less continuous trends.

We next asked how overall feature trends followed known accumulation patterns of key
cell cycle regulators, specifically cyclins, E2F1, and DNA (Fig. 3E).24,25,28 Expression of these
cell cycle markers follows a cyclical pattern and aligns with key molecular events. Only cyclin
A and cyclin B1 trends for PHATE and PCA as well as E2F1 trends for PCA aligned with
expected points of accumulation, whereas all trends, except for cyclin E, identified using SPCA
followed known expression patterns. For PHATE and PCA, the majority of feature trends
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followed strictly increasing patterns. Cyclin D1 for PHATE and E2F1 for PCA experienced a
peak in expression and a decrease, returning near initial expression levels. DNA content trends
for the two methods, and cyclin E for PHATE peaked and revealed a more subtle decrease.
All features for SPCA demonstrated a cyclic pattern such that final expression levels nearly
matched initial levels, except for DNA content which had a lower final expression than the
G0 cells identified to be at the beginning of the cell cycle path.

Fig. 4. SPCA captures dose-dependent shifts in cell cycle manifold. (A) PHATE and (B)
PCA were performed using 20-feature single-cell signatures from all treatment conditions. (C) SPCA
was performed for individual treatment conditions and the data points were projected onto their
respective hyperspheres in a shared space identified by performing SPCA using all cells. Points are
colored according to palbociclib dose for each individual cell. (D) LOESS curves were fit through
points plotted according to Slingshot pseudotime generated using SPCA and median protein expres-
sion levels (pRB/RB, E2F1, cycB1) across five treatment conditions.

In response to palbociclib treatment, a greater proportion of cells become arrested (Fig.
2A). Therefore, we expect cells treated with different doses of palbociclib to reflect differ-
ences in the makeup of cell states and behaviors. PCA showed minimal delineation between
treatment conditions (Fig. 4B) whereas PHATE and SPCA structures (Fig. 4A, C) captured
differences between ≤10 nM and ≥100 nM palbociclib-treated cells. Cells belonging to the 100
nM and 1,000 nM treatment conditions concentrated along the arms of G0 cells of lower treat-
ment conditions in the PHATE structure (Fig. 3A). Interestingly, cells of higher treatment
conditions did not concentrate in the areas occupied by G0 cells in spheres of ≤10 nM doses.
Instead, in addition to shrinking in size, SPCA spheres for 100 nM and 1,000 nM migrated
in the direction of proliferative cell states. When we compared feature expression trends over
pseudotime across treatment conditions for each method, SPCA more accurately captured cell
cycle trends (Fig. 2B) and characterized behaviors expected of a dose response (Fig. 4D).
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Fig. 5. Shifts in centers of SPCA hyperspheres reveal changes in cell cycle regulation
across treatment conditions. (A) Shifts in the centers and (B) mean protein abundance of three-
dimensional hyperspheres identified by SPCA for each treatment condition were calculated from each
dose response to the untreated condition. Results from each pairwise comparison are represented in
each row of the heatmaps.

SPCA Elucidates Mechanisms of CDK4/6 Inhibitor Resistance
To identify which specific factors were driving shifts in cell cycles across treatment conditions,
evident by visual observations of feature expression differences (Fig. 2B) and the shift in
positions of the 100 nM and 1,000 nM SPCA structures from the lower treatment conditions
(Fig. 4C), we compared centers of the spheres. We quantified center shifts by subtracting the
20-feature center for 0 nM from the centers of each treatment condition. There was a clear
distinction in protein levels between cells treated with lower (1 nM and 10 nM) and higher
(100 nM and 1,000 nM) doses of palbociclib (Fig. 5A). Notably, we found a more significant
depletion of proteins including Ki67, pRB, Skp2, cyclin A, cyclin B1, and RB, and enrichment
of CDK4, cell area, and cyclin D1 in higher treatment conditions. Overall, the same trends
were identified by comparing differences in feature means (Fig. 5B). However, the differences
between the treatment groups were not as substantial, specifically for Ki67, Skp2, cyclin A,
cyclin B1, and cell area which showed almost no change in mean expression across treatment
conditions. The greatest depletion was found in pRB expression while cyclin D1 accumulation
was the highest among all cell cycle regulators according to mean expression shifts from 100
nM and 1,000 nM to untreated cells. CDK4 expression was the second most elevated protein
according to mean expression. Although CDK4 was also enriched according to center shifts
between 1,000 nM and 0 nM treatment groups, CDK4 expression peaked in the 10 nM center
shift as opposed to in the 1,000 nM mean expression shift. A similar pattern was found for
cyclin E which was also elevated in the 10 nM to 0 nM comparison of centers, suggesting
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an increase in cyclin E expression in 10 nM palbociclib-treated cells, while mean expression
values revealed the opposite.

Fig. 6. SPCA and Slingshot identify differ-
ences in G0 cells. G0 cells were separated ac-
cording to median normalized pseudotime. Mean
protein levels for each cell cycle feature are repre-
sented in each row of the heatmap.

Because a majority of cells under 100
nM and 1,000 nM palbociclib treatment
were arrested in G0 (Fig. 2A) and Sling-
shot identified a cyclical return to G0 cells
in SPCA’s cell cycle trajectory (Fig. 3C,
D), we wanted to determine if there were
differences between these groups of G0
cells. G0 cells were partitioned according
to the median pseudotime of cells in a
treatment condition. We will refer to the
group of G0 cells with a pseudotime less
than the median pseudotime value as ‘early
G0’ and the remaining G0 cells border-
ing G2/M phase as ‘late G0’. When we
compared the proteomic signatures of early
and late G0 cells, we observed notable dif-
ferences between the groups (Fig. 6). For
≤100 nM doses, we observed higher ex-
pression of cell cycle regulators Ki67, Skp2,
RB, CDK2, PR, Cdt1, Cdh1, ER, CDK6,
p21, and cyclin E, and a decrease in cell
area in late G0 cells. The greatest contrast
was observed between early and late G0
cells treated with ≤10 nM palbociclib. An
opposite trend was observed for the 1,000
nM early G0 cells which had higher expres-
sion of cell cycle markers including cyclin
D1, CDK4, and cyclin E compared to the
late G0 cells for 1,000 nM and other early
G0 cells.

5. Discussion

We validated SPCA as a tool for characterizing cell cycle plasticity of breast tumor cells
in response to palbociclib treatment. SPCA recapitulated the underlying cyclical structure of
multiplex, single-cell breast tumor data and enabled direct visual and quantitative comparisons
across treatment conditions. SPCA captures heterogeneity of molecular states by preserving
fundamental differences between stages of the cell cycle, shown by the delineation of each cell
cycle phase, while revealing gradual transitions in protein expression patterns. In addition
to the continuous progression of cell states, the even distribution of phases and cells across
the spherical manifolds suggests that the structure is representative of cell cycle data. Other
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methods such as PHATE and PCA do not allow for as much flexibility in quantitative analysis
or comparison of treatment conditions compared to SPCA. These methods failed to capture
the cyclical nature of phase progression and protein expression.

Furthermore, we note that the spheres characterizing cells in the higher treatment group
reveal differences from lower treatment conditions that are not observed by PHATE or PCA.
The decrease in radius size, paired with a shift in center location, and skewed distribution of
phases suggests that cells experience a fundamental shift in their cell cycles at the 10 nM and
100 nM transition. The greater proportion of G0 cells and smaller radius size of the 100 nM
compared to the 10 nM sphere indicate less heterogeneity in cell cycle states. The overall shifts
in the positions of the hyperspheres and the migration of 100 nM and 1,000 nM palbociclib-
treated G0 cells towards proliferative regions in lower treatment conditions also suggest that
cells under higher dosage have different mean states and, thus, traverse alternative paths
through the cell cycle. The dichotomy between ≤10 nM and ≥100 nM hyperspheres aligns
with prior knowledge that the IC50 for palbociclib lies within this range.29

SPCA allows us to quantitatively assess this difference between low and high treatment
conditions via a comparison of each hypersphere’s 20-feature center coordinates. These struc-
tural characteristics of SPCA manifolds can reveal trends that cannot be realized by looking
at feature expression alone. A decrease in the hypersphere radius size along dose increases
(Fig. 2A), indicates a reduction in heterogeneity of cell states. Center shifts pointed to further
depletion of cell markers (Ki67, Skp2, cyclin A, cyclin B1) compared to mean expression, but
also an increase in cell area and DNA which were found to remain consistent (cell area) or be
downregulated (DNA) according to mean expression under increasing palbociclib treatment.
Conversely, Cdt1 was found to be one of the highest-ranking features with decreased mean
expression in higher treatment groups, but this difference was not as prominent when examin-
ing center shifts. These differences highlighted by radius and center shifts may indicate which
cell cycle regulators are most responsible for driving changes in cell cycle behavior, but future
experiments will need to be done to validate this hypothesis.

Structural differences that allowed for the identification of cyclical cell cycle trajectories
with SPCA, but not PHATE or PCA, are also worth further investigation. Differences in
early and late G0 cells suggest greater heterogeneity of multiple molecular states within cells
categorized as G0. These differences may suggest that improved methods of cell cycle phase
annotation need to be performed and that our framework of using SPCA and Slingshot could
be used as a tool for differentiating between cell states. For example, ≤10 nM late G0 cells with
high expression of proliferative markers, but low cell area could suggest that these are new
daughter cells. However, differences in early and late G0 cells may indicate true differences
in G0 cells or CDK4/6 inhibitor resistance. Cells with low proliferation markers, such as
≤100 nM early and 1,000 nM late G0 cells, may indicate varying depths of quiescence.21,30–32

Overexpression of cyclin D1 and elevated levels of CDK2, shown in late 1,000 nM G0 cells in
Fig. 6 across doses, has previously been found to be a potential mechanism of CDK4/6 inhibitor
resistance via formation of cyclin D1-CDK2 complexes.6,33,34 Cyclin E overexpression and
constitutive activation is another characteristic of breast tumor cell behavior and an indicator
of CDK4/6 inhibitor response.35–37 Thus, these cell profiles can be used to characterize cells
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and identify potential mechanisms involved in treatment-resistant pathways.
In future work, this pipeline can be utilized for multi-modal precision medicine. Rather

than estimating hyperspheres for each treatment dose to compare, we may estimate hyper-
spheres for individual tumors across a patient population. In this way, we can compare an
individual’s cancer progression and resistance, and find personalized biomarkers for clinical
targeting. Furthermore, though we have demonstrated the use of these innovative computa-
tional and statistical techniques on a single-cell breast tumor dataset, this framework can be
extended to other biological contexts. SPCA can be generalized to study not only disease
responses along the cell cycle, but single-cell responses to other forms of perturbation as well,
including stem cell differentiation pathways. Other cyclical biological processes such as cir-
cadian rhythm and weather patterns can also be studied, leveraging the inherent underlying
structures of these data, although prior knowledge or assessment that the data is spherical,
which was established for cell cycle data based on extensive study,211417 is needed. This novel
framework for modeling cyclical biological data can allow for the rapid identification and
quantification of novel trends in responses to forms of perturbations to biological systems.
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Astrocyte Reactivity Polygenic Risk Score May Predict Cognitive Decline in Alzheimer’s 
Disease 

Jared M Phillips1,2, Julie A Schneider3, David A Bennett3, Paul K Crane4, Shannon L Risacher5,6, 
Andrew J Saykin5,6, Logan C Dumitrescu1,7, Timothy J Hohman1,7 †; the Alzheimer’s Disease 

Neuroimaging Initiative* 

1 Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA 
2 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA 

3 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA 
4 Department of Medicine, University of Washington, Seattle, WA, USA 

5 Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA 
6 Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA 

7 Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA 
† Email: timothy.j.hohman@vumc.org 

† Address: 3319 West End Ave, Suite 847 
Nashville, TN 37203 

Alzheimer’s disease (AD) is a polygenic disorder with a prolonged prodromal phase, complicating early 
diagnosis. Recent research indicates that increased astrocyte reactivity is associated with a higher risk of 
pathogenic tau accumulation, particularly in amyloid-positive individuals. However, few clinical tools are 
available to predict which individuals are likely to exhibit elevated astrocyte activation and, consequently, 
be susceptible to hyperphosphorylated tau-induced neurodegeneration. Polygenic risk scores (PRS) 
aggregate the effects of multiple genetic loci to provide a single, continuous metric representing an 
individual's genetic risk for a specific phenotype. We hypothesized that an astrocyte activation PRS could 
aid in the early detection of faster clinical decline. Therefore, we constructed an astrocyte activation PRS 
and assessed its predictive value for cognitive decline and AD biomarkers (i.e., cerebrospinal fluid [CSF] 
levels of Aβ1-42, total tau, and p-tau181) in a cohort of 791 elderly individuals. The astrocyte activation 
PRS showed significant main effects on cross-sectional memory (β = -0.07, p = 0.03) and longitudinal 
executive function (β = -0.01, p = 0.03). Additionally, the PRS interacted with amyloid positivity (p.intx = 
0.02), whereby indicating that amyloid burden modifies the association between the PRS and annual rate of 
language decline. Furthermore, the PRS was negatively associated with CSF Aβ1-42 levels (β = -3.4, p = 
0.07) and interacted with amyloid status, such that amyloid burden modifies the association between the 
PRS and CSF phosphorylated tau levels (p.intx = 0.08). These findings suggest that an astrocyte activation 
PRS could be a valuable tool for early disease risk prediction, potentially enabling intervention during the 
interval between pathogenic amyloid and tau accumulation. 

Keywords: Alzheimer’s disease, polygenic risk, astrocyte reactivity, cognition, biomarkers 

____________________________ 
*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation 
of ADNI and/or provided data, but most of them did not participate in the analysis or writing of this report. A 
complete listing of ADNI investigators may be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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1. Introduction 
Alzheimer’s disease (AD) is a highly polygenic condition characterized by a neuropathological 
sequence of extracellular amyloid-beta plaques and intracellular neurofibrillary tangles that leads 
to neurodegeneration and cognitive decline [12]. A distinguishing feature of AD is its prolonged 
prodromal phase, during which pathology accumulates well before clinical symptoms manifest [2, 
14]. This prodromal period spans decades of pathological changes prior to the onset of noticeable 
cognitive deficits, making early diagnosis of clinical dementia both challenging and crucial in 
developing precision interventions. Polygenic risk scores (PRS) of AD have displayed some utility 
in predicting the global genetic risk of developing AD [5] yet demonstrate mixed success 
clinically [8, 10, 22, 26]. This may be partly due to the case-control genome-wide association 
study (GWAS) designs used to generate summary statistics that enable PRS calculation, which 
lack the phenotypic specificity needed to move towards precision interventions.  
 
Astrocyte activation plays a varied and complex role in AD, with numerous detrimental functions 
that may contribute to disease pathogenesis including induction of tau hyperphosphorylation, 
impairment of glutamate and ion buffering abilities, and weakening of the neurovascular unit [13, 
15, 16, 28]. Recent evidence has emerged that highlights astrocyte activation as an important 
cellular event linking initial amyloid pathology with subsequent phosphorylated tau accumulation 
[3]. Most notably, recent findings leveraging in vivo measurements of peripheral glial fibrillary 
acidic protein (GFAP), a strong correlate of astrocyte activation, found that high plasma GFAP 
expression, representing a greater degree of astrocyte reactivity, relates to higher AD 
neuropathological burden [3, 29]. This association was most pronounced in amyloid-positive 
individuals [3]. In acute brain injury, astrocyte reactivity is both beneficial and detrimental, 
contributing significantly to post-traumatic tissue repair and synaptic remodeling in conditions 
such as traumatic brain injury and stroke [4] while also facilitating release of pro-inflammatory 
factors that may exacerbate cognitive decline [19]. As such, the level of chronic astrocyte 
activation, particularly in the presence of amyloid pathology, may influence an individual’s risk of 
subsequently developing tau pathology and dementia. Heterogeneity in astrocyte responses to 
trauma, whether acute or chronic, points to genetic factors that may influence the molecular 
response of astrocytes to insult [4, 24]. Consequently, investigating the genetic architecture of 
astrocyte activation in the context of AD may yield insights beneficial in advancing targeted 
interventions for individuals at risk of developing the detrimental effects of long-term reactive 
states.  
 
In this study, we sought to accomplish three main aims: 1) to elucidate the genetic architecture of 
an astrocyte activation phenotype, 2) to build a PRS of astrocyte activation, and 3) to test its 
ability to predict cognitive decline and associations with AD biomarker levels. Using post-mortem 
measures of mRNA sequencing from the dorsolateral prefrontal cortex, we calculated an 
established astrocyte activation transcript signature [33]. Then, we employed this transcript 
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signature as an outcome in GWAS to identify genetic signals associated with the astrocyte 
activation phenotype. Finally, we built a PRS in an independent dataset to test its associations with 
cognitive performance in multiple domains and AD biomarker burden.  
 
2. Methods 
2.1. Participants 
Participants were sourced from two well-characterized cohort studies of aging, including the 
Religious Orders Study/Rush Memory and Aging Project (ROS/MAP) and the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI). Data collection commenced in 1994 for ROS and in 
1997 for MAP, resulting in extensive longitudinal clinical-pathologic data on aging and AD risk 
factors. ROS includes religious clergy members from across the United States, while MAP 
includes individuals from northeastern 
Illinois. Initiated in 2003, ADNI 
encompasses over 1800 individuals 
between 55 to 90 years old, through 
four study phases, with the principal 
objective of validating biomarkers for 
Alzheimer’s disease clinical trial 
applications (http://adni.loni.usc.edu/). 
All participants provided informed 
consent and the studies were carried 
out in accordance with Institutional 
Review Board-approved protocols. 
The Vanderbilt University Medical 
Center Institutional Review Board 
authorized secondary analyses of the 
data. Data were accessed and 
harmonized as part of the Alzheimer’s 
Disease Sequencing Project 
Phenotype Harmonization Consortium (https://adsp.niagads.org/). Please see Table 1 for an 
overview of each cohort’s participant demographics. 
 
2.2. Cerebrospinal fluid biomarker measures 
Lumbar puncture was performed as described in the ADNI procedures manual (http://www.adni-
info.org/). CSF measures of β-amyloid(1–42) were obtained using the xMAP platform and CSF 
measures of total tau and p-tau 181 were obtained using the Elecsys platform. Amyloid positivity 
was defined as CSF β-amyloid(1–42) concentrations lower than 192 pg/mL as outlined previously 
[31].  
 

Table 1. Participant Demographics 
ROS/MAP 

Sample Size 598 
Age at death (years) 81.1 +/- 6.97 
Education (years) 16.53 +/- 3.5 

Astrocyte Activation Z Score 0 +/- 0.61 
Female, no. (%) 391 (65%) 

Amyloid Positive at Autopsy, no. (%) 383 (64%) 
Tau Positive at Autopsy, no. (%) 340 (57%) 

AD diagnosis at last visit, no. (%) 252 (42%) 
ADNI 

Sample Size 791 
Age at baseline (years) 75.31 +/- 7.39 

Education (years) 16.03 +/- 2.84 
Total number of visits 6.32 +/- 2.93 

Longitudinal follow-up (years) 4.89 +/- 3.51 
Female, no. (%) 342 (43%) 

Amyloid Positive at baseline, no. (%) 527 (67%) 
Tau Positive at baseline, no. (%) 385 (49%) 

AD diagnosis at baseline, no. (%) 196 (25%) 
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2.3. Neuropsychological composites 
Harmonized scores representing composite memory, executive function, and language were used 
in the present analyses and have been previously described in detail [25]. Briefly, this 
harmonization process involved experts assigning individual test item‐level data into memory, 
executive function, language, visuospatial, or “none of” domains. Investigators ensured identical 
scoring of anchor items across studies and a confirmatory factor analysis was conducted to choose 
the best single factor or bi‐factor model. Anchor items were items identified as having been 
administered and scored precisely the same way in two or more cohorts. All items had freely 
estimated parameters, with anchor items forced to have the same parameters across studies. We 
used these co‐calibrated parameters for anchor and study‐specific items to generate cognitive 
scores that were on the same scale across cohorts.  
 
2.4. Genetic data quality control and imputation 
For ADNI, genetic data were collected with four arrays (Illumina Human610‐Quad, Illumina 
HumanOmniExpress, Illumina Omni 2.5 M, and Illumina Global Screening Array v2). For 
ROSMAP, genetic data were collected with three arrays (Global Screening Array‐24 v3.0, 
Affymetrix GeneChip 6.0, Illumina HumanOmniExpress). All genetic data were processed using a 
standardized quality control and imputation pipeline [7]. First, variants which had a low genotype 
rate (<95%), low minor allele frequency (MAF<1%) or were outside of Hardy-Weinberg 
equilibrium (p<1×10-6) were removed. Participants were excluded if the reported and genotypic 
sex differed, if there was poor genotyping efficiency (missing>1% of variants), or cryptic 
relatedness was present (PIHAT>0.25). Imputation was performed on the University of Michigan 
Imputation Server using the TOPMed reference panel (hg38) with SHAPEIT phasing [6, 11, 32]. 
Following imputation, datasets were filtered to exclude variants with low imputation quality 
(R2<0.8), duplicated/multi-allelic variants, and MAF<1%. Within the self-identified non-Hispanic 
White racial group, principal component analysis was conducted and genetic ancestry outliers 
relative to a 1000 Genomes reference population (eg. Utah residents with Northern and Western 
European Ancestry [CEU]) were excluded. 
 
2.5. Autopsy measures of DLPFC bulk mRNA expression 
A standardized protocol for post-mortem biological specimens was used consistently across 
centers performing autopsies, as previously described [1]. RNA extraction from specific brain 
regions was conducted using a Qiagen miRNeasy mini kit along with a RNase-free DNase Set for 
quantification on a Nanodrop. The integrity and purity of the RNA were assessed using an Agilent 
Bioanalyzer. Samples with a RIN score greater than five were included for bulk next-generation 
RNA sequencing. 
Sequencing was performed in multiple phases. Phase one focused on the dorsolateral prefrontal 
cortex (dlPFC). Phase two added more dlPFC samples and included samples from the posterior 
cingulate cortex (PCC) and the head of the caudate nucleus (CN). Phase three included additional 
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participant samples from the dlPFC. Detailed information on RNA processing and sequencing is 
available on Synapse (syn3388564). In summary, phase one employed poly-A selection, strand-
specific dUTP library preparation, and Illumina HiSeq with 101 bp paired-end reads, achieving a 
coverage of 150 million reads for the first 12 reference samples. These deeply sequenced reference 
samples included 2 males and 2 females from non-impaired, mild cognitive impairment, and 
Alzheimer’s disease cases. The remaining samples were sequenced with a coverage of 50 million 
reads. Phase two used the KAPA Stranded RNA-Seq Kit with RiboErase (kapabiosystems) for 
ribosomal depletion and fragmentation. Sequencing for this phase was performed on an Illumina 
NovaSeq6000 with 2 × 100 bp cycles, targeting 30 million reads per sample. In phase three, RNA 
was extracted with a Chemagic RNA tissue kit (Perkin Elmer, CMG-1212) using a Chemagic 360 
instrument, and ribosomal RNA was depleted using RiboGold (Illumina, 20,020,599). Sequencing 
for phase three was carried out on an Illumina NovaSeq6000 with 40-50 million 2 × 150 bp 
paired-end reads. 
Data processing and QC of RNA sequencing runs was performed by the Vanderbilt Memory and 
Alzheimer’s Center Computational Neurogenomics Team using an automated pipeline and is 
described in detail elsewhere [30]. Samples whose last visit was >5 years before death or who had 
non-AD dementia were excluded. 
 
2.6. Statistical analyses 
See Figure 1 for an overview of analytical activities. 
 
2.6.1. Astrocyte reactivity z-score calculation 
Methods for generating an astrocyte reactivity z-score were 
derived from procedures reported by Wu et al [33]. Briefly, 
single-nucleus RNA sequencing measures from the dorsolateral 
prefrontal cortices of 24 participants, representing 162,562 
individual nuclei, were clustered into transcriptionally similar 
clusters using a k-nearest neighbor graph. Further 
dimensionality reduction occurred through t-SNE and 
expression of canonical genes, including AQP4 for astrocytes, 
was used to identify cell type clusters. This analysis was then 
repeated within the astrocyte cluster, resulting in ten astrocyte 
sub-clusters. Next, the expression of genes characteristic of 
reactive astrocytes as reported in Zamanian et al [34]., including GFAP, CD44, OSMR, and 
CHI3L1, was surveyed, resulting in the identification of three sub-clusters that displayed high 
expression of all four genes. Differential gene expression was assessed using Seurat to obtain 
marker genes for these activated astrocyte clusters. Genes were required to be expressed in at least 
10% of nuclei in the given cluster and at least log(0.25)-fold difference between the clusters. 

Figure 1. Workflow outlining 
analytical activities.  
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Genes that were significantly over-expressed in reactive astrocytes compared to both other 
astrocyte clusters and all other cells were preserved in the marker gene-set (n=25).  
Next, we obtained normalized bulk mRNA sequence counts from the ROS/MAP dorsolateral 
prefrontal cortex dataset, which did not overlap with the snRNA sequencing dataset used to 
identify reactive astrocyte markers. Four genes were unavailable due to quality control filtering, 
resulting in 21 genes in the final gene set. Participants with values for all 21 genes were included, 
leading to a sample size of 843 individuals. Finally, a summary z-score representing higher or 
lower-than-average reactive astrocyte gene expression was calculated to leverage as an outcome in 
downstream analyses. 

2.6.2. Genome-wide association study of astrocyte reactivity 
Following generation of the astrocyte reactivity z-score, we conducted a GWAS to assess the 
effect of genetic variants on astrocyte reactivity. GWAS were performed with PLINK linear 
association models (v1.90b5.2, https://www.cog-genomics.org/plink/1.9). 646 participants in 
ROS/MAP had both genetic data and an astrocyte reactivity z-score. We excluded a random 
sample of 48 participants from GWAS to later assess the correlation of the astrocyte reactivity z-
score and PRS in these individuals, resulting in a final sample size of 598 participants in GWAS. 
GWAS covariates included RNA-sequencing batch, RNA sequencing sample collection phase, age 
at death, sex, and the first five principal components of genetic ancestry. 

2.6.3. Polygenic risk score generation 
No participants in ADNI were included in the astrocyte reactivity GWAS. First, GWAS variants 
were compared to the ADNI genetic data. Any ambiguous, palindromic variants were filtered out. 
Then overlapping variants between the GWAS and the ADNI genetic data were retained and 
subsequently compared for variants on opposite strands between the GWAS and the genetic data, 
and strand differences were resolved. Then, linkage disequilibrium (LD) clumping was performed 
with PLINK in the ADNI genetic data (r2=0.5, window=250kb), to choose the variant with the 
most significant phenotypic association within each genetically-linked genomic region. Each PRS 
was built with three different P-value thresholds: P=0.01, P=0.001, and P=0.00001, wherein 
variants were included in the PRS only if their phenotypic association was less than the given 
threshold. The LD-clumped genetic data were then leveraged to calculate each PRS with PLINK’s 
profile function which calculates scores as follows: Weights were retrieved from the variant 
associations with AD or with resilience from the respective GWAS. For each variant the given 
weight was multiplied by 0, 1, or 2, based on how many risk alleles an individual possessed. The 
summation of this process results in a summary score for an individual. 
Since APOE polymorphism is a robust risk factor for AD, PRS were calculated with and without 
the APOE region, defined by a 1Mb region up and downstream of the APOE gene. 

2.6.4. Baseline and longitudinal linear association models 
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We performed a series of linear fixed and linear mixed effects models in R (v. 4.1.2) for each PRS. 
Fixed effects in our models included baseline age, sex, and the given PRS. Longitudinal linear 



mixed effects models included a PRS-by-interval term, where interval was determined by the 
difference between a participant’s age at each cognitive visit and their baseline age. Additionally, 
linear mixed effects models allowed slope and intercept to vary for each participant. In addition, 
we performed identical sets of models with the addition of a PRS-by-amyloid term in linear 
models and a PRS-by-amyloid-by-interval term for linear mixed effects models, with amyloid 
measured by the CSF Aβ1–42 assay outlined above. Biomarker-based outcomes of our models 
were cross-sectional CSF Aβ1–42, CSF total tau, CSF p-tau 181. Cognition-based outcomes of 
our models were baseline memory, executive function, and language, or longitudinal decline in 
memory, executive function, and language, using linear and linear mixed effects models, 
respectively. We re-ran significant or near-significant interaction models as amyloid-stratified 
models to obtain main effect statistics for amyloid positive (N=527) and amyloid negative 
(N=257) individuals. We also conducted sensitivity analyses using data-driven cutpoints 
determined by Gaussian mixture modeling (GMM) to reevaluate amyloid positivity within our 
sample (amyloid positivity defined as CSF β-amyloid(1–42) concentrations lower than 195 
pg/mL; amyloid positive N = 520, amyloid negative N = 264).  

3. Results
The 21 genes included in the astrocyte activation gene module were positively correlated with one 
another, with the exceptions of ARGHEF3 and ZFYVE28 (Supplemental Figure 1). We 
subsequently ran GWAS to generate summary statistics to be leveraged in the PRS calculation. 
GWAS results highlighted loci on chromosomes 2, 6, 7, and 11 with an acceptable genomic 
inflation factor of 1.0 (Supplemental Figure 2). To evaluate the correlation of each PRS with the 
astrocyte reactivity Z-score, we built the PRS with a variety of p-value cutoffs in a subset of 48 
random participants in ROS/MAP who possessed astrocyte reactivity Z-scores but were excluded 
from GWAS. The correlation was by far the strongest in the PRS with p-value cutoff < 0.01 (0.98; 
see Supplemental Figure 3). As such, subsequent analyses focused only on PRS with this p-value 
cutoff. The correlation between the PRS and astrocyte activation z-score did not differ when 
excluding the APOE region, 
and no strong loci were 
observed in the APOE region at 
the GWAS level 
(Supplemental Figure 2 and 
Supplemental Figure 3). 
Consequently, we leveraged 
PRS which included the APOE 
region in proximate analyses.  

Table 2. PRS Main Effect Model Results
Outcome β p

Memory at baseline -0.07 0.03 
Executive function at baseline -0.02 0.43 

Language at baseline -0.03 0.22 
Longitudinal memory -4.6E-3 0.43 

Longitudinal executive function -0.01 0.03 
Longitudinal language -2.3E-3 0.67 

CSF Aβ1-42 at baseline -3.4 0.07 
CSF total tau at baseline -0.29 0.87 

CSF pTau at baseline 0.68 0.43 
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We then built the PRS in an 
independent dataset and 
evaluated its associations with 
cross-sectional and 
longitudinal cognition as well 
as cross-sectional AD 
biomarker levels, including 
CSF Aβ1–42, total tau, and 
phosphorylated tau. All main 
effects on cognition and 
biomarker outcomes are presented in Table 2 and/or Figure 2. The astrocyte activation PRS had 
significant effects on both cross-sectional memory (Figure 2A) and longitudinal executive 
function (Figure 2B), such that a higher PRS was associated with worse cross-sectional memory 
performance and a faster rate of executive function decline. In addition, the PRS was negatively 
associated with the CSF Aβ1-42 level (Figure 2C), although this result was just below the 

significance threshold.  
 
Next, we performed a series of 
interaction models to determine 
if amyloid status modified the 
effect of the PRS on each 
outcome (Table 3 and Figure 
3). Effects of the PRS on 
annual rate of language decline 
differed across amyloid status, 
and amyloid-negative 
individuals largely drove the 
significant interaction (Figure 
3A). Effects of the PRS on 
CSF phosphorylated tau level 
also differed across amyloid 
status, with the near-significant 
interaction being driven by 
deviations between amyloid-
negative and amyloid-positive 
individuals with higher PRS 

(Figure 3B). Results were consistent across both the predefined amyloid positivity threshold and 
the threshold generated through GMM (Supplemental Figure 4). Together, these results suggest a 
differential effect of the PRS when stratified by amyloid status. 

Table 3. PRS-Aβ1-42 Interaction Model Results 
Outcome β p 

Memory at baseline 3.7E-4 0.46 
Executive function at baseline 2.8E-4 0.54 

Language at baseline 3.7E-4 0.37 
Longitudinal memory -7.9E-6 0.93 

Longitudinal executive function 1.2E-4 0.13 
Longitudinal language 1.9E-4 0.02 

CSF total tau at baseline 1.7E-3 0.96 
CSF pTau at baseline -0.03 0.08 

Figure 2. PRS associations with cross-sectional memory, annual rate 
of executive function decline, and CSF Aβ1–42 level.  

Figure 3. PRS-Aβ42 interactions on annual rate of language decline 
and CSF phosphorylated tau. Interaction model statistical results are 
shown in black while amyloid-stratified main effect statistics are 
shown in colors corresponding to each stratification on the plot. 
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4. Discussion 
The findings from our study underscore the potential of an astrocyte activation polygenic risk 
score (PRS) in the preclinical detection and risk stratification of Alzheimer's disease (AD). 
Together, our results highlight several critical points that add to the growing body of literature on 
the role of astrocytes in AD pathology and suggest practical applications for astrocyte activation 
PRS in clinical settings. 
 
4.1. Genetic architecture of astrocyte activation 
We leveraged an established transcript signature of astrocyte activation to serve as a single, 
continuous outcome in GWAS. Interestingly, the top locus, rs17416058, located on chromosome 
11, is an expression quantitative trait locus in brain for ARNTL (alias: BMAL1), a circadian clock 
gene (Sources: Braineac and BrainSeq databases). Astrocyte-specific deletion of BMAL1 has been 
shown to induce astrocyte activation, indicating a crucial role of circadian rhythm in regulating 
astrocytic gene expression [18]. Furthermore, astrocytes deficient in BMAL1 display an enhanced 
response to amyloid-beta pathology, signaling disease-relevant changes in the face of altered gene 
expression [23]. Carriage of the minor allele is associated with decreased expression of BMAL1 in 
the BrainSeq hippocampus dataset and a higher astrocyte activation transcript signature (β = 0.25, 
p = 1.3E-7), which is in line with the observed direction of effect in the aforementioned biological 
literature. As such, BMAL1 may represent an important genomic locus influencing an individual’s 
degree of astrocyte reactivity, though this finding requires validation in a well-powered dataset.  
 
4.2. Predictive utility of astrocyte activation PRS 
The constructed astrocyte activation PRS demonstrated predictive value for cognitive decline, 
providing a potential genetic tool to anticipate AD progression. The significant associations 
between higher PRS and both cross-sectional memory (β = -0.07, p = 0.03; Figure 2A) and 
longitudinal executive function decline (β = -0.01, p = 0.03; Figure 2B) suggest that individuals 
with a higher genetic predisposition for astrocyte activation exhibit worse cognitive performance 
cross-sectionally and over time. These findings align with previous research indicating that 
astrocyte reactivity exacerbates neurodegeneration and cognitive impairment [9, 17, 27, 29]. 
Furthermore, the negative associations between the astrocyte activation PRS and CSF amyloid-
beta 1-42 levels (β = -3.4, p = 0.07; Figure 2C) provide additional insights into the biological 
underpinnings of AD. Although the result was marginally below the significance threshold, it 
suggests that higher genetic risk for astrocyte activation is associated with lower CSF amyloid-
beta 1-42 levels, potentially reflecting greater amyloid plaque burden in the brain. This association 
aligns with the hypothesis that astrocyte activation is linked to amyloid pathology and subsequent 
neurodegenerative processes [3].  
4.3. Interaction with amyloid positivity 
The interaction between the astrocyte activation PRS and amyloid positivity highlights a nuanced 
understanding of AD pathology. In the case of annual rate of language decline, the significant 
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interaction appears to largely be driven by the effect in amyloid-negative individuals, such that 
higher PRS relates to a slower rate of language decline (Figure 3A). We observed a smaller effect 
in amyloid-positive individuals, though both stratifications aligned with the anticipated directions 
of effect. In the case of CSF phosphorylated tau levels, a stronger effect was also observed in 
amyloid-negative individuals (Figure 3B). However, the difference in the directions of effect 
between amyloid-negative and amyloid-positive individuals drives the near-significant interaction. 
This suggests that the astrocyte activation PRS may identify individuals who are more susceptible 
to tau pathology in the presence of amyloid accumulation and a potential protective effect of 
astrocyte activation in the absence of amyloid pathology. It is plausible that increased astrocyte 
reactivity in the absence of amyloid pathology may lead to decreased neurodegeneration and 
subsequent cognitive decline, as reactive astrocytes are known to excrete various growth factors 
that maintain neuronal and synaptic integrity [20]. However, further interrogating this effect would 
require more precise transcriptional and morphological profiling of reactive astrocytes in the 
presence and absence of amyloid pathology, an area ripe for future investigation.  
 
4.4. Clinical implications and future directions 
The astrocyte activation PRS holds promise as a clinical tool for early AD risk stratification and 
intervention. By identifying individuals at higher genetic risk for astrocyte activation, clinicians 
can better predict the trajectory of cognitive decline and tailor preventive strategies accordingly. 
Furthermore, the PRS can aid in the selection of candidates for clinical trials targeting astrocyte-
mediated pathways, thereby enhancing the precision and efficacy of therapeutic interventions. 
Future research should focus on refining the astrocyte activation PRS by genetically surveying the 
astrocyte activation transcript signature in larger, harmonized datasets to increase statistical power 
at the GWAS level. Validation of its predictive power in large, diverse cohorts would also be 
greatly beneficial. Additionally, exploring the mechanistic pathways linking astrocyte activation to 
amyloid and tau pathology will deepen our understanding of AD etiology and to what extent 
astrocyte activation is genetically regulated. Finally, newer tools allowing for more robust 
quantification of astrocyte activation in vivo using positron emission tomography tracers could 
serve as a complementary approach to the transcript signature leveraged here and increase 
statistical power in future studies [21]. 
 
4.5. Strengths and weaknesses 
Our study has numerous strengths. We leveraged multiple well-characterized, deeply phenotyped 
cohort studies of aging to first determine the genetic architecture of astrocyte activation and then 
validate a PRS in predicting clinically relevant outcomes. Incorporating longitudinal measures of 
cognition and both amyloid and tau biomarker outcomes in our analyses allowed us to survey 
associations across the amyloid/tau/neurodegeneration framework. Despite its strengths, our study 
has notable weaknesses. Primarily, we were underpowered at the GWAS level due to the nature of 
building the astrocyte activation transcript signature from mRNA transcript sequencing from post-
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mortem brain tissue. Harmonization of brain transcriptomics across cohorts will enable higher-
powered analyses in the future. Our study was also limited to individuals of Western European 
ancestry, limiting the generalizability of our findings to more diverse populations. We will be 
better equipped to investigate the utility of an astrocyte activation PRS in diverse populations as 
more data becomes available. In addition, we chose to employ a data-driven approach leveraging a 
previously published transcript signature of astrocyte activation [33]. However, a theory-driven 
approach could provide additional opportunities for discovery. Notably, key astrocyte genes 
known to be upregulated in reactive states were excluded from the transcript signature we used in 
our analyses. Potential candidates include: GFAP, Serpina3n, VIM, AQP4, and Lcn2, which are 
commonly upregulated in reactive astrocytes [34]. Future analyses incorporating such genes into 
the gene module will allow us to evaluate whether the inclusion of additional genes captures more 
of the polygenic architecture of astrocyte reactivity and improves the predictive ability of the PRS. 
Furthermore, the p-value cutoff used for PRS, though strongly correlated with the astrocyte 
activation transcript signature itself, was selected somewhat arbitrarily. This less-restrictive cutoff 
likely includes variants with smaller effects, which collectively may explain a large portion of 
variance in the phenotype. On the other hand, this may increase the risk of overfitting through the 
inclusion of more SNPs. Newer tools that enable fine-tuning of p-value cutoff selection for PRS 
will improve statistical power and predictive ability in future analyses. Furthermore, Since LD 
structure in the dataset used to build the PRS is likely playing a critical role in the relationship 
between the PRS and the astrocyte activation phenotype, assessing different R2 thresholds when 
using meta-analysis results leveraging multiple cohorts will be an important part of future work. 
Finally, none of the observed associations survived correction for multiple comparisons, 
potentially due to the GWAS's power and sample size constraints. This will also be aided by the 
ever-increasing availability of brain transcriptomic measures and genetic data. 
 
4.6. Conclusions 
In summary, our study supports the potential role of an astrocyte activation PRS in predicting 
cognitive decline and AD biomarker burden. These findings emphasize the importance of 
astrocyte reactivity in AD progression and highlight the potential of genetic tools in early disease 
detection and personalized medicine. Further research and validation in well-powered datasets are 
needed to fully characterize the clinical utility of an astrocyte activation PRS in treating AD. 
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Heart failure (HF) is one of the most common, complex, heterogeneous diseases in the world, with
over 1-3% of the global population living with the condition. Progression of HF can be tracked via
MRI measures of structural and functional changes to the heart, namely left ventricle (LV),
including ejection fraction, mass, end-diastolic volume, and LV end-systolic volume. Moreover,
while genome-wide association studies (GWAS) have been a useful tool to identify candidate
variants involved in HF risk, they lack crucial tissue-specific and mechanistic information which
can be gained from incorporating additional data modalities. This study addresses this gap by
incorporating transcriptome-wide and proteome-wide association studies (TWAS and PWAS) to
gain insights into genetically-regulated changes in gene expression and protein abundance in
precursors to HF measured using MRI-derived cardiac measures as well as full-stage all-cause HF.
We identified several gene and protein overlaps between LV ejection fraction and end-systolic
volume measures. Many of the overlaps identified in MRI-derived measurements through TWAS
and PWAS appear to be shared with all-cause HF. We implicate many putative pathways relevant in
HF associated with these genes and proteins via gene-set enrichment and protein-protein interaction
network approaches. The results of this study (1) highlight the benefit of using multi-omics to
better understand genetics and (2) provide novel insights as to how changes in heart structure and
function may relate to HF.

Keywords: Heart Failure; Cardiovascular; Multi-omics; Gene Transcription; Proteome; Network

1. Introduction

1.1.  Heart failure has a high disease burden.

Heart failure (HF) carries one of the highest disease burdens in the world, with 1-3% of the global
population estimated to be living with HF. This includes 6.7 million people in the United States
(US) alone, and does not include the 33% of the US population at-risk of developing HF1. The
etiology of HF is heterogeneous and complex, but has ultimately been defined as a clinical
syndrome with symptoms and signs caused by structural and functional cardiac abnormalities2. Its

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company 
and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-
NC) 4.0 License.
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risk is promoted by increasing age and by the presence of comorbidities such as myocardial
infarction, diabetes, hypertension, obesity, arrhythmias, infiltrative and inflammatory disorders,
and exposure to drugs or environmental toxins3–5. Despite the complexity of HF, it has been
demonstrated that risk is impacted by genetic predisposition to some degree6. While an exact
consensus of heritability for HF has not been reached, some have estimated that the heritability of
HF is around 26%7.

The overall progression of HF can be broken up into four stages:
Stage A: risk of HF but patients have no symptoms or structural heart changes
Stage B: no symptoms of HF or asymptomatic but patients do have structural heart
changes
Stage C: patients experiencing symptoms of HF
Stage D: advanced heart failure requiring specialized interventions8,9.

As noted in Stage A and B, HF is often preceded by a phase of undetected progression,
highlighting the need for better insight into the changes, such as structural heart changes9,10. These
changes often appear specifically at the left ventricle (LV), and include decreased left ventricular
ejection fraction (LVEF), LV dilation and/or hypertrophy, and valvular disease in which the heart
cannot pump as effectively, losing function. LV mass (LVM) has been shown to be an independent
predictor of HF, with risk for HF increasing by 1% for every 1% increase in excess LV mass11.
Likewise, LVEF, which measures LV contractile function (the percentage of blood leaving the
heart with each contraction) has been shown to be associated with HF prognosis12,13. Abnormal
measurements of several of these parameters measuring both structural and functional changes
together are reliable markers of cardiovascular risk and eventual HF diagnosis.

To quantify changes in the volume of blood in the heart before and after contraction, we can
use LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV) respectively.
Together these four measures of heart structure and function (LVM, LVEF, LVEDV, and LVESV)
can provide an overall characterization of progression towards potential HF and represent an
intermediate phenotype or endophenotype. Identifying overlaps in changes seen in both
intermediate MRI trait measures and HF could give us a better idea of vital aspects that lead
towards full, advanced HF.

1.2.  Using multi-omics to increase knowledge gained from GWAS.

Given the known genetic contribution to HF and the prevalence of patients with the disease, many
groups have performed genome-wide association studies (GWAS) to identify genetic variants
associated with HF14–21. While this approach allows us to gain valuable insights into potential
genetic variation that contributes to the disease, it still leaves a crucial gap in connecting how
these variants are actually resulting in mechanistic change, and in which specific tissues. This is
especially relevant in quantitative phenotypes, where GWAS is insufficient to capture the full
heterogeneity measured by the trait. Transcriptome-wide association studies (TWAS) use GWAS
summary statistics along with reference gene expression from specific tissues to predict how
genetic variants affect gene expression within those tissues. TWAS and PWAS also provide a
boost in overall statistical power, as they are less affected by multiple test corrections due to being
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a gene-based test of association22,23. These methods are also more portable than GWAS; they are
less impacted by population structure in datasets as they operate on a gene and protein level24.

In this study, we make use of TWAS and PWAS methods to investigate genetic-derived gene
and protein changes among cardiovascular related-tissues using the largest published GWAS
summary statistics of HF and MRI measures of LV structure and function to date25–27. Our goals
are: 1) to integrate multi-omics data in the form of reference gene expression and protein
expression datasets to identify novel HF and related trait associated genes, 2) to evaluate whether
TWAS and PWAS approaches uncover the same association signals or provide novel gene-based
associations, and 3) determine whether these genes associated with HF and related traits are part
of shared pathways and/or networks between traits. This study is also, to our knowledge, one of
the first times that both TWAS and PWAS have been performed simultaneously on quantitative
traits.

2.  Methods

Figure 1. Overview of study analysis to identify genes, proteins, and related interactions between MRI-derived
cardiac intermediate traits and heart failure GWAS. (UKBB: UK Biobank, LVM: Left ventricular mass,
LVEF: Left ventricular ejection fraction, LVEDV: Left ventricular end-diastolic volume, LVESV: Left

ventricular end-systolic volume, EA: European American, AA: African American)

2.1.  Cardiovascular data

2.1.1.  MRI traits

Of all cardiac chambers, dysfunction of the left ventricle is the most common structural
abnormality in HF cases. We chose four measurements taken from the left ventricle derived from
MRI imaging with previously published GWAS data to characterize potential associations with
HF: LVM indexed to body surface area, LVEDV, LVESV, and LVEF26,27. LVM measurements
were taken from Khurshid et al, and includes 43,230 samples (91% European ancestry) with MRI
imaging and genotype data from the UK Biobank26. LVEDV, LVESV, and LVEF association
studies were performed on 41,135 samples also from the UK Biobank with MRI imaging and
genotype data by Pirruccello et al27.
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2.1.2.  Heart failure (HF)

We identified the largest all-cause HF GWAS study to date including 207,346 non-overlapping
samples of cases and 2,151,210 controls meta-analyzed from HERMES, the Million Veterans
Project (MVP), FinnGen, Mount Sinai BioMe (BIOME), Global Biobank Meta-analysis Initiative
(GBMI), eMERGE, Geisinger DiscovEHR, and Penn Medicine BioBank (PMBB)25. This included
an overall sample of 81.1% European ancestry, 9.7% African American, 6.5% East Asian, and
2.6% Admixed American.

2.2.  Transcriptome-wide association study (TWAS)

To provide tissue-specific context to GWAS results from the selected MRI traits and HF studies
we conducted transcriptome-wide association studies (TWASs) using S-PrediXcan28 and
multivariate adaptive shrinkage (MASHR) eQTL models from the Genotype-Tissue Expression
(GTEx) Project v8, available in PredictDB29,30 GTEx eQTLs were derived from a sample group of
mostly European ancestry (84.6% European ancestry, 12.9% African American, 1.3% Asian and
1.1% unknown) that closely parallels the composition of the HF multi-ancestry cohort. Using this
reference, we imputed genetically regulated gene expression (GReX) for all genes in ten tissues
known to be relevant in the cardiovascular system and heart failure (aorta, coronary artery, tibial
artery, atrial appendage, left ventricle, whole blood, visceral adipose, subcutaneous adipose, liver,
and kidney)31–37. Associations for each of the intermediate MRI traits from the UK Biobank, as
well as multi-ancestry and EUR populations from all-cause HF were calculated independently for
each of these ten tissues. Significant genes were determined using a Bonferroni threshold of
(p<0.05/(# genes x 10 tissues tested) per trait. All code is available at
https://github.com/RitchieLab/HFmultiomics_PSB2025.

2.3.  Proteome-wide association study (PWAS)

We performed a proteome-wide association study (PWAS) using S-PrediXcan28 with the GWAS
summary statistics for MRI traits from UK Biobank and for the multi-ancestry and European
(EUR) population all-cause HF studies. PWAS identifies genetic associations that may influence
complex traits, such as all-cause HF and MRI traits, by regulating protein abundance in tissue38.
Blood plasma-derived protein quantitative trait loci (cis-pQTLs) from the Atherosclerosis Risk in
Communities (ARIC)39 study were used to construct the models. This large bi-ethnic study was
made up of 9,084 participants, consisting of 7,213 European Americans (EA) and 1,871 African
Americans (AA). S-PrediXCan PWAS EA and AA models were identified in PredictDB and were
constructed using ARIC consortium data by utilizing PEERS covariates, expression information
from eQTL associations, gene and SNP annotations40,41. PWAS was conducted on multi-ancestry
and EUR studies of all-cause HF, as well as on traits from UK Biobank with the intermediate MRI
traits using the EA cohort information, and additionally the AA cohort for the multi-ancestry HF
study. The resulting PWAS associations were assessed for statistical significance using a
Bonferroni significance threshold (p<0.05/# proteins tested) for each trait.
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2.4.  Network and pathway analyses

2.4.1.  Pathway enrichment analysis

Gene set enrichment was performed using EnrichR42,43 for the significant results from TWAS and
PWAS for each MRI trait and HF phenotype, respectively. Enrichment analysis explored the
specific pathways and processes associated with the statistically significant genes and proteins
from the TWAS and/or PWAS. Pathway results were annotated with KEGG 2021, Reactome 2022,
and Gene Ontology (GO) Biological Process 2023 pathways. The significant pathways were
identified as having Fisher's exact test p-value < 0.0538,44.

2.4.2.  Network analysis and identification of hub genes and proteins

The statistically significant genes and proteins identified via TWAS and PWAS were used to
construct a protein-protein interaction (PPI) network using the online Search Tool for the Retrieval
of Interacting Genes (STRING v11)45, where the number of interactions present was assessed for
significance. Network interactions were thresholded by a minimum confidence score of > 0.4, as
calculated by STRING45. The networks were then visualized using Cytoscape 3.10.246, and degree
centrality analysis was performed using the cytoHubba module to identify and visualize the hub
genes and proteins47,48.

2.4.3.  Classification of of sub-clusters

Additionally, the Molecular Complex Detection (MCODE)49 module in Cytoscape was used to
screen modules of the larger PPI networks and construct clusters by identifying densely-connected
regions of the network50. The networks were thresholded to have an MCODE degree cutoff of 3,
node density cutoff of 0.1, node score cutoff of 0.2, number of nodes > 347,51. Gene set enrichment
analysis using KEGG 202152–54, Reactome 202255,56, and Gene Ontology (GO) Biological Process
202357,58 of each cluster was then conducted using Metascape59, using the default parameters of
minimum overlap of 3, p-value cutoff of 0.01, and minimum enrichment score of 1.5.

3.  Results

3.1.  TWAS and PWAS Association Analyses

3.1.1 MRI trait gene and protein associations

After fine-mapping, 35 unique genes within ten tissues and three proteins from blood plasma
(SPON1, C2, PACAP) were significant for LVEF based on a Bonferroni threshold
(TWAS:p<3.814E-07, PWAS:3.75E-05) (Figure 2A). 16 of these genes were significant in three
or more tissues, and one gene, SPON1, replicated in both TWAS and PWAS for LVEF. 35 genes
and one protein (THBS4) appeared significantly associated with LVM measures
(TWAS:p<3.842E-07, PWAS:3.79E-05). Five of these significant genes (FKBP7, WNT3, HSPQ4,
PSMC3, and PRKRA) appeared in three or more tissues tested. Finally, amongst the ten tissues
tested, 33 genes and three proteins (ENG, QPCTL, SPON1) were significant for LVEDV
(TWAS:p<3.815E-07, PWAS:3.79E-05) and 48 genes along with four proteins (RAB5A, SRL,
PACAP, SPON1) for LVESV (TWAS:p<3.815E-07), protein:3.79E-05). SPON1 was also

Pacific Symposium on Biocomputing 2025

508

https://paperpile.com/c/f7pOqL/aooOx+MlZHq
https://paperpile.com/c/f7pOqL/MHzbq+c4rrx
https://paperpile.com/c/f7pOqL/oiaG5
https://paperpile.com/c/f7pOqL/oiaG5
https://paperpile.com/c/f7pOqL/Y3tlz
https://paperpile.com/c/f7pOqL/EZvuk+EEFRD
https://paperpile.com/c/f7pOqL/GSFSt
https://paperpile.com/c/f7pOqL/9xabT
https://paperpile.com/c/f7pOqL/EZvuk
https://paperpile.com/c/f7pOqL/1wOag
https://paperpile.com/c/f7pOqL/R5zTr+xp2Fl+bRcYK
https://paperpile.com/c/f7pOqL/UL71P+hFJ5j
https://paperpile.com/c/f7pOqL/IfSFt+6SS6O
https://paperpile.com/c/f7pOqL/8m3GO


significantly associated with LVESV for both TWAS and PWAS. Figures for LVM, LVEDV,
LVESV are available in Supplemental Figure 1A-C. The full significant results of the TWAS and
PWAS for MRI traits are available in Supplemental Table 1 and 2.

Between MRI traits, several genes appeared significant between measures. Genes FKBP7,
PRKRA, and RP11-171I2.3 were associated with all four MRI-based traits in at least one tissue. 15
genes overlapped between LVEDV and LVESV, four genes were shared between LVEDV and
LVM, four between LVEDV and LVM, five genes between LVESV and LMV, and finally 30
genes between LVESV and LVEF. Amongst protein results, SPON1 was the only protein shared
between traits and was significantly associated with LVEF, LVEDV, and LVESV.
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Figure 2. Circos plots for A) MRI LV Ejection Fraction and B) HF - Multi-ancestry representing identified
associations through GWAS (black), TWAS (red), and PWAS (blue). The outermost track of annotations

depicts genes and proteins identified through TWAS (red) and PWAS (blue), or both analyses (purple), with the
asterisk denoting novel results not previously reported from the source GWAS, GWAS Catalog, or NCBI.

3.1.2 HF gene and protein associations

231 unique genes and 29 proteins significantly associated with HF in a multi-ancestry population
(TWAS:p<3.806E-07, PWAS:p<3.79E-05) (Figure 2B). Six genes replicated across genes and
proteins, including RARRES1, NCF1, AIDA, HLA-DQA2, PNKP, and NCR3. 185 of the total 231
associating genes were significant in at least one vascular tissue (heart atrial appendage, heart left
ventricle, tibial artery, coronary artery, whole blood). 90 genes were significant in at least one
vascular tissue and one peripheral tissue (liver, kidney, subcutaneous adipose, visceral adipose).
Of the ten tissues tested, heart atrial appendage and heart left ventricle tissues had the largest
number of genes significantly associating with HF. Genes CRIP3 and USP54 were significant in
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all ten tissues tested. Similar associations with HF were noted in the European population
(Supplemental Figure 1D).

3.2.  Network and Pathway analyses

3.2.1.  MRI trait gene-set enrichment

In order to identify the known biologically relevant pathways associated with the statistically
significant TWAS and PWAS genes for each phenotype, gene-set enrichment analysis was
performed using EnrichR for Reactome 2022, KEGG 2021, and Gene ontology (GO) 2023
pathways. Significant pathways were identified at a p-value < 0.05; the full set of significant
pathways for each phenotype are available in Supplemental Table 3. For LVEF, the most
significant pathway by p-value was positive regulation of actin filament bundle assembly (p =
4.23E-03), made up of genes PXN and MTSS1 (Figure 3A). Several pathways involved in kidney
development function were also identified to be significant, such as renal cell filtration
differentiation (p-value = 9.47E-03), and nephron tubule development (p = 9.47E-03).

LVM (Supplemental Figure 2A) was enriched for a variety of cell proliferation and
differentiation pathways such as positive regulation of endothelial cell proliferation (p = 1.11E-03)
and negative regulation of muscle cell differentiation (p = 4.54E-03), identifying the gene IGF2
and protein THBS4 as important. Similarly developmentally important cardiovascular pathways
were identified for the LVEDV (Supplemental Figure 2B), including embryonic hemopoiesis (p
= 2.43E-04), megakaryocyte differentiation (p = 4.211E-04), and cardiac atrium morphogenesis (p
= 4.73E-04). The most significant pathway for LVESV (Supplemental Figure 2C) was
modulation by host of symbiont process (p = 5.34E-03), in addition to developmental pathways -
glomerular epithelial cell differentiation (p = 1.29E-02), and renal filtration cell differentiation (p
= 1.29E-02).

Figure 3. Gene-set enrichment results of TWAS and PWAS significant hits for A) MRI LVEF and B)
multi-ancestry HF phenotypes.
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3.2.2.  HF gene-set enrichment

A variety of relevant gene-sets were found to have overrepresented pathways previously identified
as important in all-cause HF60. For the HF multi-ancestry cohort (Figure 3B), the most significant
pathways include sterol transport (p = 5.34E-07) and cholesterol metabolism (p = 2.84E-06),
which are known to be impacted in a variety of cardiovascular disease states, including heart
failure61,62. Similar pathways were enriched in the EUR population for HF (Supplemental Figure
2D). Genes implicated in these pathways include ABCG8, STARD3, ABCG5, NPC1, CAV1,
APOH, PCSK9, and CD36.

3.2.3.  PPI network analysis of MRI trait genes and proteins

To evaluate the association of candidate genes and proteins identified by TWAS and PWAS, PPI
networks were constructed for each MRI trait phenotype using the STRING database. The PPI
network for LVEF contained 32 nodes, 16 of which were connected, and 14 edges at a confidence
threshold of > 0.4, with a PPI enrichment p-value = 5.24E-07, indicating that there were
significantly more interactions observed than expected by random chance. The hub nodes
identified via the cytohubba plugin by degree centrality were FLNC, ALPK3, SPATA24, and
HSPB7 (Figure 4A). MCODE identified 1 cluster in the network, with nodes FLNC, HSPB7, and
ALPK3, at a score of 1.5, as computed by multiplying node density by the number of members.

The network for LVM (Supplemental Figure 3A) contained 10 nodes (3 connected) and 2
edges, all corresponding to hits from TWAS. The network had a PPI enrichment score of p =
0.303. The hub node identified was FKBP7, a protein which functions as a molecular chaperone to
accelerate protein folding. MCODE did not identify clusters in this network.

The network for LVESV (Supplemental Figure 3B) consisted of 45 nodes (19 connected) and
16 edges, with a PPI enrichment p-value = 3.14E-06. Similarly to LVEF, the genes FLNC, ALPK3,
HSPB7, and BHMG1 were identified as hub nodes. MCODE once again identified 1 cluster in the
network, with nodes FLNC, HSPB7, and ALPK3, at a score of 3.

The LVEDV network (Supplemental Figure 3C) contained 34 nodes (13 connected) and 11
edges. Cytohubba identified BHMG1 as a hub node. MCODE did not identify clusters in this
network. Metascape pathway enrichment of clusters for the MRI phenotypes did not yield
additional enriched terms; the full cluster and pathway enrichment results are available in
Supplemental Table 4.
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Figure 4. PPI networks constructed using TWAS and PWAS significant hits for A) MRI LVEF and B)
multi-ancestry HF phenotypes. Size of nodes denotes degree centrality, with largest nodes identified as hub

nodes.

3.2.4.  PPI network analysis of HF genes and proteins

The PPI network for the HF multi-ancestry cohort consisted of 234 nodes and 294 edges at the
medium confidence score > 0.4 in STRING, with an average local clustering coefficient of 0.377
(Figure 4B). STRING found that the network had a PPI enrichment p-value = 1.0E-16, suggesting
that the network had significantly more edges than expected by random chance. In Cytoscape, the
hub nodes identified by degree centrality were CAV1, ERBB2, TGFB1, and CD36. Additionally, 5
non-overlapping clusters were identified in MCODE, with a max cluster score of 4.889 and
minimum score of 3.0, where a higher score denotes a greater number of nodes in the cluster.
Metascape was used to evaluate pathways for the genes present in each cluster, identifying
pathways in sarcomere organization (LOG10P=-9.09), Hemostasis (LOG10P=-7.84),
VEGFA-VEGFR2 pathway (LOG10P=-7.65), and heart development (LOG10P=-3.14), among
several others. The PPI network for HF in the EUR population (Supplemental Figure 3D) yielded
similar findings.
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4.  Discussion

We performed the first ever intermediate cardiac imaging trait TWAS at the gene level and
first-ever protein imputation and largest for all-cause HF, followed by enriched gene sets and
constructed interaction networks to contextualize our findings. Current established
cardiomyopathy (CM) genes have been found studying familial forms of disease, however, here
we focused on identifying associations based on structural and functional cardiac changes and
expect to see differences. Overall we demonstrated (1) an increase in information gain using
TWAS and PWAS in addition to GWAS in connecting intermediate cardiac phenotypes and
full-stage HF, (2) the value in using quantitative intermediate measures for interpreting the
changes that occur during disease progression, and (3) how these intermediate measures may
relate to changes seen in full-stage HF.

4.1.  Information gain from multi-omics approaches

While GWAS has value in identifying singular variants associated with traits, variant results are
unable to give clues toward mechanistic effects as it relates to the traits of interest. Genes deemed
significant from GWAS are usually only identified based on their proximity to significant variants,
but we know that proximity actually is not always a good indicator of effect on gene expression
and often varies per tissue63,64. However, our results are derived from published variant to gene
expression values (eQTLs). Our TWAS showed an overall increase in the number of genes
associated for every MRI-trait tested compared to GWAS. For example, from Pirruccello et al., 19
genes were identified as proximal to significant variants from GWAS for LVEF. We replicated 8 of
those in our TWAS and PWAS, and also identified 29 additional genes and proteins (4 within
GWAS Catalog65 and NCBI66, 25 novel) that were significant in a tissue specific context (Figure
2A)27. This trend continued for LVEDV, LVESV, and LMV from Khurshid et al (Supplemental
Figures 1A-C)26. For all-cause multi-ancestry HF GWAS, we replicated 50 genes from the source
GWAS in our TWAS results. 199 genes and proteins were not identified in GWAS, indicating that
GWAS variants may not be affecting closest proximity genes. Of the remaining 199 genes and
proteins identified in our TWAS, 179 are considered novel associations and are not found in
previous HF GWAS within GWAS Catalog (Figure 2B).

Additionally, to our knowledge this is the first study looking at the protein level based on
quantitative cardiac traits, making all protein results novel. By adding proteins to genes in our
gene-protein networks, these results 1) give higher confidence associations to those replicating at
the gene and protein level, and 2) connect gene clusters with missing information. For example,
SPON1 replicated at the gene and protein level for LVEF and LVESV and has been implicated in
cardiomyopathies67–69, blood pressure70, cognitive decline71–73, cancers74,75, as well as EF in a recent
study76. NCF1, replicated at the gene and protein level for HF and does not appear to have
previously been associated with HF in literature, but has been reported for Williams Syndrome
which can cause structural vascular changes77. NCF1 also has ties to immune response and is a key
regulator of reactive oxygen species78,79. Other replicating proteins for HF (APOH, TNXB,
PCSK9, and RGMB), have previously been associated with HF16,80–82.

4.2.  Relationships between intermediate cardiac measures and HF

The four MRI derived cardiac measures explored in this study are often collectively used to mark
structural and functional changes in the heart, and are reliable indicators of HF risk and eventual
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diagnosis. Therefore the relationship between these measures as well as the overlap between each
and HF at the gene, protein, and pathway level is of interest.

Between the MRI cardiac measures we see overlap at the gene and protein level (Figure 2A
and Supplemental Figures 1A-C). Three genes, FKBP7, RP11-171I2.3, and PRKRA were
significant in at least one tissue for each of the four MRI cardiac traits. Both FKBP7 and PRKRA
have been discussed in relation to cardiac traits before. PRKRA has been implicated in studies
impacting heart structure, and while FKBP7 has been less discussed, was linked to atrial
fibrillation in one study83–87. PRKRA and FKBP7 are both involved in stress response and could be
indicative of problematic changes beginning to occur. It is worth noting that FKBP7, PRKRA, and
third gene (PLEKHA3, significant with LVM, LVEDV, and LVESV), all lie within a region of
chromosome 2 that also includes the gene TTN, which is well established heritable cause of dilated
cardiomyopathy, a leading cause of heart failure88–90.

Of the four traits LVEF and LVESV had the most overall overlaps, with 30 different genes and
one protein, SPON1 appearing for both traits. When we clustered the results, one PPI cluster for
LVEF is dominated by genes previously implicated with dilated cardiomyopathy and heart failure
risk (HSPB7, FLNC, ALPK3, CLCNKA) (Figure 4A), as well as links to the brain via WDR7391–97.
We also see a cluster composed of much of the same genes for LVESV, and overlapping enriched
pathways for cardiac cell development (ALPK3), and transepithelial chloride transport (CLCNKA).
Renal transport also appears as a significantly enriched pathway for LVEF as a result of CLCNKA,
as well as renal filtration cell differentiation and nephron tubule as top pathway results. Renal
impairment is common among HF patients and is documented to increase mortality risk98,99. The
significance of structural LV genes contributing to these pathways could indicate that these genes
impact both disorders, or that there may be some interplay between HF and renal conditions that
contribute to progression.

Within our multi-ancestry HF results there appears to be substantial overlap in the MRI
derived cardiac measures. 30 genes that appeared significant in one of the MRI cardiac traits also
appeared to be associated with all-cause HF. LVEF and LVESV had the largest number of
overlapping genes with the disease respectively (18 genes for LVEF and 18 genes for LVESV),
further supporting their use as HF indicators. AIDA was the top significant protein from blood
plasma, significant with both the European American and African American pQTL reference
panels (Supplemental Table 2), a gene previously discussed as part of inflammatory response that
also promotes atherosclerosis and coronary artery disease100. Overall, HF associated gene and
protein results tend to enrich lipid and specifically cholesterol related pathways (Figure 3B).
Nephron tubule development also appears as a top pathway for GF, implicating the kidneys again.
We did not see top CM genes such as MYBPC3, MYH7, MYL2/3, DSP, but these also were not
significant in our source GWASs and not surprising given that our studies were focused on cardiac
structure and functional changes rather than familial types. However, we did find some known CM
genes: FLNC (LVEF, LVESV, HF), PLN (LVEDV), and ACTIN2 (HF), as well as genes related to
known CM genes like TNNT2 (TNNT3 - HF) and TMEM43 (TMEM170A, TMEM241,
TMEM150A, TMEM245 - HF).

4.3.  Limitations and future directions

Limitations exist within this study. First, this analysis only encompasses the genetic factors of HF
and intermediate cardiac measures. Genetics play a significant role in the development of HF;
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however, it has been shown that environment and comorbidities play a large role in increasing risk
as well101,102. We did not consider social factors or health records of the patients used in the source
GWASs, and therefore may not have fully been able to characterize all potential sources of disease
progression. Future studies attempting to characterize or stratify individual-level risk of
developing HF would benefit from including these data modalities, in addition to those used in
this study.

Additionally, we used a GWAS study with an all-case HF multi-ancestry cohort to represent
HF in our study. While this is beneficial for increasing sample size and increasing power, this
might also muddle distinct signals within known phenotypic subgroups of HF or specific
ancestries given the complexity of the disease as earlier stated. Future studies may find
improvement by stratifying HF by subgroups, such as diastolic vs systolic dysfunction, to achieve
more informed results. Beyond our cohort limitations, we also acknowledge that the imputation of
gene and protein expression is influenced by the ancestry and completeness of the reference eQTL
and pQTL sets we used (GTEx v8 and ARIC). For example, known cardiomyopathy genes LMNA,
FHL1, and CALR3 were not in the GTEx eQTL set used25. These QTL reference sets were also not
disease specific. The creation of disease specific models using disease-specific RNAseq and
proteomic data may be an avenue for further improvement. Lastly, here we only considered
imputed gene and protein data modalities, based on multi-omics data from well characterized
reference populations. The use of additional modalities, such as RNAseq, protein abundance, or
methylation information would provide stronger evidence for our conclusions.

5.  Acknowledgments

This work was supported through the following grants from the National Institutes of Health
(NIH): AG066833, HL169458. We also thank Tess Cherlin from the University of Pennsylvania
for her assistance with visualizations in this manuscript.

6.  Appendix

Supplemental figures and tables are available at:
https://ritchielab.org/publications/supplementary-data/psb-2025/hfmultiomics
Code is available at: https://github.com/RitchieLab/HFmultiomics_PSB2025

References

1. Bozkurt, B. et al. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart
Failure Society of America. J. Card. Fail. 29, 1412–1451 (2023).

2. Bozkurt, B., Coats, A. & Tsutsui, H. Universal definition and classification of heart failure. J.
Card. Fail. 27, 387–413 (2021).

3. Ziaeian, B. & Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol.
13, 368–378 (2016).

4. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313
(2002).

5. Roger, V. L. Epidemiology of Heart Failure: A Contemporary Perspective. Circ. Res. 128,
1421–1434 (2021).

6. Lopes, L. R. & Elliott, P. M. Genetics of heart failure. Biochim. Biophys. Acta 1832,
2451–2461 (2013).

Pacific Symposium on Biocomputing 2025

516

https://paperpile.com/c/f7pOqL/6rbUm+ct1lx
https://paperpile.com/c/f7pOqL/QzFB
https://ritchielab.org/publications/supplementary-data/psb-2025/hfmultiomics
https://github.com/RitchieLab/HFmultiomics_PSB2025
http://paperpile.com/b/f7pOqL/EHYir
http://paperpile.com/b/f7pOqL/EHYir
http://paperpile.com/b/f7pOqL/pu0Av
http://paperpile.com/b/f7pOqL/pu0Av
http://paperpile.com/b/f7pOqL/0TnnX
http://paperpile.com/b/f7pOqL/0TnnX
http://paperpile.com/b/f7pOqL/uTq0Z
http://paperpile.com/b/f7pOqL/uTq0Z
http://paperpile.com/b/f7pOqL/SJtc7
http://paperpile.com/b/f7pOqL/SJtc7
http://paperpile.com/b/f7pOqL/tI6i3
http://paperpile.com/b/f7pOqL/tI6i3


7. Lindgren, M. P. et al. A Swedish Nationwide Adoption Study of the Heritability of Heart
Failure. JAMA Cardiol 3, 703–710 (2018).

8. Ammar, K. A. et al. Prevalence and prognostic significance of heart failure stages:
application of the American College of Cardiology/American Heart Association heart failure
staging criteria in the community. Circulation 115, 1563–1570 (2007).

9. Goldberg, L. R. & Jessup, M. Stage B heart failure: management of asymptomatic left
ventricular systolic dysfunction. Circulation 113, 2851–2860 (2006).

10. Kosmala, W. & Marwick, T. H. Asymptomatic Left Ventricular Diastolic Dysfunction:
Predicting Progression to Symptomatic Heart Failure. JACC Cardiovasc. Imaging 13,
215–227 (2020).

11. de Simone, G., Gottdiener, J. S., Chinali, M. & Maurer, M. S. Left ventricular mass predicts
heart failure not related to previous myocardial infarction: the Cardiovascular Health Study.
Eur. Heart J. 29, 741–747 (2008).

12. Aurigemma, G. P., Zile, M. R. & Gaasch, W. H. Contractile behavior of the left ventricle in
diastolic heart failure: with emphasis on regional systolic function. Circulation 113, 296–304
(2006).

13. Solomon, S. D. et al. Influence of ejection fraction on cardiovascular outcomes in a broad
spectrum of heart failure patients. Circulation 112, 3738–3744 (2005).

14. Smith, J. G. et al. Discovery of Genetic Variation on Chromosome 5q22 Associated with
Mortality in Heart Failure. PLoS Genet. 12, e1006034 (2016).

15. Villard, E. et al. A genome-wide association study identifies two loci associated with heart
failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

16. Rasooly, D. et al. Genome-wide association analysis and Mendelian randomization
proteomics identify drug targets for heart failure. Nat. Commun. 14, 3826 (2023).

17. Levin, M. G. et al. Genome-wide association and multi-trait analyses characterize the
common genetic architecture of heart failure. Nat. Commun. 13, 6914 (2022).

18. Yu, B. et al. Genome-wide association study of a heart failure related metabolomic profile
among African Americans in the Atherosclerosis Risk in Communities (ARIC) study. Genet.
Epidemiol. 37, 840–845 (2013).

19. Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide
insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

20. Smith, N. L. et al. Association of genome-wide variation with the risk of incident heart
failure in adults of European and African ancestry: a prospective meta-analysis from the
cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ.
Cardiovasc. Genet. 3, 256–266 (2010).

21. Morrison, A. C. et al. Genomic variation associated with mortality among adults of European
and African ancestry with heart failure: the cohorts for heart and aging research in genomic
epidemiology consortium. Circ. Cardiovasc. Genet. 3, 248–255 (2010).

22. Li, B. & Ritchie, M. D. From GWAS to Gene: Transcriptome-Wide Association Studies and
Other Methods to Functionally Understand GWAS Discoveries. Front. Genet. 12, 713230
(2021).

23. Cao, C. et al. Power analysis of transcriptome-wide association study: Implications for
practical protocol choice. PLoS Genet. 17, e1009405 (2021).

24. Li, D., Liu, Q. & Schnable, P. S. TWAS results are complementary to and less affected by
linkage disequilibrium than GWAS. Plant Physiol. 186, 1800–1811 (2021).

Pacific Symposium on Biocomputing 2025

517

http://paperpile.com/b/f7pOqL/zjSNF
http://paperpile.com/b/f7pOqL/zjSNF
http://paperpile.com/b/f7pOqL/8PVo5
http://paperpile.com/b/f7pOqL/8PVo5
http://paperpile.com/b/f7pOqL/8PVo5
http://paperpile.com/b/f7pOqL/AvA08
http://paperpile.com/b/f7pOqL/AvA08
http://paperpile.com/b/f7pOqL/asFKu
http://paperpile.com/b/f7pOqL/asFKu
http://paperpile.com/b/f7pOqL/asFKu
http://paperpile.com/b/f7pOqL/DRV9f
http://paperpile.com/b/f7pOqL/DRV9f
http://paperpile.com/b/f7pOqL/DRV9f
http://paperpile.com/b/f7pOqL/wbx3W
http://paperpile.com/b/f7pOqL/wbx3W
http://paperpile.com/b/f7pOqL/wbx3W
http://paperpile.com/b/f7pOqL/9rnRS
http://paperpile.com/b/f7pOqL/9rnRS
http://paperpile.com/b/f7pOqL/nTvOZ
http://paperpile.com/b/f7pOqL/nTvOZ
http://paperpile.com/b/f7pOqL/rwmrj
http://paperpile.com/b/f7pOqL/rwmrj
http://paperpile.com/b/f7pOqL/LEOpt
http://paperpile.com/b/f7pOqL/LEOpt
http://paperpile.com/b/f7pOqL/BfYBP
http://paperpile.com/b/f7pOqL/BfYBP
http://paperpile.com/b/f7pOqL/QFTg6
http://paperpile.com/b/f7pOqL/QFTg6
http://paperpile.com/b/f7pOqL/QFTg6
http://paperpile.com/b/f7pOqL/dkbcl
http://paperpile.com/b/f7pOqL/dkbcl
http://paperpile.com/b/f7pOqL/82Y8f
http://paperpile.com/b/f7pOqL/82Y8f
http://paperpile.com/b/f7pOqL/82Y8f
http://paperpile.com/b/f7pOqL/82Y8f
http://paperpile.com/b/f7pOqL/cHqD4
http://paperpile.com/b/f7pOqL/cHqD4
http://paperpile.com/b/f7pOqL/cHqD4
http://paperpile.com/b/f7pOqL/h6KAp
http://paperpile.com/b/f7pOqL/h6KAp
http://paperpile.com/b/f7pOqL/h6KAp
http://paperpile.com/b/f7pOqL/h5Opx
http://paperpile.com/b/f7pOqL/h5Opx
http://paperpile.com/b/f7pOqL/wZgFo
http://paperpile.com/b/f7pOqL/wZgFo


25. Lee, D. S. M. et al. Common- and rare-variant genetic architecture of heart failure across the
allele frequency spectrum. medRxiv (2023) doi:10.1101/2023.07.16.23292724.

26. Khurshid, S. et al. Clinical and genetic associations of deep learning-derived cardiac
magnetic resonance-based left ventricular mass. Nat. Commun. 14, 1558 (2023).

27. Pirruccello, J. P. et al. Genetic analysis of right heart structure and function in 40,000 people.
Nat. Genet. 54, 792–803 (2022).

28. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene
expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

29. Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS
loci. Genome Biol. 22, 49 (2021).

30. Araujo, D. S. et al. Multivariate adaptive shrinkage improves cross-population transcriptome
prediction and association studies in underrepresented populations. HGG Adv 4, 100216
(2023).

31. Jahng, J. W. S., Song, E. & Sweeney, G. Crosstalk between the heart and peripheral organs in
heart failure. Exp. Mol. Med. 48, e217 (2016).

32. Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and
disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

33. Schefold, J. C., Filippatos, G., Hasenfuss, G., Anker, S. D. & von Haehling, S. Heart failure
and kidney dysfunction: epidemiology, mechanisms and management. Nat. Rev. Nephrol. 12,
610–623 (2016).

34. Poelzl, G. et al. Liver dysfunction in chronic heart failure: prevalence, characteristics and
prognostic significance. Eur. J. Clin. Invest. 42, 153–163 (2012).

35. Xanthopoulos, A., Starling, R. C., Kitai, T. & Triposkiadis, F. Heart Failure and Liver
Disease: Cardiohepatic Interactions. JACC Heart Fail 7, 87–97 (2019).

36. Tanai, E. & Frantz, S. Pathophysiology of Heart Failure. Compr. Physiol. 6, 187–214 (2015).
37. Vanburen, P. et al. Blood gene expression signatures associate with heart failure outcomes.

Physiol. Genomics 43, 392–397 (2011).
38. Li, S.-J. et al. Identifying causal genes for migraine by integrating the proteome and

transcriptome. J. Headache Pain 24, 1–11 (2023).
39. Wang, J.-J., Zheng, Z. & Zhang, Y. Association of Hematological Biomarkers of

Inflammation with 10-Year Major Adverse Cardiovascular Events and All-Cause Mortality in
Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: The ARIC Study. J.
Inflamm. Res. 17, 4247–4256 (2024).

40. Zhang, J. et al. Plasma proteome analyses in individuals of European and African ancestry
identify cis-pQTLs and models for proteome-wide association studies. Nat. Genet. 54,
593–602 (2022).

41. Mi, S. Protein prediction models - ARIC. PredictDB (2022).
42. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis

tool. BMC Bioinformatics 14, (2013).
43. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server

2016 update. Nucleic Acids Res. 44, (2016).
44. Akçimen, F. et al. Transcriptome-wide association study for restless legs syndrome identifies

new susceptibility genes. Communications Biology 3, 1–5 (2020).
45. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased

coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic

Pacific Symposium on Biocomputing 2025

518

http://paperpile.com/b/f7pOqL/QzFB
http://paperpile.com/b/f7pOqL/QzFB
http://dx.doi.org/10.1101/2023.07.16.23292724
http://paperpile.com/b/f7pOqL/QzFB
http://paperpile.com/b/f7pOqL/OTs8H
http://paperpile.com/b/f7pOqL/OTs8H
http://paperpile.com/b/f7pOqL/lICEw
http://paperpile.com/b/f7pOqL/lICEw
http://paperpile.com/b/f7pOqL/LABFz
http://paperpile.com/b/f7pOqL/LABFz
http://paperpile.com/b/f7pOqL/xc92g
http://paperpile.com/b/f7pOqL/xc92g
http://paperpile.com/b/f7pOqL/EbCrw
http://paperpile.com/b/f7pOqL/EbCrw
http://paperpile.com/b/f7pOqL/EbCrw
http://paperpile.com/b/f7pOqL/tx9SI
http://paperpile.com/b/f7pOqL/tx9SI
http://paperpile.com/b/f7pOqL/Wb9YB
http://paperpile.com/b/f7pOqL/Wb9YB
http://paperpile.com/b/f7pOqL/8Ovcq
http://paperpile.com/b/f7pOqL/8Ovcq
http://paperpile.com/b/f7pOqL/8Ovcq
http://paperpile.com/b/f7pOqL/hxwWo
http://paperpile.com/b/f7pOqL/hxwWo
http://paperpile.com/b/f7pOqL/wxzkY
http://paperpile.com/b/f7pOqL/wxzkY
http://paperpile.com/b/f7pOqL/WIhXF
http://paperpile.com/b/f7pOqL/pNaPb
http://paperpile.com/b/f7pOqL/pNaPb
http://paperpile.com/b/f7pOqL/MHzbq
http://paperpile.com/b/f7pOqL/MHzbq
http://paperpile.com/b/f7pOqL/o4CEY
http://paperpile.com/b/f7pOqL/o4CEY
http://paperpile.com/b/f7pOqL/o4CEY
http://paperpile.com/b/f7pOqL/o4CEY
http://paperpile.com/b/f7pOqL/k6uC4
http://paperpile.com/b/f7pOqL/k6uC4
http://paperpile.com/b/f7pOqL/k6uC4
http://paperpile.com/b/f7pOqL/PKjLd
http://paperpile.com/b/f7pOqL/aooOx
http://paperpile.com/b/f7pOqL/aooOx
http://paperpile.com/b/f7pOqL/MlZHq
http://paperpile.com/b/f7pOqL/MlZHq
http://paperpile.com/b/f7pOqL/c4rrx
http://paperpile.com/b/f7pOqL/c4rrx
http://paperpile.com/b/f7pOqL/oiaG5
http://paperpile.com/b/f7pOqL/oiaG5


Acids Res. 47, D607–D613 (2018).
46. Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models of

Biomolecular Interaction Networks. Genome Res. 13, 2498–2504 (2003).
47. Gong, W., Guo, P., Liu, L., Guan, Q. & Yuan, Z. Integrative Analysis of Transcriptome-Wide

Association Study and mRNA Expression Profiles Identifies Candidate Genes Associated
With Idiopathic Pulmonary Fibrosis. Front. Genet. 11, (2020).

48. Chin, C. H. et al. cytoHubba: identifying hub objects and sub-networks from complex
interactome. BMC Syst. Biol. 8 Suppl 4, (2014).

49. Bader, G. D. & Hogue, C. W. V. An automated method for finding molecular complexes in
large protein interaction networks. BMC Bioinformatics 4, 1–27 (2003).

50. Sun, P. G., Gao, L. & Han, S. Prediction of Human Disease-Related Gene Clusters by
Clustering Analysis. Int. J. Biol. Sci. 7, 61 (2011).

51. Song, J. et al. Integrative transcriptome-wide analysis of atopic dermatitis for drug
repositioning. Communications Biology 5, 1–13 (2022).

52. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28, (2000).

53. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein
Sci. 28, (2019).

54. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, (2023).

55. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50,
(2022).

56. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, (2020).
57. The Gene Ontology Consortium et al. Gene Ontology: tool for the unification of biology.

Nat. Genet. 25, 25 (2000).
58. Aleksander, S. A. et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031

(2023).
59. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of

systems-level datasets. Nat. Commun. 10, (2019).
60. Dutka, M., Zimmer, K., Ćwiertnia, M., Ilczak, T. & Bobiński, R. The role of PCSK9 in heart

failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL
cholesterol. Heart Fail. Rev. (2024) doi:10.1007/s10741-024-10409-7.

61. Levine, G. N., Keaney, J. F., Jr & Vita, J. A. Cholesterol reduction in cardiovascular disease.
Clinical benefits and possible mechanisms. N. Engl. J. Med. 332, 512–521 (1995).

62. Daniels, T. F., Killinger, K. M., Michal, J. J., Wright, R. W., Jr & Jiang, Z. Lipoproteins,
cholesterol homeostasis and cardiac health. Int. J. Biol. Sci. 5, 474–488 (2009).

63. Gaffney, D. J. Global properties and functional complexity of human gene regulatory
variation. PLoS Genet. 9, e1003501 (2013).

64. Gutierrez-Arcelus, M. et al. Tissue-specific effects of genetic and epigenetic variation on
gene regulation and splicing. PLoS Genet. 11, e1004958 (2015).

65. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource.
Nucleic Acids Res. 51, D977–D985 (2023).

66. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology
Information: update. Nucleic Acids Res. 32, D35–40 (2004).

67. Gao, Y. et al. Genome-wide analysis of DNA methylation and risk of cardiovascular disease

Pacific Symposium on Biocomputing 2025

519

http://paperpile.com/b/f7pOqL/oiaG5
http://paperpile.com/b/f7pOqL/Y3tlz
http://paperpile.com/b/f7pOqL/Y3tlz
http://paperpile.com/b/f7pOqL/EZvuk
http://paperpile.com/b/f7pOqL/EZvuk
http://paperpile.com/b/f7pOqL/EZvuk
http://paperpile.com/b/f7pOqL/EEFRD
http://paperpile.com/b/f7pOqL/EEFRD
http://paperpile.com/b/f7pOqL/GSFSt
http://paperpile.com/b/f7pOqL/GSFSt
http://paperpile.com/b/f7pOqL/9xabT
http://paperpile.com/b/f7pOqL/9xabT
http://paperpile.com/b/f7pOqL/1wOag
http://paperpile.com/b/f7pOqL/1wOag
http://paperpile.com/b/f7pOqL/R5zTr
http://paperpile.com/b/f7pOqL/R5zTr
http://paperpile.com/b/f7pOqL/xp2Fl
http://paperpile.com/b/f7pOqL/xp2Fl
http://paperpile.com/b/f7pOqL/bRcYK
http://paperpile.com/b/f7pOqL/bRcYK
http://paperpile.com/b/f7pOqL/UL71P
http://paperpile.com/b/f7pOqL/UL71P
http://paperpile.com/b/f7pOqL/hFJ5j
http://paperpile.com/b/f7pOqL/IfSFt
http://paperpile.com/b/f7pOqL/IfSFt
http://paperpile.com/b/f7pOqL/6SS6O
http://paperpile.com/b/f7pOqL/6SS6O
http://paperpile.com/b/f7pOqL/8m3GO
http://paperpile.com/b/f7pOqL/8m3GO
http://paperpile.com/b/f7pOqL/jNhkn
http://paperpile.com/b/f7pOqL/jNhkn
http://paperpile.com/b/f7pOqL/jNhkn
http://dx.doi.org/10.1007/s10741-024-10409-7
http://paperpile.com/b/f7pOqL/jNhkn
http://paperpile.com/b/f7pOqL/dwont
http://paperpile.com/b/f7pOqL/dwont
http://paperpile.com/b/f7pOqL/rp1dm
http://paperpile.com/b/f7pOqL/rp1dm
http://paperpile.com/b/f7pOqL/aaEmA
http://paperpile.com/b/f7pOqL/aaEmA
http://paperpile.com/b/f7pOqL/gWiKE
http://paperpile.com/b/f7pOqL/gWiKE
http://paperpile.com/b/f7pOqL/zrlzT
http://paperpile.com/b/f7pOqL/zrlzT
http://paperpile.com/b/f7pOqL/bngb4
http://paperpile.com/b/f7pOqL/bngb4
http://paperpile.com/b/f7pOqL/ZjtU


in a Chinese population. BMC Cardiovasc. Disord. 21, 240 (2021).
68. Girerd, N. et al. Inflammation and remodeling pathways and risk of cardiovascular events in

patients with ischemic heart failure and reduced ejection fraction. Sci. Rep. 12, 8574 (2022).
69. Liu, T. et al. Identification of Circular RNA-MicroRNA-Messenger RNA Regulatory

Network in Atrial Fibrillation by Integrated Analysis. Biomed Res. Int. 2020, 8037273
(2020).

70. Clemitson, J.-R. et al. Genetic dissection of a blood pressure quantitative trait locus on rat
chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate
hypertension gene. Circ. Res. 100, 992–999 (2007).

71. Jahanshad, N. et al. Genome-wide scan of healthy human connectome discovers SPON1 gene
variant influencing dementia severity. Proc. Natl. Acad. Sci. U. S. A. 110, 4768–4773 (2013).

72. Fernandez, S. et al. Is Associated with Amyloid-β and ε4-Related Cognitive Decline in
Cognitively Normal Adults. J Alzheimers Dis Rep 5, 111–120 (2021).

73. Liu, Z. et al. APOE influences working memory in non-demented elderly through an
interaction with SPON1 rs2618516. Hum. Brain Mapp. 39, 2859–2867 (2018).

74. Tamjidifar, R. et al. Prognostic and Diagnostic Values of miR-506 and SPON 1 in Colorectal
Cancer with Clinicopathological Considerations. J. Gastrointest. Cancer 52, 125–129 (2021).

75. Miyakawa, R. et al. SPON1 is an independent prognostic biomarker for ovarian cancer. J.
Ovarian Res. 16, 95 (2023).

76. Shah, A. M. et al. Large scale plasma proteomics identifies novel proteins and protein
networks associated with heart failure development. Nat. Commun. 15, 528 (2024).

77. Kozel, B. A. et al. Williams syndrome predisposes to vascular stiffness modified by
antihypertensive use and copy number changes in NCF1. Hypertension 63, 74–79 (2014).

78. Liu, H. et al. Ncf1 knockout in smooth muscle cells exacerbates angiotensin II-induced aortic
aneurysm and dissection by activating the STING pathway. Cardiovasc. Res. 120, 1081–1096
(2024).

79. Holmdahl, R., Sareila, O., Olsson, L. M., Bäckdahl, L. & Wing, K. Ncf1 polymorphism
reveals oxidative regulation of autoimmune chronic inflammation. Immunol. Rev. 269,
228–247 (2016).

80. Da Dalt, L. et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with
preserved ejection fraction. Eur. Heart J. 42, 3078–3090 (2021).

81. Xu, Q. et al. PCSK9: A emerging participant in heart failure. Biomed. Pharmacother. 158,
114106 (2023).

82. Nayor, M. et al. Aptamer-Based Proteomic Platform Identifies Novel Protein Predictors of
Incident Heart Failure and Echocardiographic Traits. Circ. Heart Fail. 13, e006749 (2020).

83. Hsu, J. et al. Genetic Control of Left Atrial Gene Expression Yields Insights into the Genetic
Susceptibility for Atrial Fibrillation. Circ Genom Precis Med 11, e002107 (2018).

84. Wang, Q. et al. Epistasis regulates genetic control of cardiac hypertrophy. Res Sq (2023)
doi:10.21203/rs.3.rs-3509208/v1.

85. Wang, X. et al. Genetic and phenotypic relationships between coronary atherosclerotic heart
disease and electrocardiographic traits. in 2022 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) (IEEE, 2022).
doi:10.1109/bibm55620.2022.9995557.

86. Gao, H., Liu, Y., Sheng, W., Shou, W. & Huang, G. Progresses in genetic testing in
congenital heart disease. Medicine Plus 1, 100028 (2024).

Pacific Symposium on Biocomputing 2025

520

http://paperpile.com/b/f7pOqL/ZjtU
http://paperpile.com/b/f7pOqL/PaMg
http://paperpile.com/b/f7pOqL/PaMg
http://paperpile.com/b/f7pOqL/5tqr
http://paperpile.com/b/f7pOqL/5tqr
http://paperpile.com/b/f7pOqL/5tqr
http://paperpile.com/b/f7pOqL/4Zt0
http://paperpile.com/b/f7pOqL/4Zt0
http://paperpile.com/b/f7pOqL/4Zt0
http://paperpile.com/b/f7pOqL/Uyyz
http://paperpile.com/b/f7pOqL/Uyyz
http://paperpile.com/b/f7pOqL/ms14
http://paperpile.com/b/f7pOqL/ms14
http://paperpile.com/b/f7pOqL/N2l8
http://paperpile.com/b/f7pOqL/N2l8
http://paperpile.com/b/f7pOqL/BwIE
http://paperpile.com/b/f7pOqL/BwIE
http://paperpile.com/b/f7pOqL/tqsc
http://paperpile.com/b/f7pOqL/tqsc
http://paperpile.com/b/f7pOqL/J8he
http://paperpile.com/b/f7pOqL/J8he
http://paperpile.com/b/f7pOqL/VrIT
http://paperpile.com/b/f7pOqL/VrIT
http://paperpile.com/b/f7pOqL/nugsg
http://paperpile.com/b/f7pOqL/nugsg
http://paperpile.com/b/f7pOqL/nugsg
http://paperpile.com/b/f7pOqL/kkE6e
http://paperpile.com/b/f7pOqL/kkE6e
http://paperpile.com/b/f7pOqL/kkE6e
http://paperpile.com/b/f7pOqL/lIHOb
http://paperpile.com/b/f7pOqL/lIHOb
http://paperpile.com/b/f7pOqL/CF7Rv
http://paperpile.com/b/f7pOqL/CF7Rv
http://paperpile.com/b/f7pOqL/PyYo4
http://paperpile.com/b/f7pOqL/PyYo4
http://paperpile.com/b/f7pOqL/NFVzg
http://paperpile.com/b/f7pOqL/NFVzg
http://paperpile.com/b/f7pOqL/qgSfe
http://paperpile.com/b/f7pOqL/qgSfe
http://dx.doi.org/10.21203/rs.3.rs-3509208/v1
http://paperpile.com/b/f7pOqL/qgSfe
http://paperpile.com/b/f7pOqL/U2kNg
http://paperpile.com/b/f7pOqL/U2kNg
http://paperpile.com/b/f7pOqL/U2kNg
http://paperpile.com/b/f7pOqL/U2kNg
http://dx.doi.org/10.1109/bibm55620.2022.9995557
http://paperpile.com/b/f7pOqL/U2kNg
http://paperpile.com/b/f7pOqL/sIWNs
http://paperpile.com/b/f7pOqL/sIWNs


87. Shah, S. et al. Four genetic loci influencing electrocardiographic indices of left ventricular
hypertrophy. Circ. Cardiovasc. Genet. 4, 626–635 (2011).

88. Akhtar, M. M. et al. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused
by Truncating Variants in the Gene. Circ. Heart Fail. 13, e006832 (2020).

89. Chauveau, C. et al. Recessive TTN truncating mutations define novel forms of core
myopathy with heart disease. Hum. Mol. Genet. 23, 980–991 (2014).

90. Tharp, C. A., Haywood, M. E., Sbaizero, O., Taylor, M. R. G. & Mestroni, L. The Giant
Protein Titin’s Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational
Modifications of TTN and Their Contribution to Cardiac Disease. Front. Physiol. 10, 1436
(2019).

91. Stark, K. et al. Genetic association study identifies HSPB7 as a risk gene for idiopathic
dilated cardiomyopathy. PLoS Genet. 6, e1001167 (2010).

92. Cappola, T. P. et al. Common variants in HSPB7 and FRMD4B associated with advanced
heart failure. Circ. Cardiovasc. Genet. 3, 147–154 (2010).

93. Begay, R. L. et al. Gene Splice Mutations Cause Dilated Cardiomyopathy. JACC Basic
Transl Sci 1, 344–359 (2016).

94. Cui, H. et al. Mutation profile of FLNC gene and its prognostic relevance in patients with
hypertrophic cardiomyopathy. Mol Genet Genomic Med 6, 1104–1113 (2018).

95. Van Sligtenhorst, I. et al. Cardiomyopathy in α-kinase 3 (ALPK3)-deficient mice. Vet. Pathol.
49, 131–141 (2012).

96. Almomani, R. et al. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric
Cardiomyopathy. J. Am. Coll. Cardiol. 67, 515–525 (2016).

97. Cappola, T. P. et al. Loss-of-function DNA sequence variant in the CLCNKA chloride
channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc.
Natl. Acad. Sci. U. S. A. 108, 2456–2461 (2011).

98. Smith, G. L. et al. Renal impairment and outcomes in heart failure: systematic review and
meta-analysis. J. Am. Coll. Cardiol. 47, 1987–1996 (2006).

99. Damman, K. et al. Worsening renal function and prognosis in heart failure: systematic review
and meta-analysis. J. Card. Fail. 13, 599–608 (2007).

100. Lalonde, S. et al. Integrative analysis of vascular endothelial cell genomic features identifies
AIDA as a coronary artery disease candidate gene. Genome Biol. 20, 133 (2019).

101. Kannel, W. B. et al. Profile for estimating risk of heart failure. Arch. Intern. Med. 159,
1197–1204 (1999).

102. Nayak, A., Hicks, A. J. & Morris, A. A. Understanding the Complexity of Heart Failure Risk
and Treatment in Black Patients. Circ. Heart Fail. 13, e007264 (2020).

Pacific Symposium on Biocomputing 2025

521

http://paperpile.com/b/f7pOqL/fM9zF
http://paperpile.com/b/f7pOqL/fM9zF
http://paperpile.com/b/f7pOqL/1rJEk
http://paperpile.com/b/f7pOqL/1rJEk
http://paperpile.com/b/f7pOqL/MtLW9
http://paperpile.com/b/f7pOqL/MtLW9
http://paperpile.com/b/f7pOqL/uhVnq
http://paperpile.com/b/f7pOqL/uhVnq
http://paperpile.com/b/f7pOqL/uhVnq
http://paperpile.com/b/f7pOqL/uhVnq
http://paperpile.com/b/f7pOqL/ltNtr
http://paperpile.com/b/f7pOqL/ltNtr
http://paperpile.com/b/f7pOqL/T4Asq
http://paperpile.com/b/f7pOqL/T4Asq
http://paperpile.com/b/f7pOqL/yzEIF
http://paperpile.com/b/f7pOqL/yzEIF
http://paperpile.com/b/f7pOqL/De5Ej
http://paperpile.com/b/f7pOqL/De5Ej
http://paperpile.com/b/f7pOqL/gOcuv
http://paperpile.com/b/f7pOqL/gOcuv
http://paperpile.com/b/f7pOqL/Qk5xr
http://paperpile.com/b/f7pOqL/Qk5xr
http://paperpile.com/b/f7pOqL/nANfA
http://paperpile.com/b/f7pOqL/nANfA
http://paperpile.com/b/f7pOqL/nANfA
http://paperpile.com/b/f7pOqL/u56dP
http://paperpile.com/b/f7pOqL/u56dP
http://paperpile.com/b/f7pOqL/6JyIW
http://paperpile.com/b/f7pOqL/6JyIW
http://paperpile.com/b/f7pOqL/5ESN5
http://paperpile.com/b/f7pOqL/5ESN5
http://paperpile.com/b/f7pOqL/6rbUm
http://paperpile.com/b/f7pOqL/6rbUm
http://paperpile.com/b/f7pOqL/ct1lx
http://paperpile.com/b/f7pOqL/ct1lx


© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License. 

Plasma protein-based and polygenic risk scores serve complementary roles in predicting 
inflammatory bowel disease 

Jakob Woerner1†, Thomas Westbrook1†, Seokho Jeong2, Manu Shivakumar1, Allison R. Greenplate3, 
Sokratis A. Apostolidis4, Seunggeun Lee5, Yonghyun Nam2, Dokyoon Kim2

1Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA 
2Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA 

3Institute for Immunology and Immune Health, University of Pennsylvania,  Philadelphia, PA, USA 
4Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA 

5Graduate School of Data Science, Seoul National University, Seoul, South Korea 
†Equal Contribution 

Email: Yonghyun.Nam@pennmedicine.upenn.edu, Dokyoon.Kim@pennmedicine.upenn.edu

Inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), 
has a significant genetic component and is increasingly prevalent due to environmental factors. 
Current polygenic risk scores (PRS) have limited predictive power and cannot inform time of 
symptom onset. Circulating proteomics profiling offers a novel, non-invasive approach for 
understanding the inflammatory state of complex diseases, enabling the creation of proteomic risk 
scores (ProRS). This study utilizes data from 51,772 individuals in the UK Biobank to evaluate the 
unique and combined contributions of PRS and ProRS to IBD risk prediction. We developed ProRS 
models for CD and UC, assessed their predictive performance over time, and examined the benefits 
of integrating PRS and ProRS for enhanced risk stratification. Our findings are the first to 
demonstrate that combining genetic and proteomic data improves IBD incidence prediction, with 
ProRS providing time-sensitive predictions and PRS offering additional long-term predictive value. 
We also show that the ProRS achieves better predictive performance among individuals with high 
PRS. This integrated approach highlights the potential for multi-omic data in precision medicine for 
IBD. 

Keywords: plasma proteomics; polygenic risk score; autoimmunity; multi-omics; inflammatory 
bowel disease. 

1. Introduction

Inflammatory bowel disease (IBD) represents a chronic inflammatory condition of the 
gastrointestinal tract. Its subtypes, Crohn’s disease (CD) and ulcerative colitis (UC) are related but 
unique conditions with differing properties, symptoms, and risk factors.1 IBD affects approximately 
2.4 to 3.1 million people in the United States, with most diagnoses occurring in adulthood.2–4 
Epidemiologic and genetic studies have demonstrated that these inflammatory conditions are driven 
by a complex interplay between genetic susceptibility and environmental factors. Genome-wide 
association studies (GWASs) have identified over 200 significant genetic loci,5 and family history 
of the disease is the strongest risk factor.6 Multiple lifestyle factors,7,8 including smoking and 
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psychological stress, as well as environmental factors9 such as urbanization, industrialization, and 
westernization are also associated with the onset and progression of IBD.  

Patients with IBD often develop severe complications, including strictures or fistulas in the 
intestine, and in extreme cases, colorectal cancer. Therefore, identifying high-risk individuals before 
the onset of IBD symptoms is crucial to potentially preventing or delaying irreversible bowel 
damage and disease progression.10 Many studies have developed models to stratify high-risk and 
low-risk individuals for CD and UC using polygenic risk scores (PRSs) that incorporate GWAS 
summary statistics and individual genotype data.11,12 PRSs use genetic variants to estimate an 
individual’s susceptibility to developing a disease. However, since IBD is also influenced by non-
genetic factors like lifestyle and environmental influences, accurately assessing IBD risk using 
models based solely on genetic data is challenging. 

IBD is an autoimmune condition, so the current state of an individual's immune system provides 
valuable information about symptom onset.13 While genetic data provide insights into susceptibility, 
they cannot predict when symptoms will appear or how the disease will progress. A PRS can identify 
individuals with high genetic risk for IBD, but these individuals may not necessarily develop the 
disease if they effectively manage factors that influence their immune system and overall health. 
This highlights the importance of integrating both genetic predisposition and variable non-genetic 
factors for a comprehensive assessment of IBD risk. 

Recently, high-dimensional circulating plasma proteomics profiling has been used as a non-
invasive tool to understand complex diseases on a large scale and act as endophenotypes related to 
disease pathogenesis and progression. Plasma proteomics provide a snapshot of an individual’s 
current immune status, including many health-related processes and pathways. Studies have found 
proteins associated with the prevalence of a range of complex diseases,14,15 including IBD.16,17  
Additionally, protein levels prior to diagnosis have been linked with subsequent disease onset,18,19 
including in IBD,20 further motivating their use as a predictive tool. Consequently, these 
developments produced proteomic risk scores (ProRS), where protein signatures are consolidated 
into a score for the current risk of developing a disease.21–23 Proteomic signatures are broadly more 
predictive of complex disease incidence and prevalence than PRS.15,24 However, many diseases have 
both genetic and non-genetic components predictive of disease onset, so efforts have been made to 
combine scores through multi-omic integration of PRS and ProRS. Evidence suggests this 
combination improves the prediction of coronary artery disease,25 coronary plaques,26 and type 2 
diabetes;22 however, this has not been explored in IBD. 

We used data from 51,772 patients in the UK Biobank (UKB) to characterize the unique 
contributions of polygenic risk and proteomic risk to IBD onset prediction in the largest available 
proteomics dataset (Figure 1). Despite the superior performance of ProRS compared to PRS for IBD 
risk assessment, we combined circulating plasma proteomics with genetics in two ways to leverage 
their gene-environment (GxE) interactions27 and provide a more comprehensive risk assessment. 
We directly integrated proteomics and genetics as predictors in the same model, as well as stratified 
patients by PRS before assessing ProRS, showcasing the interactions between the two modalities 
and identifying disease-associated protein biomarkers. Since proteomics data can be obtained during 
a routine clinical blood test, we tested the accuracy of a personalized medicine approach through 
omics integration for IBD risk. 
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2.  Methods 

 
 

Fig. 1.  Study Overview. Data was collected from UKB including plasma protein levels, disease-specific PRS 
models, age, sex, and ICD-10 codes. Cases were separated into prevalent and incident groups, and the fraction 
of cases that were prevalent determined the fraction of controls assigned to the training set. The rest were 
assigned to the testing set. The training set was used to create logistic regression models for the covariate-only 
model and covariate-adjusted PRS as well as LASSO models for the ProRS and combined score.  

2.1.  Data and study participants 

2.1.1.  UK Biobank 

We used data from the UKB, a large-scale biomedical database that provides an extensive collection 
of genetic, health, and lifestyle information from half a million participants from the UK aged 40-
69 at recruitment. With genotype information, International Classification of Diseases (ICD) codes 
from electronic health records, and biological samples saved for later analysis, the biobank provides 
the largest resource to study IBD. The breadth of data collected by the UKB and its large sample 
sizes enabled this project to analyze multi-omic data in a substantial sample with an adequate 
number of disease cases.  

2.1.2.  Circulating proteomics 

In October 2023, the UKB released plasma protein levels of 53,018 blood samples from participants 
collected at recruitment between 2006 and 2010 as part of the Pharma Proteomics Project (UKB-
PPP).28 The circulating levels of 2,923 proteins were recorded using the Olink Explore 3072 
proximity extension assay. The data had about 17.5% missingness. To preserve as many samples as 
possible, the missing values were imputed using the k-nearest neighbors imputation method with 
𝑘 = 10.29 Before imputation, individuals with greater than 54% missingness (n = 698) and proteins 
with greater than 30% missingness (n = 3) were excluded, reducing the total missingness to 9.5%.  

Pacific Symposium on Biocomputing 2025

524



 
 

 

2.1.3.  Phenotyping 

Binary phenotypes for each IBD subtype were established using the ICD diagnosis codes K50* for 
CD and K51* for UC. If an individual’s date of first report of disease occurrence was before their 
blood draw, from which circulating proteomics were profiled, they were labeled as a prevalent case. 
If their date of first disease occurrence was after their initial blood draw, they were labeled as an 
incident case. Otherwise, they were considered controls (Figure 1). Additionally, Hospital Episode 
Statistics were used to identify the specific ICD code for each case. A rheumatologist classified each 
code within K50* and K51* as an autoimmune disease or other rheumatic condition. 35 individuals 
with codes in the UC block (K51) that had non-autoimmune diseases (K51.4, K51.5) but no other 
autoimmune disease in the block, were removed from the analysis. 55 individuals had both CD and 
UC codes at baseline, and so were considered prevalent cases in both models. For survival analysis, 
individuals were considered to have the event at their date of first occurrence of the disease. 
Individuals were censored at their date of death if they appeared in the central death registry. To 
generalize the findings as much as possible, our analyses included all individuals, regardless of 
ancestral background. However, the vast majority of the study population self-identified as white 
British (n = 43,047, 83.1%).  

2.2.  Risk Scoring 

We developed a ProRS for each of UC and CD to quantify the likelihood of disease onset in 
undiagnosed individuals using proteomics data. To differentiate protein levels between healthy 
subjects and IBD patients, we stratified cases by time of disease onset (see Phenotyping) and used 
the prevalent cases for model development (training set). Since ProRS aims to predict future IBD 
onset after blood collection, the incident cases were used for model evaluation (testing set). Due to 
limited follow-up time in the UKB, there are fewer incident IBD cases compared to prevalent cases. 
This discrepancy results in an imbalance between the number of training and testing cases, which 
could potentially affect the accuracy and evaluation of our models by introducing bias and reducing 
generalizability. To address this imbalance, we randomly split controls into the training and testing 
sets with the same ratio as prevalent to incident cases in the data.  

The train/test split can be described as follows. Let 𝑺!"#$%&#'( (⋅) and 𝑺!('!&#'((⋅) be the case set of 
patients who were diagnosed with the disease before and after blood collection respectively, where 
the parentheses represent the disease of interest. Given the index disease, the control set is defined 
as 𝑺&)%!")*(⋅) 	= {𝑺!"#$%&#'( (⋅) ∪ 𝑺!('!&#'((⋅)}& . We then randomly selected the training control set 
𝑺!"#$%&)%!")*(⋅) from 𝑺&)%!")*(⋅) such that the proportion of all controls that are in 𝑺!"#$%&)%!")*(⋅) equaled the 
proportion of the total number of cases (|𝑺!"#$%&#'( (⋅) + 𝑺!('!&#'((⋅)|) that are prevalent cases (|𝑺!"#$%&#'( (⋅)|). 
The testing control set is then the remaining set of controls: 

/
𝑺!"#$%&)%!")*(⋅) 	⊂ 	𝑺&)%!")*(⋅)

𝑺!('!&)%!")*(⋅) = 	𝑺&)%!")*(⋅)	\	𝑺!"#$%&)%!")*(⋅)
 

 
This approach ensures that the model is trained and evaluated on disjoint datasets with balanced 

case-control ratios so that the ProRS’s performance can be accurately assessed despite the 
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differences in the numbers of prevalent and incident IBD cases. The resultant case and control 
counts in each set for both diseases are shown in Table 1. 

To evaluate the contribution of each omic level to risk prediction, four models were created for 
CD and UC separately: a covariate-only model, PRS, ProRS, and a combined model. The covariate 
model used only the age at plasma protein measurement and sex in an unpenalized logistic 
regression, acting as a baseline prediction. The PRS model was based on scores from Thompson et 
al.,30 which were added as predictors to an unpenalized logistic regression with the covariates. After 
removing individuals missing a PRS, we analyzed an overall sample size of 51,772 for CD and 
51,737 for UC.  

Since not all 2,920 proteins are expected to be informative of disease status, we applied 
covariate-adjusted Least Absolute Shrinkage and Selection Operator (LASSO) models to develop 
the ProRS while adjusting for potential confounders (sex and age).31 The method allows for 
simultaneous protein marker selection and regularization, defined by the equation: 

𝛽3 = argmin+:log =exp =−𝑦,(𝑋,-𝛽)D + 1D 	
.

,/0

+ 𝜆:F𝛽1F
2

1/0

 (1) 

where 𝑛 is the sample size, 𝑦, is the class information (case or control) for individual 𝑖, 𝑋, are the 
values of the predictors (circulating protein levels and covariates), 𝛽1 is the regression coefficient 
for predictor 𝑗, 𝑝 is the number of predictors, and 𝜆 is the regularization parameter controlling the 
strength of the penalty. Protein features with non-zero coefficient (𝛽1 ≠ 0) in the trained model were 
considered significant proteins associated with IBD. The chosen 𝜆 was the minimum 𝜆 from 5-fold 
cross-validation. The combined model was created in the same fashion, with all protein values, the 
PRS, age, and sex as predictors in a LASSO model. Prior to LASSO, each predictor was 
standardized to a mean of 0 and standard deviation of 1 so that the coefficient magnitudes would be 
comparable. Scores for all four models were computed for each individual in the disease’s testing 
set for further analysis and performance evaluation of disease onset prediction. 
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2.3.  Statistical Analyses 

2.3.1.  Risk prediction evaluation 

All data analyses were performed in R 4.4.0. All models were adjusted for age and sex. Area under 
the receiver operating characteristic curve (AUC) and Nagelkerke’s R2 were used as evaluation 
metrics to assess the classification ability of each quantitative score.32 DeLong’s test was used to 
compare AUCs and establish confidence intervals33 with the pROC R package.34 This nonparametric 
approach is suitable for comparing AUCs of two correlated receiver operating characteristic curves, 
especially when the models are built from the same samples. The CD and UC ProRS models had 
more proteins with non-zero coefficients than the combined models. In order to evaluate their 
genetic backing, SNP-based heritability estimates were established for the circulating levels of each 
protein from pQTL summary statistics of European ancestry individuals28 using LD score regression 
of roughly 1.2 million HapMap3 SNPs.35 Gene set enrichment analysis was then used to test if the 
heritability estimates were higher in the sets of removed proteins than expected by chance. This 
analysis was run with the clusterProfiler R package36 using the heritability estimates of all 2,923 
proteins as the background set. Kaplan-Meier cumulative incidence curves were constructed to 
visualize and test the cumulative incidence of each disease using the survminer R package.37  

2.3.2.  Longitudinal Analyses 

As protein levels in an individual are dynamic while genotypes are static, performances of the PRS 
and ProRS models were evaluated in the short term (5 years) and in the long term (10 years) after 
the blood draw. In these experiments, individuals were only considered incident cases if they were 
diagnosed with the disease within that time frame (five or ten years). Otherwise, they were 
considered controls. 

To test the relationship between the ProRS and time to diagnosis, mean scores were calculated 
on a backward timescale for each year leading up to the diagnosis date. Those who would go on to 
develop IBD were tested against those who did not. Using the approach described in Guo, You, 
Zhang et al., a nested case-control study was implemented to match individuals with incident 
diagnosis events to healthy controls.38 Individuals were matched based on age and sex, with a 1:5 
case-control ratio. The event date for matched controls was set to their corresponding case, and 
incident cases past 14 years were set to have an event date of 14 years. Mean values at each time 
point were fitted using locally weighted smoothing curves (ɑ = 0.8). The Mann-Kendall trend test 
was used to compare differences in ProRS between cases and controls longitudinally. 
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3.  Results 

3.1.  Genomics and proteomics uniquely predict IBD incidence 

 
Fig. 2. Longitudinal Analysis. (A + B) Kaplan Meier curves of time to disease onset, stratified by PRS and 
ProRS. Individuals are considered high risk when at the 75th percentile or higher. (C + D) AUC of risk score 
models at five and ten years after blood draw. (E + F) ProRS of disease cases compared to age- and sex-
matched controls using locally weighted smoothing curves, where the x-axis represents the time after blood 
draw that individuals were diagnosed. (A,C,E) for Crohn’s disease, (B,D,F) for ulcerative colitis. 

3.1.1.  PRS and ProRS both effectively stratify individuals at risk for IBD 

ProRS models for CD and UC were developed using LASSO, selecting 216 proteins and 338 
proteins, respectively, to predict disease onset. Although age and sex were included as input 
variables, neither the CD nor the UC model included these covariates as significant features, 
aligning with the known lack of a sex bias in these diseases.39 Consistent with other studies, both 
PRS and ProRS effectively stratified individuals at high risk for disease (Supplemental Figure 1). 
We also observed that high ProRS was more distinguishing than high PRS. To assess their combined 
predictive utility, we stratified individuals based on both polygenic risk and proteomic risk. This 
yielded a cumulative incidence curve with four strata (Figure 2A-B), where high risk was defined 
as greater than the 75th percentile for each score, and low risk as all others. Interestingly, polygenic 
risk further stratified individuals within the proteomic risk categories, suggesting PRS can offer 
additional information on time to disease onset beyond what ProRS can provide.  
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3.1.2.  ProRS are time-sensitive and reduce in predictive ability over time 

Since circulating protein signatures indicate current health status, we hypothesized that the ProRS 
predictive accuracy is higher closer to disease onset, while stable for PRS. We tested the models at 
5 years and 10 years post blood draw, finding that the ProRS model had an AUC reduction of 0.04 
in both CD and UC (CD: 0.74→0.70, UC: 0.73→0.69). The PRS AUC, however, remained similar 
in both diseases (Figure 2C-D). This reduction may be explained by the observation that the ProRS 
for both CD and UC increased dramatically in the ~5 years preceding disease diagnosis, whereas 
matched controls demonstrated little difference in risk over time (Figure 2E-F). The increasing 
difference in mean ProRS between cases and controls at each time point indicates a likely increase 
in IBD protein signatures in the years leading up to disease onset (CD: p = 0.011, UC: p = 0.063). 

3.2.  Genomics and proteomics in combination improve IBD prediction 

 
Fig. 3. Combining PRS and ProRS. (A + B) R2 estimate for disease incidence variance in the covariate-
only model and the adjusted PRS, ProRS, and combined models.  (C + D) AUC comparison of risk score 
models to predict disease incidence. (E + F) Performance of the ProRS model in high disease-risk 
individuals (>75 percentile) and low disease-risk individuals (<75 percentile). (A,C,E) for Crohn’s disease, 
(B,D,F) for ulcerative colitis. 

3.2.1.  PRS adds complementary predictive information to ProRS 

We evaluated each risk score individually and in combination to test their unique and combined 
contributions to IBD risk prediction. As previously observed, the ProRS had a much higher R2 
(Figure 3A-B) and AUC (Figure 3C-D) than the PRS for predicting IBD subtype incidence, 
indicating that ProRS more meaningfully stratifies patients at high risk for the disease. The 
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combined model, however, outperforms either omic modality alone. Compared to the ProRS model, 
the combined model’s R2 increased by 0.012 in CD and 0.016 in UC, while AUC increased by 0.020 
in CD and 0.024 in UC. This emphasizes the importance of both genetic and proteomic screening 
in the clinic to identify patients likely to develop CD or UC soon. 

3.2.2.  Adding PRS to ProRS removes more heritable proteins 

In the construction of the ProRS, LASSO selected 216 predictors for CD and 338 for UC. When the 
PRS was added as a predictor, it became a significant predictor with the 9th largest coefficient in CD 
and the 4th largest in UC. The number of predictors with non-zero coefficients decreased to 203 in 
CD and 284 in UC. We hypothesized that the PRS might replace proteins whose levels are 
influenced by genetics. To test this, we used LD score regression to estimate the heritability for each 
protein and performed gene set enrichment analysis to see if the heritabilities for the removed 
proteins were significantly higher than expected by chance. These sets consisted of 24 proteins for 
CD and 66 proteins for UC. With a p-value of 0.004 for CD and 0.08 for UC, there is evidence that 
the PRS accounts for heritable differences in protein levels. 

3.2.3.  High PRS for CD and UC is associated with better incident disease prediction accuracy 

It is thought that genetically susceptible individuals develop IBD due to specific environmental or 
lifestyle triggers. We hypothesize that protein measurements can reflect when such conditions are 
met. To test this, we stratified individuals into high (>75 percentile) and low (<75 percentile) PRS 
groups and evaluated the accuracy of ProRS (Figure 3E-F). Compared to the low PRS group, we 
observed that the AUC in the high PRS group is 0.091 higher in CD (p = 0.041), and 0.089 higher 
in UC (p = 0.029). This suggests that an IBD-related inflammatory state from the ProRS model is 
more predictive in those already known to be at higher risk. This substantial difference in ProRS 
classification may be explained by higher false positive rates in the low PRS group, resulting from 
inflammatory states not caused by IBD. 

4.  Discussion 

We evaluated the predictive ability of circulating plasma proteins and genetics for IBD risk and their 
interactions. Our study highlights three novel findings with implications for their clinical utility. 
Firstly, combining proteomic and genomic information enabled more precise patient stratification 
into risk groups. This approach yielded better predictive performance, as indicated by higher AUC 
and R2 values, and improved survival analysis for predicting time-to-disease onset. Secondly, 
stratifying patients by PRS revealed substantial differences in the ProRS model performance for 
predicting later onset of CD and UC. This may indicate that the inflammatory protein signature is 
more likely to be an accurate marker of the disease in individuals with high PRS, as opposed to 
being a confounding condition in low PRS individuals. Thirdly, we found that ProRS prediction 
accuracy decreases over time, whereas the performance of PRS remained stable. This is likely 
because ProRS, based on dynamic circulating plasma protein levels, becomes less distinguishing 
over time, while the static nature of PRS maintains its predictive power.  

IBD is a highly polygenic and heritable disease with a significant environmental component. A 
leading theory of IBD pathogenesis is that environmental exposures in life may trigger inflammatory 
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bowel disease in genetically susceptible individuals.40 Although this exposure component is difficult 
to measure, the genetic component is increasingly measurable. Additionally, circulating proteins 
can act as an early endophenotype to indicate whether the exposure has happened, and autoimmunity 
initiated. Our demonstration that the performance of ProRS to predict onset of IBD subtypes is 
increased in high PRS individuals provides further support to this theory.  

Advancements in proteomic technologies have enabled biobanks to generate large-scale data for 
analyzing the circulating proteome, with many new projects already underway.41,42 Thus, the utility 
of risk scoring for precision medicine in both clinical and research settings is becoming more 
realistic. With increasingly affordable genotyping technologies, it is plausible that lifetime 
polygenic risk for diseases could be part of a patient’s health history available to clinicians. If 
circulating plasma proteomics were measured in a patient and a ProRS developed, the additional 
insight from a PRS could help refine this risk. For example, higher PRS could indicate higher 
confidence in the estimated probability of developing IBD. Additionally, the falling accuracy of 
ProRS over time suggests scores from older data should be analyzed with skepticism. Given the 
difference in the cost of genotyping a patient and generating proteomics panels, we suggest an initial 
assessment with a cheaper genomics approach may be more efficient. If a patient is at high genetic 
risk for IBD, regularly generating proteomics panels may be necessary. 

There are several limitations in our study motivating future work. We used a simple linear model 
with an L1 penalty to generate the ProRS, but such models may oversimplify the complex biological 
interactions between circulating proteins and genetic factors. Although preliminary evidence 
suggests that ensemble methods for proteomic scores perform equally to linear methods when 
predicting cardiovascular events31, linear models inherently cannot capture higher-order interactions 
that might be important for predicting disease risk. In future studies, more sophisticated 
computational methodologies should be explored for predictive capacity, such as graph machine 
learning algorithms that might better represent the relationships between biological entities. Another 
limitation is that this study was only performed in one biobank, with no external validation. Given 
the uniqueness of the UKB proteomics dataset, it is not possible to replicate the results on a large 
scale, but more datasets will soon be available for validation. This single biobank also means that 
results can only be interpreted for a British population. The effect of ancestry could not be 
sufficiently evaluated in this study due to power constraints. However, protein risk scores have been 
reported to be transferable across populations with no heterogeneity in effect, even with models 
trained on much smaller sample sizes.31 Nonetheless, we acknowledge the need for more diverse 
cohorts in multi-omic studies. A further limitation of the UKB is the well documented challenge of 
using mapped ICD-10 codes for phenotyping.43 Studies suggest positive predictive values of >70% 
for mapping electronic health records to stroke44 and acute myocardial infarction,45 however further 
work is needed to evaluate their accuracy in phenotyping IBD onset. 

This study demonstrates the predictive nature of genetic risk scores, proteomic risk scores, and 
especially their combination, on IBD incidence. Future work involves using large biobank 
proteomics to predict IBD progression and prognosis, as shown in smaller studies.46,47 There is also 
evidence that proteomics48 and genomics49 can be employed to subtype IBD, and their integration 
may be useful to further distinguish disease types to inform the best clinical care. Our approach is 
appropriate to analyze any heritable condition that can arise throughout life and would be valuable 
to apply to more autoimmune and neurodegenerative diseases. These results offer hope for 
successfully integrating biological data to improve risk prediction. 
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Gene-environment interaction (GxE) studies provide insights into the interplay between genetics and 
the environment but often overlook multiple environmental factors' synergistic effects. This study 
encompasses the use of environment by environment interaction (ExE) studies to explore interactions 
among environmental factors affecting lipid phenotypes (e.g., HDL, LDL, and total cholesterol, and 
triglycerides), which are crucial for disease risk assessment. We developed a novel curated 
knowledge base, GE.db, integrating genomic and exposomic interactions. In this study, we filtered 
NHANES exposure variables (available 1999-2018) to identify significant ExE using GE.db. From 
101,316 participants and 77 exposures, we identified 263 statistically significant interactions (FDR 
p < 0.1) in discovery and replication datasets, with 21 interactions significant for HDL-C (Bonferroni 
p < 0.05). Notable interactions included docosapentaenoic acid (22:5n-3) (DPA) - arachidic acid 
(20:0), stearic acid (18:0) - arachidic acid (20:0), and blood 2,5-dimethyfuran - blood benzene 
associated with HDL-C levels. These findings underscore GE.db's role in enhancing -omics research 
efficiency and highlight the complex impact of environmental exposures on lipid metabolism, 
informing future health strategies.  

Keywords: Knowledge-Based Filtering; Interaction Analysis; Exposome; Lipid Metabolism

1. Introduction

Understanding the intricate interplay between genetics and the environment is pivotal in unraveling 
the complexities of human traits and diseases. While gene-environment interaction (GxE) studies 
have provided valuable insights into how genetic variants interact with environmental factors, they 
often overlook the synergistic effects of multiple environmental variables1,2. This limitation 
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necessitates the need for utilizing environment by environment interaction (ExE) studies, which 
explore how different environmental factors interact with each other to influence phenotypic 
outcomes. The outcomes of interest used in this study are lipid traits, including high-density 
lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol, 
and triglycerides, all of which are important risk factors for a multitude of diseases3–5. It is well 
established that lipid traits are influenced by a variety of factors, including genetic inheritance, 
environmental and occupational exposures, medication use, ethnicity, and sex6,7. In this study, we 
define environmental exposure as any physical, chemical, or biological agent that someone is 
exposed to and has potential to cause a wide range of health effects. The dietary exposures in this 
study refer to the intake of nutrients that can either benefit, harm, or have no effect on one's health. 

Due to the scale of risk variables available in contemporary cohort and biobank datasets, many 
researchers perform variable selection (or filtering) prior to statistical or computational modeling. 
The shift towards knowledge-based filtering in these studies has been shown to be an effective 
alternative to main effect filtering (whereby variables are filtered based on having a statistically 
significant independent effect), especially for variables that only exhibit an effect in the context of 
another variable. The incorporation of prior biological knowledge to prioritize genetic variants that 
are more likely to interact with one another has revealed numerous GxG for complex diseases8-11. 
However, these studies have been restricted to knowledge about genes and have not included 
knowledge of the biological relationship between exposures. Thus, we propose that ExE coupled 
with knowledge-based filtering represents a promising approach to further elucidate the 
complexities of ExE in health and disease. This paper introduces the Gene x Exposome database 
(GE.db) module of the Integrative Genome-Exposome Method (IGEM) system12, a knowledge base 
of genomic and exposomic interactions derived from various public databases [see Methods]. The 
development of GE.db aims to leverage prior knowledge to filter high-volume research datasets, 
retaining only variables with known biological relationships. This approach significantly reduces 
the number of variables for analysis, conserves computational resources and processing time, and 
minimizes type I errors following multiple testing corrections. 

To demonstrate the utility of GE.db, we conducted an ExE analysis with lipid traits using the 
National Health and Nutritional Examination Survey (NHANES)13 data from 1999-2018. By 
focusing on an exposome-wide interaction approach and utilizing GE.db, this research can provide 
important insights for the prevention and management of lipid-based health risk factors. 
Additionally, this study highlights the potential of GE.db to enhance the efficiency and accuracy of 
-omics research by providing a knowledge base resource for filtering datasets based on known 
interactions, thereby facilitating more focused and reliable statistical and computational analyses. 

2.   Methods 

2.1 NHANES Dataset 

The National Health and Nutrition Examination Survey (NHANES) is an ongoing initiative 
conducted by the Centers for Disease Control and Prevention (CDC) aimed at evaluating the health 
and nutritional status of the U.S. population14. Its primary objectives include identifying risk factors 
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for prevalent diseases and informing the development of public health policies. Data collection 
encompasses a wide range of participant information including demographics, dietary recalls, health 
examinations, toxin exposures, and laboratory measurements, all obtained through structured 
interviews and physical examinations conducted either at participants' homes or mobile testing 
centers. 

Datasets were extracted from the NHANES website15, covering the cycles from 1999 to 2018. 
Specifically, the focus was on testing the exposomic variables only for this study. These datasets 
were integrated into a comprehensive table, where each row corresponds to a participant and each 
column represents a specific NHANES variable. This cumulative dataset consists of 101,316 
participants and 11,274 variables spanning multiple domains, including demographic, dietary, 
health, examination, laboratory, questionnaire, socioeconomic, and occupational categories 
including all phenotype, exposure, and covariate information sourced from the NHANES database. 
From this comprehensive data, we were able to select the specified lipid phenotypes and exposures 
relevant to our study. It is noteworthy that NHANES fields are not consistently maintained across 
cycles; fields may be modified or discontinued over time, posing challenges for longitudinal 
analyses16. 

2.2 GE.db 

The GE.db module is an integral component of the IGEM system12, designed as a comprehensive 
knowledge base of genomic and exposomic interactions. This module aggregates data from various 
public databases, providing a curated repository of interactions that can be leveraged to filter high-
volume research datasets effectively. The primary purpose of GE.db is to utilize prior knowledge of 
gene-exposure and exposure-exposure interactions to filter datasets, thereby retaining only variables 
with known biological relationships. The aim of strategic filtering is to significantly reduce the 
number of variables requiring analysis so as to conserve computational resources, reduce processing 
time, and minimize the occurrence of type I errors after multiple testing corrections. 

2.2.1 Data Sources 

GE.db derives its data from multiple reputable public databases that are frequently updated and 
maintained. As a foundational step in developing the exposure terms, IGEM incorporates an 
integration system of environmental and genetic data as it uses a rigorous process of standardizing 
and mapping terms. To facilitate this task, we use MeSH (Medical Subject Headings)17 from the 
National Center for Biotechnology Information (NCBI), a widely recognized database of biomedical 
descriptors, as part of the word pre-processing procedure. The main function of MeSH in IGEM is 
to serve as a reference dictionary to standardize and consolidate different forms of terms that appear 
in various data sources. For instance, in the context of chemical exposures, the same chemical 
compound might be referred to in different ways, either by its chemical formula (e.g., "C6H12O6" 
for glucose), its full name (e.g., "glucose"), or a numeric code or identifier. The word pre-processing 
procedure in IGEM uses MeSH to identify all these variations and then assigns a unique and 
consolidated identifier to each term. This unified identifier ensures that IGEM recognizes all these 
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forms as the same concept, providing consistency across the data and facilitating the integration of 
external sources. Moreover, this mapping allows IGEM to link data from multiple external 
databases, ensuring that the same terms can be identified in different contexts, such as environmental 
exposures or clinical records, regardless of how they were originally represented. The final product 
is a standardized and unified knowledge base that simplifies the analysis of interactions of the 
environmental terms, improving both the efficiency and accuracy of scientific discoveries. 
  For this analysis, the following databases were considered as they provide relevant 
environmental information: Human Metabolome Database (HMDB)18, a detailed resource 
containing information on small molecule metabolites found in the human body, crucial for 
understanding metabolic interactions and pathways; Comparative Toxicogenomics Database 
(CTD)19, which integrates information on chemical-gene/protein interactions, chemical-disease, and 
gene-disease relationships, facilitating insights into the molecular mechanisms of environmental 
diseases; and Kyoto Encyclopedia of Genes and Genomes (KEGG)20, which provides 
comprehensive data on gene functions, biological pathways, diseases, drugs, and chemical 
substances, supporting the integration of genomic and metabolic information. This methodology 
allowed the identification and recording of interactions where multiple exposure factors were found 
in the same record. 

At the time of analysis, the GE.db contained 1,057,827 terms grouped into categories such 
as anatomy, chemicals, diseases, chromosomes, genes, metabolites, pathways, and SNPs, along with 
15,667,807 interactions among these terms. The GE.db module is designed with a flexible 
architecture that allows for the seamless integration of new data sources. It includes several key 
components: Term Table, which contains key terms and concepts essential for the analysis, 
organized into groups and categories for efficient retrieval; Interaction Table, which stores 
documented interactions between various genomic and exposomic variables, providing a robust 
foundation for filtering datasets; and Mapping Algorithms, which utilize advanced algorithms to 
match external data terms to internal GE.db terms, ensuring consistency and reliability in the 
filtering process. To maintain the GE.db, the IGEM system employs version control routines and 
layers of data ingestion and data transformation to fetch data from their sources and transform them 
into term links (Figure 1).  The GE.filter is another component of IGEM that enables various 
operations on the GE.db knowledge base, including term matching, interaction identification, and 
data reduction. The IGEM system, along with its modules GE.db and GE.filter, is deployed in a 
Python environment on an institutional linux computing cluster. The database utilized is SQLite, 
which currently has a size of 2.7 GB. For a more detailed explanation on the workflow and filtration 
parameters used within each command involving Ge.db and GE.filter, please refer to our user guide 
located on Github21. 

 

Figure 1. Visualization of GE.db workflow from database to interaction term identification. 
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2.3Phenotypes and Confounder Variables 

Within the NHANES dataset, specific variables were identified as phenotypes and confounders for 
this analysis. The selected phenotypes included are listed in Table 1. For HDL-C, NHANES altered 
the calculation method for this indicator over different cycles. NHANES encountered method-
related bias for calculating the HDL-C values for 1999-2000, 2001-2002, and 2005-2006; the bias 
for 2003-2004 was acceptable (<4%) and required no correction22. The adjustments implemented 
improved consistency across various years and methodologies, ensuring that the differences 
observed in HDL-C levels more accurately reflected true variations rather than being impacted by 
measurement bias. Consequently, these three fields were maintained separately, creating three 
distinct datasets. The selected confounders included Gender (RIAGENDR), Age (RIDAGEYR), 
BMI (BMXBMI), Race/Ethnicity (RIDRETH1), and Survey Cycle (SDDSRVYR). 

2.4 Adjusting for Cholesterol Medications 
To account for the influence of cholesterol-lowering medications on lipid measurements, we 
adjusted the LDL-C and Total Cholesterol (TC) values for participants who reported using statins 
(Figures S-1,2). This adjustment is crucial for accurately assessing lipid levels and their associations 
with various exposures, as statins significantly alter cholesterol levels. We utilized the NHANES 
dataset RXQ_RX to identify participants who reported using at least one of the following statin 
components: ATORVASTATIN CALCIUM, SIMVASTATIN, PRAVASTATIN SODIUM, and 
FLUVASTATIN SODIUM. 

For these participants, we adjusted the LDL and TC values as follows: LDL-cholesterol 
(LBDLDL) values were divided by 0.7 to account for the reduction effect of statins, and Total 
Cholesterol (LBXTC) values were divided by 0.8 to adjust for statin usage23. By incorporating these 
adjustments, we enhanced the precision of our lipid measurements, ensuring that our analysis of 
exposure-lipid interactions was both accurate and reliable. 

2.5 NHANES Exposure Filtering for the Interaction Models 

To align the NHANES variables with GE.db, all NHANES variable descriptions (excluding lipid 
phenotypes and confounders) were processed through the GE.filter function. GE.filter utilizes an 
internal NLP (Natural Language Processing) engine to identify corresponding GE.db terms based 
on textual descriptions. This process identified 3,619 NHANES variables related to 534 GE.db 
terms.  

A subsequent review of these related NHANES variables identified 1,136 exposure factors, 
corresponding to 217 unique terms. These 217 terms were then used as filter parameters for another 
GE.filter function run, which searched the GE.db knowledge base for all interactions among these 
terms, resulting in the identification of 382,613 putative Exposure x Exposure interactions. We 
performed this step prior to quality controlling the exposure variables, ensuring that only exposures 
present in the NHANES data were included for curation of the interactions to be tested. 

2.6 Quality Control (QC) 
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application of QC procedures to -omics data analyses. The following procedures were applied to 
the NHANES dataset after filtering and modifications from previous steps. 

For continuous data type QC, all variables with more than 90% missing values were removed. 
The distribution of phenotypes was calculated using the skewness (3(mean-median)/standard 
deviation.) and all phenotypes were log-transformed to normalize the distribution (Figure S-3). 

Participants were then separated into discovery and replication groups for the six cohorts of 
phenotypes, resulting in twelve datasets. For each dataset, a minimum of 200 participants for 
categorical and binary exposures was maintained. Only variables present in both discovery and 
replication datasets for each phenotype were retained to ensure consistency and reliability (Table 
1). 

Table 1. Overview of lipid phenotypes sorted by survey cycle, including sample sizes, exposures, and interactions 
that passed quality control. 

Phenotype 

NHANES 

Cycles 

NHANES 

ID 

NHANES 

Description 

N 

Discovery 

N 

Replication Exposures Interactions 

HDL-C 1999 – 2002 LBDHDL HDL-cholesterol, mg/dL 4,572 4,949 96 2,073 

HDL-C 2003 – 2004 LBXHDD Direct HDL-Cholesterol, mg/dL 3,425 1,469 219 11,093 

HDL-C 2005 – 2018 LBDHDD HDL-Cholesterol, mg/dL 21,442 16,000 231 11,721 

LDL-C 1999 – 2018 LBDLDL LDL-cholesterol, mg/dL 11,453 12,695 181 6,934 

Total Cholesterol 1999 – 2018 LBXTC Total Cholesterol, mg/dL 24,836 27,023 193 7,873 

Triglycerides 1999 – 2018 LBXSTR Triglycerides, mg/dL 19,305 26,916 177 6,446 

2.7 Statistical Analysis Models (Discovery and Replication) 

The IGEM system, inheriting functionalities from the CLARITE system24, performs interaction 
analyses by calculating the p-value of the Likelihood Ratio Test (LRT) between two models. In the 
full and reduced model Yphenotype is the outcome variable, β0 is the intercept, β1term1 and β2term2 are 
the coefficients for the individual predictors, and βn+1covn  are the coefficients for the covariates with 
n adding on to the number of covariates used in the model. Exclusive to the full model, β3(term1 x 
term2) is the interaction term between term 1 and term 2. 

Full Model: 

Yphenotype = β0 + β1term1 + β2term2 + β3(term1 x term2) + β4cov1 + … + βn+1covn (1) 

Reduced Model:

Yphenotype = β0 + β1term1 + β2term2 + β3cov1 + … + βn+1covn (2) 
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The LRT is utilized to compare the fit of the two models, with the full model including the 
interaction term (β3(term1×term2)) and the reduced model excluding it. The analysis involves fitting 
the full model to the data to obtain the log-likelihood (Lfull) and fitting the reduced model to obtain 
the log-likelihood (Lrestricted). The LRT statistic represented as D with -2 used as a scaling factor that 
makes the likelihood ratio test statistic approximately follow a chi-squared distribution under the 
null hypothesis is calculated as: 

D=−2(Lrestricted−Lfull) (3)  

The difference in degrees of freedom between the two models is 1, since the full model has one 
additional parameter (β3(term1×term2)). The p-value is derived from the probability (P) that a 
random variable following a chi-squared distribution (χ2) with 1 degree of freedom takes a value 
greater than or equal to the observed test statistic (D): 

p-value = P(χ2 ≥ D | df = 1) (4) 

The LRT p-values were calculated for each interaction identified in the discovery dataset for 
each phenotype. 

However, in some cases, the p-value of the LRT cannot be calculated. The following messages 
inform the user of the reasons:  

- Too few complete observations (min_n filter: N < 200) 
- The number of complete observations is insufficient to perform the analysis, as the minimum 

required is 200 
- Both models are equivalent in terms of fit: the two models are equivalent in terms of fit, with 

no significant difference between them 
- No Overlap (min_n filter: 0 < 200): there is insufficient data overlap to perform the analysis, 

as the minimum required is 200. 
Following the interaction model analysis, the IGEM function was applied to adjust the p-values 

for multiple testing using both Bonferroni correction and False Discovery Rate (FDR) adjustment. 
From the discovery analysis, interactions with an FDR-adjusted p-value < 0.1 were filtered. These 
significant interactions that met the FDR adjustment threshold were then tested in the replication 
dataset. The same interaction analysis was conducted in the replication cohort, applying identical 
model specifications and LRT. The replication criteria also required that interactions exhibit 
consistent directional effects between the discovery and replication interaction betas, with all 
significant interactions retaining a Bonferroni-adjusted p-value < 0.05, across both datasets. This 
rigorous approach ensures that the identified interactions are robust and not due to random chance. 

3. Results

In this study, we examined the interactions between various exposure variables and lipid phenotypes 
using the NHANES dataset. We performed a comprehensive analysis to identify significant 
exposure-exposure interactions (ExE) that are associated with lipid levels. Below are the key 
findings from our discovery and replication datasets. Of all the 26,107 interactions tested that 
included exposures that passed QC, a total of 263 interactions were statistically significant in the 
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discovery dataset with an FDR p < 0.1 (Table 2). A total of 61 interactions were found to be 
significant in both discovery and replication when allowing for an FDR p < 0.1 (assorted by lipid 
phenotype) and 21 interactions associated with the HDL-cholesterol trait was significant with a 
Bonferroni corrected p < 0.05 (Figure 2). Additionally, these interactions demonstrated consistent 
directions of effect across both discovery and replication datasets (Table S-1). 

Table 2. Frequency table of all the interactions tested for every lipid phenotype. 

Phenotype 

Discovery 

Interactions 

Replication 

Interactions 

FDR 

p < 0.1 in both 

Bonferroni 

p < 0.05 in both 

HDL-C [1999-2002] 1,116 4 1 1 

HDL-C [2003-2004] 5,459 93 2 0 

HDL-C [2005-2018] 6,584 141 58 20 

LDL-C 4,339 9 0 0 

Total Cholesterol 4,764 10 0 0 

Triglycerides 3,845 6 0 0 

Total 26,107 263 61 21 

Figure 2. The sixty-one significant results starting from the top showcasing all the interactions with FDR LRT p-value 
< 0.1(denoted by the redline) and the twenty-one significant results with a Bonferroni adjusted LRT p-value < 0.05 
(direction of effect pointing down is negative and up is positive), the interaction beta for both exposures, and the 
sample sizes. PheWAS-View was the software used to generate this plot25. 
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 3.1 Significant Interactions 
The top three results with the lowest LRT p-values associated with HDL-cholesterol include: 1) 
Docosapentaenoic acid (22:5n-3) (DPA) - arachidic acid (20:0) (Discovery: Bonferroni adjusted 
LRT p-value = 8.43×10-13, β = -1.4×10-4; Replication: Bonferroni adjusted LRT p-value = 3.25×10-

4, β = -1.2×10-4) (Figure 3A). 2) Blood 2,5-dimethyfuran - blood benzene (Discovery: Bonferroni 
adjusted LRT p-value = 2.75×10-7, β = 0.97; Replication: Bonferroni adjusted LRT p-value = 
4.48×10-12, β = 0.78) (Figure 3B). 3) Stearic acid (18:0) - arachidic acid (20:0) (Discovery: 
Bonferroni adjusted LRT p-value = 8.88×10-12, β = -7.79×10-6; Replication: Bonferroni adjusted 
LRT p-value = 3.47×10-7, β = -1.26×10-5) (Figure 3C). 

(A) Docosapentaenoic acid (22:5n-3) and arachidic acid (20:0) association with HDL-C in the discovery dataset 

(B) Blood 2,5 dimethylfuran (ng/ml) and blood benzene (ng/ml) association with HDL-C in the replicate dataset 
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(C) Stearic acid (18:0) (umol/l) and arachidic acid (20:0) (umol/l) association with HDL-C in the discovery dataset 

Figure 3A-C. The top three results plots observing the individual main effect correlation line, and the 3D plot showing 
the interaction correlation along the square plane. 

4. Discussion

In this study, we leveraged the comprehensive exposomic knowledge base provided by the GE.db 
module of IGEM to investigate exposure-exposure interactions (ExE) associated with lipid 
phenotypes. By utilizing data from the NHANES dataset spanning 1999 to 2018, we identified 
several significant interactions between various exposures and lipid levels. The replication of these 
findings across independent datasets underscores the robustness of our approach and highlights the 
potential of GE.db in facilitating large-scale -omics research. 

4.1 Clinical and Public Health Implications 

Our analysis revealed several key interactions, notably DPA and stearic acid with arachidic acid 
associated with HDL-C. DPA is a known essential omega-3 fatty acid, and stearic and arachidic 
acid are saturated fatty acids26-28.  These results suggest that specific combinations of environmental 
exposures may have synergistic effects on lipid metabolism, though most research only touches on 
their individual effects on lipid profiles. For instance, omega-3 fatty acids, such as DPA, are 
generally linked with increased HDL cholesterol levels29, while high consumption of saturated fatty 
acids like arachidic acid may unfavorably affect lipid profiles, potentially leading to elevated LDL-
C levels27. Our findings indicate a negative impact on HDL-C when arachidic acid interacts with 
fatty acids typically associated with positive HDL-C effects, suggesting that arachidic acid could 
potentially diminish the benefits of HDL-C promoting fatty acids. Other research suggests that 
stearic acid may have a neutral or even beneficial effect on cholesterol levels, possibly not adversely 
affecting HDL-C on its own30. However, as seen in our results, when combined with arachidic acid, 
this interaction could overall have a negative impact, counteracting any neutral or positive effects 
on HDL-C. 

Additionally, the interaction between blood 2,5-dimethylfuran and blood benzene highlights the 
potential combined impact of exposure to volatile organic compounds (VOCs) on HDL-C levels. 
Benzene has been observed to increase LDL-C levels which would naturally displace or plateau 
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HDL-C levels procuring a negative effect31,33. Measures of 2,5-dimethyfuran though, have limited 
research indicating influence on lipids, but may pose health risks similar to other VOCs. These risks 
can include respiratory irritation, and potential systemic effects that could indirectly affect lipid 
metabolism and cardiovascular health34–36. Conversely, our results demonstrate a positive 
interaction effect on HDL-C with benzene and 2,5-dimethylfuran. Therefore, further study of this 
interaction is warranted, especially considering the known detrimental impact of VOCs on public 
health. In summary, all these findings have important implications for public health, as they point 
to the need for considering multiple concurrent exposures in dietary and environmental risk 
assessments. Public health strategies could be developed to mitigate the combined effects of specific 
dietary and environmental exposures on lipid metabolism. 

4.1.1 Significant Interaction Effects Sizes 
As stated previously for HDL-C, the bias adjustment was accounted for whether the survey cycle 
year had been corrected or not as they were all approved to use for statistical analysis. The HDL-C 
variable still had to be labeled and categorized differently to identify which ones were corrected vs. 
not corrected for transparency. Given that the LBDHDD variable spanned the largest survey cycle 
from 2005-2018 of the three, showed an increased sample size disparity by about 17,000 participants 
when comparing the other two survey cycles which had around 4,000 participants each. Thus, 
presuming that even if the effect size remains similar across those survey cycles, a larger sample 
size in one cycle can lead to a significant p-value, while a smaller sample size in another cycle could 
result in a non-significant p-value for the same effect size. 

Regarding the effect sizes of the three significant interactions mentioned, we believe the 
positive beta for DPA can coexist with a slight negative trend due to the small effect size and 
interaction with arachidic acid (Figure 3A).  The combined effect of DPA and arachidic acid as 
described by the interaction term, may influence the overall outcome more than the individual effect 
of DPA alone. In the dataset, the interaction between the two terms might reduce or counterbalance 
DPA’s small positive effect on HDL-C. Figure 3B depicts another story where the two weaker effect 
sizes of blood 2,5-dimethylfuran and blood benzene alone hold less weight than compared to the 
larger effect size of when both blood 2,5-dimethylfuran and blood benzene increase together. Their 
combined effect led to an overall increase in HDL-C despite their individual negative contributions. 
Lastly, the negative interaction effect size for stearic acid and arachidic acid is very small in 
association with HDL-C, and largely driven by the positive influence of arachidic acid (Figure 3C). 
The overall interaction appears to slightly counteract the combined positive effects of both terms 
but not enough to reverse the trend significantly. Thus, a large amount of the variation is most likely 
not fully explained in this model and further testing is required. 

4.2 Methodological Strengths, Limitations, and Future Directions 

A major strength of this study is the use of the GE.db knowledge base, which allowed us to filter 
high-volume research datasets effectively, focusing only on variables with known biological 
relationships. This approach significantly reduced the computational burden and enhanced the 
reliability of our findings by minimizing type I errors through multiple testing corrections. By 
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employing multiple IGEM modules, we streamlined quality control (QC) processes, which involved 
variable categorization, data cleaning, and adjustment for confounders like statin use. This approach 
improved the integrity and accuracy of our analysis, making it user-friendly for whomever uses this 
tool, and ensuring alignment to bioinformatics practices. The split of data into discovery and 
replication datasets based on NHANES cycles further increased the validity of our results, as 
significant interactions identified in the discovery phase were consistently replicated. Another 
consideration to note is the main-effect interaction model when incorporated without the use of 
knowledge-driven filters, is typically performed to determine the isolated impact of each variable 
(in this case, each exposure factor) on phenotypes. However, the goal of this study was not to 
identify individual main effects but to examine how the combination of multiple exposures 
influences lipid phenotypes. While the standard main-effect model is valuable in other contexts like 
simple-trait analysis or in situations where the effects of multiple variables are purely additive, our 
primary focus was to highlight IGEM's strengths, particularly in capturing interactions based on the 
pre-existing knowledge within GE.db. GE.db was specifically designed to filter highly relevant 
variables based on known relationships between exposures. Using this filtering approach allows the 
analysis to focus on variables with biological context, avoiding the processing of many irrelevant 
exposures or statistical noise that could arise when including non-interactive main effects. 

Despite the robustness of our findings, several limitations warrant consideration. First, since 
GE.db relies on public databases such as HMDB, CTD, and KEGG, the quality, completeness, and 
update frequency of these external databases can directly affect the accuracy and relevance of the 
information in GE.db. Any gaps, errors, or outdated information in these sources could introduce 
bias or limitations in the results. Regular updates are imperative to ensure the data remains current, 
but the complexity of fetching and processing new data might slow down the user’s analysis 
pipeline. Furthermore, the interactions stored in GE.db are curated from specific sources, and their 
generalizability to other populations, environmental contexts, or less-studied interactions may be 
limited. Results may not always be applicable outside the scope of the databases from which they 
were derived. 

In the context of the NHANES dataset, the observational nature of the data limits the ability to 
infer causal relationships between exposures and lipid levels. Interaction effects, as we have noted, 
may have opposite signs of effect when compared to the main effect betas, which complicates the 
interpretability of the results. Other datasets with repeated measures of QC and analysis as we have 
specified with the NHANES data, can help with cross checking all the betas, refining the elucidation 
of significant interactions. Inclusion of more datasets that host the same kinds of environmental 
exposures such as the UK Biobank37 and All of Us Research Program38, will also help address the 
possibility of false negatives as some interactions may not have been flagged as significant given 
our designated thresholds used for the NHANES dataset. Future studies could also incorporate 
longitudinal data and more sophisticated causal inference methods to address this limitation. 

Moreover, while our analysis accounted for several covariates, there may be other unmeasured 
factors that could influence the observed interactions. Further research should aim to include a 
broader range of potential confounders and explore the underlying biological mechanisms driving 
these interactions. Another limitation is the reliance on self-reported data for certain exposures, 
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which may introduce reporting biases. The integration of more objective measures of exposure, such 
as well-established biomarkers, could enhance the reliability of future analyses. 

4.3 Conclusion 

In conclusion, this study demonstrates the utility of the GE.db module in identifying significant ExE 
influencing lipid traits. The consistent replication of key interactions across independent variables 
highlights the robustness of our approach and its potential to uncover future novel insights into the 
complex interplay between environmental exposures and lipid metabolism. These findings pave the 
way for future research aimed at understanding and mitigating the multifactorial nature of 
dyslipidemias, ultimately contributing to improved public health outcomes. 

This project was supported by the the National Institute of Child Health and Human Development 
under award number U2C OD023375-06 and the National Heart Lung, and Blood Institute under 
awards HL169458 and HL168841. This work was additionally supported by the USDA National 
Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04275 and 
Accession #1018544. 

Code for GE.db, GE.db filter, and quality control steps used in this study are made available here: 
https://github.com/HallLab/pbs_igem/tree/main. The IGEM package and user guide are available 
here: https://github.com/HallLab/IGEM. 
Supplemental table and figures S-1, S-2, and S-3 are available at 
https://ritchielab.org/publications/supplementary-data/psb-2025/igem. 
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The incidence of chronic kidney disease (CKD) is increasing worldwide, but there is no specific treatment 
available. Therefore, understanding and controlling the risk factors for CKD are essential for preventing 
disease occurrence. Salt intake raises blood pressure by increasing fluid volume and contributes to the 
deterioration of kidney function by enhancing the renin-angiotensin system and sympathetic tone. Thus, a 
low-salt diet is important to reduce blood pressure and prevent kidney diseases. With recent advancements 
in genetic research, our understanding of the etiology and genetic background of CKD has deepened, 
enabling the identification of populations with a high genetic predisposition to CKD. It is thought that the 
impact of lifestyle or environmental factors on disease occurrence or prevention may vary based on genetic 
factors. This study aims to investigate whether frequency of adding salt has different effects depending on 
genetic risk for CKD. CKD polygenic risk scores (PRS) were generated using CKDGen Consortium GWAS 
(N= 765,348) summary statics. Then we applied the CKD PRS to UK Biobank subjects. A total of 331,318 
European individuals aged 40-69 without CKD were enrolled in the study between 2006-2010. The average 
age at enrollment of the participants in this study was 56.69, and 46% were male. Over an average follow-
up period of 8 years, 12,279 CKD cases were identified. The group that developed CKD had a higher 
percentage of individuals who added salt (46.37% vs. 43.04%) and higher CKD high-risk PRS values 
compared to the group that did not develop CKD (23.53% vs. 19.86%). We classified the individuals into 
four groups based on PRS: low (0-19%), intermediate (20-79%), high (80-94%), very high (≥  95%). 
Incidence of CKD increased incrementally according to CKD PRS even after adjusting for age, sex, race, 
Townsend deprivation index, body mass index, estimated glomerular filtration rate, smoking, alcohol, 
physical activity, diabetes mellitus, dyslipidemia, hypertension, coronary artery diseases, cerebrovascular 
diseases at baseline. Compared to the “never/rarely” frequency of adding salt group, “always” frequency 
of adding salt group had an increasing incidence of CKD proportionate to the degree of frequency of adding 
salt. However, the significant association of “always” group on incident CKD disappeared in the low PRS 
group. This study validated the signal from PRSs for CKD across a large cohort and confirmed that frequency 
of adding salt contributes to the occurrence of CKD. Additionally, it confirmed that the effect of frequency 
of “always” adding salt on CKD incidence is greater in those with more than intermediate CKD-PRS. This 
study suggests that increased salt intake is particularly concerning for individuals with genetic risk factors 
for CKD, underscoring the clinical importance of reducing salt intake for these individuals.  

Keywords: chronic kidney disease; polygenic risk score; salt; lifestyle factors; UK Biobank 
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1.  Introduction 

With an aging population and changes in dietary habits, 10-16% of adults are experiencing 
chronic kidney disease (CKD)1, 2. CKD increases the incidence of cardiovascular disease and raises 
mortality rates, posing a threat to human health. However, aside from controlling the underlying 
causes, there is no definitive treatment for CKD, making it difficult for patients to be free from the 
disease once diagnosed. The causes of CKD are highly variable, and the heterogenous genetic 
backgrounds make it challenging to pinpoint the genetic predisposition for CKD3. While Genome-
Wide Association Studies (GWAS) provide with information on thousands of candidate genetic 
variants associated with diseases, the individual contribution of each genetic variant to the disease 
is very small, making clinical application difficult. However, polygenic risk score (PRS) analysis 
allows us to effectively utilize GWAS results by analyzing the cumulative effect of all common 
variants and their correlation with disease occurrence. Several studies have used PRS to predict 
disease occurrence and stratify the genetic risk to enhance traditional factors in diabetes, heart 
disease, and obesity using PRS4-7. Despite high heritability, genetic factors offer relatively low 
predictive ability for CKD8. Nevertheless, Khan et al. developed a strong CKD PRS based on meta-
analyzed GWAS studies using good quality medical data on large-sized populations across 
ancestries9. They demonstrated a reproducible and high-performing PRS to predict the incidence of 
CKD, which was consistent across various ancestries.  

 
   Lifestyle factors have also been known to play a crucial role in the development and progression 
of CKD. High physical activity reduces the risk of obesity, metabolic diseases, and cardiovascular 
diseases, and contribute to alleviating CKD10, 11. Excessive salt intake increases fluid volume in the 
body and stimulates the renin-angiotensin system (RAS) and the neurohormonal system, leading to 
hypertension, which increases the risk of CKD12. Therefore, reducing salt intake is critical not only 
for preventing and managing hypertension and heart disease, but also for preventing and controlling 
CKD. However, there are conflicting results on the relationship between salt intake and CKD13, 14. 
Accurately assessing the amount of salt consumed is challenging, so most studies indirectly estimate 
salt intake based on the amount of salt excreted in urine. Urine salt excretion is influenced by 
expression and activation of numerous renal tubular transporters and is intertwined with 
neurohormonal factors that control them15. This regulatory system can change based on age, sex, 
underlying diseases, and medications. Therefore, it is difficult to assert that measuring the amount 
of salt in urine accurately reflects the amount of salt consumed. Consequently, there have not been 
many studies clearly elucidating the relationship between CKD and salt intake. In the UK Biobank, 
participants were surveyed about adding salt to their meals, and it was found that adding salt 
increases the risk of cardiovascular disease, diabetes, premature mortality, and induces CKD16-19. 
However, it has not yet been clear how the salt affects the incidence of CKD in groups with high 
versus low genetic risk for the CKD. For CKD, which has such diverse and complex genotypes and 
phenotypes, personalized and customized precision medicine is crucial. This study focuses on 
precision medicine to examine how various dietary habits influence disease manifestation within 
different genetic environments. Therefore, this study aimed to develop a CKD PRS model and apply 
it to the UK Biobank population to identify individuals at high risk of developing CKD20 (Figure 
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1). Additionally, we conducted a stratified analysis based on genetic risk factors to determine the 
extent to which adding salt contributes to CKD development in association with CKD genetic risks.  

2.  Methods 

2.1.  Study population 

The UK Biobank is a large, prospective observational cohort study designed to improve the 
prevention, diagnosis, and treatment of various illnesses and to promote health21. Between 2006 and 
2010, the study recruited over 500,000 adults aged 40 to 69 years from 22 assessment centers across 
England, Scotland, and Wales. Participants provided written informed consent, allowing their data 
and samples to be used for medical research. Initial recruitment included taking baseline 
measurements such as social demography, lifestyle, health information, and physical assessments 
through touch-screen questionnaires and direct physical measurements. Further information on UK 
Biobank is available in a previous study21. In this study, we included only 409,384 participants who 
had their genetic ethnicity identified as ‘Caucasian’. Furthermore, we filtered out participants for 
whom genetic data was unavailable or did not meet quality control criteria, resulting in 377,186 
participants. We further removed 39 participants who had missing salt intake information and 
33,550 participants who had prevalent CKD at baseline, leading to a final sample size of 343,597. 

 

Figure 1. Study overview for assessment of the association between salt intake and CKD incidence across polygenic 
risk score (PRS) groups. 

2.2.  Genotyping and quality control 

The genotyping process utilized by the UK Biobank has been comprehensively described in prior 
publications21. In summary, 487,409 samples were genotyped using the Affymetrix UK BiLEVE 
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Axiom Array and the Affymetrix UK Biobank Axiom Array (Thermo Fisher Scientific, Waltham, 
MA). Samples flagged for poor quality by the UK Biobank were excluded. To eliminate related 
samples, a greedy algorithm was employed to retain the minimal number of samples among second-
degree or closer relationships. Given the predominantly European ancestry of the UK Biobank 
participants, we included only those with 'White British' ancestry. This classification was based on 
the UK Biobank showcase data field "Genetic ethnic grouping," which identifies participants who 
self-reported as 'White British' and exhibited very similar genetic ancestry according to principal 
component (PC) analysis. Samples with discrepancies between reported sex and genetically inferred 
sex were also excluded. For variant quality control (QC), variants were filtered out if they had an 
info score of <0.3 or a minor allele frequency (MAF) of <0.01. After applying these QC measures, 
377,186 samples and 9,505,768 variants were included in the final dataset used in this study. 

2.3.  Polygenic risk score for chronic kidney disease 

The PRS for CKD was generated using Chronic Kidney Disease Genetics (CKDGen) Consortium 
meta-analysis summary statistics available at https://ckdgen.imbi.uni-freiburg.de/datasets20. We 
generated PRS weights using PRS-CS22. PRS-CS leverages summary statistics from GWAS and 
linkage disequilibrium (LD) information from a reference panel, applying a Bayesian framework to 
estimate effect sizes. Using the weights generated by PRS-CS, we generated CKD PRS scores for 
377,186 samples.  

2.4.  Definitions of chronic kidney disease 

In this study, we defined both prevalent and incident CKD. Incident CKD was defined using the 
tenth Revision (ICD-10) codes and Office of Population Census and Surveys Classification of 
Interventions and Procedures, version 4 (OPCS-4) codes from primary care data, hospital inpatient 
data, and death register records19. Detailed information for CKD assessment is provided in the 
Supplementary Table 1.  Prevalent CKD was defined as having CKD diagnosis based on the above 
criteria before first visit to the UK Biobank assessment center. The participants were also considered 
prevalent CKD if their estimated glomerular function (eGFR) was lower than 60 ml/min per 1.73m2 
or having albuminuria over 30 mg/gCr at baseline measurement. The eGFR was measured using the 
CKD-EPI Creatinine-Cystatin Equation 2021 with serum creatinine and cystatin C 23. The follow-
up time for the incident CKD cases was calculated from the baseline (first visit to the assessment 
center) to whichever date came first: diagnosis of CKD, death, date from when a person was lost to 
follow-up, or May 2017, last date when the “Date lost to follow-up” in UK Biobank was updated. 
All the events after May 2017 were ignored. 

2.5.  Exposure assessment 

The frequency of adding salt phenotype in the UK Biobank was assessed through self-reported 
dietary questionnaires completed by participants at baseline. Specifically, participants were asked 
"Do you add salt to your food? (Do not include salt used in cooking)". They were asked to provide 
an average considering their intake over the last year. The response options included “never/rarely”, 
“sometimes”, “usually”, “always” and “prefer not to answer”. The “prefer not to answer” was coded 
as -3 and we removed all participants who selected this option.  
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2.6.  Covariates ascertainment 

We adjusted for a comprehensive range of covariates to ensure the robustness of our models. These 
covariates included age, sex, Townsend deprivation index, body mass index (BMI), eGFR, smoking 
status, alcohol consumption, physical activity, diabetes, dyslipidemia, hypertension, coronary heart 
disease, and ischemic stroke. Age was determined at the time of assessment, and sex was identified 
based on genetic information provided by the UK Biobank. The Townsend deprivation index and 
BMI data were sourced directly from the UK Biobank. Smoking and alcohol consumption statuses 
were reclassified to current smoker or drinker by combining the "Never" and "Previous" categories. 
Physical activity was quantified based on achieving either 150 minutes or more per week of 
moderate intensity, 75 minutes or more per week of vigorous activity, or an equivalent 
combination19. Conditions such as diabetes, dyslipidemia, hypertension, coronary heart disease, and 
ischemic stroke were defined based on self-reports, ICD-10, and OPCS-4 codes from primary care 
data, hospital inpatient data, and death register records, as detailed in Supplementary Table 1. For 
continuous variables, we employed mean imputation to address missing values, and a missing 
indicator was used for categorical covariates19.  

2.7.  Statistical analysis 

The demographic characteristics of cases and non-cases were evaluated for differences using chi-
square tests for categorical variables and independent t-tests for continuous variables. All samples 
were divided into four groups based on the PRS scores: low (0–19th percentile), intermediate (20–
79th percentile), high (80–94th percentile), and very high (>95th percentile). 
We conducted three analyses: 
1. The association of PRS groups with incident CKD. 
2. The combined association of frequency of adding salt and PRS groups with incident CKD. 
3. The association of frequency of adding salt with incident CKD, stratified by PRS groups. 
 
For each analysis, we used three models to adjust for various confounding factors: 
- Model 1: Adjusted for age and sex. 
- Model 2: Adjusted for all variables in model 1, plus Townsend deprivation index, BMI, eGFR, 
smoking, alcohol consumption, and physical activity. 
- Model 3: Adjusted for all variables in model 2, plus diabetes, dyslipidemia, hypertension, coronary 
artery disease, and ischemic stroke. All variables were measured at baseline. 
 
We calculated hazard ratios (HRs), 95% confidence intervals (CIs), and p-values using univariate 
and multivariate Cox proportional hazards models, with follow-up time as the time scale to estimate 
the associations between frequency of adding salt, PRS, and CKD risk. Schoenfeld residuals were 
used to assess the proportional hazards assumption. Sex was found to violate the proportional 
hazards assumption (P = 0.003 in Model 3); therefore, we stratified all models by sex using the 
`strata` function, which allows the baseline hazard functions to differ across strata (levels of a 
categorical variable) while keeping the coefficients for other covariates constant across these strata. 
In Model 3, we also observed that age slightly violated the proportional hazards assumption (P = 
0.045). Thus, we modeled age using a penalized smoothing spline with degree 2. After stratifying 
by sex and modeling age, there was no further violation of the proportional hazard assumption, as 
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confirmed by Schoenfeld residuals (Supplementary Table 2). The significance of trend was 
calculated using Jonckheere-Terpstra trend test. 
 

3.  Results 

3.1.  The baseline characteristics of incident chronic kidney disease population 

The study sample included 331,318 non-CKD participants and 12,279 participants with incident 
CKD. Table 1 presents the baseline characteristics of the incident CKD group compared to the non-
CKD population. Individuals in the incident CKD group were more likely to fall into the higher PRS 
categories. Participants with incident CKD had higher prevalence rates of adding salt to their food. 
Among CKD cases, 53.64% reported "never/rarely" adding salt, 28.14% reported "sometimes," 
12.79% reported "usually," and 5.44% reported "always." In contrast, non-CKD participants showed 
a distribution of 56.95%, 27.62%, 11.2%, and 4.22% for the same categories. Sex distribution 
showed a higher percentage of males in the incident CKD group (52.54%) compared to the non-
CKD group (45.48%). The Townsend deprivation index also indicated higher levels of deprivation 
in the CKD group (mean = -1.36, SD = 3.07) compared to the non-CKD group (mean = -1.62, SD 
= 2.9). Additionally, higher prevalence rates of hypertension (74.99%), diabetes (12.54%), 
dyslipidemia (30.33%), and coronary heart disease (16.42%) were observed in the incident CKD 
group, compared to the non-CKD group with rates of 58.64%, 4.39%, 15.97%, and 6.32% 
respectively. The mean eGFR was significantly lower in the incident CKD group (86.11, SD = 
13.92) compared to the non-CKD group (96.13, SD = 12.47). Additionally, smoking rates were 
slightly higher in the incident CKD group (10.51%) than in the non-CKD group (9.76%). 

Table 1. Baseline Characteristics for incident CKD and Non-CKD population. 

 Non-CKD Incident CKD P 
N 331318 12279  
PRS risk    
       Low 66564 (20.09) 2157 (17.57) < 0.001 
       Intermediate 198928 (60.04) 7233 (58.91) 0.012 
       High 49444 (14.92) 2091 (17.03) < 0.001 
       Very high 16382 (4.94) 798 (6.5) < 0.001 
Salt intake    
       Never/rarely 188689 (56.95) 6586 (53.64) < 0.001 
       Sometimes 91515 (27.62) 3455 (28.14) 0.213 
       Usually 37120 (11.2) 1570 (12.79) < 0.001 
       Always 13994 (4.22) 668 (5.44) < 0.001 
Age (SD) 56.54 (7.94) 60.65 (6.81) < 0.001 
BMI (SD) 27.21 (4.61) 28.71 (4.98) < 0.001 
Sex    
       Male 150678 (45.48) 6451 (52.54) < 0.001 
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       Female 180640 (54.52) 5828 (47.46) < 0.001 
Townsend deprivation index (SD) -1.62 (2.9) -1.36 (3.07) < 0.001 
Hypertension 194297 (58.64) 9208 (74.99) < 0.001 
eGFR (SD) 96.13 (12.47) 86.11 (13.92) < 0.001 
Smoking 32344 (9.76) 1290 (10.51) 0.007 
Diabetes 14561 (4.39) 1540 (12.54) < 0.001 
Dyslipidemia 52926 (15.97) 3724 (30.33) < 0.001 
Coronary heart disease 20932 (6.32) 2016 (16.42) < 0.001 
Alcohol 311022 (93.87) 11135 (90.68) < 0.001 
Physical activity 211697 (63.9) 7097 (57.8) < 0.001 

 

3.2.  Chronic kidney disease occurred more in the very high-PRS group  

Categorizing PRS into risk groups revealed significant incremental trend of incident CKD across 
the PRS categories (P = 0.00023, Figure 2a). Incident CKD was significantly higher among subjects 
in the top 5% of PRS compared to those in other PRS groups. The hazard ratio (HR) of incident 
CKD for the top 5% PRS group was 1.50 (CI = 1.38 – 1.62, p-value < 2e-16) in the univariate 
analysis, and 1.52 (CI = 1.41 – 1.65, p-value < 2e-16) in the multivariate Cox proportional hazards 
model adjusting for age and sex (model 1). Even though the HR decreased when additional 
predictors were included in Models 2 and 3 of the Cox model, the very high PRS group still showed 
significantly high HR values for incident CKD (Figure 2b, Supplementary figure 1-3).  

 
Figure 2. a) Cumulative incidence of CKD stratified by PRS groups b) Hazard ratios for PRS risk groups in 

different models. Model 1 includes sex and age; Model 2 adds TDI, BMI, eGFR, smoking, alcohol 
consumption, and physical activity; Model 3 further adds diabetes, dyslipidemia, hypertension, coronary artery 

disease, and ischemic stroke as covariates. 
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3.3.  The Frequency of adding salt contributed to incidence of chronic kidney disease 

To determine if frequency of adding salt is associated with CKD incidence, we evaluated all the 4 
cox models, indicating a clear positive association between the frequency of adding salt and the 
incidence of CKD (Figure 3, Supplementary figure 4-6). In the univariate analysis, the HR for CKD 
incidence increased significantly with higher frequency of adding salt, with the "always" category 
showing the highest HR of 1.36. In Model 1, which adjusted for age and sex, the HRs remained 

significant for all frequency of adding salt, though reduced, with the "always" category having an 
HR of 1.35. In Model 2, which included additional variables, the significance for the "sometimes" 
category diminished (P = 0.256), but the "always" categories remained significantly associated with 
higher CKD incidence, with HR of 1.16.  Finally, in Model 3, which comprehensively adjusted for 
various predictors, the "sometimes" category was borderline significant (P = 0.079), while the 
"usually" and "always" categories continued to show significant associations with increased CKD 
incidence, with the highest HR of 1.17 for the "always" category. These results underscore that more 
frequency of adding salt is consistently linked to a higher risk of developing CKD (trend P = 0.0028). 
We also conducted an analysis using PRS as a continuous variable instead of categorical PRS groups 
as covariates and found similar results (Supplementary figure 7). No significant interaction was 
observed between PRS score and the frequency of adding salt. 

Figure 3. Hazard ratios for salt addition for all models. Model 1 includes sex and age; Model 2 adds 
TDI, BMI, eGFR, smoking, alcohol consumption, and physical activity; Model 3 further adds 

diabetes, dyslipidemia, hypertension, coronary artery disease, and ischemic stroke as covariates. 
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3.4.  The effect of adding salt on incident chronic kidney disease was only significant in 
those with more than intermediate polygenic risk 

Finally, we stratified individuals by PRS risk groups and evaluated all the Cox models, to check 
how frequency of adding salt to food is associated with CKD incidence in each of the PRS groups 
(Figure 5, Supplementary figure 8-11). The stratified analysis of frequency of adding salt by PRS 

categories revealed significant associations with CKD incidence in several groups. In the very high 
PRS category, the HR for "always" adding salt to food was significantly elevated (HR = 1.47, CI = 
1.09 - 1.98, P = 0.01), indicating increased CKD risk. Similarly, in the high PRS group, both 
"usually" (HR = 1.15, CI = 1.00 - 1.31, P = 0.04) and "always" (HR = 1.34, CI = 1.11 - 1.61, P = 
0.003) adding salt were significantly associated with higher CKD incidence. In the intermediate 
PRS group, "always" adding salt was also significantly associated with increased CKD risk (HR = 
1.15, CI = 1.04 - 1.28, P = 0.007). The low PRS category showed a significant association for 
"sometimes" adding salt (HR = 1.11, CI = 1.01 - 1.22, P = 0.039), but not for "always” adding salt 
(HR = 1.00, CI = 0.82 - 1.23, P = 0.988). Overall, the data suggests that “always” frequency of 
adding salt group is associated with increased CKD risk, especially in individuals with higher 
genetic predisposition (intermediate, high, and very high PRS categories). There was increasing 
trend in high PRS (P = 0.049) and intermediate PRS group (P = 0.033), but the trend was not 
significant in very high PRS group (P = 0.21) and low PRS group (0.12). 
 

Figure 4. Hazard ratios from model 3 for Salt intake stratified by PRS risk. Model 3 includes age, sex, TDI, 
BMI, eGFR, smoking, alcohol consumption, physical activity, diabetes, dyslipidemia, hypertension, coronary 

artery disease, and ischemic stroke 
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4.  Discussion 

Individuals with a very high CKD PRS showed a significantly higher incidence of CKD, even after 
adjusting for other contributing factors. The addition of salt to their diet increased the incidence of 
CKD in proportion to the frequency of salt addition. However, in populations with a low genetic 
risk for CKD, the effect of adding salt on CKD generation was mitigated. In contrast, in populations 
with more than intermediate PRS, the incident CKD was exacerbated incrementally by the higher 
genetic risk. 
 
Genetic studies have estimated the heritability of kidney diseases to between 30-75% through family 
studies and have identified several critical genetic loci associated with CKD, including SHROOM3, 
UMOD, and solute carriers24-28. However, most kidney diseases are etiologically complex and 
heterogenous, making it difficult to identify clear causal pathways and common susceptible genes. 
The most common causes of CKD are diabetes and hypertension, so CKD often arises as a secondary 
complication due to these other diseases rather than from primary kidney issues29. Both diabetes and 
hypertension have diverse genetic backgrounds, and the genetic background of kidney damage 
resulting from these conditions can vary depending on the underlying cause and the stage of the 
disease. For complex diseases that cannot be explained by candidate genes, PRS aggregates the 
associations of numerous single nucleotide polymorphisms (SNPs) associated with the disease or 
trait for a large population. Therefore, a well-validated PRS is a valuable tool for understanding the 
genetic background of CKD and stratifying risk factors. This study utilized meta-analysis GWAS 
data generated from SNPs associated with eGFR levels below 60 ml/min per 1.73m2 20. One of the 
challenges of optimizing PRS is its application to diverse ancestries with significantly different 
genetic backgrounds. African ancestry individuals have a higher risk for developing CKD than the 
other population because they tend to have high-risk alleles in the APOL1 gene30. For this reason, 
we did not include the small portion of African ancestry in UK Biobank. Finally, when we applied 
the PRS to the enrolled UK Biobank population in this study, a significant association with actual 
CKD incidence was found. CKD occurrence proportionally increased with higher PRS, but the 
predictive power was markedly augmented in the population of top 5% PRS, even after adjusting 
for many critical CKD risk factors. In line with our study, the extreme tail with the top 1-5% CKD 
PRS showed about a threefold increase in incident CKD9.  
 

Dietary salt is known to elevate blood pressure, particularly in individuals with hypertension, 
those over the age of 55, and those consuming more than 4g of sodium daily31. Salt sensitivity refers 
to the physiological response to blood pressure with sodium intake. In salt sensitive individuals, 
kidneys retain more sodium by up-regulating the sodium transporters, increasing sympathetic 
nervous tone, and activating RAS, which leads to higher blood pressure and increased risk of 
cardiovascular diseases32. Elderly individuals, African Americans, and those with CKD are more 
likely to be salt-sensitive33. Our study found that individuals who developed CKD had a significantly 
higher frequency of adding salt to their food compared to those who did not develop CKD. The 
"always" frequency of adding salt was significantly associated with the occurrence of CKD. 
However, this association was observed in the high and intermediate CKD-PRS groups but not in 
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the low PRS group, where the "always" frequency of adding salt did not show a significant 
association with CKD incidence. The kidneys play a significant role in blood pressure regulation, 
and conversely, hypertension can worsen kidney disease. Additionally, both hypertension and CKD 
share common genetic factors to a considerable extent34, 35. Kidney aging also contributes to salt 
sensitivity by increasing the activation of sodium channels in renal tubules36. Therefore, it is 
hypothesized that populations with genetic variants related to salt sensitivity or renal aging may 
experience an increased incidence of CKD due to up-regulation of salt sensitivity. Experimental 
models revealed several candidate genes that increased salt-sensitivity and induce kidney damage, 
suggesting renal tubular sodium transporters could be involved in the pathogenesis37, 38.  For those 
with CKD, reducing salt intake not only helps lower blood pressure but also reduces proteinuria and 
improves composite kidney outcomes39, 40. This study suggests that frequency of adding salt is 
particularly concerning for individuals with genetic risk factors for CKD, highlighting the clinical 
importance of reducing salt intake for these individuals. This study has some limitations. The precise 
amount of salt intake was not available, as we only had information on the frequency of adding salt 
to meals, which could introduce bias. However, the frequency of adding salt has been shown to be 
correlated with the 24-hour urinary sodium excretion17, 41. n Models 2 and 3, significant hazard ratios 
were only observed in the 'Very high' PRS-CKD group (Figure 3) and for the 'Usually' or 'Always' 
frequency of adding salt (Figure 4). This may be due to the inclusion of covariates that are strong 
predictors of the outcome, which absorb part of the risk previously attributed to PRS or salt 
frequency alone, reducing the significance of their associations. Additionally, some of these 
covariates may be masking the true effects of PRS or salt frequency, as they could act as mediators 
in the causal pathway. In addition, this study did not collect national health insurance data, so the 
incidence of CKD was only identified through self-report, ICD codes and follow-up eGFR values. 
This limitation may have led to the underestimation of the actual number of CKD cases. Although 
we adjusted for socioeconomic status and some lifestyle factors, unmeasured factors may still 
confound the association. We were also unable to replicate our findings in other datasets due to the 
lack of comparable definitions of salt intake. 
 
This study developed and validated a PRS for predicting CKD and analyzed how the frequency of 
adding salt, a crucial trigger, impacts individuals based on their genetic risk factors. While salt 
restriction has long been considered a vital lifestyle factor in CKD management, this study 
demonstrated that the influence of frequency of adding salt is more pronounced in individuals with 
higher genetic risk. Looking ahead, it is anticipated that personalized salt intake recommendations 
based on genetic risk will become available, allowing for more tailored and effective lifestyle 
interventions for individuals. 
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Precision medicine significantly enhances patients prognosis, offering personalized treat-
ments. Particularly for metastatic cancer, incorporating primary tumor location into the
diagnostic process greatly improves survival rates. However, traditional methods rely on hu-
man expertise, requiring substantial time and financial resources. To address this challenge,
Machine Learning (ML) and Deep Learning (DL) have proven particularly effective. Yet,
their application to medical data, especially genomic data, must consider and encompass
privacy due to the highly sensitive nature of data. In this paper, we propose OGHE, a convo-
lutional neural network-based approach for privacy-preserving cancer classification designed
to exploit spatial patterns in genomic data, while maintaining confidentiality by means of
Homomorphic Encryption (HE). This encryption scheme allows the processing directly on
encrypted data, guaranteeing its confidentiality during the entire computation. The design
of OGHE is specific for privacy-preserving applications, taking into account HE limitations
from the outset, and introducing an efficient packing mechanism to minimize the computa-
tional overhead introduced by HE. Additionally, OGHE relies on a novel feature selection
method, VarScout, designed to extract the most significant features through clustering and
occurrence analysis, while preserving inherent spatial patterns. Coupled with VarScout,
OGHE has been compared with existing privacy-preserving solutions for encrypted cancer
classification on the iDash 2020 dataset, demonstrating their effectiveness in providing ac-
curate privacy-preserving cancer classification, and reducing latency thanks to our packing
mechanism. The code is released to the scientific community.

Keywords: Computational genomics; Deep Learning; Homomorphic encryption; Privacy.
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1. Introduction

Precision medicine is fundamentally changing the landscape of cancer treatment by tailoring
medical care to individual genetic profiles, enhancing the efficacy of therapies.1 This person-
alized approach not only targets treatments more effectively but also significantly improves
patient outcomes and survival rates.2 Nowadays, however, precision medicine mainly relies on
human-performed processes, which require high expertise, lots of time, and finances.3 From
this perspective, the advancement of Machine Learning (ML) and Deep Learning (DL) tech-
niques offers researchers the potential to improve cancer classification accuracy, particularly
in identifying primary tumor sites from patients’ genomic data,4 which can lead to more pre-
cise and effective treatment strategies.5 Medical clinics and hospitals often lack expertise in
ML and DL and may struggle to afford the necessary computing infrastructure. To address
this issue, third-party as-a-service solutions have emerged as a promising alternative.6 How-
ever, exposing medical and personal data to third-party providers raises significant privacy
concerns, especially when dealing with sensitive genomic information.7 This vulnerability is a
major obstacle to the widespread adoption of ML and DL-as-a-service (DLaaS) in healthcare.

In recent years, the application of Homomorphic Encryption (HE) within the DLaaS frame-
work has gained considerable momentum in addressing privacy concerns. HE is an encryption
method that encrypts data using a public key, making it unreadable to unauthorized entities.
Only the holder of the corresponding private key can decrypt and access the original informa-
tion. A key advantage of HE is its ability to perform computations on encrypted data without
requiring decryption.8 This enables the encrypted processing of patient genomic data by third-
party ML and DL algorithms while maintaining data confidentiality, as the raw genomic data
remains encrypted and inaccessible during analysis.9

With this method, healthcare institutions encrypt genomic data before transmitting it to
a third-party ML and DL service, ensuring that the service provider remains unaware of the
underlying data during processing. The service provider receives the keys needed to perform
computations on encrypted data, and returns the encrypted results to the client for decryption.
This privacy-preserving computation as-a-service not only addresses the shortage of ML and
DL expertise while reducing costs, but also offers scalability and flexibility to meet the growing
computational needs of medical research, data analysis, and clinical decision-making. In recent
years, numerous privacy-preserving solutions have been developed for various healthcare ap-
plications, leveraging HE to protect sensitive data during analysis. For instance, studies have
demonstrated the use of HE in securely processing medical images,10 and conducting genome-
wide association studies.11 These advancements highlight the potential of HE to maintain data
confidentiality while enabling valuable insights in the healthcare domain.

Nonetheless, the task of cancer classification on encrypted genomic data is quite new. Ex-
isting solutions have explored ML techniques such as Logistic Regressions (LR)12 and Shallow
Neural Networks (SNN).13 Interestingly, despite their effectiveness in genomics,14 Convolu-
tional Neural Networks (CNNs) have received little attention due to their developmental
complexity in the HE framework. Indeed, HE poses considerable limitations on the type and
number of operations that can be performed on encrypted data. Since only addition and mul-
tiplication are supported by HE, several layers and activation functions commonly used in DL
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models cannot be directly computed on encrypted inputs. Additionally, HE constraints the
number of consecutive encrypted multiplications, thereby limiting the depth of DL models.15

In this perspective, our work introduces Oncological Genomic analysis over HE and CNN
(OGHE), a CNN-based approach for cancer classification designed to operate on encrypted
genomic data. Featuring parallel convolutional layers, OGHE separately analyzes Single Nu-
cleotide Variants (SNVs) and Copy Number Variations (CNVs) to enhance accuracy and
effectiveness. Additionally, OGHE employs a novel feature selection method, Variant Scout
(VarScout), to extract the most significant features while preserving the inherent spatial pat-
terns in genomic data. This approach effectively complements the characteristics of OGHE
convolutional layers, while maintaining compatibility with HE limitations.

Overall, this work introduces the following innovations: (1) OGHE, a privacy-preserving
CNN that incorporates parallel one-dimensional (1D) convolutional layers to independently
capture SNVs and CNVs spatial patterns, as they provide distinct and uncorrelated informa-
tion; (2) a novel feature selection technique, VarScout, which uses clustering and mutation
frequency to identify key SNVs and CNVs, thereby reducing computational complexity; and
(3) a novel packing mechanism to efficiently encrypt data, weights, and biases into ciphertexts,
resulting in high computational performance and reduced latency. The efficacy and efficiency
of OGHE and VarScout have been evaluated on the iDASH2020 competition dataset.16 Com-
pared to State-of-The-Art (SoTA) privacy-preserving cancer classification solutions, our ap-
proach achieves an accuracy improvement of 0.8% while reducing the inference time per sample
to less than 30 seconds. The code has been made available to the scientific community.a

The paper is organized as follows. Sec. 2 presents the related literature. The background is
given in Sec. 3. OGHE and VarScout are described in Sec. 4, whereas the experimental results
are presented in Sec. 5. Conclusions are finally drawn in Sec. 6.

2. Related Works

In this section, we review the literature on cancer classification task on genomic data. We first
discuss solutions for processing plain data and then those for encrypted data.

Over the past few years, both supervised and unsupervised learning techniques have been
extensively explored for cancer classification based on genomic data.17,18 However, the prefer-
ence has leaned towards supervised classifiers as they result more reliable, interpretable, and
precise. CNNs have largely conquered the genomic scenario thanks to their ability to extract
spatial patterns.14 For example, AlShibli et al.19 proposed ResCNN6, a 6-layers Residual-CNN,
to perform CNV-based cancer classification over six tumor types.20 The architecture encom-
passed four 2D convolutional layers coupled with MaxPooling to extract relevant features,
while two fully connected layers are exploited for classification. ResCNN6 presented shortcut
connections to ensure the lowest training error possible by avoiding one or more convolutional
layers. On the same task, Chen et al.21 explored a simpler CNN architecture composed of two
1D convolutional layers. Each convolution is followed by MaxPooling and batch normalization,
while a fully connected layer ended the processing pipeline. Despite their effectiveness, how-

aCode is available at https://github.com/AI-Tech-Research-Lab/OGHE.git.
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ever, the reported solutions are not feasible for privacy-preserving computation based on HE
due to the inability to compute several layers and activation functions on encrypted inputs. HE
imposes stringent limitations, permitting only linear functions and operations. Additionally,
the depth of these solutions would surpass the number of consecutive multiplications allowed
by HE constraints, potentially leading to data corruption and unreliability.22

Due to the aforementioned HE limitations, ML solutions are still preferred over DL ones
in privacy-preserving computation. In 2020, iDASH16 competition challenged its competitors
with the development of a cloud-based solution for privacy-preserving classification of eleven
cancer locations exploiting genetic mutations and HE. Among the presented solutions, Sarkar
et al.12 developed a logistic regression approach, incorporating a feature engineering strategy
to encode somatic mutations based on biological intuition and statistical tests. They advanced
a technique to reduce the feature space from over 50, 000 features to 43, 000, implementing a
HE-based model through an optimized matrix multiplication algorithm. Differently, Mağara
et al.23 investigated two ML algorithms, i.e., Support Vector Machine (SVM) and XGboost.
Given that XGBoost internally utilizes comparisons not supported by the HE scheme, an
efficient encoding method for encrypted comparison operations was devised for inference.
Moreover, Hong et al.13 proposed a Shallow Neural Network (SNN) consisting of one hidden
layer with 64 nodes and a linear activation function. In the preprocessing of the input genomic
data, the feature selection step incorporated both clustering and data filtering methods. Lastly,
in 2024, Song et al.24 introduced ReActHE, a family of CNNs characterized by a novel type
of activation layer, i.e., the Residue activation layer, and a scaled power activation function.
In particular, by selecting the 1, 000 most significant features by means of a L1 normalized
logistic regression, they outperformed alternative privacy-preserving ML solutions, achieving
low approximation errors in the cancer classification task.

Differently from the existing literature, our solution proposes two key aspects which are
fundamental for privacy-preserving cancer classification. First, VarScout selects the most rep-
resentative features in an effective way, helping in reducing input and model dimensions. Sec-
ond, OGHE exploits spatial information from genomic data by employing only HE-compliant
operations to allow encrypted computation.

3. Background

This section will present the basics needed to understand OGHE and VarScout implementa-
tion. Sec. 3.1 will provide a brief overview of the HE scheme employed, while Sec. 3.2 will
present the characteristics of the genetic mutations analyzed.

3.1. Homomorphic Encryption

HE is a family of encryption schemes that enables a set of operations to be performed directly
on encrypted data.8 Mathematically, two functions E(kp, ·), D(ks, ·) are said to be homomorphic
with respect to a set of functions F if, for any f ∈ F , a function g can be found that:

f(m) = D(ks, g(E(kp,m))) (1)

for any set of input m.25 In particular, E(kp, ·) and D(ks, ·) represent the encryption and
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decryption functions, respectively, whereas kp denotes the public key and ks the secret key.
The ability of HE to provide encrypted operations relies on the maintenance of the datum
algebraic structure during the processing pipeline.26 In this way, the result obtained from
ciphertext computation is guaranteed to match the one from the same operation in plaintext.
In this study, we adopted the Cheon–Kim–Kim–Song (CKKS) scheme,27 which is based on
the Ring Learning With Errors (RLWE) problem,28 a computational problem commonly used
in quantum-resistant cryptography.29 The CKKS scheme supports encrypted additions and
multiplications between real values. More in detail, it belongs to the family of leveled HE
schemes, i.e., schemes that allow only a finite number of consecutive encrypted operations
to be performed before the information is lost. This limit is called scheme level, denoted by
l, and it is due to noise injection performed by the scheme itself in order to guarantee the
probabilistic encryption properties.30 In CKKS scheme, the algebraic structure of plaintexts
and ciphertexts is defined through a set of encryption parameters Θ = {N, q,∆}, where N is
the polynomial modulus, q is the list of l + 2 coefficient modulus, and ∆ is the scaling factor.
More in detail, plaintexts are in the polynomial ring R = Z[X]/(XN +1), while ciphertexts are
in the polynomial ring Rq = Zq0[X]/(XN + 1).

When dealing with the CKKS scheme, two key factors must be considered. The former
deals with the choice of the encryption parameters Θ, defining the security level, which in this
work is set to 128 bit, the polynomial order, and the encoding precision. They represent a trade-
off between the scheme level l and the overhead added with respect to plain computation. The
latter is called batching technique: it enables parallel processing through Single Instruction,
Multiple Data (SIMD) operations.27 By using batching, a single ciphertext can store up to N/2

values, reducing the computational overhead both in terms of time and memory requirements.
The adopted CKKS scheme supports two main operations. Let a = [a0, a1, . . . , an] and

b = [b0, b1, . . . , bn] be two encrypted CKKS vectors. Then, the encrypted element-wise addition
can be defined as follows:

A+B = [a0 + b0, a1 + b1, . . . , an + bn]. (2)

Conversely, the encrypted element-wise product is defined as:

A ∗B = [a0 ∗ b0, a1 ∗ b1, . . . , an ∗ bn]. (3)

Additionally, matrices can be represented in ciphertext as their flattened forms. Aggregate
operations that perform homomorphic sums across specific dimensions of encrypted data can
be defined. Let C be an encrypted and flattened matrix with dimensions M × N . The sum
over columns is then expressed as:

S =

 N∑
j=1

Ci,j

M

i=1

(4)

where S is an encrypted matrix containing the row sums of C, repeated to match the dimen-
sions of the input matrix. Similarly, this operation can be applied to the other dimension.
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3.2. Single Nucleotide Variants and Copy Number Variations

Information from SNVs and CNVs is vital in the diagnostic process of metastatic cancer, as
it helps in identifying the origin of the primary tumor mass. Being common for a certain
population, SNVs, which involve the alteration of a single nucleotide in DNA strands, serve as
biomarkers for specific diseases. When occurring in protein-coding regions, SNVs can lead to
missense variations, i.e., the substitution of an amino acid altering protein structure and func-
tion, and nonsense mutations, i.e., the premature truncation of the protein-coding process.31

SNVs are categorized as [LOW, MODERATE, MODIFIER, HIGH] based on their impact on
disease onset, as determined by the Variant Effect Predictor software.

Conversely, CNVs are structural variations involving the rearrangement of more than 50
base pairs in the genome. Entire genes can be altered in the number of copies, compromising
normal gene expression levels and affecting critical cellular processes like cell cycle regulation,
apoptosis, and cell signaling. Thus, CNVs are strongly associated with genetic disorders and
complex diseases such as cancer.32 In this work, CNVs are represented by five mutation levels,
i.e., {0.0,±1.0,±2.0}, where the absolute value indicates the number of strands involved, while
the sign denotes either a positive duplication or a negative deletion. This information is directly
inferred from the Copy Number Segmentations generated by the ASCAT software.

4. Proposed Solution

This section details the proposed solution, composed of VarScout and OGHE, designed to
address the considered primary tumor location problem, formalized as follows. Let XCNV and
XSNV be two vectors of size LCNV and LSNV , respectively. We define the primary tumor
location as ŷ = argmaxi yi, where

y = φ(XCNV , XSNV ) ∈ RC (5)

is the output vector, C is the number of classes, and φ(·) is the model. In the rest of the section,
we will consider the encrypted version of this problem. In particular, Sec. 4.1 introduces
VarScout, our proposed feature selection method designed to reduce the CNV and SNV feature
space dimension, while Sec. 4.2 details OGHE, the model architecture specifically designed to
provide encrypted primary tumor classification on encrypted SNV and CNV inputs.

4.1. VarScout method

VarScout has been designed to reduce CNV and SNV feature space dimension while keeping
the highest data representation, which is crucial to design OGHE being HE compliant. In-
spired by Hong et al.,13 VarScout aims at enhancing OGHE accuracy by prioritizing the most
impactful mutations while maintaining typical spatial patterns.

After organizing CNV and SNV mutations in chromosomal order, agglomerative clus-
ter analysis is employed for CNV filtering to eliminate redundant information. Specifically,
our method comprises three main steps: (1) similarity computation between adjacent genes
(gi, gi+1) through the Hamming distance d, i.e., d(gi, gi+1), for each gene gi in the original
dataset; (2) formation of clusters Ol such that Ol = {gi |min(d(gi, gi+1))}, i.e., genes character-
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ized by the least distance are chosen to form a cluster; and (3) selection of the first in order
gene gi to represent the cluster l. These steps are repeated until l reaches LCNV .

Conversely, SNVs are numerically encoded within the range {0.0, 0.20, 0.50, 0.90, 1.0}, as
proposed by Hong et al.,13 to denote the impact of the mutation on the disease insurgence.
In particular, 0.0 represents the absence of genetic alteration, whereas 1.0 denotes the highest
level of influence. To reduce SNV feature space, our feature selection method is based on
mutation occurrences across different cancer types. Frequencies are calculated based on the
impact of genetic alterations, defined as Fj =

∑
i fij, for i = [1, ..., |Zc|]. More specifically, Fj

denotes the weighted frequency of occurrence of a gene j within a sub-population Zc = {x | y =

c} ∀c = [1, . . . , C] characterized by a specific cancer class y, and fij represents the impact of the
j-th gene for each individual sample i. The process ranks mutations by sequentially adding
the most recurrent gene for each tumor type to the feature space until the desired feature
dimension LSNV is reached.

4.2. OGHE Architecture

To exploit spatial patterns in genomic data while addressing HE constraints, we propose
OGHE. OGHE takes as input VarScout-selected CNV and SNV features encoded as two
separate ciphertexts, namely X̃CNV and X̃SNV , and outputs an encrypted vector Ỹpred of length

C. Once decrypted, the output Ypred = D(ks, Ỹpred), where D(ks, ·) is the decryption function
described in Sec. 3, reveals the predicted cancer class, identified by the index of the highest
value in Ypred. OGHE architecture is designed to work within HE constraints while maintaining
high accuracy and computational performance. The training of OGHE was performed on plain
data, although it is specifically designed for encrypted inference.

As shown in Fig. 1, OGHE is a shallow CNN composed of two parallel 1D convolutional
layers and a fully connected layer. Parallel convolutions are chosen to separate CNV and SNV
information, ensuring independent processing of uncorrelated data until the fully connected
layer. In its training configuration, a square activation function was chosen as commonly used
in the privacy-preserving DL15 framework, and a Spatial-Dropout layer is incorporated to
mitigate the risk of overfitting. The feature maps resulting from the convolutional layers, i.e.,
Yconvh,CNV

and Yconvh,SNV
, for each kernel h = [1, . . . ,H], are then concatenated and passed to

the flatten function. A fully connected layer ends the processing pipeline to provide the output
vector Ypred, where the index of the highest value indicates the predicted primary tumor mass
location. This strategic design ensures compatibility with the limitations posed by HE while
exploiting the available genetic information for accurate cancer classification.

Conversely, OGHE encrypted processing is designed to provide optimal computational per-
formance by efficiently managing the ciphertext space through a well-defined packing mech-
anism. By strategically organizing data within ciphertexts, our approach enables efficient
encrypted computations, and significantly enhances the performance of the network. OGHE
includes Encrypted Convolutional Blocks (Sec. 4.2.1) and an Encrypted Fully Connected Block
(Sec. 4.2.2). To streamline the notation we will consider the case where both the input data
and OGHE model are encrypted. However, the following formulations can easily be extended
to the scenario where the model is kept unencrypted by the service provider.
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Encrypted Convolutional Block Encrypted Fully Connected Block

SNV

Fig. 1. OGHE encrypted pipeline. Each sample, composed of XCNV and XSNV , is encoded and
encrypted into X̃SNV and X̃CNV , respectively, before being processed by the Encrypted Convolutional
Block and the Encrypted Fully Connected Block.

4.2.1. Encrypted Convolutional Block

This block proposes a 1D re-elaboration of the im2col method33 to facilitate the computation
of CNV and SNV convolutional layers. In our approach, data, weights, and feature maps are
efficiently packed to be encrypted into single ciphertexts, to maximize computational efficiency.

Let K = [k1, . . . , kD] denote a 1D convolutional kernel of dimension D and stride S, and
let X = [x1, . . . , xLx

] represent the 1D input vector. Our method encodes the input X into a
matrix X̃ of size Ly × V , built as follows:

X̃ =


x1 x2 · · · xD−1 xD 0 · · · 0

x(S+1) x(S+1)+1 · · · x(S+1)+D−1 x(S+1)+D 0 · · · 0

x(2S+1) x(2S+1)+1 · · · x(2S+1)+D−1 x(2S+1)+D 0 · · · 0
...

x(iS+1) x(iS+1)+1 · · · x(iS+1)+D−1 x(iS+1)+D 0 · · · 0

 . (6)

Similarly, the convolutional kernel K is encoded into K̃, a Ly × V matrix where each row
contains a copy of K:

K̃ =


k1 k2 · · · kD−1 kD 0 · · · 0
k1 k2 · · · kD−1 kD 0 · · · 0
k1 k2 · · · kD−1 kD 0 · · · 0
...
k1 k2 · · · kD−1 kD 0 · · · 0

 . (7)

For computational reasons, both X̃ and K̃ are padded with zeros at the end of each row to
maintain a power of 2 number of columns V , which will be set to V = 2⌈log2(max(D,C))⌉. Thus,
X̃ and K̃ share the same shape Ly × V , where

Ly =

⌊
Lx −D

S

⌋
+ 1, (8)

being Lx the input length, D the kernel dimension, S the stride, and C the number of classes.
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The matrices X̃, K̃ are then flattened and encrypted into the ciphertexts X̃ and K̃, re-
spectively. This encoding ensures that both the input vector X and the convolutional kernel
K are appropriately formatted for efficient encrypted computation.

Computing the h-th convolution Ỹconvh
is reduced to a single Hadamard multiplication

between ciphertexts, followed by a sum over the columns, as described in Eq. (4):

Ỹconvh
=

 V∑
j=1

(X̃h · K̃h)i,j

Ly

i=1

(9)

where i denotes the i-th row, j the j-th column, and Ly and V the dimensions of the output
Ỹconvh

. This operation is repeated for each of the h = [1, . . . ,H] kernels of the convolutional

block. The resulting ciphertext Ỹconvh
will be encoded as:

Ỹconvh
=


y1 y1 · · · y1 y1 y1 · · · y1
y2 y2 · · · y2 y2 y2 · · · y2
y3 y3 · · · y3 y3 y3 · · · y3
...

yLy
yLy

· · · yLy
yLy

yLy
· · · yLy

 (10)

in its flattened form, where yi is the encrypted result of a single window convolution. Lastly,

the bias is encoded to match Ỹconvh
packing, replicated Ly ∗ V times, and added to it.

It is worth noting that in OGHE, CNV and SNV inputs are processed in separate, parallel
1D convolutional layers. Eq. (9) is effectively used to compute Encrypted Convolutions for
each kernel and parallel branch, after which the square activation is applied.

4.2.2. Encrypted Fully Connected Block

The output of each parallel convolutional branch is subsequently forwarded through the final
fully connected layer. However, since CKKS ciphertexts cannot be concatenated, the operation
has to be decomposed. The weight matrix W associated to the layer is split into 2H sub-
matrices Wh, which are then flattened. Specifically, each Wh represents the portion of weights
W that has to be multiplied by the h-th output channel per each parallel branch. This way,
2H reduced fully connected layers can be performed to compute the output:

Ỹlinh,CNV
=

 Ly∑
i=1

(Ỹconvh,CNV
· W̃h,CNV )i,j

V

j=1

, Ỹlinh,SNV
=

 Ly∑
i=1

(Ỹconvh,SNV
· W̃h,SNV )i,j

V

j=1

. (11)

A Hadamard multiplication followed by a summation over the rows, described in Eq.
(4), effectively emulates a vector-matrix multiplication. All the 2H values are then summed
together along with the bias vector to provide the final prediction Ỹpred, which will be encoded
having the resulting vector repeated along the ciphertext.

Lastly, by multiplying the output Ỹpred by a binary mask, the output vector Ypred will
result in a single prediction vector of size C, where each element corresponds to a class. After
decrypting with the secret key, i.e., D(ks, ·), the index of the element with the highest value
will correspond to OGHE prediction.
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5. Experimental Results

The experimental campaign is organized into two parts. First, Sec. 5.2 compares OGHE to
SoTA solutions in terms of accuracy, micro Area Under the Curve (mAUC), and computa-
tional performance for privacy-preserving cancer classification tasks. Then, Sec. 5.3 shows the
effectiveness of OGHE and VarScout when compared to Hong et al.13 SNN and a baseline
model, i.e., a single fully connected layer network, referred to as FCM. Our solution, imple-
mented using OpenFHE-python34 library, has been tested on a workstation equipped with 2

Intel Xeon Gold 5318 S CPUs and 384GBs of RAM.

5.1. Procedure

To evaluate stability and consistency, OGHE and VarScout were tested alongside the literature
on the iDASH2020 dataset,16 sourced from The Cancer Genome Atlas (TCGA). This dataset
includes 3, 622 samples with CNV and SNV information for 25, 128 genes, and eleven cancer
classes representing the primary tumor mass location.

Moreover, for the in-depth comparison of Sec. 5.3, we employed a 5-fold cross-validation
technique to evaluate all the considered models. For each fold, we allocated data in a 7:1:2
ratio for training, validation, and testing, respectively. We also employed a hyperparameter
selection based on the validation loss for all the considered models. In particular, we optimized
the hyperparameters for OGHE considering the following ranges: kernel sizes of {16, 32, 64},
strides of {4, 8, 16}, and number of kernels {4, 8, 16}, along with activation functions either
linear or square. The spatial dropout rate has been fixed to 0.5. We fixed an Adam optimizer
with a weight decay of 0.0001, learning rate of 0.001 and cosine annealing, and batch size of
16. Instead, for the SNN13 and FCM, the learning rate was evaluated in {0.001, 0.0001}, the
batch size in {4, 8, 16, 32}, and the weight decay of the Adam optimizer in {0, 0.0001, 0.0005}.
All the solutions were trained for 200 epochs using a weighted cross-entropy loss function,
whose weights are inversely proportional to class frequencies.

For the encrypted computations, we employed the following CKKS encryption parameters:
Θ =

{
N = 32, 768, q = [60, 50, 50, 50, 50, 50, 60],∆ = 250

}
, yielding results that are consistent with

those obtained from processing in plaintext, and ensuring a 128-bits security level.35

5.2. Comparison with SoTA Solutions

As a first analysis, OGHE accuracy was compared to privacy-preserving cancer classification
SoTA solutions. Note that we compared OGHE only to models specifically designed for HE
applications, as they share the same characteristics and limitations.

As demonstrated in Table 1, our solution outscores all other models in the literature in
terms of accuracy, highlighting the exceptional capabilities of OGHE and VarScout. This ac-
curacy improvement is attributed to the simultaneous learning from multiple sources, namely
CNV and SNV, which enhances the model’s robustness to variations and noise, thereby in-
creasing its reliability. Nonetheless, OGHE shows a slight decrease in mAUC, which can be
attributed to a more distributed error among the classes.

Furthermore, the computational performance of OGHE has been assessed in comparison
to DL models in literature, as shown in Table 2. Since ReActHE24 was evaluated in its orig-
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Table 1. Accuracy and mAUC of our proposed solution compared to the existing
literature.

Model name Model class Accuracy mAUC

Mağara et al.23 XGBoost XGBoost − 93.80%
Sarkar et al.12 LR LR 83.61% 98.00%
Song et al.24 ReActHE CNN 83.82% −
Hong et al.13 SNN NN 85.15% 98.82%
Ours OGHE CNN 85.94% 98.44%

Table 2. Comparison of computational performance with respect to FCM and SNN13 in terms
of encryption, computation, and decryption time, and in terms of latency per sample (L1), and
in the encrypted inference of 100 samples (L100). All values are in seconds.

Model name Enc[s] Comp[s] Dec[s] L1[s] L100[s]

Hong et al.13 SNN 13.50 227.20 0.10 240.80 −
Song et al.24 ReActHE − − − − 685.35
Ours OGHE 2.97 23.17 0.013 27.59 190.02

inal work by encrypting the model weights, the weights and biases of OGHE have also been
encrypted to ensure a fair comparison. Additionally, single-sample inference utilized only 4

threads, whereas for the inference of 100 samples we limited our machine to use 40 threads, to
align with the ReActHE24 experimental setting. Table 2 proves the efficiency of our method
both in single-sample and high-throughput inference. Notably, the computational times are
the same for all the feature sizes up to [1024, 2286], given that the inputs, weights, and feature
maps fit into a single ciphertext. For larger models, two ciphertexts must be used, leading to
a slight increase in latency. However, the performance remains highly competitive, outper-
forming current state-of-the-art solutions. Additionally, the potential for further optimization
through parallelization ensures scalability and efficiency in future implementations. Moreover,
OGHE encryption time encompasses both model and data encryption. However, model en-
cryption takes 2.88 seconds, making it the most time-consuming aspect of the encryption
process. This evaluation considers the worst-case scenario where both the model and data are
encrypted. If the model were in plaintext, a significant amount of time (around 15%) would
be saved, highlighting the efficiency potential in less stringent encryption scenarios.

5.3. VarScout and OGHE evaluation

The aim of this part is to rigorously evaluate the effectiveness of VarScout and OGHE. To do
so, we used the preprocessing method of Hong et al.13 as feature extractor for OGHE, FCM,
and the SoTA SNN model.13 Subsequently, we applied our VarScout preprocessing method to
our solution to determine if VarScout effectively enhances OGHE’s performance. Note that
Song et al.24 is not included in this comparison, as they did not release the implementation.

Initially, we applied Hong et al.13 feature selection method to all the models under consid-
eration. The models were then tested with different input sizes, reflecting the number of CNV
and SNV features after preprocessing. Along with the size [709, 1198], identified by Hong et al.13
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Fig. 2. Accuracy and MicroAUC boxplots of the considered models, for different input dimensions,
i.e., the number of CNV and SNV features, respectively. The model names are followed by the
preprocessing feature selection procedure in parenthesis. They show the metrics over 10 runs of the
5-fold cross validation.

Fig. 3. Accuracy and MicroAUC boxplots of OGHE with different feature selection methods, for
different input dimensions, i.e., the number of CNV and SNV features, respectively. The model names
are followed by the preprocessing feature selection procedure in parenthesis. They show the metrics
over 10 runs of the 5-fold cross validation.
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as optimal, we also evaluated the input sizes [258, 582], [514, 1152], [1024, 2286], and [2031, 4613].
Fig. 2 demonstrates the effectiveness of OGHE, showing that it outperforms both FCM

and SNN.13 OGHE shows greater improvement over the other models as input feature size
increases. Achieving a higher median accuracy with a narrower interquartile range, OGHE
confirms that genomic data contains useful spatial and hierarchical information, effectively
captured by the convolutional layers. Moreover, OGHE shows reduced variance and a fewer
outliers across all input sizes when compared to the SNN,13 indicating its robustness to vari-
ations in the input data and parameter initialization when dealing with complex tasks.

Furthermore, the statistical difference between SNN13 and OGHE was evaluated using the
McNemar-Bowker36 test when both models were provided with inputs of size [1024, 2286] as it
ensures optimal performance for both models. The comparison was based on the run providing
the highest test accuracy for each fold of the cross validation. The test indicated a statistically
significant difference at a 5% confidence level between OGHE and the SNN13 in four out of
five folds, confirming the improvement our approach provides over existing literature.

Further improvements rise from the introduction of VarScout as feature selection method.
To demonstrate its effectiveness, OGHE integrated with VarScout was compared to OGHE
using the feature selection method proposed by Hong et al.13 Fig. 3 shows that, for smaller
input sizes, the model trained on VarScout-extracted features outperforms the one trained
with Hong et al.13 method, demonstrating that our feature selection method is superior in
capturing spatial patterns and extracting the most important features first. This characteristic
helps in maintaining a smaller network without sacrificing performance. Specifically, reducing
the feature space to [514, 1152], which is half the size of the configuration providing the best
performance, results in only a 0.7% loss in accuracy. This is a key aspect when dealing with
HE computations as it allows the use of ciphertexts characterized by smaller polynomial rings,
resulting in a significant reduction in memory footprint and computation time.

6. Conclusion

This work proposes OGHE, a HE-friendly CNN for privacy-preserving cancer classification,
and VarScout, a preprocessing method designed to maximize OGHE performance. OGHE
architecture exploits spatial correlations in genomic data, separately processing the most rele-
vant SNVs and CNVs extracted by VarScout, while preserving their spatial patterns. Together,
these techniques achieve SoTA performance in encrypted cancer classification.

Despite advancements in privacy-preserving computing, HE introduces significant limi-
tations in Artificial Intelligence applications, particularly regarding reduced computational
efficiency. Future research will focus on minimizing the computational overhead and develop-
ing encrypted training, enabling researchers to analyze genomic data securely while preserving
privacy, unlocking new possibilities for medical research and discovery.

Additionally, leveraging Neural Architecture Search (NAS) to optimize OGHE’s architec-
ture under HE constraints could further enhance its performance by automating the search
for optimal architectures. Lastly, the release of new datasets will enable further validation and
refinement of OGHE, expanding its potential applications.
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7. J. Santaló and M. Berdasco, Ethical implications of epigenetics in the era of personalized
medicine, Clinical epigenetics 14, p. 44 (2022).

8. A. Acar, H. Aksu, A. S. Uluagac and M. Conti, A survey on homomorphic encryption schemes:
Theory and implementation, ACM Computing Surveys (Csur) 51, 1 (2018).

9. A. Wood, K. Najarian and D. Kahrobaei, Homomorphic encryption for machine learning in
medicine and bioinformatics, ACM Computing Surveys (CSUR) 53, 1 (2020).
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Multimodal models have become increasingly important as they surpass single-modality
approaches on diverse tasks ranging from question-answering to disease diagnosis. Despite
the importance of multimodal learning, existing efforts focus on vision-language applica-
tions, where the number of modalities rarely exceeds four (images, text, audio, video).
However, data in healthcare domain, may include many more modalities like X-rays, PET
scans, MRIs, genetic screening, genomic data, and clinical notes, creating a need for both
efficient and accurate data integration. Many state-of-the-art multimodal models rely on
cross-attention or self-attention for effective data integration, which do not scale well for
applications with more than two modalities. The complexity per layer of computing atten-
tion in either paradigm is, at best, quadratic with respect to the number of modalities,
posing a computational bottleneck that impedes broad adoption. To address this, we pro-
pose a new attention mechanism, One-Versus-Others (OvO) attention, that scales linearly
with the number of modalities, thus offering a significant reduction in computational com-
plexity compared to existing multimodal attention methods. Using three clinical datasets
with multiple diverse modalities, we show that our method decreases computation costs
while maintaining or increasing performance compared to popular integration techniques.
Across all clinical datasets, OvO reduced the number of required floating point operations
(FLOPs) by at least 91.98%, demonstrating its significant impact on efficiency and enabling
multi-modal predictions in healthcare.∗

Keywords: Multimodal learning; deep learning; attention mechanism; clinical decision sup-
port.

∗Code and Appendix are available at https://github.com/rsinghlab/OvO
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1. Introduction

Fig. 1. Integration scheme comparison. (a) Early fusion to self-attention with scaled dot prod-
uct attention,1 and (b) Pairwise cross-attention integration with scaled dot product attention.1 (c)
Our proposed method, One-Versus-Others (OvO), does not rely on pairwise interactions or long
concatenated sequences but rather captures all modalities in a single attention score. A modality
embedding is represented by mi and W is a learnable parameter (see Section 3.1).

Multimodal learning has emerged as a promising approach, which enables joint learning
from multiple modalities of data (e.g., text and images). Combining different modalities al-
lows for a more comprehensive and accurate understanding of tasks such as clinical decision
support,2–4 image and video captioning,5,6 audio-visual speech recognition,7 and sentiment
analysis.8 Multimodal learning has been explored through various methods in machine learn-
ing and deep learning. While feature-level integration was mostly used in more traditional
machine learning algorithms, Neural Networks have allowed for the intermediate fusion of
modalities at any layer and late fusion at the decision-making stage. However, these fusion
paradigms lack a key component - capturing explicit interaction between modalities. For ex-
ample, in detecting Alzheimer’s Disease, genetic features help reinforce and ground the clinical
information and thus lead to more robust decision-making.3 Such relevant interactions can be
captured through the attention mechanism. Popular multimodal models, such as LXMERT9

and BLIP,10 use a fusion method that captures interactions between modalities using cross-
attention. On the other hand, models such as VisualBERT11 and LLaVA12 use early fusion,
where vision and language inputs are concatenated early to learn multimodal through self-
attention. The clinical domain embraced these approaches, with multimodal models like Med-
FuseNet13 and ARMOUR14 using cross-attention for medical vision question answering and
mortality prediction. In parallel, models such as BioViL-T15 and MMBERT16 employ early
fusion through self-attention for disease prediction and report generation.

However, both self-attention and cross-attention grow quadratically in computational bur-
den with the number of modalities, posing a scalability challenge. While in popular vision-
language integration tasks, the number of modalities rarely exceeds four (images, text, audio,
video), a significant bottleneck can arise in other domains. The healthcare domain exempli-
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fies this issue, as a single task may involve integrating data from complex and rich sources
spanning multiple modalities from radiology, pathology, genomics, genetics, and clinical data.
Therefore, with the influx of many modalities, the use of cross-attention or self-attention will
remain limited in the clinical domain as their computational demands escalate even further. To
address this gap, we propose a new attention mechanism, One-Versus-Others (OvO) attention.
OvO attention is calculated by comparing one modality against a combined representation of
all other modalities (hence the name, One-Versus-Others). Our approach significantly reduces
computational complexity as it grows linearly with the number of modalities (see Section
3.3). Figure 1 sketches a four-modality example to demonstrate the difference between our
approach (scales linearly) and self-attention/cross-attention (scales quadratically). OvO is a
general attention scheme that can be integrated into existing clinical multimodal architectures
instead of cross-attention or self-attention.

We first, present a complexity analysis and validate it through a simulated dataset. Our
simulation results show scalability gains in an extreme multimodal setting (20 modalities).
Next, we use three diverse clinical datasets that vary in modalities, encoder types (pre-trained
and not), number of samples, and tasks to show our model’s improved scalability in different
clinical multimodal settings. Our results demonstrate that our method dramatically decreases
computation costs (offering at minimum a 91.98% reduction in computations), compared to
self-attention and cross-attention while maintaining or even exceeding performance.

Overall, OvO is a novel attention scheme for multimodal integration that scales linearly
to the number of modalities, enabling the practical application of deep learning models in
healthcare, where computational efficiency and accuracy are vital for deployment.

2. Related work

Multimodal attention-based models are increasingly pivotal in clinical decision support sys-
tems, paralleling their widespread use in vision-language applications. In the medical domain,
these models have shown remarkable utility in diverse scenarios, such as cancer classification,17

biomarker discovery,18,19 prognosis prediction,20,21 and more. These applications highlight the
versatility and potential of multimodal learning in handling complex and rich medical data.
The attention mechanism serves as a core component in these models. Attention measures
the similarity among individual representations, like word embedding vectors or, in the multi-
modal scenario, modality-specific embeddings. Each input embedding can assume one of three
roles: (1) Query (Q), representing the current focus of attention when compared against other
input embeddings; (2) Key (K), signifying an input embedding being compared to the Query;
and (3) Value (V ), which contributes to computing the output for the Query.

Commonly, the representations from each modality in the multimodal models are passed
through one of two paradigms - early fusion followed by self-attention or fusion through cross-
attention. The early fusion group (e.g., Transformer-based models like UNITER,22 Visual-
BERT,11 LLaVA,12 BioViL-T,15 MedViLL,23 etc.) concatenates the visual embeddings and
the textual embeddings as a single input, before passing the inputs through attention (see
Figure 1 (a)). Given modalities m1 and m2, queries (Q), keys (K), and values (V ) are com-
puted from their concatenated sequence (e.g., Q1,2 = concat(m1,m2)). The final output from a

Pacific Symposium on Biocomputing 2025

582



standard Transformer block is denoted by Z, Equation 1 shows the early fusion paradigm.{
Z1,2 = Multiheaded Attention (Q1,2,K1,2,V1,2)

Z = Transformer(Z1,2)
(1)

The cross-attention scheme (used in Transformer-based models like ViLBERT,24

LXMERT,9 MedFuseNet,13 MADDi,3 etc.) inputs each modality into its own Transformer,
the outputs of which are fed to a cross-modal Transformer (see Figure 1 (b)). For such mod-
els, the cross-modal interactions are captured in a pairwise manner through cross-attention,
where queries (Q), keys (K), and values (V ) are computed from the modality inputs (m1 and
m2), and then the keys and values from each modality are fed to the multi-headed attention
block of the other modality. The output, Z, is shown in Equation 2.

Z1 = Multiheaded Attention (Q2,K1,V1)

Z2 = Multiheaded Attention (Q1,K2,V2)

Z = Transformer (concat (Z1,Z2))

(2)

While the early fusion and cross-attention paradigms could be extended to three modalities,
seen in TriBERT25 and VATT,26 these models face scalability challenges for more than three
modalities. Cross-attention methods can leverage joint representations formed from cross-
attention but do not scale well to larger numbers of modalities as they are computed in a
pairwise fashion. Thus, if there are k modalities, computing pairwise fusion between each pair
will result in

(
k
2

)
matrix computations. Moreover, attention is not a symmetric calculation,

which means that most commonly, it is computed bi-directionally (e.g., image to text and text
to image), leading to an even greater computational burden. Early fusion involves the con-
catenation of modalities before the Transformer layer, which similarly does not scale well with
the number of modalities. Self-attention is quadratic with respect to sequence length,1 and
since early fusion methods concatenate inputs before attention, the computational complexity
will increase quadratically as the number of modalities increases (see Section 3.3). Further-
more, concatenation is not order invariant, making the ordering of modalities an important
consideration, potentially requiring similar bi-directional computations as cross-attention. Our
integration method, OvO, addresses the limitations mentioned above in a scalable and domain-
agnostic manner.

3. Methods

3.1. One-Versus-Others (OvO) attention

We propose a new attention mechanism, One-Versus-Others (OvO) Attention, which grows
linearly with the number of modalities rather than quadratically, as would be the case for cross-
attention or self-attention (see Section 3.3). OvO computes attention between one modality
at a time with respect to all other modalities. Given modality mi, which is an embedding
obtained from a dedicated encoder (e.g., CNN, ClinicalBERT, etc.) and i ∈ 1, 2, . . . , k where
k is the number of modalities, OvO takes in one modality and computes the dot product
against all the other modalities with a weight matrix Wi. Wi is a learnable parameter that
can help scale the importance of each attention calculation (see Figure 1 (c)) and can learn
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interactions throughout training. The modality embeddings mi in OvO attention function
like queries, while the weighted sum of the other modalities behaves like keys and values,
akin to the dot-product attention mechanisms, with the naming choice of mi adapted for
multimodal applications. This dot product The similarity score function, representing the
degree of alignment between the chosen modality and others, calculated for modality mi with
respect to a set of other modalities (mj : j ̸= i) is shown in Equation 3. This produces a vector
of scores which measure the relevance of mi with respect to the other modalities. The context
vector in OvO for modality mi, which is a combined representation of information from the
other modalities, is shown in Equation 4:

score (mi, {mj : j ̸= i}) = mT
i Wi

∑k
j ̸= i mj

k − 1
(3)

OvO (mi, {mj : j ̸= i}) = softmax (score (mi, {mj : j ̸= i})) ·mi (4)

In Equation 4, the softmax is applied across the input dimension of the embeddings,
normalizing across the attention scores. The result is then multiplied by the original modality
embeddings to compute the final output. We chose to sum over the “other” modalities instead
of concatenation because: (1) the concatenation vector will continue to increase in length with
the number of modalities, which will result in a less scalable framework; (2) concatenation is
not invariant to the order of modalities, which could affect the model prediction, whereas a
sum provides position invariance.

Unlike cross-attention and self-attention, OvO provides a more interpretable mechanism
for analyzing interactions between multiple modalities. In cross-attention, interactions are
captured in isolated pairs (e.g., m1 compared to m2 or m1 compared to m3), limiting the
ability to see how one modality integrates information from all others. Similarly, self-attention
condenses modality interactions into a single operation, which can obscure explicit cross-modal
interactions and make it difficult to disentangle their contributions. OvO, however, creates
one attention matrix per modality, with each modality interacting with all others through
the learnable weight matrix Wi, which ensures a flexible and adaptive scaling mechanism. In
future work, Wi will be studied to better understand the relative importance of each modality’s
contributions to the final prediction.

3.2. Multi-headed OvO Attention

We extend OvO attention to the multi-headed attention framework to directly compare with
early fusion through self-attention and pairwise cross-attention. Multi-headed attention al-
lows the model to attend to the input embeddings in different ways simultaneously. This is
achieved by splitting the input embeddings into multiple linear projections, each processed
independently through a self-attention mechanism. The outputs of each attention head are
then combined to obtain the final output of the multi-headed attention layer. Formally, taking
the input modality mi with respect to a set of other modalities (mj : j ̸= i), the multi-headed
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attention layer for OvO attention is defined as follows:
MultiheadedOvO(mi, {mj : j ̸= i})

= concat(head1, . . . , headh)WO

headk = OvO(miW
mi

k , {mjW
mj

k : j ≠ i})

(5)

3.3. Model Complexity

This section highlights the complexities of the two commonly used paradigms: early fusion fol-
lowed by self-attention and pairwise cross-attention, as well as our One-Versus-Others (OvO)
attention. Table 1 summarizes the complexity per layer. Let k represent the number of modal-
ities, n be the feature-length of each modality (assuming equal), and d be the representation
dimension of the respective weight matrices. As established in,1 self-attention has complexity
of O(n2 · d). In the multimodal case, self-attention concatenates modalities before attention,
leading to a sequence length of k · n, influencing the quadratic term. Thus, the complexity
of self-attention is O((k · n)2 · d) = O(k2 · n2 · d). Cross-attention computes attention over all
pairwise permutations of modalities: kP2 = k!

(k−2)! = k(k − 1). Thus, the number of operations

required by cross-attention is O(k · (k − 1) · n2 · d) = O((k2 − k) · n2 · d). When focusing on the
fastest-growing terms in big O notation, the final complexity per layer simplifies to O(k2 ·n2 ·d).
One-Versus-Others (OvO) Attention requires one attention calculation per modality, making
it linear with respect to k. Thus, the complexity per layer for OvO is O(k · n2 · d). Appendix
Section 1 provides step-by-step details for the complexity calculations.

Table 1. Per-Layer complexities of model paradigm.
Let k be the number of modalities, n the feature-length of a
modality, and d the representation dimension.

Model Complexity Per Layer

Self-Attention O(k2 · n2 · d)
Cross-Attention O(k2 · n2 · d)
One-Versus-Others (OvO) Attention O(k · n2 · d)

3.4. Illustration through simulation

To illustrate the linearity of OvO compared to the other integration paradigms, we simulated
20 artificial modalities. We consider two classes: (1) 20 random feature values that sum up to
1.0, and, (2) 20 random feature values that are each less than 0.15. These classes were created
such that the correct label can only be inferred after inspecting all features. For example, 0.14
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is less than 0.15, but it could also be a value that adds to 1. For more details on the simulation
dataset and how the threshold was chosen, see Appendix Section 2.

Fig. 2. The impact of using OvO attention to fuse simulated data. Using FLOPs as a mea-
sure of compute, we demonstrate that OvO grows linearly with respect to the number of modalities,
while self and cross-attention grow quadratically.

Each value was then vectorized by sampling randomly around the selected number, such
that each modality is a vector of size 20 rather than a single number, leading to a combined
total of 400 features. Overall, the dataset contains 2,000 samples (1,000 for each class). Our
constructed simulation dataset tests the scaling capabilities of our method to an extent that
real-world datasets do not usually reach.

We examine the computation cost across the three integration methods using 2, 5, 10,
15, and 20 simulated modalities. Most notably, while self-attention and cross-attention grow
quadratically with respect to the number of modalities, k, (O(k2 · n2 · d)), our method scales
linearly (O(k · n2 · d)), as shown in Figure 2.

4. Experiments

We used three diverse clinical datasets to examine our method against three standard integra-
tion techniques: concatenation with no attention (baseline), early fusion with self-attention,
and pairwise cross-attention. These clinical tasks feature a range of rich modalities that, de-
spite their high integration costs, remain essential to solve.

4.1. Dataset descriptions

4.1.1. MIMIC-IV and CXR data

MIMIC-IV27 covers 431K visits for 180K patients admitted to the ICU in the Beth Israel Dea-
coness Medical Center. MIMIC Chest X-ray (MIMIC-CXR)28 contains chest radiographs in
DICOM format with free-text radiology reports. The dataset contains 377,110 images corre-
sponding to 227,835 radiographic studies performed at Beth Israel Medical Center. We follow
the pre-processing of MedFuse29 to extract the clinical time-series data from MIMIC-IV along
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with the associated chest X-ray images in MIMIC-CXR. We further expand the number of
modalities by adding a demographics table and discharge notes, resulting in four modali-
ties. We also follow MedFuse in the construction of the phenotyping task. The goal of this
multi-label classification task is to predict whether a set of 25 chronic, mixed, and acute care
conditions are assigned to a patient in a given ICU stay. This is a 25-class multi-label task
with four modalities.

4.1.2. The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)30 database provides neuroimaging
data, cognitive test scores, biomarker profiles, and genetic information for Alzheimer’s disease
(AD), mild cognitive impairment (MCI), and normal patients. We use the processed data from
the Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge.31 We
focus on a one-time diagnosis prediction task, using the most recent available data point for
each patient across all modalities. This ensures that each data sample includes information
from the same time point, which aligns with our goal of evaluating cross-modal integration
rather than longitudinal progression. We utilize six modalities that have the least missing
information per patient: cognitive tests - neuropsychological tests administered by a clini-
cal expert; MRI ROIs (generated from Freesurfer) - measures of brain structural integrity;
FDG PET ROI averages - measure cell metabolism, where cells affected by AD show reduced
metabolism; AV45 PET ROI averages - measures amyloid-beta load in the brain; demographic
information (e.g., age, gender, education); and CSF biomarkers - amyloid and tau levels in
the cerebrospinal fluid. The preprocessing provided by TADPOLE turned every modality
into a tabular form (including imaging). After removing patients with missing modalities, we
had 767 MCI patients, 493 normal patients, and 143 AD patients. Thus, this is a three-class
classification task with six modalities.

4.1.3. eICU data

The eICU collaborative database includes data from ICUs across the continental United States
between 2014 and 2015.32 It consists of tables linked through a patient unit stay ID. For our
mortality prediction task, we focus on six tabular modalities: patient, diagnosis, treatment,
medication, lab, and apacheApsVar tables. The apacheApsVar table contains numerical vari-
ables used to calculate the Acute Physiology Score (APS), an established method within
the Acute Physiology Age Chronic Health Evaluation (APACHE) system for summarizing
patient’s severity of illness on ICU admission and predicting outcomes. The patient table
includes demographic, admission, and discharge details, and is used to determine mortality
status. The diagnosis table lists active diagnoses for each patient, the treatment table includes
active treatments, and the medication table contains active medication orders. We extract the
features from these tables by one-hot encoding the relevant conditions, treatment types, and
drug names, respectively. The lab table includes lab results, with features extracted by sum-
ming commonly recorded lab types. Our dataset includes 75,845 unique patients with 93,784
ICU stays, 86,012 recorded as alive and 7,772 as dead. This is a 2-class classification task with
six modalities.
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4.2. Baselines

Our multimodal baselines include a conventional concatenation fusion with no attention, early
fusion followed by self-attention, and pairwise cross-attention fusion. The architectures of all
models are identical except for their integration stage. For example, since modality-specific
encoders can produce different dimension sizes, we add a linear layer before integration to
create the same input dimensions. Although this step is not strictly necessary for concate-
nation, we still add the layer there so that no additional factors influence computation costs
and performance. While there are many multimodal Transformers available for the vision-
language domain, our focus is on examining the underlying fusion mechanism and creating a
general integration paradigm for any application, especially ones outside of vision-language.
In Appendix Section 5, we touch on the limitations of our experiments and future work that
we did not cover.

4.3. Implementation details

For the MIMIC dataset, we follow the established train, validation, and test split in Hayat et
al .4 Similarly, for the TADPOLE task, we use the provided data splits but add a constraint
that repeating patients cannot appear across data splits to avoid information leakage. In the
other datasets, for consistency, we randomly sampled 80% of the data for the training set
and 10% each for test and validation sets, as there was not an established split. To evaluate
our model against other integration techniques, we use the domain-accepted metrics for each
task: For MIMIC and eICU, we use area under the receiver operating characteristic (AUROC)
and area under Precision-Recall (PR) curve (AUPRC) as established in past works;4,33 For
TADPOLE we use the multi-class area under the receiver operating curve (mAUC) and the
overall balanced classification accuracy (BCA), as established by the competition creators.31

For all datasets, we used the number of floating-point operations (FLOPs) as the measure of
runtime complexity. FLOPs were measured per sample and reported as the difference between
concatenation, the simplest integration setting, and multimodal attention (∆FLOPs).

4.4. Hyperparameter Tuning

Our hyperparameter tuning scheme was consistent for each dataset and each model. For
each experiment, we used the evaluation metrics on the validation set to determine the best
hyperparameters. We tuned the learning rate (0.01 - 1 x 10−8, dividing by 10 for each interval),
batch size (16, 32, 64, 128), epochs (200 epochs with early stopping if validation performance
did not increase for 5 epochs), and number of attention heads for OvO, self-attention, and
cross-attention models (1, 2, 4, 8, 16). For the neural network encoders, we tuned the number
of linear layers ranging from 1 to 4. Similarly, for the convolutional neural network, we tuned
the number of convolution layers ranging from 1 to 4. For compute times and GPU details used
for hyperparameter tuning, see Appendix Section 2. Lastly, we randomly picked 10 random
seeds for every experiment - once the best hyperparameters were picked, ten models initialized
with those seeds and parameters were run. Then, using the trained ten models, we evaluated
on the test set and took the average of the 10 runs along with the standard deviation, which
is reported in Section 5.
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5. Results

Using three real-world clinical datasets, diverse in terms of the number of modalities, feature
space, and classification tasks, we demonstrate that our method consistently and drastically
reduces computational costs compared to early fusion and pairwise fusion while simultaneously
maintaining or enhancing performance. This is demonstrated on one four-modality dataset and
two six-modality datasets.

For the four-modality MIMIC task, we used pre-trained ClinicalBERT model for the text
modality and fine-tuned it for the unimodal baseline and the multimodal task, separately,
ensuring adaptation in each setting. For all other modalities, we used the appropriate neural
network architecture (i.e., CNN for images, LSTM for time series, and a multi-layer perception
for all tabular data). We perform significance testing between OvO attention and the next
best-performing model, detailed in Appendix Section 3.

Table 2. MIMIC IV+CXR results.(*) FLOPs were measured per sample
and reported as the difference between concatenation and multimodal atten-
tion. We offer improved performance across all metrics and reduce FLOPs by
at least 93.73% compared to self and cross-attention.

Model Modalities ↓ ∆ FLOPs ↑ AUROC ↑ AUPRC

LSTM Time Series - 58.8 ±0.6 28.5 ±0.4
CNN Images - 56.9 ±0.3 26.7 ±0.2
Neural Net Demographics - 64.1 ±0.4 32.4 ±0.3
ClinicalBERT Text - 79.3 ±0.4 58.7 ±0.3

Concatenation All * 82.7 ±0.6 65.1 ±1.8
Cross-Attention All 52,723,712 78.2 ±2.1 54.1 ±2.7
Self-Attention All 67,633,152 78.5 ±2.0 55.7 ±3.1

OvO Attention All 4,227,072 83.6 ±1.1 66.2 ±2.6

The results on MIMIC are presented in Table 2, clearly demonstrating the scalability and
performance advantages of OvO attention. OvO’s 4,227,072 FLOPs notably reduce compu-
tational costs compared to cross-attention (52,723,712 FLOPs) and self-attention (67,633,152
FLOPs), achieving reductions by 91.98% and 93.75%, respectively, thus highlighting OvO’s
superior efficiency. The unimodal results show that the textual modality is most valuable in
phenotype prediction, and ClinicalBERT alone performs better than self-attention and cross-
attention. This indicates that the added complexity and forced interactions are not necessarily
conducive to result quality. However, OvO attention can extract information from the other
modalities for a significant performance increase rather than a decrease (p-value <0.01, see
Appendix Section 3).

For the six-modality Alzheimer’s detection task from TADPOLE, we show our results in
Table 3. OvO’s 405,504 FLOPs significantly undercut cross-attention (8,921,088 FLOPs) and
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Table 3. TADPOLE results. (*) FLOPs were measured per sample and
reported as the difference between concatenation and multimodal attention.
We offer improved performance across all metrics and reduce FLOPs by at
least 95.45% compared to self and cross-attention.

Model Modalities ↓ ∆ FLOPs ↑ MAUC ↑ BCA

Neural Net AV45 PET ROI - 63.5 ±3.1 56.4 ±3.8
Neural Net CSF Biomarkers - 64.4 ±1.1 53.6 ±2.7
Neural Net MRI ROIs - 67.0 ±1.3 57.2 ±1.0
Neural Net FDG PET ROI - 66.6 ±0.3 60.8 ±0.7
Neural Net Demographics - 74.6 ±0.9 62.0 ±0.6
Neural Net Cognitive Tests - 97.8 ±0.2 88.6 ±0.7

Concatenation All * 97.7 ±0.8 91.9 ±1.9
Cross-Attention All 8,921,088 97.1 ±0.6 90.7 ±1.7
Self-Attention All 9,633,792 94.8 ±1.1 86.6 ±2.6

OvO Attention All 405,504 98.3 ±0.4 93.0 ±1.4

self-attention (9,633,792 FLOPs), achieving reductions of 95.45% and 95.79%, respectively,
highlighting OvO’s remarkable efficiency. Similarly to the MIMIC results, the unimodal results
show that the cognitive tests modality is most valuable in disease prediction, and performs
on its own better than self-attention and cross-attention. However, OvO attention can extract
information from the other modalities for a significant performance increase rather than a
decrease (p-value <0.01).

Lastly, the results on the six-modality eICU mortality prediction task are shown in Table
4, demonstrating the scalability and performance advantages of OvO attention.

OvO’s 6,340,608 FLOPs significantly undercut those of cross-attention (129,957,888
FLOPs) and self-attention (151,781,376 FLOPs), achieving reductions of approximately
95.12% and 95.82%, respectively, thereby highlighting OvO’s efficiency. Mirroring the trends
observed in the MIMIC and TADPOLE datasets, we note a dominant unimodal modality,
specifically Lab modality, in this experiment as well. While concatenating modalities does
enhance performance, this improvement is not seen in self and cross-attention models. In
contrast, OvO attention not only reflects these performance gains but does so significantly
(p-value <0.01). We hypothesize that this is due to the overfitting of more complex integra-
tion frameworks of self and cross-attention on relatively smaller clinical datasets. OvO, in its
simplicity akin to concatenation, manages to strike a balance by maintaining flexibility and
capturing inter-modal interactions through its attention mechanism, thus offering an edge in
performance without excessive complexity.

In summary, across diverse clinical datasets and modalities, OvO attention consistently
outperforms traditional fusion techniques in both predictive performance and computational
efficiency, underlining its robustness in handling complex multimodal healthcare data.

Pacific Symposium on Biocomputing 2025

590



Table 4. eICU results. We report the average of 10 random seeds for AU-
ROC and AUPRC, along with standard deviations. (*) FLOPs were measured
per sample and reported as the difference between concatenation and multi-
modal attention. We offer improved performance across all metrics and reduce
FLOPs by at least 95.12% compared to self and cross-attention.

Model Modalities ↓ ∆ FLOPs ↑ AUROC ↑ AUPRC

Neural Net Demographics - 50.2 ±0.6 91.8 ±0.2
Neural Net Medication - 56.3 ±1.3 93.1 ±0.3
Neural Net Diagnosis - 58.2 ±2.1 93.3 ±0.4
Neural Net Treatment - 66.1 ±0.5 94.8 ±0.1
Neural Net APACHE APS - 77.6 ±0.2 97.0 ±0.1
Neural Net Laboratory - 81.5 ±0.4 97.0 ±0.1

Concatenation All * 81.7 ±1.6 97.5 ±0.3
Cross-Attention All 129,957,888 77.6 ±1.6 95.4 ±0.3
Self-Attention All 151,781,376 80.2 ±2.0 96.8 ±0.4

OvO Attention All 6,340,608 82.5 ±0.9 97.8 ±0.2

6. Conclusion

We present One-Versus-Others (OvO), a new scalable multimodal attention mechanism. The
proposed formulation significantly reduces the computational complexity compared to the
widely used early fusion through self-attention and cross-attention methods. Notably, OvO
achieves, at minimum, a reduction of 91.98% in FLOPs when benchmarked against self and
cross-attention methods across a range of clinical datasets containing up to six modalities.
We provide both a detailed theoretical complexity analysis and empirical evidence from a
simulated experiment, illustrating that OvO’s computational demand scales linearly with the
number of modalities, in contrast to the quadratic scaling observed in other methods. Our
proposed method provides a way to overcome one of the major challenges associated with
multimodal datasets - computational resource demand and cost, thus enabling adoption in
resource-constrained domains, such as clinical decision support. Overall, the results unequiv-
ocally establish that OvO not only significantly reduces computational expenses but also
exceeds the performance of existing state-of-the-art fusion methodologies.
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This PSB 2025 session is focused on opportunities, challenges and solutions for translating Big Data 
Imaging Genomic findings toward powering decision making in personalized medicine and guiding 
individual clinical decisions. It combines many of the scientific directions that are of interest to PSB 
members including Big Data analyses, pattern recognition, machine learning and AI, electronic 
health records and others. 

1. Introduction

National and international scientific efforts are expanding toward collection, sharing and analyses 
of large and inclusive epidemiological and illness-focused datasets that combine genetic, imaging, 
metabolic and electronic health records (EHRs) data to enable examination of the contribution of 
genetic, environmental and interventional factors to human illness and health. High-resolution 
neuroimaging (~104-6 voxels), genetic (106-8 single nucleotide polymorphic variants (SNPs)) and 
EHRs (~102-5 structured features + clinical notes) per individual are available in statistically 
powerful (N=103-5) epidemiological and disorder-focused samples. This also leads to major 
challenges on collection, sharing and homogenization of data, including how to identify 
reproducible signatures of complex polygenic illnesses. Research findings in such illnesses, e.g., 
neuropsychiatric, neurodegenerative, metabolic and other complex disorders, have historically 
suffered from a substantial variability and heterogeneity both within and across disorders - 
including genetics, environmental risk factors, mean age of onset, symptom presentations, 
treatment response, and long-term prognosis. Sources of heterogeneity have long remained a 
challenge to clinicians and scientists and have contributed to a surprisingly poor reproducibility 
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and difficulty in translating research findings to personalized risk assessments that can guide 
clinical decisions.  

Presentations in this session demonstrate how Big Data collaborations such as IBM Watson Health, 
UK Biobank (UKBB), Enhancing Neuro Imaging Genetics through Meta Analyses (ENIGMA), the 
Human Connectome Project (HCP), Alzheimer’s Diseases Neuroimaging Initiative (ADNI), 
Psychiatric Genetics Consortium (PGC), Penn Medicine EHRs and others have enabled novel 
principled approaches to reduce false positive findings and improve sensitivity, specificity and 
reproducibility of true findings. This session is focused on the methodological breakthrough that 
used multi-cohort/national Big Data collaborations to derive imaging and genetics signatures of 
complex illnesses from depression to cancer and translate them to guide personalized clinical 
decisions. The objective of our session is to encourage and disseminate novel analytical concepts, 
approaches, and applications to speed up the development of innovative technologies for hypothesis 
testing and data-driven discovery and translation to personalized medicine. Here we summarize the 
six submissions accepted for the session, with an emphasis on the diversity and coverage of the 
novel approaches. The accepted submissions were selected to cover novel analytic developments 
and applications with a focus on deriving novel risk measures for neuropsychiatric illnesses. The 
computational methods range from linear algebra to Artificial Intelligence and Machine Learning 
with imaging and omics data. The first two contributions focus on methodological developments 
intended to answer such fundamental questions as causality of identified genetic variants, preserving 
individual privacy in the Big Data genetic studies, and testing novel approaches for deriving 
genomic-trait association. The second two contributions report novel findings, including linking 
hypotheses generation and analyses across multiple Big Data samples. The final two contributions 
report on novel approaches for translating Big Data findings to the level of the individual in mental 
health and oncology. 

2. Overview of Contributions

Childhood-to-adolescence is a critical period for brain development that corresponds to maturation 
of cerebral grey matter, that peaks at puberty, and maturation of cerebral white matter that peaks in 
late adolescence [1]. This supports the development and maturation of structural and functional 
networks that support higher cognitive skills [2-5].   It is also the period associated with 
development of lifelong, severe neuropsychiatric illnesses including autism spectrum disorder, 
schizophrenia, bipolar disorder, major depressive disorder and others [1, 6-11]. These illnesses are 
characterized by deviations from the normal brain maturation trajectory caused by action of risk 
factors that include genetic predisposition, pre/perinatal complications, childhood adversity and 
others. Early-life malnutrition has among the largest effect sizes and also is a key target for 
intervention and prevention. The manuscript by Gurkas and Karakurt describes a study where 
lifelong impact of early life malnutrition was quantified via EHRs data collected in adulthood. The 
greatest effects of childhood malnutrition in adults included problems with pregnancy/fetal 
abnormalities (20%), development of psychological/psychiatric illness (up to 16%), development 
of speech disorder (11%), followed by higher rates of various infection. Thus, childhood 
malnutrition can have lasting impact on both those who experienced it and their offspring.  
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The paper by Jacokes and colleagues considers advanced neuroimaging measures and blood-
derived measures of gene expression to improve our understanding of autism spectrum disorder 
(ASD). Specifically, this paper uses logistic regression based on imaging and gene expression 
measures to predict ASD diagnosis, in a classification task, by using two different PCA-based 
approaches for feature reduction. The authors' integration of multiple methods is important for the 
field to advance. The lack of significant gene expression predictors suggests that brain 
microstructure anomalies may more tightly associated with ASD; even so, there may be a partial 
dissociation between blood-based and brain-based gene expression. 
 
The paper by Noshin et al. explores the use of Electronic Health Records (EHR) to identify 
important diagnostic features for three types of Neuro-Degenerative Disorders (NDD), including 
Alzheimer's Disease (AD), Parkinson's Disease (PD), and other dementias (OD). By analyzing the 
EHR data from a cohort of 70,420 Alzheimer’s Disease and Related Dementisa (ADRD) patients 
treated at Penn Medicine, the research aims to uncover key risk factors for these 
neurodegenerative disorders. The study employed both univariate and multivariate machine 
learning (ML) approaches and compared their performance in identifying risk features. A key 
finding is that the univariate approach was effective in uncovering rare but clinically important 
features specific to each disorder, while the features common across all methods represent the 
most robust indicators. The study also highlights the advantages and limitations of each ML 
method in the context of EHR data. This work is significant for researchers interested in using 
real-world clinical data to study neurodegenerative diseases, offering insights into the strengths 
and weaknesses of various ML approaches for ADRD and NDD research. 
 
The effects of neuro-psychiatric illnesses on the brain are not regionally uniform. 
Neuropsychiatric disorders exert large pathological effects on some areas and circuits of the brain, 
while sparing others. Presently, Big Data meta-analytic studies of mental and neurological 
illnesses tabulate regional effect sizes using structural and/or functional brain atlases that are based 
on the anatomical boundaries, landmarks and connectivity patterns in healthy brains. Researchers 
have translated these findings to individual level predictors using approaches such as the Regional 
Vulnerability Index (RVI). RVI and other similar approaches quantify the agreement between 
individual brain patterns and the expected illness patterns identified by Big Data case control 
studies. Standard anatomical or connectomics-based atlases that were derived from healthy 
subjects are typically used to tabulate these effect sizes. However, these atlases are unlikely to 
capture the regional deficit pattern expressed in specific disorders, whereby the regions affected by 
illness may be averaged with regions that are spared, reducing the specificity and sensitivity of 
individual-level predictions. The study by Huang, Labate and colleagues posited that disorder-
specific atlases derived using the Kullback-Leibler (KL) distance may offer a solution. KL-
distance is a statistical measure of the dissimilarity between two arbitrary distributions. This offers 
a more stable approach to identifying areas of contrast between cases and controls than for 
example effect size-based measurements, because it is more stable in the presence of the non-
Gaussian effects such as kurtosis, skewness and outliers.  This study applied this approach to pilot 
a novel cortical template for Regional Homogeneity (ReHo) measurements in the subjects with the 
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Major Depressive Disorder (MDD). ReHo is measurement of homogeneity in the time course of 
blood oxygenation level dependence signal in functional MRI that was hypothesized to capture 
regional hypoperfusion deficits in this disorder. The MDD specific template the cerebral cortex 
was created by subdividing cortical landscape into contiguous region with 10 level. Each level 
constituted the compromise between the effects of MDD and size of the parcel to maximize 
contrast to noise ratio. They showed that the RVI metric--calculated using an MDD-specific 
parcellation--showed numerically higher effect sizes for separating patients and controls vs. those 
calculated using the standard Desikan-Killiany Atlas.  

The contribution by He and colleagues addressed an important topic in the study of Alzheimer’s 
disease (AD), which is to quantify Alzheimer’s progression through multi-modal imaging-based 
pseudotime approaches. AD is a neurodegenerative disorder with no cures, and early detection is 
critical for successful intervention. This study explored pseudotime methods, which convert cross-
sectional brain imaging data into ‘faux’ longitudinal data, to model the progression of AD and better 
understand how this complex process unfolds over time. Using data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort, the study evaluated pseudotime scores derived from 
individual imaging modalities and multi-modal data. The study found that most pseudotime analysis 
tools did not perform well on brain imaging data, with issues like reversed progression scores or 
poor distinction between diagnosis groups, likely due to assumptions designed for single-cell data. 
However, one tool showed promising results, where pseudotime from both single imaging 
modalities and multi-modal data captured the progression of diagnosis groups. Multi-modal 
pseudotime confirmed the hypothetical order of imaging phenotypes, and was primarily driven by 
amyloid and tau imaging, indicating their continuous changes across the full spectrum of 
Alzheimer's disease progression. 

The manuscript by Ozdemir et al. tackles the long-standing question of predicting the future 
development of Alzheimer’s disease (AD) in people who have mild cognitive impairment (MCI) – 
a condition that increases risk for AD, where people tend to develop AD at a rate of around 15% per 
year. The authors introduce a novel dynamic deep learning model for early prediction of AD 
(DyEPAD)	to predict pro-gression from MCI to AD using EHR data. In the first step of DyEPAD, 
embeddings for each timestep or visit are captured through Graph Convolutional Networks (GCN) 
and aggregation functions. In the final step, DyEPAD employs tensor algebraic operations for 
frequency domain analysis of these embeddings, capturing the full scope of evolutionary patterns 
across all time steps. Their experiments on the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets show that their proposed 
model outperforms or is on a par with other state-of-the-art methods. 
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Malnutrition poses risks regarding cognitive, behavioral, and physical well-being. The aim of this 
study was to investigate the prevalent health issues associated with malnutrition by utilizing 
electronic health records (EHR) data. The IBM Watson Health, Explorys platform was used to access 
the EHR data. Two cohorts were created by two queries; patients with a history of malnutrition 
(n=5180) and patients without a history of malnutrition diagnosis (n= 413890). The log odds ratio 
and χ2 statistic were used to identify the statistically significant differences between these two 
cohorts. We found that there were 35 terms that were more common among the cohort with the 
malnutrition diagnosis. These terms were categorized under developmental anomalies, infectious 
agents, respiratory system issues, digestive system issues, pregnancy/prenatal problems, mental, 
behavioral, or neurodevelopmental disorders, diseases of the ear or mastoid process, diseases of the 
visual system, and chromosomal anomalies. The management of malnutrition in children is a 
complex problem that can be addressed with a multifactorial approach. Based on the key themes 
emerging from among the commonly prevalent terms identified in our study, infection prevention, 
education in appropriate nutritional solutions for digestive health issues, supportive services to 
address neurodevelopmental needs, and quality prenatal healthcare would constitute beneficial 
prevention efforts. Improving our understanding of malnutrition is necessary to develop new 
interventions for prevention and treatment. 

Keywords: Malnutrition, mental health, developmental anomalies, Electronic Health 
Records 

1. Background

1.1. Malnutrition as a Public Health Issue 

Malnutrition is a global health concern with long-lasting negative health implications regarding 
children’s mental and physical well-being. The World Health Organization [1, 2] defines 
malnutrition as “deficiencies, excesses, or imbalances in a person’s intake of energy and/or 
nutrients 

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company 
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“with pediatric undernutrition accounting for about 45% of all child deaths globally. Severe 
malnutrition increases the risk of serious illness and death as well as acute infectious diseases for 
children with malnutrition [3]. Malnutrition is a critical public health problem in many parts of the 
world. Every form of malnutrition poses a significant threat to health and well-being and 
consequently improving nutrition is an important global health priority [1, 2]. 

Protein-energy malnutrition (PEM) is a global problem present in both developing and industrialized 
countries. In developing countries, malnutrition is often associated with several risk factors, 
including social and environmental factors such as poverty, poor education, limited access to health 
care, and a polluted environment. Living in areas with high rates of infectious diseases such as 
respiratory infections, diarrheal diseases, human immunodeficiency virus (HIV), tuberculosis, and 
nutritional factors such as acute and chronic food shortages and suboptimal feeding practices are 
also associated with malnutrition [3, 4]. In industrialized countries, malnutrition frequently observed 
in the form of micronutrient deficiencies in childhood can have long-term effects on health and 
productivity in adulthood. Not only detection and prevention of severe malnutrition but also 
subclinical deficiencies can be important to reverse the adverse effects of these deficiencies 
(especially iron and B vitamins) on the social, cognitive, and physical well-being of children [5]. 

Although malnutrition is a major global health problem that threatens human well-being, until 
recently there was no consensus on diagnostic criteria [6]. Many researchers used international 
growth standards to diagnose and treat severe malnutrition. The 2021 edition of the Joint Child 
Malnutrition Estimates (JCME) published by the UNICEF/ World Health Organization / World 
Bank Group provided country-level assessments regarding types of malnutrition including stunting 
and wasting among children under the age of five [7]. Children who are affected by stunting are too 
short for their age. Stunting is associated with irreversible physical and cognitive deficits. It is 
expected that the coronavirus disease 2019 (COVID-19) pandemic will also impact rates of 
malnutrition negatively. Based on the JCME, the global number of children affected by 
undernutrition is expected to have increased by up to 15% due to the negative impact of COVID-19 
on household income, access to nutritious food, and essential nutrition services [7]. 

Children need good nutrition to grow, learn, play, and participate. A review study conducted in 1995 
found that children with a history of early childhood malnutrition were likely to have lower cognitive 
functioning, school performance, and more behavioral problems as compared to matched controls 
and their siblings [8]. A recent systematic review found that children with a history of early 
childhood malnutrition were likely to have impaired cognition and higher levels of behavioral 
problems during childhood and adolescence [9]. However, the causal pathways linking malnutrition 
to neurodevelopment, cognition, behavior, and mental health are not clearly identified by the 
previous research due to shared environmental complexity with a multitude of risk factors including 
poverty, socioeconomic adversity, risk of infectious disease, lack of parental engagement, and 
school truancy [9]. The same systematic review concluded that studies examining the effects of 
malnutrition on children’s mental health are inconclusive. It was indicated that only a few studies 
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have examined specific areas of mental health, such as depression, and that more research is needed 
to investigate the long-term care needs of children with a malnutrition history and to investigate the 
prevalent health concerns co-occurring with malnutrition to improve patient outcomes. 

 
2. Methods 

 
2.1. Motivation 

Utilizing big data in the form of Electronic Health Records (EHR) is a relatively recent approach to 
conducting research regarding mental and physical health with various significant knowledge 
discovery implications. However, big data has been rarely used to study the implications of 
malnutrition on human development particularly in industrialized countries such as the U.S. and 
Canada. Given the lack of current evidence on this increasingly important topic, in this study, we 
aim to identify the health correlates that are highly prevalent among patients with a diagnosis of 
malnutrition using large-scale EHR data. The objective of this study is to investigate EHR data to 
explore the associations between malnutrition and negative health outcomes. We hypothesized that 
malnutrition diagnosis will be adversely linked to mental and physical health outcomes among 
participants in the EHR data from the US and Canada. 

 
2.1.1. Data-Source 

Data for this study was pulled through IBM Watson Health, Explorys EHR platform. Explorys is a 
commercial platform that provides access to EHR data on clinical health information. It provides 
data from various hospital-affiliated providers from 40 acute care facilities, from more than 400,000 
providers and Physicians, from 2.0 billion patient visits, and 4.4 million emergency care visits (IBM 
Explorys, 2020). It utilizes the Systematized Nomenclature of Medicine (SNOMED) via the 
International Classification of Diseases (ICD), one of the designated standards for use in EHRs, to 
systematically structure medical terms. The data is accessed through queries. Quarries produce data 
for the frequencies of selected medical diagnostic terms. It is also possible to select a subset of 
patients from the system. For example, the Explorys platform has been successfully used to 
investigate associations between multiple sclerosis and COVID-19 [10], colorectal cancer [11], and 
substance use and mental health concerns [12]. 

2.2. Sample 

In this study, cohorts were created by two queries in the late fall of 2021, i) all patient records 
containing malnutrition diagnosis and ii) all patient records not containing malnutrition diagnosis. 
In the present study, malnutrition is a clinician-based diagnosis that is coded through ICD10 into 
the patient chart. The IBM Explorys data provides these patient cohorts based on the diagnosis. 
Although there is no consensus on the diagnostic criteria, many clinicians in the US and Canada use 
the Global Leadership Initiative on Malnutrition’s (GLIM) criteria for the diagnosis of malnutrition 
[6]. Specifically, a two-step methodology is frequently used in the diagnosis of malnutrition, the 
initial stage involves screening individuals to identify those who are at risk by utilizing validated 
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screening tools followed by the subsequent stage, where the assessment is conducted to diagnose 
the condition and determine its severity. The diagnosis of malnutrition can often be made through a 
comprehensive assessment of physical observations and a thorough history of the patient's dietary 
and health status by taking into account the notably non-volitional weight loss, low body mass index, 
and diminished muscle mass (i.e., phenotypic criteria), in addition to reduced food intake and 
occurrences of inflammation or disease burden (i.e, etiologic criteria).To diagnose malnutrition at 
least one phenotypic criterion and one etiologic criterion should be present. Healthcare practitioners 
additionally may conduct a body mass index (BMI) or a child's arm circumference assessment. The 
following terms were used in diagnostic decision-making by the clinicians: Deficiency of 
macronutrients, Disease Malnutrition (calorie), Nutritional deficiency disorder, Nutritional disorder, 
and Undernutrition. Clinicians also included their observations such as body measurements, 
pediatric percentile measurement, body mass index, chemistry hematology, cell 
fractions/differential myeloid cells, and pediatric weight percentile. If feasible, a blood sample is 
procured for the purpose of examining the potential problems in specific micronutrients. In the 
present study, the malnutrition cohort had 5180 patient records and the cohort with no malnutrition 
had 413890 patient records. The majority of the patient records in the malnutrition cohort were 
children; 40% were younger than 4 years of age, 35% were between 5 to 9 years of age, 25% were 
between 10 to 14 years of age, and 5% were older than 18 years of age. Fifty-six percent of the 
malnutrition cohort were males. 

2.3. Analysis 

We conducted the analysis at the level of frequencies. Our analytical strategy is addressing this 
difference based on unequal group sizes. Specifically, we use odds ratio statistics to investigate the 
proportional prevalence rate of the health concerns. This statistical framework has been used in 
other research publications including traumatic brain injury [TBI, 13] intimate partner violence [14], 
and mental health predictions [15]. The odds ratio takes into account the expected observation in 
larger cohorts as compared to observation in smaller cohort sizes. 

 
Two statistical analyses, namely the log odds ratio and the χ2 statistic, were utilized in this study. 
Specifically, the log odds ratio was utilized to compute the logarithm of the ratio between the 
frequencies of Malnutrition and No Malnutrition. The χ2 statistic was utilized to determine if there 
is a significant association between observed and expected frequencies of diagnostic terms in the 
two cohorts. We ranked the terms based on both the log odds ratio and χ2 statistic. Two rankings 
based on frequencies were produced, and the highest rank allocated to every term was established. 
Subsequently, diagnostic terms were ranked based on the premise that a term could only attain a 
high ranking if it satisfied the criteria in both the log odds ratio and χ2 statistic rankings. 
Furthermore, one-tailed z-tests (p<0.05) were conducted as a conservative approach to reduce the 
likelihood of Type 1 errors to evaluate the extent of the evidence against the null hypothesis. Using 
the extent of the standard deviations and the sample mean's distance from the population mean, we 
concentrated the inferences concerning the diagnostic terms grounded in sample data with higher 
confidence. 
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To conduct a one-tailed z-test for an odds ratio, we first calculated the log odds ratio (logOR), the 
standard error of the logOR, and then we compared the calculated z-score to a critical value-based 
p<.05 significance level and the direction of our hypothesis (one-tailed test) to determine if the 
observed odds ratio is statistically significant. To make this calculation we used a commercially 
available statistical package (IBM SPSS Statistics).  
 
Null Hypothesis (H0): The odds ratio is equal to 1 (no association between malnutrition and non-
malnutrition cohorts).   
Alternative Hypothesis (Ha): The odds ratio is greater than 1 (testing for a positive association between 
malnutrition diagnosis and health concerns). 
  
In order to calculate the z-score, SPSS uses Log OR to SE ratio: z = (logOR) / (SE). 

2.4. Tables 

For more information about the sample characteristics see Table 1.  

Table 1. Characteristics of Study Population 

Variables 
Malnutrition 

n (%) 

Non- Malnutrition 

n (%) 
Race 

Caucasian 1865 (36%) 289723 (70%) 

African American 829 (16%) 74500 (18%) 

Asian 104 (2%) 4139 (1%) 

Hispanic/Latino 52 (1%) 4139 (1%) 

Native American/Alaskan Native 0 (0%) 0 (0%) 

Multi-racial (race) 207 (4%) 12417 (3%) 

Other (race) 207 (4%) 8278 (2%) 

Gender   

Female 2279 (44%) 215223 (52%) 

Male 2901 (56%) 198667 (48%) 

Vitals 
  

Severely underweight body mass index <16.49 2849 (55%) 53806 (13%) 

Underweight body mass index 16.5< x <18.49 1968 (38%) 95195 (23%) 

Prehypertension sys. 120-139 dias. 80-89 1295 (25%) 322834 (78%) 
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3. Results 

The age of a patient was utilized to categorize them into one of the 3 age groups; juniors (i.e., 
younger than 18), adults (i.e., between 18 and 65), and seniors (i.e., older than 65). Ninety-five 
percent of the records were those from juniors majority of whom were younger than 4 years of age. 
The majority of the records with no malnutrition diagnosis were from patients who were adults older 
than 50 years of age. Investigation of the most frequently observed diagnostic terms among those 
diagnosed with malnutrition indicated that; attention deficit hyperactivity disorder, deficiency of 
macronutrients, developmental disorder, a developmental disorder of motor function, disorder by 
body site, disorder of body system, disorders of attention and motor control, malnutrition (calorie), 
the mental disorder usually first evident in infancy, childhood AND/OR adolescence were among 
the most frequently observed terms for those in that cohort under the age of 4. 

Our comparison of the malnutrition cohort to no malnutrition background cohort indicated that 35 
terms were significantly more prevalent among the malnutrition cohort (See Table 2). Identified 
terms were classified into broader categories based on ICD 11 classification system, and SNOMED. 
We present the distribution of the 35 terms into these categories in Table 2. These broader parent 
codes include developmental anomalies, infectious agents, respiratory system, digestive system, 
pregnancy/prenatal problems, mental, behavioral, or neurodevelopmental disorders, diseases of the 
ear or mastoid process, diseases of the visual system, and chromosomal anomalies (See Figure 1). 

 
Table 2. Comparison of the malnutrition cohort to no malnutrition background 

 

Diagnostic 
Terms 

Malnutrition 
Frequency n=5180 

n (%) 

Non- 
Malnutrition 
Frequency 
n= 413890 

n (%) 

Log 
Odds 
Ratio 

p Z score 

Infective laryngitis 370 (7%) 380 (0.09%) 3.50 <0.001 47 

Coxsackie virus infection of oral cavity 250 (5%) 260 (0.06%) 3.32 <0.001 37 

Enlargement of tonsil or adenoid 200 (4%) 210 (0.05%) 3.22 <0.001 32 

Tonsil and/or adenoid hypertrophy 200 (4%) 210 (0.05%) 3.22 <0.001 32 

Infection of larynx 370 (7%) 390 (0.09%) 3.20 <0.001 43 

Arterial malformation 250 (5%) 270 (0.07%) 3.02 <0.001 34 

Developmental speech disorder 580 (11%) 630 (0.15%) 3.01 <0.001 51 

Congenital anomaly of pulmonary artery 110 (2%) 120 (0.03%) 2.95 <0.001 22 

Congenital anomaly of tricuspid valve 110 (2%) 120 (0.03%) 2.95 <0.001 22 

Deletion of part of autosome 80 (2%) 90 (0.02) 2.81 <0.001 18 

Tracheitis 80 (2%) 90 (0.02%) 2.81 <0.001 18 
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Condition in fetus originating in the 
perinatal period 

460 (9%) 530 (0.13%) 2.76 <0.001 42 

Disorder of psychological development 840 (16%) 980 (0.24%) 2.75 <0.001 56 

Cow's milk protein sensitivity 70 (1%) 80 (0.02%) 2.75 <0.001 16 

Fetal disorder 310 (6%) 360 (0.09%) 2.72 <0.001 34 

Disorder of fetus or newborn 1020 (20%) 1220 (0.29%) 2.70 <0.001 60 

Acute suppurative otitis media without 
spontaneous rupture of ear drum 

450 (9%) 530 (0.13%) 2.69 <0.001 41 

Abnormal ventriculoarterial connection 120 (2%) 140 (0.03%) 2.69 <0.001 22 

Congenital biliary atresia 60 (1%) 70 (0.02%) 2.68 <0.001 15 

Disease caused by Adenovirus 60 (1%) 70 (0.02%) 2.68 <0.001 15 

Disease caused by Poxviridae 60 (1%) 70 (0.02%) 2.68 <0.001 15 

Disease caused by unassigned Poxviridae 60 (1%) 70 (0.02%) 2.68 <0.001 15 

Molluscum contagiosum infection 60 (1%) 70 (0.02%) 2.68 <0.001 15 

Coxsackie virus disease 280 (5%) 330 (0.08%) 2.67 <0.001 32 

Alternating esotropia 50 (1%) 60 (0.01%) 2.60 <0.001 13 

Hypoplasia of the optic nerve 50 (1%) 60 (0.01%) 2.60 <0.001 13 

Inflammation of bronchiole (Human 
metapneumovirus) 

50 (1%) 60 (0.01%) 2.60 <0.001 13 

Neuromuscular scoliosis 50 (1%) 60 (0.01%) 2.60 <0.001 13 

Anomaly of jaw size 90 (2%) 110 (0.03%) 2.56 <0.001 13 

Disease caused by Enterovirus 90 (2%) 110 (0.03%) 2.56 <0.001 13 

Overriding aorta 90 (2%) 110 (0.03%) 2.56 <0.001 18 

Right ventricular hypertrophy 90 (2%) 110 (0.03%) 2.56 <0.001 18 

Tetralogy of Fallot 90 (2%) 110 (0.03%) 2.56 <0.001 18 

Congenital anomaly of muscle AND/OR 
tendon 

130 (3%) 160 (0.04%) 2.54 <0.001 18 

Congenital anomaly of skeletal muscle 130 (3%) 160 (0.04%) 2.54 <0.001 18 
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4. Discussion 

 
The aim of the study was to examine prevalent health issues related to malnutrition diagnosis and 
associated neuropsychiatric health issues utilizing EHR data available for the U.S. and Canada. 
The EHR platform utilizes the Systematized Nomenclature of Medicine (SNOMED) via the 
International Classification of Diseases (ICD), one of the designated standards for use in EHRs, to 
systematically structure medical terms [16]. The study underscores the importance of bridging the 
gap between imaging for malnutrition and the early detection of malnutrition signs, particularly in 
children. By supporting clinical insights that focus on predicting risks and outcomes, this approach 
aims to prevent secondary neuropsychiatric illnesses that can arise from nutrition-related problems. 
This paper explores the challenges and solutions involved in translating findings from electronic 
health records (EHRs) into actionable insights for personalized medicine, ultimately facilitating 
informed clinical decisions at the individual level. 
 
Building on the consensus criteria established by the European Society of Clinical Nutrition and 
Metabolism (ESPEN)—which include weight loss, reduced BMI, and reduced fat-free mass index 
(FFMI)—this research emphasizes the limitations and regional variations in the prevalence of 
malnutrition [6]. In North America, where rates of moderate and severe stunting and wasting are 
classified as low and very low, respectively, the study suggests that these disparities in malnutrition 
outcomes may be even more pronounced in regions characterized by higher food insecurity and 
political instability [17]. This highlights the need for context-specific analyses and the integration 
of diagnostic imaging and biomarker criteria in addressing malnutrition across diverse populations. 

 

Figure 1. Distribution of Significant Terms into Broader Categories 
This figure provides information regarding the 35 terms that were significantly more prevalent in the 
malnutrition cohort classified into broader categories based on ICD 10 classification system, and SNOMED. 
These broader categories were developmental anomalies, infectious agents, respiratory system, digestive 
system, pregnancy/prenatal problems, mental, behavioral, or neurodevelopmental disorders, diseases of the 
ear or mastoid process, diseases of the visual system, and chromosomal anomalies. 

Our results showed that 35 health correlates were significantly more common among the 
undernourished cohort. Key themes emerging from among the commonly prevalent terms included 
developmental anomalies, infectious agents, respiratory system problems, digestive system 
problems, pregnancy/prenatal problems, mental, behavioral, or neurodevelopmental disorders, 
diseases of the ear or mastoid process, diseases of the visual system, and chromosomal anomalies.  
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Prevalence of these diagnostic themes could be due to various reasons, including (i) terms such as 
mental, behavioral, or neurodevelopmental disorders are a direct consequence of current 
malnutrition (ii) terms such as chromosomal abnormalities and pregnancy/prenatal problems are risk 
factors that increase the vulnerability to malnutrition (iii) terms such as frequent infections, 
respiratory system issues, gastrointestinal system issues might be more prevalent in the 
demographics such as regions with climate inequality, among malnourished children (iv) terms such 
as ear or mastoid disorders and visual system disorders are associated with the occurrence of 
malnutrition and linked to a potentially long-term consequence. 

 
Examination of the most frequently observed diagnostic terms in a cohort aged 0-4 years diagnosed 
with malnutrition revealed that this cohort was also frequently diagnosed with attention deficit 
hyperactivity disorder and macronutrient deficiencies. Past research children with ADHD were also 
found to have lower levels of protein intake and lower levels of vitamins B1, B2, and C and lower 
levels of zinc, iron, and calcium in comparison to typically developing children in the control group 
[17]. Significant terms might also have potentially indirect mental and social developmental effects 
such as musculoskeletal disorders. Neuromuscular scoliosis is one of the terms that was observed 
as significantly more prevalent among malnourished children. Multiple surgeries (traditional 
growing rods) during the treatment process in combination with the condition itself might have a 
negative impact on the mental health of children resulting in lower self-esteem, depression, and 
anxiety [18]. 

 
Previous studies have also emphasized potential ethnic and racial differences in malnutrition and 
their impact on biological reference intervals. For instance, Colantonio et al. (2012) investigated the 
impact of ethnicity on biochemical markers of health and disease in a healthy cohort of 179 multi-
ethnic and racially diverse Canadian children and adolescents [19]. The study found variations in 
levels of ALT, iron, total cholesterol, triglycerides (TG), and SHBG. Additionally, Vitamin D levels 
were higher in Caucasian pediatric participants compared to Black, Asian, and Hispanic 
participants. These biochemical markers play a critical role in diagnosing and understanding the 
manifestations of malnutrition. Therefore, establishing accurate reference intervals is essential for 
detecting the true extent of these health concerns in developing children, which is vital for 
improving health equity [20].  
 
Social, political, and economic factors can be linked to chronic infections play an important role in 
the emergence of malnutrition through systemic and individual interactions [21]. In our data from 
the US and Canadian hospital systems, we observed that boys are slightly more likely to have a 
history of malnutrition [22]. A recent systematic review found that there are sex differences 
regarding undernutrition with boys more likely than girls to be wasted, underweight and stunted 
[22]. The occurrence of secondary malnutrition in developed countries is linked to abnormal nutrient 
loss, increased energy expenditure, or decreased food intake, often associated with chronic diseases 
such as cystic fibrosis, chronic renal failure, childhood malignancies, congenital heart disease, and 
neuromuscular disease.  
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The extent to which early impairments in neurodevelopment due to malnutrition impact future 
cognition and function, and the extent to which other relevant environmental factors such as prenatal 
nutrition, family characteristics, and infectious diseases influence these findings are unclear. 
Therefore, future research comparing the health effects of malnutrition while controlling for these 
interactions can help us better understand the impact of malnutrition [22, 23]. 
 
Imaging Genetics and Neuropsychiatric Illnesses and Future Research.  Nutritional biomarkers 
serve as objective indicators of normal biological or pathogenic processes and are categorized into 
three main types: biomarkers of exposure, biomarkers of status, and biomarkers of function [24]. 
These biomarkers are assessed through a variety of methods, ranging from traditional dietary 
exposure assessments, such as self-reports, to the evaluation of biological fluids, tissues, or urine, 
which reflect the body's total nutrient reserves or the degree of nutrient depletion [24]. Functional 
biomarkers provide insights into physiological and behavioral variations and nutrient imbalances, 
such as enzyme activity or the presence of abnormal metabolic by-products, signaling early signs 
of subclinical deficiencies [24]. As an emerging field, functional biochemical markers underscore 
the significance of studying alterations in DNA, gene expression, and immune function caused by 
malnutrition [24]. Key laboratory biomarkers frequently discussed in the literature for diagnosing 
malnutrition, assessing nutritional risk, and monitoring the efficacy of nutritional interventions 
include albumin, pre-albumin, transferrin, C-reactive protein, α1-acid glycoprotein, hemoglobin, 
cholesterol, and lymphocyte count [20]. These biomarkers are often used in combination, such as 
albumin, pre-albumin, cholesterol, and lymphocyte count, or albumin, hemoglobin, and total 
lymphocyte count, to provide a comprehensive assessment of nutritional status [20].   
 
There is limited research utilizing neuroimaging to document the effects of malnutrition on the 
brain. Among the most commonly utilized neuroimaging methods examining this impact are 
Electroencephalogram (EEG), Functional Near-Infrared Spectroscopy (fNIRS), and Nuclear 
Magnetic Resonance (NMR). Research utilizing the EEG method to study malnutrition reveals 
alpha wave disturbances that are linked to neurodevelopmental delays in children [25]. The fNIRS 
is another neuroimaging technique that can be particularly valuable for assessing brain functionality 
among young children [26, 27, 28]. Studies using this technology found that cerebral blood flow in 
malnourished children is a biological marker of cognitive functional difficulties [29]. Due to the 
challenges regarding the affordability of NMR technology, this method has not been utilized often. 
The majority of the limited number of studies utilizing this methodology are case studies with small 
samples and no controls. Nonetheless, available evidence so far demonstrates the significant 
potential of NMR technology in early diagnosis and prevention of long-lasting impacts of 
malnutrition on cognitive function [30].   
 
In a recent review of neuroimaging studies, Ayaz et al. (2023) documented cerebral atrophy of 
malnourished children, with or without ventricular dilation [31]. The extent of atrophy or ventricular 
dilation were not assessed in any of the studies reviewed. Consequently, the authors emphasized the 
need for a universal scoring system to quantify the extent of brain atrophy and correlate it with the 
severity of malnutrition that would enable healthcare providers to better assess the impact of 
nutritional interventions [31]. 
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Whole brain mapping, an emerging technology for investigating the functional impact of 
neurocircuitry in specific regions and neural networks, holds significant promise for understanding 
the effects of malnutrition on neuropsychiatric concerns [32, 33]. This approach is particularly 
valuable for studying mechanistic pathways such as the blood-brain barrier, glial cell proliferation, 
and brain-body interactions [32, 33]. Additionally, gene ontology analyses offer promising 
mechanistic insights, including pathways related to oxidative stress, myeloid interactions with the 
immune system, and stress-related responses [32, 33, 34]. 
 
Limitations and Future Research. There are limitations due to the nature of this type of data. We 
utilized an established statistical framework to analyze the EHR data to address these limitations. 
Although malnutrition is a significant global health concern posing a threat to well-being, until 
recently there was no consensus on the diagnostic criteria. The lack of such diagnostic criteria 
hinders progress regarding the design and implementation of successful interventions. Children who 
are affected by wasting are too thin for their height either due to recent rapid weight loss or failure 
to gain weight are often diagnosed with malnutrition. Another limitation of the current study is that, 
due to the nature of the available data, it was not feasible to calculate the effects across all BMI 
ranges. The extent to which early impairments in neurodevelopment due to malnutrition impact 
future cognition and function, and the extent to which other relevant environmental factors such as 
prenatal nutrition, family characteristics, and infectious diseases influence these findings are 
unclear. Therefore, future research comparing the health effects of malnutrition while controlling 
for these interactions can help us better understand the impact of malnutrition [22, 35, 36]. 

 
Malnutrition is a global health concern with long-lasting negative health implications regarding 
children’s mental and physical well-being and children living in high-income countries are not 
immune to this impact. Utilizing big data in the form of Electronic Health Records (EHR) is a 
relatively recent approach to conducting research regarding mental and physical health with various 
significant knowledge discovery implications. We found that for the malnourished cohort, the terms 
that were more significantly common were grouped under the following categories: developmental 
anomalies, infectious agents, respiratory system issues, digestive system issues, pregnancy/prenatal 
problems, mental, behavioral, or neurodevelopmental disorders, diseases of the ear or mastoid 
process, diseases of the visual system and chromosomal anomalies. Our findings underscore the 
significance of prevention strategies such as providing support during pregnancy, educating primary 
caregivers and family members on general child nutritional needs, basic health, and hygiene; as well 
as a community-based approach including affordable access to basic health services [7, 19]. 

In conclusion, the management of malnutrition in children is a complex problem that can be 
addressed with a multifactorial approach. Health policies on prevention of malnutrition such as 
educating primary caregivers and family members on general child nutritional needs, basic health, 
and hygiene might be helpful in improving children’s health [21, 22]. A community-based approach 
including access to affordable healthy and nutritious food, basic health, water, hygiene, and 
sanitation services, and opportunities for safe physical activity can be beneficial to address the issue 
of malnutrition among children under 5 years of age [35, 36].  
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Furthermore, our findings underscore the importance of ensuring adequate nutrition before and 
during pregnancy as one of the vital pathways to improving the health and well-being of children
[7]. Infection prevention, education in appropriate nutritional solutions, supportive services and 
quality prenatal healthcare would constitute beneficial prevention efforts. 

4.1. Footnotes 
The IBM Explorys Therapeutic Dataset is used in this manuscript in the form of aggregate 
statistics (number of records) in a specified population. The data is unidentified and aggregated, 
and no individual records were used due to privacy concerns. The study is considered an exempt 
study. 
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Autism Spectrum Disorder (ASD) encompasses a range of developmental disabilities marked by 
differences in social functioning, cognition, and behavior. Both genetic and environmental factors are 
known to contribute to ASD, yet the exact etiological factors remain unclear. Developing integrative models 
to explore the effects of gene expression on behavioral and cognitive traits attributed to ASD can uncover 
environmental and genetic interactions. A notable aspect of ASD research is the sex-wise diagnostic 
disparity: males are diagnosed more frequently than females, which suggests potential sex-specific 
biological influences. Investigating neuronal microstructure, particularly axonal conduction velocity offers 
insights into the neural basis of ASD. Developing robust models that evaluate the vast multidimensional 
datasets generated from genetic and microstructural processing poses significant challenges. Traditional 
feature selection techniques have limitations; thus, this research aims to integrate principal component 
analysis (PCA) with supervised machine learning algorithms to navigate the complex data space. By 
leveraging various neuroimaging techniques and transcriptomics data analysis methods, this methodology 
builds on traditional implementations of PCA to better contextualize the complex genetic and phenotypic 
heterogeneity linked to sex differences in ASD and pave the way for tailored interventions. 
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1. Introduction 
Autism Spectrum Disorder (ASD) encompasses a broad range of developmental conditions 
characterized by persistent deficits in social functioning, cognition, and restricted, repetitive 
behavior1. Individuals with ASD often experience challenges in communication, social 
interactions, and engage in repetitive behaviors or have narrowly focused interests2. The 
prevalence of ASD has been steadily increasing worldwide, affecting between 1 in 36 children and 
1 in 45 children according to recent meta-analyses and research by the Centers for Disease Control 
and Prevention (CDC)3,4. This diagnostic increase has brought significant attention to the urgent 
need for a deeper understanding of the underlying mechanisms of ASD. 

Research indicates that ASD is a heterogeneous condition, meaning that it can present very 
differently from one person to another, complicating efforts to pinpoint its causes5. Although it is 
widely accepted that both genetic and environmental factors contribute to the development of 
ASD, the exact etiological factors and their interactions remain unclear. Genetic studies have 
identified numerous genes associated with ASD, suggesting a strong hereditary component6–8. 
However, environmental factors such as prenatal exposure to certain drugs, complications during 
birth, and advanced parental age have also been identified as potential risk factors for developing 
ASD9,10. 

Moreover, neuroimaging studies have revealed differences in brain structure and function 
in individuals with ASD11–13. These studies have shown abnormalities in areas of the brain 
responsible for social behavior, communication, and sensory processing. Despite these advances, 
there is still much to learn about how these genetic and environmental factors interact to influence 
brain development and lead to the diverse array of symptoms observed in ASD. 

Neuroimaging and genomics exploration is essential for understanding ASD because these 
approaches provide complementary insights into the biological underpinnings of the condition. 
Neuroimaging techniques, such as MRI and fMRI, allow researchers to observe structural and 
functional differences in the brains of individuals with ASD; this imaging data helps to identify 
patterns and variations in brain development and connectivity that may contribute to ASD 
symptoms. Concurrently, genomics offers a window into the genetic factors influencing ASD risk, 
uncovering specific genes and genetic variants associated with the disorder. By integrating 
genomic information with neuroimaging data, research efforts can better explore how genetic 
predispositions affect brain structure and function, and vice versa. This combined approach is 
crucial for elucidating the complex interplay between genetic and neural mechanisms, ultimately 
enhancing our understanding of ASD and guiding the development of more targeted interventions.   
 
1.1.  Sex-wise disparity in ASD 
A significant aspect of ASD research is the observed sex-wise disparity in its prevalence. Males 
are diagnosed with ASD more frequently than females, with a ratio of approximately four-to-one3. 
This disparity suggests potential sex-specific biological factors that may influence the 
development of ASD. Several hypotheses have been proposed to explain this difference, including 
genetic differences in sex chromosomes, hormonal influences, and differences in brain structure 
and function between males and females12,14. Understanding these sex-specific factors is crucial 
for developing tailored diagnostic and therapeutic approaches for ASD. 
 
1.2.  Neuronal microstructure analysis in ASD 
Neuroscientific research has increasingly focused on the neuronal microstructure to uncover the 
subtle differences in brain form and function associated with ASD. Using diffusion MRI, 
microstructural analysis allows for the examination of small-scale variations in the brain's cellular 
architecture and can provide insights into the neural underpinnings of ASD. A recently developed 
microstructural analysis measures axonal conduction velocity, which is derived from parameters 
such as the g-ratio (the ratio of the inner to the outer diameter of the myelin sheath) and axon 
diameter15,16. Conduction velocity approximates the speed at which action potentials travel along 
axons, and deviations from the optimal speed can result in impaired neuronal communication. 
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1.3.  Genetic factors and the pseudo-autosomal region 
Genetic research has identified several candidate genes associated with ASD, many of which are 
in the pseudo-autosomal regions of the sex chromosomes17–19. These regions are of particular 
interest because they escape the usual X-inactivation process in females, resulting in a unique 
expression pattern that may contribute to the sex-wise disparity observed in ASD. Exploring these 
genetic factors, combined with microstructural data, can provide a more comprehensive 
understanding of the biological basis of ASD. 
 
1.4.  The ACE Network and NDA 
The Autism Centers of Excellence (ACE) program is an initiative funded by the National Institute 
of Mental Health (NIMH) aimed at advancing the understanding, diagnosis, and treatments of 
ASD. Established to support large-scale multidisciplinary research projects, the ACE program 
brings together leading experts from various fields like genetics, neuroimaging, and phenotypic 
science to foster collaboration. Its structure allows for the integration of novel methodologies and 
state-of-the-art technologies to ensure that research efforts are at the forefront of scientific 
discovery. Complementary to the ACE program is the NIMH Data Archive (NDA), a 
comprehensive database managed by the NIMH that serves to centralize and disseminate the vast 
array of data collected on mental health research. Together, the ACE program and the NDA create 
a synergistic environment to nurture and advance the field of ASD research. The ACE program 
generates rich multimodal datasets that feed into the NDA. By leveraging the comprehensive data 
available through the NDA, researchers can explore new hypotheses, validate findings, and 
translate discoveries into clinical applications more effectively. 
 
1.5.  Dimensionality in microstructural analysis 
A significant challenge in the analysis of neuronal microstructure data is the so-called “curse of 
dimensionality”. Microstructural processing pipelines typically generate data from over 200 
distinct brain regions for each individual participant, which when performed on a voxel-wise level 
results in millions of datapoints for each individual. In our study, which includes 213 participants, 
this results in a vast multidimensional dataset. Although an N=213 might be considered respectable 
in human neuroimaging research, the sheer number of predictors poses a challenge for attaining 
sufficient statistical power, reproducibility, and interpretation. As an addendum to the concept of 
“big data,” we suggest that researchers consider highly dimensional datasets such as this one as 
“wide data” that is subject to a different set of equally important challenges. 

Traditional approaches to address this issue involve feature selection to reduce the analytic 
search space. However, such techniques have inherent limitations. Firstly, they rely heavily on 
domain expertise, which may not always be available or infallible. Secondly, feature selection 
excludes certain predictors from the analysis before any machine learning algorithms can utilize 
them, thereby potentially limiting the scope of the analysis. While this approach can be beneficial 
when domain expertise is available, it can hinder exploratory analyses of new datasets. 

 
1.6.  Multimodal data fusion in health sciences 
The integration of multimodal neuroimaging and genetic data presents a significant opportunity to 
improve model performance resulting from the synergy of shared and complementary information 
across modalities. For ASD research, the known genetic and neurological bases provide a strong 
foundation for exploring the rich multimodal data space afforded by large-scale data repositories 
like NDA provides for the ACE program. However, emphasizing interpretable methods is of 
paramount importance if research findings are to be translated into clinical application. It is 
through this framework this study has sought to provide insights into the multimodal data space 
generated by combining neuroimaging and genetic features. 
 
1.7.  Novel approach: PCA and machine learning integration 
Our analysis aims to navigate the complex multidimensional space created by combining genetic 
and microstructural data modalities. To achieve this, we employ a novel implementation of 
principal component analysis (PCA) to identify unique characteristics of the dataset in an 
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unsupervised manner. PCA allows us to reduce the dimensionality of the dataset while retaining 
the within-class variation, thereby addressing the curse of dimensionality without relying on 
traditional feature selection methods, as well as retaining generalizability to unseen data. 

Following the unsupervised feature selection through PCA, we integrate the results into a 
traditional classification machine learning framework. This approach enables us to leverage the 
strengths of both unsupervised and supervised learning techniques, providing a more robust 
analysis of the data. By doing so, we aim to uncover novel insights into the relationship between 
genetic factors, neuronal microstructure, and ASD. 

The integration of advanced neuroimaging techniques and genetic data analysis holds great 
promise for unraveling the complex etiology of ASD. By addressing the challenges posed by the 
curse of dimensionality and leveraging advanced analytical methods, we can enhance our 
understanding of how the neuronal microstructure and genetic factors combine to form the autistic 
phenotype. This comprehensive approach not only advances our knowledge of ASD but also paves 
the way for the development of more effective diagnostic and therapeutic strategies tailored to the 
unique needs of individuals with ASD. 
 
2. Methods 
2.1.  Participants 
Participants included 213 (mean age=153.20 [in months], standard dev.=±35.22; age range=96–
215; 99 female [46.48%]) volunteers from Wave 1 of an NIH-sponsored Autism Centers for 
Excellence network. The study sample included 113 autistic individuals (mean age=150.19, 
standard dev.=±34.56; age range=96–215; 51 female [45.13%]) and 100 non-autistic individuals 
(mean age=156.60, standard dev.=±35.81; age range=97–215; 48 female [48.00%]). The 
diagnostic and sex ratios were intended to be balanced. All ACE GENDAAR Wave 1 (9/04/2012-
7/31/2022) neuroimaging, phenotypic, and genetic data were collected, processed, and archived 
on secure local compute servers under the following Internal Review Board (IRB) approvals: USC 
Approval #HS-13-00668; USC Approval #HS-18-00467; UVA Approval #22078; UVA IRB HSR 
#21361; GMU #00000169; and UVA #HSR-22-0423. As per the requirements of the US NIMH, 
de-identified and de-linked copies of all data were regularly submitted to the NDA as part of 
Collection #2021, where they are freely available for access to approved investigators. Data 
obtained by subsequent ACE GENDAAR Waves 2 and 3 (ongoing data collection) were not 
considered in this analysis. Informed consent was obtained from all participants and their legally 
authorized representatives. 
 
2.2.  Genetic data preparation 
2.2.1.  Analysis of copy number variant densities 
Using Bioconductor R, a karyotype map was created to visualize mutation densities20. Statistical 
differences were assessed between groups to determine mutation loci present in exclusively in 
ASD females, and vice versa. Loci were systematically compared to the locations of known genes 
using the UCSC genome browser, along with their exonic sections and prior association with 
ASD21. Copy number variants (CNVs) were identified from a set (N=196) of Manta-annotated 
variant-call format (VCF) files. The New York Genome Institute preprocessed and designed these 
files. Manta is a structural variant (SV) calling tool from Chen et al. that utilizes discordant read-
pair and split-read evidence to identify various CNVs, including insertions, deletions, 
translocations, inversions, and tandem duplications22. Manta-annotated VCF files for each subject 
were compared against a Homo sapiens (assembly GRCh38.p14) reference genome, which 
contains base-pair positions for transcripts, genes, exons, and introns for all 24 chromosomes, 
including sex-linked chromosomes X and Y. 
 
2.2.2.  Analysis of differential expression and functional enrichment analytics 
Whole blood transcriptome sequencing was performed on 370 individuals. Transcript-level 
abundances were quantified using Kallisto23. Tximport was employed to aggregate these 
transcript-level abundances into gene-level counts24. Differential expression analysis was 
conducted using the R package DESeq2, facilitating the identification of statistically significant 
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changes in gene expression across ASD-diagnosed individuals, and were compared across 
neurotypical cohorts with sex and diagnosis were examined for interaction effects25.  
 
2.3.  Conduction velocity data preparation 
2.3.1.  Image acquisition 
Diffusion, T1-weighted, and T2-weighted images were acquired from each participant. Diffusion 
images were acquired with an isotropic voxel size of 2x2x2mm3, 64 non-colinear gradient 
directions at b=1000 s/mm2, and 1 b=0, TR=7300ms, TE=74ms. T1-weighted MPRAGE images 
with a FOV of 176x256x256 and an isotropic voxel size of 1x1x1mm3, TE=3.3; T2-weighted 
images were acquired with a FOV of 128x128x34 with a voxel size of 1.5x1.5x4mm3, TE=35. All 
images were preprocessed to correct for common sources of error and bias in accordance with 
prior published work11,26. T1w/T2w ratio was calculated by performing N4-bias correction, 
rescaling image intensity, then dividing on a voxel-wise basis27,28. Diffusion images were analyzed 
using a single-shell constrained spherical deconvolution (CSD) to obtain 3 tissue CSD (3T-CSD) 
microstructure compartments (intra- and extra-cellular isotropic signal, and intra-cellular 
anisotropic signal) and a fixel-based analysis was used to measure axonal fiber density and cross-
section on a voxel-wise basis11,26,29,30. Despite obtaining multiple microstructure metrics using this 
methodology, only conduction velocity was examined here.  
 
2.3.2.  Conduction velocity determination 
The aggregate g-ratio was calculated on a voxel-wise basis and was used as Mohammadi & 
Callaghan suggest; this is displayed in Equation 116,31–33. As a measure of intra-axonal volume, the 
fiber density cross section was used as the intra-axonal volume fraction (AVF), and as a metric of 
myelin density, the T1w/T2w ratio was used as the myelin volume fraction (MVF)34. Both metrics 
represent the total sums of each respective compartment across the volume of the voxel and are a 
volume-based equivalent to the original formulation of g as the ratio of axon diameter (d) to fiber 
diameter (D).  
 
 
 (1) 
 
 

Aggregate conduction velocity was calculated based on the calculations of Rushton and 
Berman et al.; reiterating Rushton’s calculation that conduction velocity (θ) is proportional to the 
length of each fiber segment (l), and that this is roughly proportional to D, which in turn can be 
defined as the ratio between d and the g-ratio15,35. A value proportional to conduction velocity can 
be calculated using axon diameter and the g-ratio as in equation 235: 
 
 
(2) 
 
 
 All imaging metrics, 3T-CSD compartments, T1w/T2w ratio, aggregate g-ratio, and 
aggregate conduction velocity were averaged across each of 214 ROIs taken from the JHU-ICBM 
WM atlas (48 ROIs) and the Destrieux Cortical Atlas (164 ROIs)27,28. Additionally, two composite 
ROIs were included, one of all 48 JHU ROIs and one of 150 neocortical regions from the Destrieux 
Atlas. 
 
2.4.  Initial analysis 
2.4.1. Data preprocessing 
All conduction velocity and gene expression predictors were included in an initial traditional 
model for a total of 245 predictors. Participants were removed from the sample if missing either 
modality. The data was randomly split into training and testing sets, stratified by diagnostic cohort, 
at a 75-25 ratio. For feature preprocessing, all numeric predictors were normalized; the two 
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modalities do not occur on the same scale, so in this way we ensured equitable contributions from 
each in the analysis. 
 
2.4.2. Principal component analysis 
PCA was performed to reduce the dimensionality of the data. 40 principal components (PCs) were 
determined to be the maximum number of PCs examined: this number is equal to approximately 
25% of the training data points (n=159), and 40 PCs account for approximately 85% of the 
cumulative explained variance.  
 
2.4.3. Logistic regression 
Logistic regression modeling for classification was employed to determine how well the PCs 
separate the two classes. Model complexity was managed by tuning the number of PCs. 10-fold 
cross-validation was employed to further validate the modeling procedure. The workflow 
examined a range between one and 40 PCs to identify the number of PCs that maximized the area 
under the receiver operating characteristic (AUROC) curve, a metric that balances true positive 
rate against false positive rate. The final model configuration was applied to the entire training 
data set with the optimal hyperparameters determined by the tuning process. The final model was 
deployed on the unseen testing dataset, evaluated using both AUROC and accuracy. The results of 
the training and testing sets for this analysis are displayed in Table 1. 
 
2.5.  Experimental analysis 
2.5.1. Data preprocessing 
For the second comparative analysis, the existing training data set was split by participant cohort 
such that all autistic participants comprised one data frame and all non-autistic participants 
comprised another data frame. All conduction velocity and gene expression predictors were 
included in each of these data frames (again a total of 245 predictors). All numeric predictors were 
normalized again for the same reasons outlined above. 
 
2.5.2. Principal component analyses 
Separate PCAs were performed on each of the cohort data frames to reduce the dimensionality of 
the cohort-specific data by exploring the underlying structures. The number of PCs retained were 
determined independently for each group. First, the number of PCs that account for 70% of the 
cumulative variance was identified. Then, the number of PCs with a corresponding eigenvalue 
greater than or equal to one was identified. If these numbers were not equal, the number of retained 
PCs was decided to be the midpoint between them (rounded down). The results of this process are 
displayed in scree plots in Figure 1. Consequently, 17 PCs were retained for the autistic cohort and 
14 PCs were retained for the non-autistic cohort.  
 
2.5.3. Feature selection 
Salient features for each group were extracted from the selected PCs systematically using the 
following procedure. First, the top 25% (75th percentile) of variable loadings (in terms of absolute 
value) were identified per selected component to focus on those that contributed most to the within-
class variance. Then, instances of each of the predictors present in the top 25% were aggregated 
to identify the unique predictors among and across these PCs, defined as those only appearing once 
across all selected PCs. This resulted in seven predictors for the autistic group and 29 for the non-
autistic group. Finally, four common predictors between the two classes were removed; the 
remaining 32 predictors were selected for modeling. A full accounting of these predictors is 
reported in Tables 2 and 3. 
 
2.5.4. Logistic regression 
Logistic regression modeling for classification was again employed to determine the effectiveness 
of this dimensionality reduction technique as compared to the traditional method. Predictors for 
this model included the 36 predictors selected from the procedure above. Model complexity was 
managed by tuning the number of PCs. 10-fold cross-validation was employed to further validate 
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the modeling procedure. The workflow examined a range between one and 36 PCs to identify the 
number of PCs that maximized the AUROC curve. The final model configuration was applied to 
the entire training data set with the optimal hyperparameters determined by the tuning process. 
The final model was deployed on the unseen testing dataset, evaluated using both AUROC and 
accuracy. The results of the training and testing sets for this analysis are displayed in Table 1. All 
machine learning analyses and plot visualizations were created using the R package TidyModels36. 
 
3. Results 
3.1.  Genetic analysis 
3.1.1. Sex-wise analysis of CNV densities in autistic participants 
CNVs were detected in 196 Manta-annotated VCF files from the New York Genome Institute. 
VCF files benchmarked against the reference genome were assessed for sex-wise differences in 
the pseudo-autosomal region using pairwise t-tests; the results were statistically significant (T-
statistic = -7.21; p < 0.001). 
 
3.1.2. Differential expression analysis 
Differential expression analysis in DESeq2 showed that 3,707 genes exhibited significant 
differences when sex and diagnosis are considered as interacting factors. Differentially expressed 
genes showed statistical significance (p < 0.01 after false discovery correction) within or near the 
pseudo-autosomal boundary and the heterochromatic regions of the Y chromosome. Among these, 
the homologously encoded zinc finger transcription factors ZFX and ZFY emerged as highly 
significant genes. After adjustment, ZFX and ZFY showed exceptionally low p-values. 
 
3.2.  Traditional analysis 
The results of the traditional modeling procedure were as follows. The 10-fold cross validation 
procedure for tuning the number of principal components showed that the best training AUROC 
was 0.693 at 12 PCs. The associated training accuracy was 61.267%. For the unseen testing dataset, 
the AUROC was 0.618, and the accuracy was 57.407%. These values are reported in Table 1; ROC 
curves are displayed in Figure 2. 
 
3.3.  Experimental analysis 
3.3.1. Scree plot description 
Scree plots were generated for each of the autistic and non-autistic cohort PCAs. Thresholds were 
determined based on the intersection of cumulative percent variance explained (greater than 70% 
were considered) as well as the principal components with eigenvalues greater than or equal to 
one; the average PC of these two metrics was used as the final threshold. These thresholds are 
shown in Figure 1; the former is indicated in smaller dashed red lines, the latter is indicated by 
longer dashed red lines, and the average of these two is also displayed as a solid red line. These 
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Fig. 1. Scree plots of the autistic and non-autistic cohort PCAs. Short-dashed lines indicate the number of PCs that 
account for 70% of the cumulative variance, long-dashed lines indicate the number of PCs with eigenvalues greater 
than or equal to one; the solid red lines indicate the average of these two values, rounded down. 
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values were as follows: greater than 70% cumulative variance was explained by 15 PCs in the 
autistic group and 11 PCs in the non-autistic group, eigenvalues greater than or equal to one 
included 20 PCs in the autistic group and 18 PCs in the non-autistic group, and the final threshold 
for the autistic group was 17 PCs and 14 PCs for the non-autistic group. 
 
3.3.2. Model evaluation 
Table 1 contains the logistic regression performance results from the two approaches. The training 
AUROC and accuracy values were comparable across both approaches, while the testing AUROC 
of 0.668 was greatly improved in the experimental approach, indicating more robust 
generalizability. Overall, the accuracy metrics were poor for both models, but an accuracy value 
of 59.259% for the experimental approach showed improvement over the traditional approach. 
Visualizations of the AUROC curves are available in Figure 2.  
 
Table 1.  Area under ROC curve and accuracy for the traditional model and experimental model. 

 Training Testing 
 AUROC Accuracy AUROC Accuracy 

Traditional 0.6931 61.2672% 0.6181 57.4074% 
Experimental 0.6935 60.2892% 0.6676 59.2593% 

 
 

 
3.3.3. Feature selection 
Tables 2 and 3 display the features selected by the experimental procedure, ordered by PC number 
and then loading value. After removing the predictors that appeared in PCA procedure for both the 
autistic and non-autistic group, the experimental analysis contained 36 predictors. These features 
were mostly loaded onto the first principal component for each group (25/40; 62.5%). The value 
reported in the final column of these tables represents the loading value of a given predictor on the 
PC where higher absolute values represent a stronger relationship between predictor and PC. 
Directionality is also relevant here: positive values indicate a positive relationship between 
predictor and PC, whereas negative values indicate the opposite. These values only apply within 
the context of a given PC and should not be compared across PCs. The relevant cortical, 
subcortical, and white matter regions can be found highlighted in Figure 3. 
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Fig. 2.  ROC curves for the traditional logistic regression results (left) and experimental results (right). 
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Table 2.  Top predictors from the autistic cohort PCA, sorted by component number, then loading 
value within each component.  
Predictor Region type Hemisphere Component Value 
Frontal superior gyrus Gray matter Right PC1 0.0990 
Lateral fissure (posterior 
part) 

Gray matter Right PC1 0.0890 

Lateral superior temporal 
gyrus 

Gray matter Right PC2 0.1511 

Frontal inferior sulcus Gray matter Right PC9 -0.1263 
Dorsal posterior cingulate 
gyrus 

Gray matter Left PC9 -0.1068 

     
Table 3.  Top predictors from the non-autistic cohort PCA, sorted by component number, then 
loading value with each component.  
Predictor Region Type Hemisphere Component  Value 
Superior corona radiata White matter Right PC1 0.0898 
Body of corpus callosum White matter - PC1 0.0893 
Posterior corona radiata White matter Right PC1 0.0890 
Anterior corona radiata White matter Left PC1 0.0888 
Posterior limb of internal 
capsule 

White matter Left PC1 0.0886 

Posterior thalamic radiation White matter Right PC1 0.0881 
Superior circular sulcus of 
the insula 

Gray matter Left PC1 0.0877 

Posterior corona radiata White matter Left PC1 0.0875 
Mid./posterior cingulate 
gyrus/sulcus 

Gray matter Right PC1 0.0864 

External capsule White matter Right PC1 0.0859 
Genu of corpus callosum White matter - PC1 0.0850 
Posterior thalamic radiation White matter Left PC1 0.0847 
Caudate Subcortical Left PC1 0.0845 
Sub-parietal sulcus Gray matter Left PC1 0.0833 
Precuneus gyrus Gray matter Left PC1 0.0814 
Superior temporal sulcus Gray matter Left PC2 -0.0744 
Superior temporal gyrus 
(transverse) 

Gray matter Left PC5 -0.0755 

Anterior circular sulcus of 
the insula 

Gray matter Right PC5 0.0676 

Inferior frontal sulcus Gray matter Left PC7 0.1026 
H-shaped orbital sulcus Gray matter Left PC7 0.0806 
Superior occipital gyrus Gray matter Right PC8 0.0814 
Hippocampus Subcortical Left PC9 -0.1093 
Superior temporal gyrus 
(transverse) 

Gray matter Right PC10 0.1104 

Tapetum White matter Left PC11 -0.1104 
Inferior parietal gyrus 
(supramarginal) 

Gray matter Left PC12 -0.1337 

Paracentral lobule gyrus and 
sulcus 

Gray matter Right PC13 0.1560 

Transverse temporal sulcus Gray matter Left PC14 -0.1019 
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4. Discussion 
The results of the experimental dimensionality reduction procedure are promising. In the context 
of classification for autistic vs. non-autistic individuals using neuroimaging and genetic features, 
the AUROC performance in this study is acceptable, especially using traditional machine learning 
frameworks (and not deep learning, which brings its own set of challenges)37–40. PCA is effective 
in this context because it better addresses the issue of overfitting, as evidenced by the improved 
testing AUROC metric. By capturing within-class variability, the modeling effort performs better 
on unseen testing data and generalizes more readily to other datasets. Despite failing to achieve 
performance that could provide actionable clinical insights and true inference of the underlying 
mechanisms, the feature selection methodology succeeded for multiple reasons.  

First, the marked improvement in testing AUROC performance (over the traditional 
approach) demonstrates that the extracted features capture many of the relevant aspects that 
differentiate the classes. AUROC is better suited to many classification tasks, including this one, 
since it provides a balance between true positive rate and false positive rate, whereas accuracy is 
a simpler metric that measures the ratio of correct predictions to total predictions. AUROC is also 
the preferred metric for datasets with imbalanced classes; while the classes in this study are not 
exceptionally imbalanced, AUROC is equipped to handle even slight imbalances and, as such, is 
the preferred metric here. AUROC improvements in the experimental analysis demonstrate this 
methodology’s internal validity and robustness to variations in unseen testing data.  

Additionally, many of the extracted features represent notable regions of cortical, 
subcortical, and white matter connectivity in ASD research. ASD is characterized by abnormalities 
in brain structure, function, and connectivity, and many of the established areas of study are present 
in the extracted features12,41,42. The ability of the proposed procedure to pinpoint differences in 
relevant brain regions validates the methodology and necessitates further exploration both within 
and without the context of ASD research. 

This analysis does not provide much evidence for the role of the pseudo-autosomal region 
on autism development, as none of the examined genetic predictors outperformed the 
microstructural predictors in terms of principal component loading. The low N of the sample is 

A. B. C. 

Fig. 3.  (A) Cortical regions extracted from the PCA procedure. Top left: medial view of the left 
hemisphere; top right: lateral view of the left hemisphere; bottom left: lateral view of the right hemisphere; 
bottom right: medial view of right hemisphere. (B) Subcortical regions extracted from the PCA procedure. 
(C) White matter tracts extracted from the PCA procedure. Purple regions were found to be characteristic 
of the autistic group; green regions were found to be characteristic of the non-autistic group; red regions 
represent the overlapping regions between both the autistic and non-autistic group. 
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likely a contributing factor to this phenomenon, though it is also possible that the pseudo-
autosomal region is not nearly as contributory to the etiology of ASD as microstructural metrics. 
Indeed, when the two modalities were examined separately, the genetic data performed poorly as 
predictors for classification within the same framework. 
 
4.1.  Feature selection 
4.1.1. Cortical features 
Of the many cortical gray matter regions extracted by this methodology, two have been implicated 
in ASD research previously: the superior occipital gyrus and the frontal superior gyrus43,44. The 
frontal superior gyrus in particular is known to play a role in executive functioning, a domain 
previously identified as having deficits for autistic individuals relative to non-autistic 
individuals45,46. Other extracted cortical regions not directly implicated in ASD research do pertain 
to neurological processes relevant to areas previously identified as lacking in ASD individuals, 
including social cognition (anterior circular sulcus of the insula, inferior parietal gyrus), language 
processing (inferior frontal sulcus, superior temporal sulcus) and executive function (inferior 
frontal sulcus)47–50. It should be noted that certain cortical regions previously identified as 
differentially active in autistic and non-autistic individuals were not highlighted by this method, 
including the dorsal medial frontal cortex, anterior cingulate cortex, and orbitofrontal cortex51–53. 
 
4.1.2. Subcortical features 
Subcortical features extracted using this method included the hippocampus and caudate nucleus. 
The hippocampus is known to be heavily involved in memory-related functions, and specific to 
ASD, both encoding and retrieval processes of episodic memory have been implicated as altered 
in ASD54. The caudate nucleus has been shown to have decreased connectivity in autistic 
individuals and is implicated in restricted and repetitive behavior development and increased 
autistic symptom severity as well55–57. 
 
4.1.3. White matter features 
Many of the white matter features extracted in this study are also characteristic of the differences 
observed between autistic and non-autistic individuals. Corpus callosum tracts are most relevant 
here (body and genu of corpus callosum, superior/anterior/posterior corona radiata), but the 
tapetum has also been found to be under-connected in ASD relative to non-autistic individuals58,59. 
 
4.2.  Alternative approaches 
4.2.1. PCA procedure on different data frames 
This experimental technique was deployed on this dataset in other ways to assess its effectiveness 
in different contexts. PCA was performed on each modality without first separating classes to 
attempt to capture modality-specific variability. Many of the extracted microstructure predictors 
remained the same as the focus of this study; however, this method also incorporated several 
genetic predictors as well. The resulting logistic regression yielded poor classification 
performance, likely due to an inability to extract the most salient features for each class. 
 Further, separate PCAs were performed on the four groups defined by the two different 
modalities and the two classes (autistic genetic, autistic microstructure, non-autistic genetic, non-
autistic microstructure). Again, the microstructure metrics were comparable to those extracted in 
the main analysis of the study, and again this method allowed for more genetic predictors to 
contribute to the machine learning framework. This methodology performed even worse than 
before, however. The results of both attempts further cements the conclusion that the pseudo-
autosomal region does not contribute to differences between autistic and non-autistic participants 
in this study and it is possible the genetic basis of ASD may lie elsewhere on the genome.  
 
4.2.2. Other machine learning models 
Two other types of machine learning models were employed for the classification part of this 
analysis: random forest (RF) and quadratic discriminant analysis (QDA). These models are 
appropriate for data that is not expected to display a linear decision boundary and as such are more 
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flexible. Logistic regression does expect the data to be linearly separable, and while that may 
appear to be a significant limitation of the modeling efforts of this study, RF and QDA performed 
far worse than logistic regression in both the traditional and experimental dimensionality reduction 
frameworks. One explanation for this could be that the data is not complete enough to allow for 
flexible models to generalize well. Microstructure and genetics are only two pieces of a larger 
puzzle that can include many other modalities like functional imaging, EEG, and behavioral data. 
Relatedly, while the extracted features comprise the major group differences in this dataset, they 
only capture part of the global within-group variability and therefore further limit the 
generalizability of the results; a phenomenon exacerbated by flexible machine learning methods.  
 
4.3.  Future directions 
In the pursuit of assessing putative neurogenetic markers of ASD through the integration of 
neuroimaging, genomic, and phenotypic data, built upon the approach described here, several 
critical future directions emerge. One primary consideration is the utilization of data imputation to 
increase the sample size. While genetic data imputation may not be valid due to the potential 
introduction of biases and inaccuracies, it can be more appropriately applied to other metrics such 
as conduction velocity, pending further exploration and validation of the technique in this context. 

In terms of machine learning applications, while classification remains a viable approach, 
regression-based predictive modeling presents an avenue with the potential for more nuanced and 
informative results. Incorporating behavioral phenotyping outcome surveys, including measures 
of language, executive function, and social interaction, could provide rich data for these models, 
enhancing their predictive power and relevance. 

An interesting observation from the experimental model is the failure of the gene 
expression features to contribute significantly following the selection procedure. When modalities 
were analyzed independently absent the experimental procedure, the resulting classification 
performance was suboptimal compared to traditional methods. This issue was further compounded 
when PCA was applied separately to four classes based on diagnostic groups and modalities (e.g., 
gene expression-autistic, gene expression-non-autistic, etc.). This suggests that the variance 
captured through the main PCA feature selection approach is sufficient for robust case 
classification, outperforming more granular feature selection strategies. Some recent studies have 
attempted to balance modality-specific contributions; these procedures tend to utilize 
regularization and differential weighting to achieve modality balance and could provide a more 
nuanced representation of the influence of each modality60,61. 

The feature selection approach could be applicable in individual nuances in autistic 
individuals; the initial provenance of salient features provides a starting point from which 
individual similarities and differences can be assessed. Additionally, sex-specific disparities in 
ASD are another critical area that warrants further examination and could be addressed by an 
exacting feature selection approach. Conducting separate PCAs for different sexes within the 
autistic group may reveal unique and actionable insights, potentially improving the performance 
of downstream machine learning models. 

Moreover, several advanced analytical methods offer promising future directions, in particular 
deep learning. Employing deep learning techniques for data fusion to integrate multimodal data 
could capture complex relationships between neuroimaging, genomic, and phenotypic data. This 
is an emerging area with promising results but no unified optimal strategy as of yet62,63. 

In summary, future research in the integration of neuroimaging, genomic, and phenotypic data 
in ASD will need to explore advanced data imputation techniques, leverage regression-based 
predictive modeling, and consider sex-specific analyses. Employing deep learning, sophisticated 
weighting and thresholding strategies, and advanced dimensionality reduction methods could 
significantly enhance the understanding and predictive power of these complex datasets. 
 
4.4.  Conclusions 
The results of the experimental dimensionality reduction procedure for classifying autistic versus 
non-autistic individuals using neuroimaging and genetic features are promising. The AUROC 
performance achieved in this study is acceptable, especially within traditional machine learning 
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frameworks. PCA effectively addresses overfitting, as indicated by the improved testing AUROC 
metric. By capturing within-class variability, the model performs better on unseen testing data and 
generalizes more readily to other datasets. 

Firstly, the marked improvement in testing AUROC performance over traditional 
approaches indicates that the extracted features capture many relevant aspects differentiating the 
classes. AUROC is a balanced metric that accounts for both true positive and false positive rates, 
making it particularly suitable for datasets with even slight class imbalances. The improvements 
in AUROC demonstrate the methodology’s internal validity and robustness to variations in unseen 
testing data. 

Many of the extracted features represent notable regions of cortical, subcortical, and white 
matter connectivity, which are well-documented in ASD research. Interestingly, the analysis did 
not provide substantial evidence for the role of the pseudo-autosomal region in autism 
development. None of the examined genetic predictors outperformed the microstructural 
predictors in terms of principal component loading. This may be due to the low sample size, but it 
also raises the possibility that the pseudo-autosomal region is not as contributory to the etiology 
of ASD as microstructural metrics. When examined separately, genetic data performed poorly as 
predictors for classification within the same framework, further supporting this conclusion. 

Cortical features extracted from the analysis highlight critical regions involved in ASD, 
such as areas related to social cognition, language processing, and executive function. These 
regions are consistent with the existing literature on ASD, reinforcing their importance in 
understanding the disorder's neurobiological underpinnings.  Likewise, subcortical features 
identified include regions involved in emotion regulation, reward processing, and motor functions. 
Abnormalities in these areas are frequently reported in ASD studies, underscoring their relevance 
to the disorder's phenotype and supporting the validity of the feature selection process. Finally, 
white matter features point to connectivity issues between different brain regions, which are a 
hallmark of ASD. Disruptions in white matter integrity can affect communication between cortical 
and subcortical regions, contributing to the diverse symptomatology of ASD. 

Applying PCA to each modality without separating classes aimed to capture modality-
specific variability. While some microstructure predictors remained consistent, this approach also 
included several genetic predictors. However, the resulting logistic regression yielded poorer than 
expected classification performance, likely due to an inability to extract the most salient features 
for each class. Separate PCAs for the four groups (autistic genetic, autistic microstructure, non-
autistic genetic, non-autistic microstructure) also performed poorly, reaffirming that the pseudo-
autosomal region may not significantly contribute to ASD classification. 

Exploring more flexible machine learning methods, such as quadratic discriminant analysis 
and tree-based models, did not improve performance over logistic regression. This suggests that 
the proposed feature selection method is most effective with less flexible machine learning models, 
highlighting the need for careful selection of analytical techniques based on the data and research 
goals.  The identification of critical cortical, subcortical, and white matter features aligns with 
existing ASD research, reinforcing their relevance in understanding the disorder's neurobiological 
underpinnings. While the role of genetic predictors remains less clear, these findings highlight the 
need for meticulous selection of analytical techniques tailored to the specific characteristics of the 
data. Such comprehensive and data-driven strategies are vital for understanding the nuances of 
ASD and advancing for the field toward more effective and personalized diagnostics and 
interventions.   
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Alzheimer’s Disease and Related Dementias (ADRD) afflict almost 7 million people in the
USA alone. The majority of research in ADRD is conducted using post-mortem samples
of brain tissue or carefully recruited clinical trial patients. While these resources are excel-
lent, they suffer from lack of sex/gender, and racial/ethnic inclusiveness. Electronic Health
Records (EHR) data has the potential to bridge this gap by including real-world ADRD pa-
tients treated during routine clinical care. In this study, we utilize EHR data from a cohort
of 70,420 ADRD patients diagnosed and treated at Penn Medicine. Our goal is to uncover
important risk features leading to three types of Neuro-Degenerative Disorders (NDD), in-
cluding Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Other Dementias (OD).
We employ a variety of Machine Learning (ML) Methods, including uni-variate and multi-
variate ML approaches and compare accuracies across the ML methods. We also investigate
the types of features identified by each method, the overlapping features and the unique
features to highlight important advantages and disadvantages of each approach specific for
certain NDD types. Our study is important for those interested in studying ADRD and NDD
in EHRs as it highlights the strengths and limitations of popular approaches employed in
the ML community. We found that the uni-variate approach was able to uncover features
that were important and rare for specific types of NDD (AD, PD, OD), which is important
from a clinical perspective. Features that were found across all methods represent features
that are the most robust.
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1. Introduction

1.1 Alzheimer’s Disease and Related Dementias
ADRD afflicts an estimated 6.9 million people in the United States of America (USA), us-

ing current July 2024 statistics.1 ADRD and dementia collectively kill more patients per year
than breast and prostate cancers combined.1 However, despite its frequency of incidence, not
much is known about ADRD patients in community-based settings. This is because the major-
ity of Alzheimer’s Disease (AD) research focuses on post-mortem (after the patient has died)
samples or patients recruited through expensive clinical trials (that often lack racial/ethnic di-
versity). In addition, there remains a paucity of research among diverse populations, including
investigating sex-disparities2 and racial disparities3 in outcomes. Additionally, many state-of-
the-art studies on ADRD have limited generalizability because of the almost exclusive use of
trials that lack race/ethnicity/socioeconomic inclusiveness,4 leading to a diversity dearth.5

1.2 Electronic Health Records (EHRs)
The recent development and implementation of EHRs now provide a tremendous opportu-

nity to evaluate ADRD patients from community-based settings that includes in-patient and
outpatient medical records data obtained through routine clinical care. EHR data contain
information on millions of patients from both in-patient and out-patient settings. They often
contain more representative patient populations (in terms of race, ethnicity, and socioeconomic
inclusiveness) than clinical trials due to their community-based settings. Several studies have
used EHR data for AD research. Xu et al.6 developed a data-driven method to uncover four
subphenotypes of AD from EHRs. Their subphenotypes were correlated with common co-
morbidities of ADRD, including mental health diseases and cardiovascular disease.6 None of
these prior studies (as far as we are able to glean from the reported papers) have incorporated
socioeconomic or racial/ethnic disparities into their algorithm development. This is important
as not properly capturing these features can lead to biased research results.7,8

1.3 Uni-variate Association Mining
While Xu et al.6 utilized unsupervised Machine Learning (ML) methods to learn types of

ADRD (a form of neurodegenerative disorder (NDD)) from the data itself, another common
method for uncovering important features or characteristics of a dataset is to utilize associa-
tion mining. Association mining is used extensively in EHR research through a process called
Phenotype-Wide Association Studies (PheWAS) first introduced in 2010 by Denny et al.9 In
their study they held the genetic variant constant while looping over a wide range of clini-
cal EHR-derived phenotypes.9 This process was then employed by BioBanks throughout the
USA and abroad, but also applied to EHR datasets not linked to BioBank data.9–23 Others
used EHR data without genetic information to perform association mining or PheWAS style
studies.18 Boland et al. employed a similar algorithmic approach when exploring the relation-
ship between birth seasonality and later risk of disease through a method first published in
201519 and later replicated in several studies.20–23 The essence of association mining is to test
for an association (using some statistical method, e.g., chi-square test, fisher’s exact test, or
regression) between each phenotype (typically represented as columns in a matrix) and the
outcome of interest. In this study, our outcomes are three different NDD types. Therefore,
the outcome is set (in this work either AD, PD or OD) a priori and then each phenotype
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(i.e., covariate/feature/column) is tested for association with that outcome of interest. If one
wants to investigate more than one outcome (in this case our different NDD types) then one
simply repeats the entire process over again with each outcome. We construct our algorithm
such that outcome Y is always the same (in this case a binary indicator variable for whether
or not the patient has/had a particular NDD type, e.g., PD). We then have our intercept
term (β0) and our term related to that particular feature that is being tested (or iterated
over) is X and the coefficient term related to the feature is represented as βx. We will loop
over all potential features and therefore with each iteration the actual feature in X and the
corresponding coefficient βx will change. A sample regression equation for a binary outcome
of interest (NDD type: Parkinson’s Disease) is as follows:

Y(NDD type: Parkinson′sDisease) = β0 + βx ∗X,

with βx indicating the term for each phenotype (or feature) that will be iterated over. There-
fore, in our example the first feature would be some clinical or demographic feature, followed
by the second feature until all features have been iterated over. Typically, there are a large
number of associations explored (often into the thousands) requiring multiple hypothesis cor-
rection methods to adjust for multiple comparisons.
1.4 Multivariate Association Mining: SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) is a method to explain individual predictions
based on Shapley values from cooperative game theory.24 It assigns each feature an impor-
tance value for a particular prediction,25 aiming to fairly distribute the ‘payout’ (prediction)
among features. SHAP provides both local explanations for individual predictions and global
interpretation methods, linking optimal credit allocation with local explanations using Shapley
values.26

In the context of EHR data, SHAP can be a powerful tool for interpreting the predictions
made by the models. This study uses PD, AD, and OD as separate outcomes. Each patient
in the dataset can be considered as an instance for which a prediction is made. The features
are the ‘players’ in the game. The ‘payout’ is the prediction of whether a patient has PD,
AD, or OD. For example, if a model predicts a certain patient has a high risk of developing
PD, SHAP can help us understand how each feature contributes to this prediction. This can
provide valuable insights into which factors are most influential in predicting PD, AD, or OD.

The Shapley value is the average of all the marginal contributions to all possible coali-
tions.24 For a set N of n features, the Shapley value ϕi(v) of feature i is:

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (1)

where S is a subset of features not including feature i, v is a value function that represents
the model’s prediction for a subset of features, v(S) is the prediction for subset S, and |S| is
the number of features in S.

The SHAP explanation method computes Shapley values. Let g be is the explanation
model, z′ ∈ {0, 1}M the coalition vector, M the maximum coalition size, and ϕj ∈ R the feature
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attribution, i.e., the Shapley values for feature j. SHAP is defined mathematically as follows:

g(z′) = ϕ0 +

M∑
j=1

ϕjz
′
j (2)

In Equation 2, an entry of 1 in the coalition vector indicates that the corresponding feature
value is ‘present’, whereas an entry of 0 signifies that it is ‘absent’. Within the framework of
SHAP, the Shapley values help us understand each feature’s contribution to the prediction.

2. Dataset

Fig. 1. Venn Diagram of Patients Diagnosed with
PD, AD and OD.

2.1 Dataset Description
We obtained de-identified EHR data

from Penn Medicine for patients with
ADRD using a set of diagnosis codes. The
age range of our medical records indicate
that the majority of the EHR data was col-
lected between 2002 and 2022 with some
diagnosis dates occurring earlier (all the
way back to the 1920s indicating man-
ually entered diagnosis information that
was pertinent for specific patients). The
internal Clinical Data Warehouse at Penn
Medicine converted the International Clas-
sification of Diseases (ICD) version 9 (ICD-
9) codes to version 10 (ICD-10). We have cross-mapped our list of ADRD diagnostic codes
using existing resources27 to provide researchers with our full list of ICD-9 and ICD-10 diagno-
sis codes for ADRD identification.28 The EHR data comes in the Observational Health Data
Sciences and Informatics (OHDSI) Common Data Model (CDM) format with relevant data
broken down into several files corresponding to tables in a SQL database. The dataset contains
information on patients’ encounters, diagnoses, medications, procedures, vitals, laboratory
findings, chemotherapy, and laboratory values. This study was approved by the University of
Pennsylvania’s Institutional Review Board (IRB) with approval id: 851588. We mapped our
entire dataset consisting of 70,420 ADRD patients to their corresponding PheCodes. This al-
lowed us to identify 14,911 patients with AD diagnoses specifically (PheCode:290.11), 16,216
patients with PD diagnoses specifically (PheCode:332) and 14,911 patients with ‘Dementias’
(PheCode:290.10) called in this paper Other Dementias (OD), which is an unspecified generic
dementia category. Demographics are provided in Table 1 and visualized in Figure 2. The
Venn diagram in Figure 1 represents the overlap of patients diagnosed with PD, AD, and OD.

Demographic factors differs among the three NDD subtypes. Figure 2 shows the Racial
and Sex distributions across the NDD types. The bars represent percentages of different racial
groups for four categories: AD, PD, OD, and Overall. White individuals have a higher per-
centage of PD, whereas Black or African Americans have a higher percentage of OD diagnoses
(Figure 2). Figure 2 shows that females have a higher percentage of NDD types that include
AD and OD compared to males. On the other hand, males have a higher percentage of PD
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compared to females. Overall, across NDD types, there was a higher proportion of females
with ADRD diagnoses than males (54.43% vs. 45.56%).

Fig. 2. Racial and Sex Distribution by NDD type.

Table 1. Demographics of ADRD Patients by NDD type.

Attribute Value
AD(%)
(N = 14911)

PD(%)
(N = 16216)

OD(%)
(N = 14911)

Overall(%)
(N = 70420)

Race

White 63.62 76.26 54.34 65.01
BAA 24.12 9.43 33.56 22.64
Asian 2.11 2.95 1.3 2.34
NHOPI 0.1 0.09 0.16 0.12
AIAN 0.05 0.07 0.04 0.08
Unknown 10.01 11.2 10.59 9.81

Gender
Female 62.89 39.25 59.82 54.43
Male 37.11 60.75 40.15 45.56
Missing 0.01 0 0.03 0.01

AD: Alzheimer’s Disease, PD: Parkinson’s Disease, OD: Other Dementias, BAA: Black or African American,

NHOPI: Native Hawaiian or Other Pacific Islande, AIAN: American Indian or Alaska Native.

2.2 Dataset Preprocessing
Our raw data consisted of diagnosis code information in both ICD version 9 (ICD-9) and

version 10 (ICD-10). We mapped these codes to their respective PheCodes.29 These PheCodes
were used for each terminology system (ICD-9 and ICD-10), aligning on the ‘code system’ and
‘code’ fields. This also allowed us to collapse results to the PheCode level rather than using
individual ICD-9 and ICD-10 codes. To enable quantitative analysis, we used one-hot encod-
ing of these categorical data to transform those data into binary format with one column per
unique PheCode. For each unique phenotype (PheCode) identified, we created a new column
in the diagnosis data and assigned binary values indicating the presence (1) or absence (0) of
the phenotype (PheCode) for each patient. The final dataset comprised of patient identifiers,
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demographic information, and binary-encoded phenotypes, providing a structured and analyz-
able representation of the patient diagnosis data. We also transformed the Race variable using
one-hot encoding with Race White, Race Black, Race Asian and Race Other with each cor-
responding to a binary relationship with the race variable. We also transformed the Hispanic
and Sex Male columns to binary variables. We also included features pertaining to the type
of hospital-visit, including: chemotherapy, emergency visit, inpatient visit, ambulatory visit,
and other unknown visit. Like the demographic features, each of these was binary indicating
that a patient had at least one occurrence of that particular type of visit or chemotherapy.

For the multi-variate analysis no missing data was allowed, and therefore the missing data
for Hispanic and Sex Male were coded with -1 to indicate that those values were missing. We
decided not to use imputation methods because that could result in other biases. For the uni-
variate analysis, this was not needed as each feature was assessed one at a time and therefore,
if there was missing data for a feature then those rows would be dropped automatically from
the analysis via the glm() function in R.

3. Methodology

3.1 Uni-variate Logistic Regression Association Mining
We utilize traditional EHR association mining methods.18 To do this, we evaluate each

NDD type as an outcome separately to compare the features association with that particular
type of NDD. This allows us to identify features that are strongly associated with a par-
ticular NDD type, and also features that are only associated with one NDD type. For each
outcome (AD, PD, OD), we test each feature for its association with the outcome. Each fea-
ture (N=1796) was tested for association with each outcome (hence uni-variate association
mining). The majority of features were conditions/diseases represented by PheCodes. The
non-PheCode features included demographic features: Race White, Race Black, Race Asian,
Race Other, Hispanic and Sex Male. Hospital-visit characteristic features were also explored
including: chemotherapy, emergency visit, ambulatory visit, inpatient visit, and other unknown
visit. Each of these was binary indicating that a patient had at least one occurrence of that
particular type of visit or chemotherapy. Once all features were tested for association with
each NDD type, we then removed the intercept terms from our model results and corrected
for multiple hypothesis testing using the Bonferroni adjustment method, defined as:

corrected p-value = α/N = 0.05/1796

where alpha represents our significance cutoff (0.05 in this case) and N represents the number
of tests (1796 in this case).

We used Logistic Regression (LR) to test for the association between each feature and the
NDD type, given that the outcome variables are binary. This analysis was performed in the
statistical programming language R using the glm() function with the statistical family set
to binomial (i.e., to perform LR). Importantly, while we tested 1796 features for association
with each NDD type, in the Venn Diagrams we only show 1794 features because we removed
the features that consist of the NDD types themselves (AD, PD, and OD).
3.2 Machine Learning (ML) Methods

We employed three distinct models: LR, Ridge Regression (RR), and a Residual Network
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(ResNet) based Neural Network, to predict the occurrence of PD, AD and OD separately. The
dataset, after preprocessing, consisted of a feature set of 1796 features per NDD type model.
The data was split into training and testing sets in an 80:20 ratio. We used ‘LogisticRegres-
sion’ and ‘Ridge’ from Python package ‘sklearn’.30 We implemented a ResNet model using
Keras, starting with an input layer for feature vectors, followed by a dense layer with 64 units,
batch normalization, ReLU activation, and a dropout layer (rate 0.5) to prevent over-fitting.
The model’s core has five ResNet blocks, each comprising two dense layers with batch normal-
ization, ReLU activation, and dropout (rate 0.5). The output of the second dense layer was
added to the block’s input tensor, followed by ReLU activation. The final output was gener-
ated by a dense layer with a single unit and sigmoid activation. We used the Adam optimizer
(learning rate 0.001), binary cross-entropy loss, and accuracy as the metric. Early stopping
with a patience of 5 epochs was employed to mitigate over-fitting. The model was trained for
up to 50 epochs with a batch size of 32, using 20% of the training data for validation.

We performed 5-fold cross-validation on the training set for all the above-mentioned mod-
els. The models were then trained on the entire training dataset. A bootstrapping procedure
generated multiple bootstrap samples from the test data, evaluated the model’s accuracy on
each sample, and used those accuracies to compute the 95% confidence intervals.
3.3 Analysis with SHAP

We aim to identify factors contributing to the progression of AD, PD, and OD using the
SHAP method. To do this, we construct separate models for each NDD type, using patient
attributes as predictors. The target variable was defined as the presence or absence of AD.
Similarly, separate models were constructed for PD and OD. The value of the target variable is
1 if the targeted event happened to the subject during the whole project and 0 otherwise. For
each outcome (AD, PD, OD), we train the models mentioned in subsection 3.2 to determine
the presence or absence of the disease. The SHAP method from the ‘shap’25 Python package
was used to identify significant features using LR and RR. We used LinearExplainer for both
LR and RR models. a

3.4 Feature Selection and Top 5% Subset
For methods that used multi-variate approaches, we selected features as being important if

the mean shapley value for that feature was greater than or equal to the overall mean shapley
value for that NDD type.31 For the uni-variate approach, we selected features as important if
their Bonferroni adjusted p-value was statistically significant. For the 5% subset, we selected
the top 5% of features from each method and each NDD type. The top 5% of features amounts
to 90 features from our overall feature set. The features are ranked based on their mean shapley
value if a multi-variate method, or their p-value if a uni-variate method.

4. Results

4.1 Uni-Variate Assoication Mining Results
We found 340 significant associations with AD, 590 significant associations with PD and

a
For the ResNet-based Neural Network, we encountered significant computational constraints using KernelExplainer due to its inherent

complexity and the large size of the dataset. Consequently, to maintain consistency in our analysis of feature importance, we proceeded

without considering the contributions derived from the neural network model.
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583 significant associations with OD using uni-variate LR. Table 2 reports findings based
on nominal significance, Bonferroni adjusted significance and a combination of Bonferroni
significance and Odds Ratio ≥ 2. We visualized the uni-variate LR results using Manhattan
plots for each NDD type: AD (in Figure 3A), PD (in Figure 3B) and OD (in Figure 3C). One
can see that there are many Bonferroni significant results spread across the NDD types, but
that AD has only a few significant results (see Figure 3A).

Table 2. Number of Association Mining Results

Results AD PD OD

Number of Nominal Significant Results 723 1017 971
Number of Bonferroni Significant Results 340 590 583

Number of Bonferroni Significant Results and OR ≥ 2 3 16 278

Fig. 3. Manhattan Plot for NDD type: AD, PD, OD

4.2 Performance of Multi-variate Methods for: AD, PD, OD

Table 3. Accuracy Performance of ML Methods by NDD type (All Features, N=1796).

Out-
come

Logistic Regression (LR) Ridge Regression (RR) Neural Net (ResNet)

cv
(mean)

Train Test
CI(95%)
[lower,
upper]

cv
(mean)

Train Test
CI(95%)
[lower,
upper]

cv
(mean)

Train Test
CI(95%)
[lower,
upper]

AD 78.48 80.1 79.44
[78.74,
80.08]

78.8 79.85 79.43
[78.73,
80.07]

79.03 79.87 79.26
[78.59,
79.89]

PD 85.07 86.51 85.17
[84.58,
85.77]

83.34 84.29 83.21
[82.58,
83.83]

84.83 88.49 84.89
[84.32,
85.5]

OD 84.91 86.37 84.5
[83.91,
85.11]

84.37 85.5 84.15
[83.56,
84.75]

86.49 88.51 86.34
[85.76,
86.92]
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Table 4. Accuracy Performance of ML Methods by NDD type (Intersection Features).

Out-
come

Logistic Regression (LR) Ridge Regression (RR) Neural Net (ResNet)

cv
(mean)

Train Test
CI(95%)
[lower,
upper]

cv
(mean)

Train Test
CI(95%)
[lower,
upper]

cv
(mean)

Train Test
CI (95%)
[lower,
upper]

AD
(N=180)

78.99 79.2 79.54
[78.88,
80.18]

78.99 79.03 79.47
[78.76,
80.13]

79.95 80.25 80.32
[79.67,
80.94]

PD
(N=225)

85.54 85.76 85.05
[84.46,
85.63]

83.28 83.47 83.2
[82.56,
83.84]

86.15 87.87 86.16
[85.57,
86.71]

OD
(N=205)

85.06 85.29 84.8
[84.24,
85.41]

84.45 84.56 84.29
[83.73,
84.88]

88.22 89.95 87.98
[87.44,
88.51]

Tables 3 and 4 present the performance metrics of patients with NDD types of PD, AD, and
OD, assessed using different ML models: LR, RR, and ResNet. For each NDD type, both of
the tables display cross-validation mean accuracy (cv mean), the training and testing accuracy
percentages alongside the 95% confidence intervals (CIs) for both the lower and upper bounds
with respect to testing accuracy. The test accuracies are obtained using a held-out independent
test set. The main difference between the two tables is the number of features used for training
the models. In Table 3, all features were used, while in Table 4, only selected intersectional
subsets of features mentioned in Section 5 were used. In both tables, we additionally included
PD and AD as features with OD as the outcome, PD and OD as features with AD as the
outcome, and AD and OD as features with PD as the outcome while evaluating the models’
performances.

Results for all 1796 features shown in Table 3. LR, RR and ResNet models show slight
variations in the mean cv, training, testing accuracies and CIs. In Table 4, the models show
comparable results, highlighting the contribution of the reduced feature sets of 180 features for
AD, 225 for PD, and 205 for OD. Tables 3 and 4 demonstrate that the use of selected features,
as opposed to all features, does not significantly degrade model performance. Specifically, the
slight differences in test accuracy, e.g., 79.44% vs. 79.54% for AD classification using LR,
indicate that the models maintain robust performance even with reduced feature sets.
4.3 Overlap of Features Across Methods per NDD type

Characteristics of important features are given in Table 5. Non-overlapping features rep-
resent those that are unique to one method. We show the results for the 5% subset and the
entire set of important features. AD had the lowest amount of non-overlapping features at
30.7% indicating that many of the features found by methods when applied to AD were simi-
lar Table 5. However, both PD and OD had higher amounts of non-overlapping features (i.e.,
unique) with 48.3% and 51.3% respectively in Table 5. Depending on the particular use case,
some researchers may want to use only the top important features, which is our rationale for
the top 5% feature subset from each method. This results in the same number of features
being selected per method (i.e., 90 features). We found that for the 2 NDD types with less
overlap (i.e., PD and OD) there were fewer non-overlapping features in the top 5% subset with
35.8% vs. 48.3% for PD, and 41.8% vs. 51.3% for OD. However, for AD, which already had
a high agreement across methods, the top 5% of features actually had more non-overlapping
features with 38.6% vs. 30.7% in the 5% subset in Table 5.
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Table 5. Characteristics of Important Features

Results AD PD OD

All Important Features
Total Number of Important Features Across Methods 567 681 708

Number of Non-Overlapping Features 174 329 363
Percentage of Non-Overlapping Important Features 30.7% 48.3% 51.3%

Top 5% Feature Subset
Total Number of Important Features Across Methods 140 137 146

Number of Non-Overlapping Features 54 49 61
Percentage of Non-Overlapping Important Features 38.6% 35.8% 41.8%

Feature penetrance indicates how often a feature was determined to be important by one
of the three methods used for each NDD type. We also calculated penetrance across all NDD
types, therefore a feature could have a maximum of 9 to indicate that it was found across all
3 NDD types and methods.28 However, in some situations differences across methods maybe
important. The Venn diagrams show the results for all important features and for only the
top 5% of features for AD Figure 4A, for PD Figure 4B and for OD Figure 4C. Results for the
intersections appear similar across the NDD types with OD having a larger number of features
overall, mainly resulting from the large number of OD results generated by the uni-variate
LR approach. Figure 4C.

Fig. 4. Venn Diagram of Important Features for
NDD type: AD, PD, and OD.

Many interesting unique features were
identified using the uni-variate LR method,
including the association between Creutzfeldt-
Jakob Disease or (CJD) and OD with
a large reported Odds Ratio (OR=51.87,
95% CI: 18.88, 214.32). Note that CJD
is listed in the PheCodes as Jakob
Creutzfeldt Disease (PheCode:324.1). The
percentage of individuals with CJD and
OD was 93.18% versus 4.55% with AD and
2.27% with PD ( Figure 5).

5. Discussion

5.1 Overview of Study
Overall, our study found that it is pos-

sible to identify important features for dif-
ferent NDD types, specifically AD, PD and
OD. We found that the performance ob-
tained using the specific method (LR, RR
or ResNet) in terms of accuracy varied
somewhat by NDD type, with all achiev-
ing similar performance. We also found
that while methods achieved similar per-
formance overall, there were substantial differences in ‘important’ features revealed by each
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method. We identified features that were common (i.e., found by each method) and also fea-
tures that were unique to one particular method. Therefore, our findings are important for
others using EHR data for ADRD analyses because the ‘important’ features identified not
only varies by statistical method used, but also by NDD type. Because of the heterogeneity
of EHR data, the exact prevalence of each NDD type may vary by site to site, making this
finding of importance for those utilizing EHR data for ADRD analyses.

Fig. 5. Distribution of Creutzfeldt-Jakob disease
(CJD) by NDD types.

The features found in the intersec-
tion of all 3 methods, namely uni-variate
LR, multivariate LR (identified using shap-
ley values), and multi-variate RR (iden-
tified via shapley values) may represent
the most significant and robust features.
These features are of particular interest
because they are important across multi-
ple methods, suggesting they are less likely
to be influenced by confounding factors.
In contrast, features identified by only one
method may be less reliable and could be artifacts of the specific analytical approach used.
Therefore, focusing on the intersecting features provides a more comprehensive and reliable
understanding of the key predictors in the dataset. However, we will describe below circum-
stances that illustrate the advantages and disadvantages of various methods and features
identified by the methods indicating that the intersection features may include only a subset
of the truly ‘important’ features.

5.2 Uni-variate versus Multivariate Models
CJD Disease Identified via Uni-variate Method Alone. There are some findings that

were only uncovered via the uni-variate LR approach. It was the only method that revealed
that CJD was significant in OD (one of the NDD types), and clearly there is a dramatic
difference in our dataset for the prevalence observed among those with CJD with the majority
of individuals having OD (see Figure 5). CJD is established as a rare cause of dementia32 and
therefore, this finding is of clinical significance and would be missed in multivariate approaches
due to the overall rarity of this disease. However, there have been studies that found that CJD
could be mistaken for AD,33 indicating that clinically distinguishing these various diseases
can be challenging in different circumstances. CJD is an example of one of the 308 features
identified for OD that were only identified using the uni-variate LR approach (see Figure 4C).
There were 6 OD features uniquely identified via the Multi-variate RR approach, but these
features were odd, and included ‘late pregnancy and failed induction’ along with ‘genital
prolapse’, which indicates that perhaps these findings were associated with a lower chance of
OD. However, our population only includes those who are 65 and older and therefore, these
features existing in our cohort remains somewhat odd. Features unique to the multi-variate LR
approach also appeared somewhat unusual, including ‘elevated Prostate Specific Antigen’(PSA
test). This is an unusual finding given that our OD patients were predominantly female.

Sleep Apnea. Interestingly, the PheCode for Sleep Apnea (PheCode:327.30) was found
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to be significant for AD across all 3 methods, including both multi-variate and uni-variate
approaches. However, the uni-variate LR approach also identified another related PheCode
for Obstructive Sleep Apnea (PheCode:327.32) as being significantly important for the AD
type. The ‘Obstructive Sleep Apnea’ or OSA PheCode was not identified as being important
by the other multi-variate approaches, and indicates a finding unique to the uni-variate method
for the AD type, one of the 116 unique features in Figure 4A. This also represents a clinical
relevant finding as OSA has been linked with AD specifically in a number of studies34,35

indicating its importance in the AD type.
Overall Advantages of Uni-variate Alone. Overall, these findings highlight a main

advantage of uni-variate LR (sometimes referred to as a ‘traditional approach’ for ML) in that
it enables one to calculate Odds Ratios (OR) and to determine whether a finding increases or
decreases the risk of diagnosis for each NDD type. Shapley values on the other hand provide
the importance of the feature without the directionality of the finding, which in some cases
makes them more difficult to interpret, and might be the reason for some of these results
identified as unique to the multi-variate approaches. Overall, our findings suggest that uni-
variate LR may be better at detecting NDD-type-specific differences, even with smaller sample
sizes like we observed with CJD. Features supported across the methods appear to be more
robust than features identified by just one method - unless that method was a uni-variate
approach (again due to the advantages of ORs and directionality of the result).

5.3 Performance Varies by NDD type: AD, PD, and OD
Based on the models’ performance presented in Tables 3 and 4, it is evident that the

performance of different ML methods varies depending on both the NDD type and the method
used. When using LR with all features, the highest accuracy was achieved when detecting PD
with a test accuracy of 85.17%, while the lowest accuracy was for AD with a test accuracy of
79.44%. In contrast, when using RR and ResNet, the highest accuracy was for OD with a test
accuracy of 84.15% and 86.34%, but the lowest accuracy was again for AD with a test accuracy
of 79.43% and 79.26%. The performances using the subset of the features also demonstrate
similar pattern. RR had the lowest test accuracy for all 3 NDD types across all features (in
table 3) and the intersectional subsets of features (in table 4). While ResNet demonstrated the
highest test accuracy using all features in classifying OD, LR had the highest test accuracy
for AD and PD. On the other hand, in Table 4 the ResNet model significantly outperformed
the regression models’ test accuracies for all NDD types. The ResNet’s superior performance
implies the possibility that this increased performance is due to the neural network’s capacity
to learn complex, non-linear relationships, which might be more important for certain NDD
types.

5.4 Comparison of Feature Results Across Methods
Interestingly, when applying Neural Net with selected features for prediction purposes,

there was an increase in accuracy across all NDD types compared to using all features as
presented in Tables 3 and 4. Both AD and OD predictions yield higher test accuracies with
intersection features rather than the full feature set with all the 3 models. Although PD
results demonstrate a slight decrease in test accuracies for both LR and RR while using
instersectional features, the train accuracies also decrease. These observations suggest that
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our feature selection enhances model performance by reducing noise and focusing on the most
relevant information. The use of intersection features, which encapsulate the most critical and
discriminative attributes, facilitates better generalization across models, reducing overfitting
and improving robustness.

5.5 Implications of Our Findings on Other ADRD ML Studies
Spectrum bias36,37 occurs when a test is studied among a population that is not represen-

tative of the intended target population. For example, if a study is conducted on an ADRD
population using EHR data in Florida with a large population of ADRD patients having
OD and then that method was applied in a population from Delaware where the majority of
ADRD patients have PD, that could result in spectrum bias. Therefore, it is important to
understand the important disease features that are unique to each NDD type: AD, PD and
OD because the case-mix distribution of patients among ADRD patients may vary across the
USA. Therefore, to develop robust ML models, we must understand the relationships between
these features and each NDD type to understand if models (ours and others) will validate
adequately at other locations in the USA treating ADRD patients.

6. Conclusion

In conclusion, we utilized a large (70,420 patients) ADRD cohort derived from EHR data
collected during routine clinical care. Our cohort is an order of magnitude larger in size (70k
versus 7k) than another recent ML ADRD study using EHR data.6 Using this large and
comprehensive dataset, we aimed to identify important diagnostic features for the NDD types
using a variety of ML methods. Our study demonstrates the strengths and weakness of uni-
variate and multivariate ML methods in detecting features specific to certain NDD types,
namely, AD, PD and OD. We report accuracies of these methods and report what NDD
types where each method worked best. We also identified features that were found across all
methods, and features that were unique to a particular method. We share these findings with
the research community with the goal of mitigating spectrum bias in ADRD studies as the
NDD types vary from site to site across the USA and could therefore introduce biases if not
accounted for.
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Illness related brain effects of neuropsychiatric disorders are not regionally uniform, with
some regions showing large pathological effects while others are relatively spared. Presently,
Big Data meta-analytic studies tabulate these effects using structural and/or functional
brain atlases that are based on the anatomical boundaries, landmarks and connectivity
patterns in healthy brains. These patterns are then translated to individual level predic-
tors using approaches such as Regional Vulnerability Index (RVI), which quantifies the
agreement between individual brain patterns and the canonical pattern found in the ill-
ness. However, the atlases from healthy brains are unlikely to align with deficit pattern
expressed in specific disorders such as Major Depressive Disorder (MDD), thus reducing
the statistical power for individualized predictions. Here, we evaluated a novel approach,
where disorder specific templates are constructed using the Kullback-Leibler (KL) distance
to balance granularity, signal-to-noise ratio and the contrast between regional effect sizes
to maximize translatability of the population-wide illness pattern at the level of the indi-
vidual. We used regional homogeneity (ReHo) maps extracted from resting state functional
MRI for N = 2, 289 MDD sample (mean age ± s.d.: 63.2 ± 7.2 years) and N = 6104
control subjects (mean age ± s.d.: 62.9 ± 7.2 years) who were free of MDD and any other
mental condition. The cortical effects of MDD were analyzed on the 3D spherical surfaces
representing cerebral hemispheres. KL-distance was used to organize the cortical surface
into 28 regions of interest based on effect sizes, connectivity and signal-to-noise ratio. The
RVI values calculated using this novel approach showed significantly higher effect size of
the illness than these calculated using standard Desikan brain atlas.

Keywords: Kullback-Leibler Distance; Major Depressive Disorder; Neuroimaging
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1. Introduction

The effects of neuropsychiatric illnesses on brain structure and function are not regionally
uniform; pathological processes impact some areas while sparing others, leading to formation
of illness-specific deficit patterns.1,2 Neuroimaging can capture these deficit patterns as case-
control differences in functional and structural biomarkers including cortical grey matter thick-
ness, white matter integrity, hypoperfusion, etc. The summary of the findings is tabulated as
regional effect sizes for brain areas derived from atlases that parcellate the cerebral landscape
using structural landmarks, cellular organization or functional connectivity patterns. The un-
derlying premise stems from basic neuroscience, lesion studies and functional brain mapping
that shows that cortical landscape can be represented as parcels of functionally specific and in-
terconnected areas. Large and inclusive meta-analytic studies conducted by big data consortia,
such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consor-
tium3,4 use these maps as a principle way to report disease-related brain findings. These studies
perform “Big Data” level analyses that use these summary regional deficit data aggregative
findings from thousands of subjects from multiple studies/cohorts/geographic location to fur-
ther refine these patterns by eliminating regionally/ethnic or site-specific heterogeneity leading
to illness patterns that are reproducible across diverse cohorts.5

The patterns published by ENIGMA across neuropsychiatric disorders served as the basis
for translating Big Data to the individual level by measuring the agreements between indi-
vidual brain and those expressed in a disorder.5 A shortcoming of this approach is that the
standard atlases used by ENIGMA to summarize illness-related regional effect sizes may or
may not capture the regional pattern and the granularity of the illness effects on the brain.
ENIGMA uses atlases that are designed to maximize the regional contrast of the effects of
neuropsychiatric illnesses. An alternative strategy is to report the effects of the illness at the
spatial resolution of the neuroimaging data. However, this approach also has shortcomings: a)
the voxel-wise data has much lower signal-to-noise ratio (SNR) because averaging across re-
gions with uniform effects of the illness minimizes the noise, while maintaining the signal and
b) spatial resolution, brain coverage and other data collection parameters vary from cohort to
cohort, making reporting and meta-analytical aggregation a challenge. Here, we propose an
alternative approach aiming to derive a disorder specific brain parcellation method that maxi-
mizes the regional ability to separate cases from controls while maximizing the SNR (through
the size of the regions) and contrast between affected/unaffected areas of the brain.

We developed this approach to study the effect of major depressive disorder (MDD) on
the regional homogeneity (ReHo) index to pilot this approach. MDD is the most common
severe mental illness affecting up to 30% in the lifetime of the population.6 Despite its high
prevalence, the neuroimaging findings in MDD have been affected by poor reproducibility.7

MDD does not exert a strong neurodegenerative effect on brain structure and findings of meta-
analytical studies suggest that MDD is associated with only small (Cohen’s d = 0.01 − 0.1)
structural effect sizes.8–11 Instead, the MDD-related effects on the brain are likely manifested
as a reduction in regional cerebral blood flow (rCBF)12 especially in cingulate, prefrontal and
temporal areas.13,14 ReHo is a coefficient measuring the temporal coherence of the resting state
BOLD functional MRI time-series in neighboring voxels.15,16 Lower regional ReHo in patients
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with MDD versus controls are commonly reported and is often interpreted as evidence for less
synchronized local neural activity/connectivity.17–19 Interpreting the temporal correlations of
BOLD signals between neighboring voxels as deficits in neural connectivity is speculative,20,21

nonetheless, ReHo is a robust and replicable measure that has been validated in human and
animal research.22–24 We and others have shown that ReHo is physiologically linked to rCBF
and about 40-60% of the variance in underlying rCBF variations.25 We hypothesize that
reduced ReHo reported in MDD captures the hypoperfusion in affected individuals.

Specifically, we show that the use of the ad-hoc MDD-specific atlas based on the maximiz-
ing the separation of regional illness effects can also maximize the translatability of the Big
Data findings to the individual level by deriving the contrast between affected and unaffected
areas. We chose MDD because it is associated with regionally specific reductions in cerebral
blood flow (rCBF)12 including cingulate, prefrontal and temporal areas, while other parts of
the brain show no or even elevated rCBF.13,14 Creating an ad-hoc MDD-specific brain par-
cellation that averages the signal across regions with consistent effect of the illnesses, based
on the ability to separate cases and controls, can increase SNR and provide disorder and
functionally specific pattern of illness related changes. The overall intention is to develop this
parcellation approach that is based on capturing the contrast between areas that show deficits
and unaffected areas for future meta-analytical studies of MDD where participating sites will
use the map for reporting the effect sizes and eventually will use the combined meta-analytical
effect size pattern to perform individual prediction of similarity to the illness. Specifically, we
propose to use the maps to power the Regional Vulnerability Index (RVI) that measures the
similarity between an individual brain and the expected patterns derived from large scale
meta-analyses using a representative psychiatric illness, such as MDD.

The RVI approach assumes that the meta-analytic effect-sizes derived from such large
meta-analyses can serve as the ‘ground truth’ for expected disorder-specific deficit patterns
and that the similarity between individual and disorder pattern may serve as a biomarker.
The utility of this approach has been demonstrated by showing that the white matter RVI
for schizophrenia predicted treatment resistance in schizophrenia better than any individual
imaging measure.1 We later demonstrated the similarity in white matter deficit patterns across
psychiatric illnesses, suggesting that RVI serves as an important index for cross-disorder re-
search.26,27 Here, we present an RVI that is based on the MDD-specific atlas that was built
based on the regions that show effect size of MDD versus unaffected regions. Specifically, we
show that optimizing the granularity of the underlying brain parcellation schema based on the
balance between regional specificity and SNR can improve the power of RVI when translating
these at level of the individual. Another novelty of our approach is to use the Kullback-Leibler
(KL) distance – a rigorously defined distance between probability distributions – to optimize
the underlying disorder-specific atlas by balancing granularity, SNR and effects of the illness.

2. Methods

Out of 22,000 available datasets from the first release, 1,780 (∼ 8%) datasets were unusable,
and 1,322 (∼ 6%) datasets failed to pass the AFNI processing steps due to poor image qual-
ity. The usable data sample consisted of 18,898 participants (8,833 males, 10,065 females;
mean age ± s.d.: 63.2 ± 7.5 years) with resting state functional MRI (rsfMRI). We used the
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UKBB parser software (https://github.com/USC-IGC/ukbb parser) to identify participants
with MDD and non-psychiatric controls based on ICD codes, medication information, symp-
tom severity, hospital records and self-reported diagnoses and other variables using previously
published schema. Recurrent MDD was defined as experiencing at least two major depressive
episodes in lifetime that required medication or hospitalization. Recurrent MDD subjects ex-
perienced on average 3.5 major depressive episodes in their lifetime.28 Regional homogeneity
(ReHo) maps were extracted from rsfMRI for the MDD sample (N=2,289, mean age= 63.2
± 7.2 years) (ReHo) and control subjects (N=6,104, mean age= 62.9 ± 7.2 years) who were
free of MDD and any other mental condition. Other participants were left unclassified because
the definitive conclusion on certain criteria could not be made or neurological and psychiatric
conditions (including stroke, cerebral ischemia or other disorders)28 were present.

2.1. Resting state functional MRI data acquisition, processing, analysis

UKBB rsfMRI data were acquired on 3 T Siemens Skyra scanners with the standard Siemens
32-channel receive head coil using the following parameters: TR = 735 ms, TE = 39 ms,
spatial resolution of 2.4-mm isotropic voxels, matrix size = 88 Ö 88 with 64 axial slices, num-
ber of volumes = 490, flip angle = 52◦ and multi-band acceleration factor = 8. A separate
single-band reference image was acquired and used as the reference scan for head motion cor-
rection and alignment to other modalities.29 The resting state analysis workflow developed
by the ENIGMA consortium was used to process the rsfMRI data; processing steps have
been described in full detail in prior publications.30,31 The analysis workflow uses Marchenko-
Pastur principal component analysis denoising32 to improve SNR/temporal SNR of the time
series data. In this workflow, a transformation is computed registering the base volume to the
ENIGMA EPI template, which is used as a common anatomical spatial reference frame for
registration purposes. This step was followed by 3D deconvolution of methodological covari-
ates, and regression of the global signal.33 Each functional volume was registered to the volume
with the minimum outlier fraction for head motion correction, where each transformation was
concatenated with the transformation to standard space, to avoid unnecessary interpolation.
We removed the effects of the following nuisance variables by using them as covariates using
multiple linear regression analysis: the six motion parameters and their temporal derivatives,
and time courses from the local white matter and cerebrospinal fluid from lateral ventricles.
Motion was estimated as the magnitude of displacement from one time point to the next
including neighboring time points and outlier voxels fraction (> 0.1). Time points with exces-
sive motion (> 0.2mm) were excluded from further statistical analysis. Images were spatially
normalized to the ENIGMA EPI template in MNI standard space for group analysis. The
preprocessed data was then used for ReHo calculations. In the whole sample, the average mo-
tion, average outlier voxels fraction and average time points censored fraction were 0.12 mm,
0.004 and ∼ 0.13 respectively. The preprocessed data was then used for ReHo calculations.

2.2. Regional Homogeneity (ReHo) analysis

ReHo was designed to investigate changes in local spontaneous brain activity by performing a
nearest neighbor analysis of similarity of the BOLD time-series and assigning a score, called
Kendall’s coefficient of concordance (KCC)16 per voxel. The KCC score is calculated per voxel
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based on signals from neighboring voxels as: W = (
∑

iR
2
i − nR2)/( 1

12K
2(n3 − n)). Here, W is

the KCC among given voxels, ranging from 0 to 1; Ri is the sum rank of the ith time point;
R = ((n + 1)K)/2 is the mean of the Ri’s; K is the number of time series within a measured
cluster (K is set to be 7, 19, or 27), and n is the number of ranks (= number of volumes).16 K

was set to be 27, which is appropriate for covering all directions in 3D space and to optimize
the trade-off between mitigation of partial volume effects and generation of Gaussian random
fields.17 For each subject, the ReHo map was computed in 3D volumetric space using the
AFNI-command ‘3dReHo’. These maps were used to extract regional ReHo values for the
regions of interest for post-processing.

2.3. Computation of reference brain image and hemispheric mesh

Clustering analyses were performed using the 2D spherical manifold defined by the hemi-
spheric surfaces from the average ReHo brain image (avBrain), that was obtained as
the arithmetic average over the entire dataset of N=8,393 (registered and normalized) ReHo
images. After computing avBrain, we manually edited it to separate it into cerebrum and two
hemispheres. The marching cube algorithm was used to extract uniform triangulated mesh
of K = 5068vertices {VER1,VER2, . . . ,VERK} at uniform 1 mm spacing. We refer to this set
of vertices as the average boundary mesh (avMesh). Each vertex VERi in avMesh is
identified by its 3 coordinates [xi, yi, zi] in 3D space. This procedure is illustrated in Fig. 1.

Fig. 1. Reference brain image avBrain and a hemispheric mesh computation to generate avMesh.

2.3.1. Registration of the average cortical mesh onto individual ReHo images

Matching between the discretized boundary avMesh and each ReHo image I(n), for a given
subject n, cannot be performed using affine transformations and required a nonlinear registra-
tion where each cortical vertex VERi of avMesh was matched to a single voxel in I(n), namely
the voxel of I(n) that was geometrically closest to VERi. Other common approaches to archive
this registration includes averaging over a spherical kernel and averaging over the normal pro-
jection. The intensity Ji(n) of a cortical vertex VERi is the intensity of its matching voxel
in the image I(n). After registration was completed for all vertices of the average boundary

Pacific Symposium on Biocomputing 2025

651



mesh avMesh, then each subject could be characterized by a boundary pattern J(n) where
each cortical vertex VERi of avMesh has the image intensity Ji(n) computed via registration.
That is, the n−th subject is described by a list of K numerical features, i.e., the K intensities
{J1(n), J2(n), . . . , JK(n)} indexed by the K cortical vertices {VER1,VER2, . . . ,VERK} on the
average boundary mesh avMesh.

2.4. Parcellation of the average boudary mesh: SNR vs. granularity

For each cortical vertex VERi on avMesh, we computed three boundary parcels parD(i)

centered at VERi and having three different sizes D = 1, 3, 5, to capture local information in
the ReHo image at different granularity levels.

The parcel parD(i) includes the D closest neighbors of the vertex VERi in avMesh. Hence,
parcel par1(i) only contains the boundary vertex VERi, parcel par3(i) contains VERi and its 2
closest neighbors in avMesh and par5(i) contains VERi and its 4 closest neighbors in avMesh.
The radius of par3(i) roughly ranges between 1 and 3.1 voxels with a mean radius of 1.9 voxels;
for par5(i), the parcel radius ranges between 1.4 and 3.6 voxels, with a mean radius of 2.5
voxels.

2.5. Kullback-Leibler distance between two probability distributions

Let us consider two multivariate probability distributions P and Q on RD; for instance, P and Q

can be determined by two probability density functions fP (x) and fQ(x) defined for x ∈ RD. The
Kullback-Leibler (KL) divergence34,35 between P and Q, denoted as KL(P,Q), classically
measures how much Q differs from P . When the density functions fP and fQ are known, the
KL divergence KL(P,Q) is given by the explicit formula

KL(P,Q) =

∫
fP (x) log

fP (x)

fQ(x)
dx ≥ 0.

Note that KL(P,Q) ̸= KL(Q,P ) in general. One defines a symmetric KL distance36 between
P and Q by the formula:

KLdis(P,Q) = KLdis(Q,P ) = KL(P,Q) +KL(Q,P ) ≥ 0.

We have that KLdis(P,Q) = 0 if and only if P = Q

The KL distance has played a key part in theoretical and applied statistics for more than
40 years.37 It quantifies the discriminating power of the well-known log-likelihood statistical
test to discriminate between two probability models P and Q based on N random observed
vectors x1, . . . , xN of dimension D generated by an unknown probability distribution. This
log-likelihood test between P and Q is an optimal test that is based on comparing the log-
likelihood of observations x1, . . . , xN under P with their log-likelihood under Q. As such it
provides a most sensitive measure to compare signal intensities over multiple locations.

When the probability distributions P and Q have multivariate normal density functions
fP (x) and fQ(x), respectively, defined for all x ∈ RD, then fP and fQ are determined by their
respective mean vectors mP , mQ and their D×D covariance matrices SP , SQ. In this case, the
KL distance between P and Q is computed using the explicit formula:

KLdis(P,Q) = −D +
1

2
trace(S−1

P SQ + S−1
Q SP ) +

1

2
(mP −mQ)

T (S−1
Q S−1

P )(mP −mQ)
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where AT denotes the transpose of matrix A.

2.6. Discriminating score of boundary parcels

Within the average boundary mesh avMesh, we intend to identify which small cortical parcels
parD(i), D = 1, 3, 5, have high discriminating power between CTL and MDD subjects. To this
end, for each parcel, we introduce a notion of discriminating score as follows.

For any vertex VERi and boundary parcel parD(i) of size D centered around VERi, the
boundary vertices belonging to parD(i) are indexed by their D indices i1, i2, . . . , iD, with
i1 = i. For the n-th subject, these D vertices define a vector Wi(n) of D intensities pre-
computed above by registration of avMesh to the subject’s ReHo image I(n). Namely we set
Wi(n) = [Ji1(n), Ji2(n), . . . , JiD(n)].

Hence, we define two subsets of vectors H1 and H0 in RD of respective sizes N1 and N0

(N1 = 2, 289, N0 = 6, 104, here) by:

• H1 = set of all vectors Wi(n) such that subject n belongs to the MDD class
• H0 = set of all vectors Wi(n) such that subject n belongs to the CTL class

The N1 = 2, 289 observed vectors Wi(n) in H1 will be viewed as a sample of N1 random vectors
generated by a multivariate normal P1 with mean vector m1 and D × D covariance matrix
S1. Similarly, the N0 = 6, 104 vectors Wi(n) in H0 provide a sample of size N0 generated by
a multivariate normal P0 with mean vector m0 and D ×D covariance matrix S0. The vectors
m0,m1 and the matrices S0, S1 are unknown but can be estimated by the following sample
means and sample covariances:

mℓ =
1

Nℓ

∑
Wi(n)∈Hℓ

Wi(n), covℓ =
1

Nℓ

∑
Wi(n)∈Hℓ

(Wi(n)−mℓ)(Wi(n)−mℓ)
T , for ℓ = 0, 1.

When KLdis(P1, P0) is large, the two probabilities P1 and P0 are very different, meaning that
the boundary parcel parD(i) has potentially high discriminating power between the CTL
and MDD groups. Hence, we define the discriminating score scoreD(i) of boundary par-
cel parD(i) as the KL distance KLdis(P1, P0) computed above. Clearly, the computation of
scoreD(i) for parcel parD(i) need to be repeated separately for each boundary vertex VERi,
where i = 1, . . . ,K. This yielded K = 5, 020 discriminating scores scoreD(i) at granularity sizes
D = 1, 3, 5, with one score per boundary vertex VERi. We can then re-order the vertices VERi

in decreasing order of their discriminating scores and display them in 3D space on the average
boundary mesh avMesh. We applied the method described for granularity sizes D = 1, 3, 5.

2.7. Implementation of discriminating score analysis

The methods outlined above required about 20 hours of computing time on a standard laptop
to compute the three discriminating scores scoreD(i), D = 1, 3, 5, for each one of the K = 5, 020

boundary vertices VERi generated at scale 5x5x5. This led to a positive first assessment of
our methodology at a reasonable computing cost, and a substantial analysis of the spatial
continuity of our 3 discriminating scores.

Since the brain ReHo images of our UKBB-MDD dataset and the corresponding average
brain images were actually discretized at a finer scale 2x2x2 (mm), we have then used the freely
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available Mango software38 to generate, at scale 2x2x2, a new triangulated mesh avMesh2 of
L = 20, 025 boundary vertices Zs, s = 1, 2, . . . , L, densely located on the boundary of the average
brain. Of course, avMesh2 contained our initial coarser avMesh of K = 5, 020 boundary vertices
VERi, i = 1, 2, . . . ,K, discretizing the brain boundary at scale 5x5x5.

Our three discriminating scoreD(i), D = 1, 3, 5, initially computed for each VERi of avMesh
were then smoothly extended to scores scoreD(i), D = 1, 3, 5, for each Zs of avMesh2 using the
following fast spatial propagation algorithm. Specifically, for each vertex Zs of avMesh2, we
identified the list G(s) of all vertices VERi in avMesh which are at distance less than 5 mm from
Zs, and computed the discriminating score scoreD(s) of Zs as the average of scoreD(i) over all
vertices VERi belonging to G(s); this procedure was carried out for D = 1, 3, 5. This method
for spatial extension was useful to generate better 3D visualizations of the most significant
discriminating brain boundary vertices on avBrain.

2.8. Regional Vulnerability Index (RVI) calculations

RVI scores were calculated using the ‘RVIpkg’ in the R software based on our previous publi-
cation39 with some revisions. The original RVI calculated the correlational agreement between
an individual’s regional brain measures and the pattern of regional MDD-related brain cal-
culated using a standard atlas.5 Here, we used the regions identified by the cluster analysis
to compute the effect sizes for MDD cases vs. controls. Next, we used these effect sizes to
calculate RVI for each subject as the dot product between vectors Z = (Zi) and E = (Ei), nor-
malized by the dimensions of the vector using the equation RV I =

∑N
i=1 ZiEi, where Z is the

vector of deviation from the mean and E is the vector of meta-analytical effect size (Cohen’s
d coefficients) for the i-th regional measure for MDD. N is the dimension of the vector, i.e.,
the total number of imaging phenotypes for that modality. The modified RVI was calculated
for the whole-brain phenotype vector and for cortical, subcortical and white matter modali-
ties. Positive RVI values indicate that the regional pattern of an individual coincides with the
expected pattern of MDD based on the overall effect sizes. We compared effect sizes for the
RVI-MDD vs. the effect sizes obtained for individual regions identified by cluster analysis.

3. Results

3.1. Calculation of discriminatory boundary vertices

According to the procedure described in Sec. 2.3, for each one of the K = 5, 020 vertices
VERi from the brain boundary mesh, we computed three discriminating scores, namely,
score1(i), score3(i), score5(i), corresponding to the boundary parcels par1(i), par2(i), par5(i) of
sizes D = 1, 3 and 5, respectively, centered at each boundary vertex VERi. As explained above,
these scores quantify the discriminating power of statistical tests based on log-likelihood values,
using boundary parcels of different sizes. We implemented numerical simulations to compute
the respective statistical significance thresholds thr1, thr3, thr5 for score1(i), score3(i), score5(i).
For instance, whenever score3(i) < thr3, then vertex VERi has high probability of being not
discriminatory between the CTL and MDD groups. Table 1 reports the minimum (min),
median or 50%-quantile, 80%-quantile, significant thresholds (threshold) of the computed
discriminating scores and finally the percentages of significant mesh boundary vertices for
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score1, score3, score5. We note that the highest percentage (30%) of significant vertices is
reached with score3.

Table 1. Discriminating scores for granularity sizes 1, 3 and 5.

min median 80% quant threshold significant vertices (%)
score1 0 .009 .020 .015 27%
score3 0 .030 .051 .045 30%
score5 0 .040 .070 .070 20%

Fig. 2. Histograms of the discriminating scores score1, score3, score5 computed from the 5,020 brain
boundary vertices VERi of avMesh. Each plot displays horizontally the values of the discriminating
score and vertically the associated frequencies.

Fig. 2 displays the histograms of the discriminating scores score1, score3, score5. The figure
shows that the distribution of score1, which has a peak at score1 = 0, is very different from
the distributions of score3 and score5. In fact, after horizontal rescaling of scores values, the
distributions of score3 and score5 become similar. This remark is confirmed by the calculation
of the correlation matrix of score1, score3, score5, showing that score3 and score5 are highly
correlated (corr = 0.89), while score1 is weakly correlated to either score3 or score5.

3.1.1. Spatial stability of discriminating scores

Clearly, the value of the discriminating score scoreD(i) computed at a vertex VERi may be
sensitive to the granularity size D. To address this problem, we proceeded as follows.

For each brain boundary vertex VERi in avMesh, we denote as VERi∗ its closest neighbor
within avMesh and let d(i) be the Euclidean distance between vertices VERi and VERi∗.

For each vertex VERi and any dimension D, the relative change relchD(i) of the discrim-
inating score scoreD(i) when one replaces VERi by its closest neighbor VERi∗ is defined by
relchD(i) = |scoreD(i)–scoreD(i∗)|

scoreD(i) . To quantify the spatial stability of scoreD(i) around a boundary

vertex VERi, we compute its Lipschitz coefficient LipD(i) = relchD(i)
d(i) , measuring the sensitiv-

ity of the discriminating score to small spatial changes. Hence, for each discriminating score,
lower values of its Lipschitz coefficients indicate higher spatial stability of the score.

Fig. 3(a) displays the histograms of Lip1(i), Lip2(i), Lip3(i) and shows that Lip1(i) is
stochastically larger than Lip3(i) or Lip5(i). This implies that score1 is significantly less spa-
tially stable than score3 and score5. This observation is consistent with the plots of the three
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Fig. 3. (a) Histograms of the Lipschitz coefficients Lip1, Lip3 and Lip5 of the discriminating scores
score1, score3, and score5, respectively; (b) corresponding cumulative distribution functions of Lip1,
Lip3 and Lip5. Plots show that score1 is significantly less spatially stable than score3 or score5.

Cumulative Distribution Functions of LipD, for D=1,2,3, denoted as CDFD and shown in
Fig. 3(b). The figure shows that, for all x = LipD, one has that CDF1(x) ≤ CDF3(x) and
CDF1(x) ≤ CDF5(x), again confirming that score1 is significantly less spatially stable than
score3 and score5. In fact, the plot in Fig. 3(b) confirms that score3 is stochastically the most
spatially stable of the 3 scores computed.

3.2. 3D visualization of discriminatory boundary vertices

Based on the analysis presented above, we concluded that score3, at granularity size D = 3, is
the most spatially stable, in a precise mathematical sense, hence providing the most valuable
information about which boundary vertices have most discriminatory power. This granularity
size was shown perform better than granularity sizes D = 1 and D = 5. We focus henceforth
on this granularity size to report our graphic illustration of the most discriminatory boundary
vertices. Accordingly, Fig. 4 displays the boundary vertices having highest discriminatory
score using score3, the discriminating score computed at granularity size D = 3, overlaid on
rendered brain.

3.3. Score based parcellation of brain boundary and RVI results

Using the Mango software on avBrain at scale 2x2x2, we generated a triangulated mesh
avMesh2 of 20,025 vertices and, for each such vertex, we computed a discriminating score,
namely score3, as seen above.

The triangulated mesh avMesh2 contained p triangles {TR1, . . . , TRp}, with roughly p ≈
40, 000. We extended our discriminating score3 to each triangle TRj, by computing the average
of the scores of the 3 vertices of TRj. After reordering the list of our p triangles in decreasing
order of their discriminating scores, we partitioned this ordered list of triangles into 6 successive
sub-lists S1, S2, . . . , S6 of similar sizes, ranging from 6, 000 to 7, 000 triangles. Next, for each
i = 1, . . . , 6 we computed disjoint ”watertight” connected components of the sub-list Si. Recall
that a set W of triangles is called watertight connected if any two triangles T and T ′ in W

can be linked by some chain of triangles T1 = T, T2, . . . , Tr = T ′ where any pair of successive
triangles have one edge in common, and where r is any integer.

After completion of this procedure, for each sub-list Si, we obtained a partition of our
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Fig. 4. Boundary vertices with highest discriminating scores (using score3 above 80% quartile),
overlaid on rendered brain with different views.

initial set of p triangles into q disjoint watertight connected components C1, . . . , Cq. Each Cs

is a finite set of small triangles on the surface of the average brain, defining a connected
sub-region REGs of the brain surface. We kept only the regions REGs which have a large
enough area (i.e., more than 250 vertices) and implemented a simple procedure for pragmatic
regrouping of the very small sub-regions. At this point we obtained a score-based parcellation
of the brain surface into sub-regions denoted REGs, which we used to compute RVI values.

3.4. Effect sizes for ReHo values in clusters vs. RVI

The Cohen’s d effect sizes were calculated for the 28 spatial distinct components that were
identified based on the ability to discriminated between MDD cases and controls and were
larger than 200 connected vertices. The effect sizes varied from d = 0.25, p = 10−24 for the ReHo
values calculated for the highly discriminating component in Fig. 4 to d = 0.00, p = 1.00 for
the component that showed no effects of MDD. We next calculated the individual RVI using
the effect sizes for the 28 components. Subjects with MDD showed highly elevated RVI-MDD
versus controls (0.16 ± 0.01 vs -0.01 ± 0.01), Cohen’s d = 0.36, p = 10−55. We observed that
the effect size for RVI were numerically stronger than effect sizes for any of the individual
components, as shown in Fig. 5.

4. Discussion

Regional cerebral hypoperfusion in individuals with MDD was first described over three
decades ago.14,40,41 Specifically, with the hypoperfusion of limbic-frontal-temporal circuitry,42

this approach was deemed replicable, informative of the clinical state and predictive of treat-
ment outcome.14,43 Our study proposes and evaluates a novel approach to categorize and
parcellate the cortical landscape based on the balance between the size of the continuous re-
gion and the effect size to discriminate between cases and controls. This method achieves the
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Fig. 5. Effect-size of RVI compared to effect-size for individual components. For instance, the com-
ponent p11 represents the first parcellated region and the first cluster and and p01 represents the
tenth parcellated region and the first cluster respectively.

optimal granularity to quantify the effects of the illness on the brain that maintains high SNR
while preserving functional specificity to the areas that show effects of the illness. The pro-
posed methodologies can be viewed as development of a disorder specific atlas that is focused
on subdivision of the overall cerebral cortex into a set of 10 levels based on their ability to
discriminate cases versus controls. This regional variability in effect sizes is then used to build
a novel biomarker - RVI - that summarizes the agreement between individual brain patterns
and the expected pattern of the illness. We found that the RVI built on these regions showed
numerically higher effect size of the illness than the best effect sizes (level 1) for regional
measures (Cohen’s d=0.36 versus 0.25). This suggested that individual agreement with the
pattern served as a better phenotype than hypoperfusion in any single area of the brain, even
those specifically chosen to provide the best description.

We showed that effects of the ReHo-based measurements can be used to summarize hy-
poperfusion patterns in MDD. The granularity analyses demonstrated that areas with best
discrimination between MDD cases and controls involve middle and inferior frontal and pari-
etal regions that were previously identified by PET and SPECT studies.44,45 However, the
effect sizes for these regions were modest (∼0.22-0.25) suggesting that the lower ReHo values
in these areas in an individual are not specific to MDD and are unlikely to have clinical rel-
evance; a further detailed study on the clinical significance of these findings will be needed.
In contrast, the ReHo-based RVI for MDD built on the overall contrast across all ten levels
showed significant elevation in individuals with MDD and overall had numerically larger effect
sizes than these for regional ReHo. The RVI approach is not new or specific to ReHo. It was
first applied in schizophrenia, where higher RVI values for schizophrenia have been linked to
treatment resistance, cognitive deficits, to family risks for the disease2,5,5,39 and was shown to
be applicable to other illnesses or conditions.46,47 The RVI approach has been proposed as a
prospective tool for early detection of brain patterns shifting towards a particular condition,
and may provide an early predictive signal for other neurological and psychiatric illnesses.39,48

However, all previous work was focused on structural brain deficits. The novelty of this work
is to show the applicability of RVI for functional fMRI measures, here using ReHo, which
we posited as a proxy for rCBF signal and can potentially be altered by therapies such as
medication. It is also novel because the RVI was built on the regional measurements that were
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specifically identified for this purpose and balanced the size of the regions versus the disorder
related contrast. Still, how RVI measures derived using ReHo correlate with clinical measures
of MDD severity and whether there exist identifiable brain regions or patterns need to be
explored.

There are limitations to this study. This analysis was focused on evaluation of the MDD-
specific versus cortical-area parsed parcellation to tabulate effect sizes of MDD for further
RVI analyses. Future studies need to evaluate MDD-specific versus other connectivity-atlases.
It is likewise important to evaluate the ability of RVI calculated using MDD-specific versus
standard atlas approaches to predict clinical and cognitive variance among subjects. We cal-
culated rsfMRI ReHo signal that included global signal regression (GSR). The global signal
in rsfMRI data is associated with head motion, respiration and cardiac rhythms.49,50 GSR is
a necessary pre-processing step for ReHo analysis because these non-physiological factors can
artifactually increase ReHo through global autocorrelation51,52 and exerts complex effects on
ReHo measures.19,53 However, other studies demonstrated that GSR also carries diagnosis re-
lated variance.54–56 No analyses were performed to examine whether our study findings would
differ without GSR, a shortcoming of the rsfMRI data processing. In addition, testing of the
outcomes in this study were limited to subjects in the same cohort. The narrow aim of this
study was to evaluate the novel parcellation approach and show that RVI derived from these
regions carried higher effect size than the regions specifically selected for their high discrimi-
nation of illness effect. Follow up studies will evaluate if the pattern of MDD ReHo contrasts
can be replicated in other cohorts and further this pattern by performing meta-aggregation
to improve this disorder specific parcellation schema. In addition, our analysis did not focus
on MDD subtypes and this need to be considered in future studies.

The method presented in the manuscript can be extended to other types of neuropsychiatric
disorders where similar datasets are available with minimal changes. Future studies need to
examine the granularity size more extensively to allow for a wider range of scales. From the
viewpoint of computational cost, the method presented is scalable as the most computationally
expensive steps of the algorithm, namely vertex registration and score computation, are highly
parallelizable.

Acknowledgments

DL acknowledges support from Simons Foundation grant MP-TSM-00002738 and NIH grant
1RF1MH123163-01A1 (subaward); PK acknowledges support from NIH grants R01MH133812,
U01MH108148, R01NS114628, DP1DA048968, R01EB015611, and R01MH121246.

References

1. P. Kochunov, P. M. Thompson and L. E. Hong, Toward high reproducibility and accountable
heterogeneity in schizophrenia research, JAMA Psychiatry 76, 680 (2019).

2. P. Kochunov, F. Fan, M. C. Ryan, K. S. Hatch, S. Tan, N. Jahanshad, P. M. Thompson, T. G. van
Erp, J. A. Turner, S. Chen et al., Translating ENIGMA schizophrenia findings using the regional
vulnerability index: association with cognition, symptoms, and disease trajectory, Human Brain
Mapping 43, 566 (2022).

3. P. M. Thompson, O. A. Andreassen, A. Arias-Vasquez, C. E. Bearden, P. S. Boedhoe, R. M.

Pacific Symposium on Biocomputing 2025

659



Brouwer, R. L. Buckner, J. K. Buitelaar, K. B. Bulayeva, D. M. Cannon et al., ENIGMA and
the individual: Predicting factors that affect the brain in 35 countries worldwide, Neuroimage
145, 389 (2017).

4. P. M. Thompson, N. Jahanshad, C. R. Ching, L. E. Salminen, S. I. Thomopoulos, J. Bright,
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Alzheimer’s disease (AD) is a neurodegenerative disorder that results in progressive cognitive 
decline but without any clinically validated cures so far. Understanding the progression of AD is 
critical for early detection and risk assessment for AD in aging individuals, thereby enabling 
initiation of timely intervention and improved chance of success in AD trials. Recent pseudotime 
approach turns cross-sectional data into “faux” longitudinal data to understand how a complex 
process evolves over time. This is critical for Alzheimer, which unfolds over the course of decades, 
but the collected data offers only a snapshot. In this study, we tested several state-of-the-art 
pseudotime approaches to model the full spectrum of AD progression. Subsequently, we evaluated 
and compared the pseudotime progression score derived from individual imaging modalities and 
multi-modalities in the ADNI cohort. Our results showed that most existing pseudotime analysis 
tools do not generalize well to the imaging data, with either flipped progression score or poor 
separation of diagnosis groups. This is likely due to the underlying assumptions that only stand for 
single cell data. From the only tool with promising results, it was observed that all pseudotime, 
derived from either single imaging modalities or multi-modalities, captures the progressiveness of 
diagnosis groups. Pseudotime from multi-modality, but not the single modalities, confirmed the 
hypothetical temporal order of imaging phenotypes. In addition, we found that multi-modal 
pseudotime is mostly driven by amyloid and tau imaging, suggesting their continuous changes along 
the full spectrum of AD progression. 
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1.  Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder that results in progressive cognitive 
decline but without any clinically validated cures so far. Understanding the progression of AD is 
critical for early detection and risk assessment for AD in aging individuals, thereby enabling 
initiation of timely intervention and improved chance of success in AD trials. Current ATN 
framework (A for amyloid, T for tau, and N for neurodegeneration) used for AD classification and 
progression [1], however, relies on the dichotomous classification of individuals based on biomarker 
evidence of pathology (i.e., amyloid positive vs negative). Therefore, it is limited in capturing the 
full spectrum of AD progression, with early-stage individuals all treated as amyloid negative without 
differentiation.  

Recent pseudotime approach has achieved tremendous success in modeling the dynamic process of 
cell differentiation [2-4]. It turns cross-sectional data into “faux” longitudinal data to understand 
how a complex process evolves over time. This is critical for Alzheimer, which unfolds over the 
course of decades, but the collected data offers only a snapshot. Pseudotime analysis has only been 
recently applied to AD on gene expression data [5] and tau imaging data [6]. Both studies aim to 
order subjects on the trajectory curve, where the relative position on the trajectory, known as 
pseudotime, was leveraged as the progression score. Despite some promising results, pseudotime-
based imaging progression modeling remains less explored in the imaging data.  

In this study, we tested several state-of-the-art pseudotime approaches to model the full spectrum of 
AD progression using multi-modal imaging data in the ADNI cohort. Progression scores were 
generated from both single modalities and multi-modal imaging data for comparison. Our results 
showed that existing pseudotime tools designed for single cell analysis don’t generalize well to 
imaging data likely due to several underlying assumptions. Based on the most promising results 
yielded from PHATE, we found that all pseudotime, derived from either individual modalities or 
multi-modalities, well captured the progressiveness of diagnosis groups. Pseudotime from multi-
modality, together with those found in the single modalities, confirmed the hypothetical temporal 
order of imaging phenotypes, like the tau spreading across Braak regions and structural brain 
changes observed mostly in late stage. In addition, we observed that multi-modal pseudotime is 
mostly driven by amyloid and tau imaging, suggesting their continuous changes along the full 
spectrum of AD progression. In particular, pseudotime derived from multi-modal imaging data 
recapitulated the acceleration point of amyloid clock [7]. Taken together, our results indicate the 
great potential of pseudotime and imaging in modeling AD progression, and the necessity of novel 
pseudotime approaches for imaging data.  

2.  Materials and Methods 
2.1.  Participants 

Data used in this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (https://adni.loni.usc.edu/). The ADNI is a longitudinal study that was launched 
in 2003 to track the progression of AD by using clinical and cognitive tests, MRI, FDG-PET, 
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amyloid PET, CSF, and blood biomarkers. This study was approved by each participating site’s 
institutional review board. For more details about this study, see the previous report[8-14]. 

The study population was composed of participants from the ADNI-1, ADNI-2, and ADNI-GO 
stages [15]. Participants were classified as cognitively normal controls (CN), early mild cognitive 
impairment (EMCI), late mild cognitive impairment (LMCI) or AD. In total, we have 1684 
participants (455 CN, 321 EMCI, 551 LMCI and 357 AD) for MRI, 1041 participants (279 CN, 330 
EMCI, 231 LMCI, and 201 AD) for Amyloid-PET, and 540 participants (195 CN, 152 EMCI, 106 
LMCI, 87 AD) for Tau-PET. Out of those, 223 participants (95 CN, 58 EMCI, 40 LMCI, 30 AD) 
were found with complete set of multi- modal imaging data sets. Detailed demographic information 
of all participants is presented in Table. 1. 
 

 Table. 1. Demographic information of the ADNI participants 
   CN EMCI LMCI AD 
 
MRI 

Number 455 321 551 357 
Gender(M/F) 213/242 184/137 342/209 202/155 
Age(mean±sd) 73.96±5.98 72.10±7.22 74.26±7.44 75.17±7.79 
Educ(mean±sd) 16.46±2.60 16.05±2.67 15.94±2.87 15.27±2.88 

 
Amyloid-PET 

Number 279 330 231 201 
Gender(M/F) 131/148 188/142 136/95 121/80 
Age(mean±sd) 75.31±6.96 72.02±7.29 74.34±8.23 75.44±7.86 
Educ(mean±sd) 16.51±2.60 16.08±2.63 16.23±2.77 15.81±2.66 

 
Tau-PET 

Number 195 152 106 87 
Gender(M/F) 90/105 94/58 66/40 54/33 
Age(mean±sd) 74.24±789 74.00±7.77 74.64±8.33 77.00±8.76 
Educ(mean±sd) 16.93±2.34 16.25±2.70 16.08±2.69 15.71±2.36 

 
Multi- modality 

Number 95 58 40 30 
Gender(M/F) 38/57 37/21 24/16 16/14 
Age(mean±sd) 74.41±7.59 75.63±7.05 75.20±7.99 76.79±7.51 
Educ(mean±sd) 16.60±2.20 16.37±2.80 16.10±2.45 15.57±2.57 

 
2.2.  Imaging data 

All available baseline structural MRI scans were downloaded from ADNI for participants. Then 
Freesurfer version 5.1 was used to process MRI scans and extract whole-brain and region-of-interest 
(ROI)-based neuroimaging endophenotypes including volumes and cortical thickness determined 
by automated segmentation and parcellation [16-19]. Florbetapir PET scans for amyloid and 
flortaucipir PET scans for tau were downloaded from the ADNI and processed as described in 
previous report for acquisition and processing of PET scans [20-23]. Summary ROI SUVRs from 
amyloid-PET scans were intensity normalized using a whole cerebellum reference region to create 
standardized uptake value ratio (SUVR) images. Summary ROI SUVRs from Tau-PET scans were 
intensity normalized using an inferior cerebellar reference region to create uptake value ratio 
(SUVR) images. All imaging summary measures were further adjusted for age, sex, years of 
education and additionally intracranial volume for MRI, using the linear regression weights derived 
from cognitive normal patients. The adjustment was performed for each imaging modality 
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separately. In total, we have 84 volume and thickness measures from MRI, amyloid SUVR of 68 
cortical ROIs and tau burden in 72 ROIs. Subcortical regions were excluded for amyloid analysis 
since their amyloid burden has been commonly considered as non-specific and not related to AD 
risk.  

2.3.  Pseudotime analysis 

Cross-sectional imaging data only provide a snapshot of brain traits but could not directly reflect 
the disease progression process. Recent emerging pseudotime analysis makes it possible to 
recapitulate the temporal changes from cross-sectional data. Briefly, pseudotime analysis is a 
dimension reduction technique built on top of patient similarity networks, instead of raw features 
[24]. It can return a 2D dimension disease progression trajectory following a principal curve, and 
the relative position of individuals on the curve is known as pseudotime, ranging from 0 to 1, which 
can be leveraged as progression score. Taking PHATE [25] as an example, it starts with the 
similarity network, followed by a diffusion process to learn global relationships. Next, it encodes 
these learned relationships using potential distance, which will finally go through eigen 
decomposition to generate a two-dimensional trajectory. A principal curve along the trajectory will 
be generated and all subjects were projected onto the curve for estimation of pseudotime. Subjects 
with similar imaging profiles (in single modalities or multi-modality data) are well connected in the 
similarity network and therefore are expected to stay close in the trajectory curve, leading to similar 
pseudotime (or progression score). The pseudotime is expected to be low for cognitive normal 
individuals and early-stage patients, and high for late-stage patients.  
 

We conducted an imaging-based pseudotime analysis utilizing four established tools specifically 
designed for single-cell analysis. For simplicity, we did not model branches representing 
progression subtypes within this analysis. We tested Slingshot [2], Monocle3 [3], PHATE [25], 
Destiny [4] using summary measures from baseline MRI (N=1634), Amyloid-PET (N=843), Tau-
PET data (N=306) and multi-modalities (N=223) respectively. However, out of 4 tools, Slingshot 
and Destiny often generated pseudotime with flipped directions, with AD patients much lower than 
cognitive normal individuals. Similarly, disease progression trajectory from Monocle3 showed 
extremely poor separation of disease stages. Such poor generalizability to imaging data is likely due 
to some assumptions underlying those tools that only stand for single cell data. Consequently, the 
subsequent analysis was performed only on the results from PHATE.  

3.  Results 
3.1.  Imaging-based pseudotime captures the progressiveness of diagnosis groups 

Shown in Fig. 1 top are the disease progression trajectories (i.e., 2D embedding) generated from 
PHATE. For simplicity, we didn’t model the branches (i.e., progression subtypes) in this study. 
Thereby, all disease progression trajectories follow one principal curve, with diagnosis groups 
mostly separated. The principal curve is overall smooth across MRI and amyloid SUVR, but not for 
tau and multi-modalities, likely due to small sample size. Examining each single imaging modality 
individually, we observed that pseudotime progression score can well capture the progressiveness 
of diagnosis groups, with CN group having lowest pseudotime and AD group overall having the 
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highest pseudotime (Fig. 1). In addition, we also observed slight variation in pseudotime patterns 
along progression across modalities. MRI derived pseudotime differentiates diagnosis groups well 
after EMCI stage, but not earlier. For amyloid pseudotime, we observed clear progression pattern 
across all stages. For tau, pseudotime change is subtle between EMCI and LMCI, but becomes 
significant after progressing to AD. Taken together, it suggests that 1) amyloid change starts early 
and continues until late stage, 2) there are some changes of tau in early stages, which becomes very 
significant in late stage, and 3) brain atrophy starts around mid-to-late stages.  

We further examined the contributions of brain functional circuits to the final pseudotime 
progression scores. For each functional groups defined in Yeo Atlas [26], we averaged the 
normalized imaging measure of all member ROIs and tested its Pearson’s correlation with the 
progression score. For amyloid and tau (Fig. 2 top), all brain regions within default mode network 
(DMN) made significant contributions to the progression scores, with high correlation and small 
variation. But for MRI (Fig. 2 top), DMN regions showed variable correlations with progression 
score indicating their potential inconsistent atrophy rate and pattern along progression. Across all 
single modalities, all brain regions consistently showed the highest correlation with amyloid 
progression score. This suggests the continuous and consistent amyloid changes from CN to AD, 
which is in line with our observation in the progression score distribution across diagnosis groups. 
For multi-modal pseudotime progression score (Fig. 2 bottom), it was found most associated with 
amyloid and then tau, and default mode network regions remain the top contributors. Compared to 
single modality, we observed significant change in correlation of multi-modal progression score 
with brain atrophy, but not with amyloid and tau. This is likely due to the fact that significant brain 
atrophy doesn’t occur until the mid-to-late stage. Differences between patients in the early-to-mid 
stages are mostly captured by amyloid and tau changes, and therefore the overall multi-modal 
progression score is likely driven by the amyloid and tau measures.  
 

 
Figure. 1. Disease progression trajectory (top) and progression score distribution (bottom) derived from MRI, 
amyloid, tau and multi-modal brain imaging data respectively. ns: not significant with p>0.05; *: p<=0.05; **: 
p<=0.01; ***: p<=0.001; ****: p<=0.0001. 
 

Pacific Symposium on Biocomputing 2025

668



 
 

 

 

 

 
Figure 2. Correlation of brain regions with progression scores derived from single modalities (Top) and multi-
modalities (Bottom).  Brain regions were categorized into functional groups based on Yeo atlas.  
 

3.2.  Multi-modal pseudotime captures the turning point of amyloid clock 

We further examined the progression of amyloid composite SUVR along the estimated pseudotime 
progression score. With amyloid pseudotime, we observed an approximately linear relationship, 
which is expected as the pseudotime is built on top of patient similarities. Interestingly, when plotted 
against the multi-modal pseudotime, amyloid composite SUVR showed a sigmoid like progression 
pattern, which is frequently observed in recent amyloid clock studies [27]. The amyloid clock maps 
the accumulation of amyloid-beta plaques as individuals age and helps estimate how quickly 
amyloid pathology progresses from initial detectable levels to more advanced stages. In line with 
existing findings, Fig. 3b showed a turning point after which we observed a rapid increase in the 
rate of amyloid-beta plaque accumulation and the turning point is around the threshold to determine 
amyloid positivity [27]. In addition, we examined the impact of APOE e4 status on the progression. 
Shown in Fig. 3c is the age distribution of subgroups stratified by APOE e4 status and multi-modal 
pseudotime around the turning point. Here, X axis is the pseudotime estimated from multimodal 
imaging data using PHATE, and Y axis is the age when subjects progress to that severity stage. 
APOE e4 positive groups tend to reach the amyloid turning point at a much younger age than APOE 
e4 negative groups, suggesting e4 allele contributes to the accelerated disease progression.  
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Figure. 3 Association of Amyloid composite SUVR (Y axis) with Amyloid-specific pseudotime (a) and multi-
modalities-derived pseudotime (b). (c) Age distribution of subgroups stratified by APOE e4 status and multi-modal-
derived pseudotime progression score around the turning point. 
 

3.3.  Multi-modality pseudotime confirmed the hypothetical temporal order of imaging 
phenotypes. 

We further examined the pseudotime from combined MRI, Amyloid-PET and Tau-PET measures. 
In Fig. 4 is the fitted curve showing the progression pattern of brain-wide atrophy, amyloid and Tau 
deposition along the estimated pseudotime derived from multi-modal imaging data. Brain-wide 
atrophy was calculated as the average of normalized thickness and volume across the brain, and 
similarly for brain-wide amyloid deposition. For Tau, which is typically localized, we averaged the 
Tau deposition across brain regions associated with Braak stage 1, 3/4, and 5/6 respectively (1 for 
early stage and 6 for late stage). Hippocampal regions associated with Braak stage 2 were 
contaminated with off binding in the Tau-PET and therefore not included in the results. Fig. 4 
confirmed our findings from single modalities. It shows that noticeable changes in brain atrophy 
(MRI) only start after mid-to-late stages. Acceleration of amyloid accumulation (pseudotime around 
0.5) starts earlier than that of tau accumulation and atrophy. It also validated the tau spreading 
pattern inside the brain, where tau starts to accumulate in Braak 1 regions, then spread to Braak 3/4 
and Braak 5/6 regions. In line with previous findings that Tau-PET mirrors the regional patterns of 
neurodegeneration (i.e., brain atrophy observed on MRI) [28], we also found that overall tau 
pathology progression is tightly linked to atrophy with a similar acceleration point (multi-modal 
pseudotime around 0.75). However, early-stage changes observed in tau deposition, though subtle, 
did not occur in MRI.  Findings from both single modality and multi-modality pseudotime align 
perfectly with existing hypothetical progression models, suggesting the great potential of 
pseudotime analysis in AD progression modeling [29-32].  
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Figure. 4. Temporal ordering of multi-modal summary measures (Left) and Braak regions (Right) with pseudotime 
derived from multi-modal imaging data.  Bottom: brain regions associated with different Braak stages. Hippocampal 
regions associated with Braak stage 2 were contaminated with off binding in the Tau-PET and therefore not included 
in the results.  
 

4.  Discussion 

In this study we investigated imaging-based continuous disease progression using state-of-the-art 
pseudotime analysis tools. We examined the progression patterns captured from single imaging 
modalities and multi-modalities respectively. Imaging-based pseudotime progression score could 
well capture the progressiveness of diagnosis groups and hypothetical temporal order of dynamic 
brain changes, which were built on top of clinical observations. Notably, the multi-modal 
progression scores not only reflected the severity of the disease but also the rate of progression, 
revealing an amyloid acceleration point consistent with recent amyloid clock studies. Additionally, 
we validated the impact of APOE e4 status on AD progression, showing that e4-positive individuals 
reach the amyloid acceleration point at a significantly younger age compared to e4-negative 
individuals. These results suggested the potential of pseudotime approaches to model AD 
progression as a continuous process and could be utilized to supplement the current A/T/N 
framework for AD progression quantification.  

Despite these encouraging results, imaging-based pseudotime progression modeling remains 
underexplored. Several limitations warrant further investigation and improvement. Firstly, our study 
relied on cross-sectional data, not able to capture the short-term progression patterns that 
longitudinal data could provide. Secondly, linking estimated pseudotime to chronological age or 
years remains challenging, which limits the interpretation and clinical utility of the progression 
scores. Our results also demonstrated the overall poor generalizability of existing pseudotime 
analysis tools to imaging data, underscoring the need for the development of new tools tailored to 
imaging applications.  
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Alzheimer’s disease (AD) is a neurocognitive disorder that deteriorates memory and im-
pairs cognitive functions. Mild Cognitive Impairment (MCI) is generally considered as an
intermediate phase between normal cognitive aging and more severe conditions such as AD.
Although not all individuals with MCI will develop AD, they are at an increased risk of de-
veloping AD. Diagnosing AD once strong symptoms are already present is of limited value,
as AD leads to irreversible cognitive decline and brain damage. Thus, it is crucial to develop
methods for the early prediction of AD in individuals with MCI. Recurrent Neural Networks
(RNN)-based methods have been effectively used to predict the progression from MCI to
AD by analyzing electronic health records (EHR). However, despite their widespread use,
existing RNN-based tools may introduce increased model complexity and often face diffi-
culties in capturing long-term dependencies. In this study, we introduced a novel Dynamic
deep learning model for Early Prediction of AD (DyEPAD)∗ to predict MCI subjects’ pro-
gression to AD utilizing EHR data. In the first phase of DyEPAD, embeddings for each time
step or visit are captured through Graph Convolutional Networks (GCN) and aggregation
functions. In the final phase, DyEPAD employs tensor algebraic operations for frequency
domain analysis of these embeddings, capturing the full scope of evolutionary patterns
across all time steps. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets demonstrate that
our proposed model outperforms or is in par with the state-of-the-art and baseline methods.

Keywords: Alzheimer’s disease, early prediction, dynamic graphs, tensor algebra.

∗The source code is available at https://github.com/bozdaglab/DyEPAD
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1. Introduction

Throughout the past few decades Alzheimer’s disease (AD), once thought to be a rare dis-
order, has gained recognition as a major public health concern.1,2 According to the survey
data,3 AD affected more than 30 million people in 2015, and it is estimated that this number
could surpass 114 million by 2050. AD causes an irreversible decline in memory, mood, and
behavior, along with difficulties with everyday tasks and other cognitive challenges. Mild Cog-
nitive Impairment (MCI) is a condition characterized by observable cognitive decline, which
is generally considered as not sufficient to effect patients’ daily functioning. More importantly,
MCI serves as a critical stage for identifying individuals at risk of developing AD. Individuals
with MCI are at a higher risk of progressing to AD, with an annual progression rate between
10% and 20%.4 Although, to date, there is no complete cure for AD, there are treatments
to slow AD-related symptoms at their early stages. Therefore, to slow down AD progression
and avoid its worst effects, it is crucial to develop methods for the early prediction of AD in
individuals with MCI.

Many early prediction tools for AD mainly rely on image data, making use of advanced
imaging technologies like MRI, PET scans, and CT scans.2,5–8 However, even though image-
based approaches provide valuable insights, imaging is an expensive method and is not easily
accessible particularly for people in developing countries. Electronic health records (EHR)
consist of temporal sequences of clinical features. The longitudinal nature of EHR enables the
examination of patients’ medical history trajectories. These records have been utilized to train
machine learning (ML) models for classifying and clustering patient data, enhancing clinical
decision-making.9,10 However, traditional ML methods (e.g., Random Forest and SVM) fail
to account for the temporal dependencies in the data sequences.11 An effective method for
capturing the temporal patterns in sequential data is Recurrent Neural Networks (RNN).
However, irregular time intervals between consecutive inputs (i.e., clinical visits of patients),
a common occurrence in EHR, pose a challenge for RNN models.12 When intervals vary,
it disrupts the model’s ability to effectively capture temporal dependencies and may lead
to suboptimal performance. To address this challenge, Time-aware long short-term memory
(T-LSTM)13 has been introduced. T-LSTM modifies LSTM architecture to address challenges
arising from irregular time intervals between clinical visits. Another computational tool, named
Predicting Progression of Alzheimer’s Disease (PPAD),14 utilizes an RNN component where
patients’ ages at the time of clinical visits were utilized to handle varying time intervals
between clinical visits. More recently, time-aware RNN (TA-RNN) has been presented for
early prediction of AD.15 TA-RNN utilizes a time embedding layer that incorporates elapsed
time between consecutive visits to address lack of consideration of irregular time intervals
between consecutive inputs by RNN models.

To enhance graph analysis, Graph Convolutional Networks (GCN)16 has been introduced
as a more efficient variant of Graph Neural Networks (GNN). GCN utilizes a convolution
operation that aggregates information from multiple hops of neighbors. While GCN treats all
neighboring nodes equally during aggregation, Graph Attention Networks (GAT)17 employs an
attention mechanism to learn the importance of each neighboring node. In the context of early
diagnosis of AD, a GNN-based method has been introduced that constructs patient-patient
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graphs using image features from both MRI and PET scans.18 In addition, an interpretable
dynamic graph convolutional networks (IDGCN) integrates dynamic graph leaning into a
GCN architecture to improve the performance of personalized diagnosis for AD and provide
interpretable results.19

Even though these existing tools offer RNN-based solutions for the early diagnosis of
AD using EHR, they have some limitations. In all these approaches, RNN parameters are
updated using the entire sequence of time steps. While this methodology can capture sequential
patterns, it often leads to increased complexity and potential issues with learning long-term
dependencies due to RNN’s structural design. As sequences get longer, they tend to forget
earlier information, making it hard to capture patterns over extended periods. Additionally,
longitudinal data may have hierarchical temporal structures, such as monthly and yearly
patterns. RNN units often struggle to effectively capture these hierarchies. Furthermore, for
long sequences, RNN layers often encounter vanishing or exploding gradient problems, which
complicate the training process.

To address these limitations, in this study, we introduced a novel Dynamic deep learning
model for Early Prediction of AD (DyEPAD). DyEPAD consists of a two-phase training
process. In the first phase, DyEPAD learns latent representations (i.e., embeddings) of patients
at each clinical visit. For this, for each visit a patient similarity network is constructed. In each
graph, the nodes represent patients with attributes derived from the corresponding clinical
visit, and the edges capture the similarities between patients based on these visit attributes.
At each time step, node embeddings of the corresponding graph are learned using a GCN
layer and an aggregation function, which incorporates the node embeddings of the graph in
the previous visit. In the second phase of DyEPAD, spatiotemporal tensor is built by stacking
the embeddings learned in the first phase. Then, tensorial functions are employed to capture
full scope of evolutionary pattern in the data by mapping it into a non-linear feature space
and utilizing frequency domain representations.

We presented our experimental results on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)20 and National Alzheimer’s Coordinating Center (NACC)21 datasets to predict AD
diagnosis at the next visit and multiple visits ahead. Our experimental results show that our
proposed model outperforms or is in par with the state-of-the-art and baseline methods.

2. Methods

2.1. Preliminaries: Overview of Tensor Algebra

Multidimensional data is defined as arrays of numbers organized in more than two dimen-
sions, commonly known as tensors .22 Unlike traditional data structures such as vectors (1D)
or matrices (2D), tensors extend to higher dimensions, allowing for more complex data rep-
resentations. The dimensions of a tensor are called ways or modes. The number of modes
determines the order of a tensor. If, for example, A ∈ Rm×n×ℓ, then A is a third-order tensor.
Here, m could represent time, n could represent different patients, and ℓ could represent vari-
ous clinical measurements. The definitions presented in this section are fundamentally based
on recent advancements in Fourier theory and the algebra of circulants,23–28 which provide
powerful tools for analyzing multidimensional data. By using tensor-based methods, we can
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better capture and model the intricate relationships across multiple modes, which are often
lost in simpler, lower-dimensional representations like vectors or matrices.

It will be useful to divide a third-order tensor A into different slices and tubal elements as
shown in Fig. 1. In Python notation, A(i) ≡ A[i, :, :] refers to the ith frontal slice; A(i) ≡ A[:, i, :]
refers to the ithe horizontal slice; and A⃗(i) ≡ A[:, :, i] refers to the ith lateral slice.

(a) (b) (c) (d)

Fig. 1. (a) Frontal, (b) horizontal, (c) lateral slices, and (d) tubal scalars of a third-order tensor.

Definition 1. An element a⃗ji ∈ Rn×1×1 is called a tubal scalar of length n. a⃗ji ≡ A[:, j, i] refers
to the jth tubal scalar of ith lateral slice.

Definition 2. Let A ∈ Rm1×m2×m3 be a third-order tensor. Then unfold(A) maps the tensor
A into a m1× (m2 ·m3) matrix by stacking all the tubal scalars as the columns of the resultant
matrix. The operation that takes unfold(A) back to tensor form is the fold command:

A = fold
(
unfold(A)

)
.

Definition 3. Let A ∈ Rm1×m2×m3 be a third-order tensor, and let B ∈ Rm1×m1 be a matrix.
The mode-1 product of A and B, denoted A×1 B, is defined as:

A×1 B = fold
(
B ∗ unfold(A)

)
,

where ∗ denotes matrix multiplication.

Definition 4. The face-wise product multiplies each of the frontal slices of two tensors. Let
A ∈ Rm×n×k and B ∈ Rm×k×ℓ be third-order tensors. Then the face-wise product C = A∆B ∈
Rm×n×ℓ is defined by performing matrix multiplication between the corresponding frontal slices
of A and B as follows:

C = A∆B,

C(i) = A(i) ∗ B(i) for i = 1, . . . ,m.

2.2. Fundamental Tensor Operations

From a theoretical perspective, it is well known that block circulant matrices can be block
diagonalized by using the Fourier transform.29 Therefore, the multiplication, transpose, and
inverse operations on tensors were defined based on block circulant matrices and the Fourier
transform.23–26,30 Most recently, it was shown that these tensor operators can be effectively
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defined by performing an invertible linear transform along all tubal scalars of tensors, con-
ducting pair-wise matrix multiplications for all frontal slices of the tensors in the transform
domain.31 To this end, we will define tensor operators in the so-called transform domain. The
“L” subscript is used to represent any invertible linear transformation.

Definition 5. Let A ∈ Rm×n×k and B ∈ Rm×k×ℓ be third-order tensors. The tensor-tensor
product based on L transform, denoted A ◦L B ∈ Rm×n×ℓ, is defined as:

Ã = A×1 L,

B̃ = B ×1 L,

A ◦L B = (Ã∆B̃)×1 L
−1,

where L is an m×m invertible transformation matrix. L−1 is the inverse of the transformation
matrix. “×1” is the mode-1 product and “∆” is the face-wise product given in Definition 3
and Definition 4, respectively.

Definition 6. If A ∈ Rm×n×k, then the tensor transpose, denoted transposeL(A) ∈ Rm×k×n,
is defined by taking matrix transpose of each frontal slice of A in the transform domain as
following:

B = transposeL(A),
Ã = A×1 L,

B̃(i) = (Ã(i))T for i = 1, . . . ,m,

B = B̃ ×1 L
−1,

where “T” denotes matrix transpose.

2.3. The Proposed Method

Our proposed method, DyEPAD (Fig. 2), employs GCN layers to extract node (patient) em-
beddings from graph-structured EHR data. Each time step (visit) is trained in static network
manner, meaning that the GNN parameters are updated independently based on a specific loss
function for each time step. By doing so, the complexities of training an RNN unit are avoided.
Furthermore, our model incorporates advanced designs, such as dropout, batch normalization,
and mini- batch, which are present in static GNN-based learning methods.32–34 To capture
the evolutionary patterns of the patient embeddings across all time points in EHR, these
embeddings are subsequently subjected to tensor algebraic operations for frequency domain
analysis.

2.4. Graph Convolutional Networks and Embedding Aggregation

In DyEPAD, we construct a patient similarity network for each clinical visit. In this network,
nodes represent patients, and edges encode the similarities between patients based on their
EHR for that specific visit. Additionally, their EHR are also assigned as node features. For
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each clinical visit at time t, DyEPAD utilizes a GCN module to learn node embeddings as
follows:

Ht = σ(D
−1/2
t AtD

−1/2
t XtWt), (1)

for t = 1, 2, ..., n, where n is the total number of graphs (visits), and Xt ∈ Rm×d is the feature
matrix of nodes (m is the number of nodes and d is the feature size). At ∈ Rm×m and Dt ∈ Rm×m

are the adjacency and the node degree matrices, respectively. Wt ∈ Rd×ℓ is the learnable weight
matrix, σ is the activation function, and Ht ∈ Rm×ℓ is the node embeddings matrix. It is
important to note that the hidden layer size ℓ is determined by the column size of Wt. The
adjacency matrix At ∈ Rm×m was constructed using k -nearest neighbors (k was set to 5) based
on cosine similarities between patients’ EHR.

GCN layers of DyEPAD capture embeddings in a given graph-structured EHR at time
step (visit) t. To update the embeddings learned by the GCN layer based on the embeddings

Fig. 2. Graphical illustration of DyEPAD. (a) DyEPAD utilizes GCN layers to derive node em-
beddings from graph-structured EHR data, and subsequently employs aggregation layers (Agg.) to
aggregate the current embedding with those from the most recent previous visit. (b) The derived
embeddings are then processed through tensor algebraic operations for frequency domain analysis,
capturing the complete range of evolutionary patterns.
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of the most recent previous visit, DyEPAD employs an aggregation function. This function
makes the model dynamic by allowing it to adapt and update based on the most recent
visit, thus effectively capturing and reflecting the evolving nature of the data over time. In
traditional RNN architectures, Gated Recurrent Units (GRU) is used to process sequential
data by updating hidden states across all time steps. In our work, GRU was used in a non-
traditional way. Instead of processing sequences as part of an RNN, we applied GRU to
aggregate the current embedding with those from the most recent previous visit as follows:

Rt = sigmoid(HtWir + H̄t−1Whr),

Ut = sigmoid(HtWiz + H̄t−1Whz),

Nt = tanh
(
HtWin +Rt ⊗ (H̄t−1Whn)

)
,

H̄t =
(
(1− Ut)⊗Nt

)
+
(
Ut ⊗ H̄t−1

)
, (2)

where ⊗ denotes element-wise multiplication, Rt ∈ Rm×ℓ is the reset gate, Ut ∈ Rm×ℓ is the
update gate, and Nt ∈ Rm×ℓ is the new state matrices for a given time step t. Wir and Whr are
the parameters for the reset gate. Wiz and Whz are the parameters for the update gate. Win

and Whn are the parameters for the new state. H̄t ∈ Rm×ℓ is the updated embeddings for given
input embeddings Ht ∈ Rm×ℓ (current state embeddings) and H̄t−1 ∈ Rm×ℓ (previous updated
state embeddings).

We then employ two fully connected layers as follows:

p = sig
(
σ(H̄tW̄1)W̄2

)
, (3)

where σ is the activation function for the first layer, and sig denotes the sigmoid activation
function.

To learn model parameters, we use binary cross entropy (BCE) loss function for each time
point. The loss function for a single prediction can be defined as:

Loss = −
(
ylog(p) + (1− y)log(1− p)

)
, (4)

where y is the ground truth binary label (0 denotes MCI, and 1 represents AD labels), and p

is the predicted probability. Adam optimization35 is used as the state-of-the-art for stochastic
gradient descent algorithm.

2.5. Spatiotemporal Tensor Representation of Embeddings

The patient embeddings learned by GCN and GRU in the previous step can be structured as
a spatiotemporal tensor, where the dimensions correspond to time, patients, and patient em-
beddings as shown in Fig. 2(b). This spatiotemporal tensor preserves the intrinsic correlations
present in the data while enabling to capture complex patterns across multiple dimensions.

H(t) = H̄t for t = 1, 2, . . . , n. (5)

H ∈ Rn×m×ℓ is a spatiotemporal tensor where each frontal slice (H(t)) is the patient embedding
matrix at time t (see Eq. (2)). Since there is no aggregation unit at time step 1 (Fig. 2(a)),
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H̄1 is equal to H1 (see Eq. (1)). To process the spatiotemporal tensor, we utilize gram tensors
as described in Theorem 1 as follow:

Theorem 1. Let H(i) ∈ Rn×1×ℓ and H(j) ∈ Rn×1×ℓ be horizontal slices of the spatiotempo-
ral tensor H ∈ Rn×m×ℓ (Eq. (5)). The gram tensor G ∈ Rn×m×m for third-order tensors is
constructed as follows:

k
(
H(i)),H(j)

)
=
(
H(i) ◦L transposeL(H(j)))

)d
,

g⃗j
i = k

(
H(i)),H(j)

)
.

The kernel function applied to H(i) and H(j), denoted as k
(
H(i)),H(j)

)
, results in g⃗j

i which
is a tubal scalar of G defined in Definition 1. This tensorial polynomial function was built
upon on the inner product of two horizontal slices. We used the tensor-tensor multiplication
(Definition 5) and the tensor transpose operation (Definition 6).

Proof. As each frontal slice of the gram tensor is a kernel matrix in the transform domain.

G̃ = G ×1 L (transform domain representation),

It has been demonstrated that the quadratic form αT G̃(t)α is non-negative for all vectors
α ∈ Rm.36,37 As this implies that the frontal slices (G̃(t)) are positive semi-definite in the
transform domain, G̃ is a collection of positive-definite gram matrices.

Each horizontal slice of a spatiotemporal tensor represents a patient. Each tubal scalars
of a spatiotemporal tensor provides a sequence of embeddings over time. In matrix algebra,
inner product of two vector gives a scalar. Each sample (horizontal slice) of the spatiotemporal
tensor can be vectorized and a downstream task can be applied using matrix algebra. However,
vectorizing samples destroys the spatial and temporal correlation within each sample. In our
case, inner product of two horizontal slices provides a tubal scalar, as shown inTheorem 1. By
doing so, we keep all the spatial and temporal correlation within each sample while computing
the inner product between samples.

To learn non-linear patterns by implicitly mapping data into a higher-dimensional space,
we need to construct gram tensors. Let G(1),G(2), · · · ,G(q) be selected q horizontal slices of the
spatiotemporal tensor H (Eq. (5)) for training. Similarly, let K(1),K(2), · · · ,K(w) be selected
w horizontal slices of the spatiotemporal tensor H for testing. Gram tensors for training,
G ∈ Rn×q×q, and for testing, K ∈ Rn×w×q, can be constructed as follows:

G =


k(G(1),G(1)) k(G(2),G(1)) · · ·k(G(q),G(1))
k(G(1),G(2)) k(G(2),G(2)) · · ·k(G(q),G(2))

...
...

...
k(G(1),G(q)) k(G(2),G(q)) · · ·k(G(q),G(q))

 ,

K =


k(G(1),K(1)) k(G(2),K(1)) · · ·k(G(q),K(1))

k(G(1),K(2)) k(G(2),K(2)) · · ·k(G(q),K(2))
...

...
...

k(G(1),K(w)) k(G(2),K(w)) · · ·k(G(q),K(w))

 .
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As outlined in Theorem 1, each frontal slice of a gram tensor is a kernel matrix in
the transform domain. Therefore, G̃ and K̃ represent the transform domain representation
of the gram tensors G and K, respectively. To perform a classification task, we first need to
integrate the multiple kernel matrices (frontal slices) in the gram tensor. To this end, we uti-
lized Easy Multiple Kernel (EasyMKL) learning algorithm.38 EasyMKL employs a minimiza-
tion–maximization learning criterion to determine the optimal weighting of multiple kernel
matrices, thereby maximizing the margin between two classes and improving classification
performance. We want to find the best parameter combinations for the frontal slices of the
gram tensor G̃ by solving:

max
η:||η||=1

min
γ∈τ

(1− λ)ηT y
(( n∑

i=1

ηiG̃(i)
)
y
)T

γ + λ||γ||2, (6)

where y represents the target labels corresponding to visit n+1. We note that the spatiotempo-
ral and gram tensors need to be constructed based on the first n visits. To learn the learnable
parameters in Eq. (6), the target labels of the training set at visit n + 1 were utilized along
with the gram tensor G̃ constructed for training. η is a learnable vector used to weight the
linear combination of the kernel matrices (frontal slices G̃(i)). η is constrained to lie on the
unit sphere. Mathematically, this is expressed as ||η|| = 1. γ is another learnable parameter
that is adjusted to minimize the objective function for a given η. The values of γ need to
be optimized within a constrain set τ . λ (0 ≤ λ ≤ 1) represents a regularization term that
penalizes the magnitude of γ.

As shown in Algorithm 1, to solve the min-max problem, we decomposed the problem
into two stages: first, we addressed the inner minimization problem over γ, and and then we
solved the outer maximization problem over η. We employed convex optimization techniques
to solve the inner maximization problem, utilizing the solvers available in the CVXPY library
for Python. The outer maximization problem was solved using gradient ascent algorithms.
We updated η iteratively (Algorithm 1 line:8) while ensuring it satisfies the unit norm
constraint (Algorithm 1 line:9).

After learning the learnable parameters η and γ, the predictions can be computed for the
test set K̃ as following:

ŷ = (

n∑
i=1

ηiK̃(i))γ,

pj =
1

1 + exp(ŷj)
,

where ŷ is the vector of raw prediction scores, and pj is the probability of the raw score ŷj.
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Algorithm 1 Min-Max Optimization Algorithm

1: Input: Initial vector η, regularization parameter λ, vector y, matrices {G̃(i)}ni=1, constraint
set τ , step size α, tolerance ϵ

2: Output: Optimized vectors η and γ
3: Normalize η ← η

∥η∥
4: while true do
5: ηprev = η
6: Compute γ(η) by solving

γ(η) = argmin
γ∈τ

(1− λ)ηT y

((
n∑

i=1

ηiG̃(i)
)
y

)T

γ + λ∥γ∥2


7: Calculate gradient:

∇ηJ(η) = (1− λ)∇η

ηT y(( n∑
i=1

ηiG̃(i)
)
y

)T

γ(η)


8: Update η:

η ← η + α∇ηJ(η)

9: Project onto unit sphere:

η ← η

∥η∥
10: if ∥η − ηprev∥ < ϵ then
11: Break
12: end if
13: end while
14: Return: η and γ

3. Results

3.1. Datasets

In this study, we utilized longitudinal data from two large AD databases: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the National Alzheimer’s Coordinating Center
(NACC) database.

The ADNI (adni.loni.usc.edu) was launched in 2003 as a public–private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD. Since it has
been launched, the public–private cooperation has contributed to significant achievements
in AD research by sharing data to researchers from all around the world. The NACC, a
comprehensive repository of data from several research sites across the United States, was
specifically designed to aid research focused on understanding, diagnosing, and treating AD.

ADNI and NACC databases include data from cognitive performance tests, MRI scans,
CSF analysis, demographic information, and diagnostic labels. However, only longitudinal
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data were considered in this study, including cognitive performance tests, MRI scans, CSF
analysis, and diagnostic labels that are AD and MCI. We preprocessed the data following
the steps in PPAD method .14 Missing values were imputed using k -NN algorithm, where we
used average values from the nearest k neighbors with the same diagnosis (i.e., MCI or AD),
employing the Euclidean as the distance metric and setting k to 5. To maintain data quality,
we removed visits and features with ≥ 40% and ≥ 60% missing rate, respectively.

For the ADNI dataset, the original dataset comprised 15,087 records for 2,288 distinct
patients, with each record representing a patient visit with 115 features. After preprocessing,
the dataset had 20 longitudinal features for 1,169 patients across 5,759 visits, derived from
cognitive performance tests and MRI scans. CSF analysis features were excluded due to sig-
nificant missing data. For the NACC dataset, the original dataset comprised 172,026 records
(i.e., visits) with 1024 features for 46,513 distinct patients. After preprocessing, the dataset
had 5 longitudinal features for 8,121 patients across 35,423 visits, derived from cognitive per-
formance tests. MRI scans and CSF analysis features were excluded due to significant missing
data. Finally, we focused on patients with at least seven visits for training and model evalua-
tion. This resulted in a final ADNI dataset of 20 longitudinal features for 250 patients and a
final NACC dataset with 5 longitudinal features for 1,414 patients.

3.2. Next Visit Prediction

We trained DyEPAD on longitudinal EHR data to predict conversion of MCI patients to AD
at the next visit. The experiments were performed on ADNI and NACC datasets separately
and the results were compared with the state-of-the-art methods (i.e., GCN, GAT, T-LSTM,
PPAD, and TA-RNN) as well as baseline methods, namely Random Forest (RF) and Support
Vector Machine (SVM). For both datasets, the first six visits were considered to train the
models. We measured the performance of all methods based on the visit number 7. Since RF
and SVM cannot handle longitudinal data, we stacked all six visits’ feature matrices to train
these models. For GNN-based methods, the adjacency matrices were constructed using k -NN
method (see Section 2.4). We evaluated all the methods on ten different randomly generated
training and test splits. The number of patients selected for training was 80% of the total
number of patients, while 20% were used for testing.

Table 1 demonstrates that our proposed approach DyEPAD outperformed all the state-of-
the-art and baseline methods for both datasets for all three evaluation metrics. As outlined
in Section 2.1 and 2.2, any invertible linear transformation can be used for our tensor op-
erations. In our experiments, we used the discrete Fourier transform (DFT)39 and discrete
Hartley transform (DHT).40 Although, both transformations resulted similar predictive per-
formance, compared to the DFT, the DHT has the advantage of converting real functions
into real functions, without the need for complex numbers. Therefore, running DyEPAD with
DHT is more computationally efficient than running DyEPAD with DFT.40

3.3. Multiple Visits Ahead Prediction

In this subsection, we evaluated how well our proposed DyEPAD model performed at pre-
dicting conversion to AD in multiple visits ahead. We compared our results to TA-RNN and
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Table 1. The reported values on ADNI and NACC datasets repre-
sent the averages along with standard deviations, based on ten runs,
for three performance measures, namely: Accuracy, Macro F1 and
Area Under the ROC Curve (AUCROC). Best values are shown in
bold.
Dataset Method Accuracy Macro F1 AUROC

ADNI

SVM 0.594± 0.040 0.570± 0.045 0.572± 0.045
RF 0.566± 0.048 0.550± 0.047 0.550± 0.046
GCN 0.661± 0.032 0.642± 0.033 0.642± 0.032
GAT 0.685± 0.044 0.659± 0.035 0.660± 0.037
PPAD 0.896± 0.035 0.893± 0.036 0.895± 0.034

TA-RNN 0.883± 0.043 0.880± 0.043 0.885± 0.040
T-LSTM 0.819± 0.145 0.778± 0.212 0.806± 0.157

DyEPAD (DFT) 0.900± 0.035 0.895± 0.035 0.896± 0.035
DyEPAD (DHT) 0.898± 0.038 0.893± 0.035 0.894± 0.038

NACC

SVM 0.773± 0.032 0.710± 0.032 0.690± 0.037
RF 0.754± 0.030 0.688± 0.033 0.674± 0.036
GCN 0.797± 0.032 0.742± 0.036 0.723± 0.044
GAT 0.789± 0.035 0.735± 0.037 0.717± 0.042
PPAD 0.950± 0.010 0.892± 0.023 0.878± 0.033

TA-RNN 0.944± 0.011 0.880± 0.024 0.867± 0.031
T-LSTM 0.935± 0.033 0.824± 0.153 0.812± 0.135

DyEPAD (DFT) 0.950± 0.009 0.901± 0.014 0.900± 0.020
DyEPAD (DHT) 0.952± 0.007 0.902± 0.014 0.905± 0.018

PPAD only, as the other methods are not designed to predict multiple visits ahead. All these
methods were trained using the first three, four, and five visits of ADNI and NACC datasets
and evaluated the performance on the seventh visit. The results in Figure 3 illustrate that
DyEPAD performs comparably to the top state-of-the-art methods. In DyEPAD, tensorial
functions operate via a linear transform to capture evolutionary characteristic in the data.
However, applying a transform to a very short discrete signal may fail to capture periodic
components, trends, and other evolutionary characteristics in the data. Therefore, not sur-
prisingly, we observed that the performance of DyEPAD increased as the interval between the
visits decreased. While this finding highlights the potential of DyEPAD, it also underscores
a limitation that the model’s effectiveness may be constrained by the granularity of the in-
put data. In cases where patient visits are infrequent, the model may struggle to capture the
dynamic nature of the underlying processes, potentially affecting its predictive accuracy.

3.4. Ablation Study

To assess the impact of deactivating various components of the proposed architecture on the
model’s performance, we conducted an ablation study. Specifically, to examine the impact
of the tensorial functions and the aggregation layers, we compared the performance of the
proposed DyEPAD architecture with two variants of DyEPAD: 1) we used an identity trans-
formation, instead of the DHT; 2) we disabled the GRU layers and the embeddings were
computed based on the GCN layer at that time point. We conducted the experiments on both
ADNI and NACC datasets according to the experimental settings outlined in Section 3.2. The
results given in Table 2 show that both the frequency domain representation and aggregation
functions were crucial for capturing full scope of evolutionary patterns, as demonstrated by
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Fig. 3. Comparison of the performance of DyEPAD for different scenarios on (a) ADNI and (b)
NACC datasets. Scenario a 7→ b denotes that the first a consecutive visits were utilized to train the
model and bth visit was used for testing.

the superior performance of the original DyEPAD architecture for both datasets. We observed
that for both ADNI and NACC datasets, the effect of the transform domain representation
on the predictive performance was higher than the effect of the aggregation component. An
identity transformation maps any element to itself. This means that we cannot capture any
frequency components or patterns within the data because no change is applied to transform
the data into the frequency domain or any other domain that might highlight such features.
We can still used tensor operators, however the data remains in its original state, preserving its
initial structure and values without revealing underlying periodicity or frequency information
that a transform like the DHT would provide. This suggests that the considering a feasible
invertible linear transformation is crucial in DyEPAD.

Table 2. The average Macro F1 and AUROC scores of different variants of DyEPAD on
ADNI and NACC datasets over ten runs. Best values are shown in bold.

Variants of DyEPAD
ADNI NACC

Macro F1 AUROC Macro F1 AUROC
DyEPAD without any transformation 0.651± 0.071 0.654± 0.072 0.691± 0.019 0.718± 0.024

DyEPAD (DHT) without GRU 0.757± 0.074 0.754± 0.073 0.872± 0.028 0.868± 0.033
Proposed DyEPAD (DHT) architecture 0.893± 0.035 0.894± 0.038 0.902± 0.014 0.905± 0.018

4. Conclusions and Future Work

This paper presents a novel approach for predicting the progression of MCI subjects to AD
using longitudinal EHR. Our proposed method, DyEPAD, captures latent space representa-
tions of EHR at each time step by utilizing GCN and GRU layers. We also use tensor algebraic
operations for frequency domain analysis of these embeddings, capturing the complete range
of evolutionary patterns across all time steps. The experimental outcomes reveal a notable
superiority of DyEPAD over both state-of-the-art and baseline methods for most cases. Fu-
ture work will aim to assess DyEPAD’s performance on additional longitudinal biomedical
datasets and examine the impact of different transformations and aggregation functions on
its performance.
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practices, and this disconnect is expanding rapidly every day (with the emergence of synthetic data and 

digital twins and more widely adopted Artificial Intelligence (AI)/Machine Learning tools). Transparency 

alone is insufficient to bridge this gap. Concurrently, there is an increasingly complex landscape of laws, 

regulations, and institutional/ programmatic policies to navigate when engaged in biocomputing and digital 

health research, which makes it increasingly difficult for those wanting to “get it right” or “do the right 

thing.” Mandatory data protection obligations vary widely, sometimes focused on the type of data (and 

nuanced definition and scope parameters), the actor/entity involved, or the residency of the data subjects. 

Additional challenges come from attempts to celebrate biocomputing discoveries and digital health 

innovations, which frequently transform fair and accurate communications into exaggerated hype (e.g., to 

secure financial investment in future projects or lead to more favorable tenure and promotion decisions). 

Trust in scientists and scientific expertise can be quickly eroded if, for example, synthetic data is perceived 

by the public as “fake data” or if digital twins are perceived as “imaginary” patients. Researchers appear 

increasingly aware of the scientific and moral imperative to strengthen their work and facilitate its 

sustainability through increased diversity and community engagement. Moreover, there is a growing 

appreciation for the “data work” necessary to have scientific data become meaningful, actionable 

information, knowledge, and wisdom–not only for scientists but also for the individuals from whom those 

data were derived or to whom those data relate. Equity in the process of biocomputing and equity in the 

distribution of benefits and burdens of biocomputing both demand ongoing development, implementation, 

and refinement of embedded Ethical, Legal and Social Implications (ELSI) research practices. This 

workshop is intended to nurture interdisciplinary discussion of these issues and to highlight the skills and 

competencies all too often considered “soft skills” peripheral to other skills prioritized in traditional 

training and professional development programs. Data scientists attending this workshop will become 

better equipped to embed ELSI practices into their research. 

Keywords: bioethics, data privacy, data work, health research, synthetic data 
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1.  Introduction 

The breadth of this workshop is deliberate, intended to bring together scholars from diverse 

areas of expertise and to promote interdisciplinary understandings foundational to the 

development and use of digital twins for biomedical research.1 This effort responds to growing 

recognition of need for an interdisciplinary workforce prepared to seize opportunities and 

overcome challenges for digital twins, exemplified by the recent recommendations of the National 

Academies of Sciences, Engineering, and Medicine.2,3  

 

The title of this workshop—All Together Now: Data Work to Advance Privacy, Science, and 

Health in the Age of Synthetic Data—itself is significant, with multiple levels of meaning to shine 

light on areas in which biocomputing can be enhanced. The reference to “all together now” refers 

not only to the importance of interdisciplinary, multidisciplinary, transdisciplinary collaboration 

but also to participatory, community-engaged research and collaborative governance. “Data work” 

draws attention to recent anthropological scholarship4,5 as well as the novel biocomputing 

approaches that are now possible (e.g., synthetic data and digital twins, see, e.g.,  Foraker et al.6, 

Moore et al.7). The explicit mention of “privacy, science, and health” is intended to draw attention 

to three distinct but interconnected international human rights (Articles 12, 27, and 25(1) of the 

Universal Declaration of Human Rights, respectively) that underlie ongoing debates about AI 

governance around the world and influence Fair Information Practice Principles (FIPPs), FAIR 

guiding principles for scientific data,8 CARE principles9 and more. The scope of this workshop is 

further intended to help attendees situate their biocomputing research more deliberately within the 

revised National Institute on Minority Health and Health Disparities (NIMHD) research 

framework for digital health equity.10 

 

In this workshop, we will begin by highlighting scholars who routinely utilize synthetic data, 

digital twining, ‘fake’ data, simulations, or other obfuscation of data to ensure data privacy. They 

will present on how this limits the utility of data and/or their explainability. To address the tension 

these data present for public engagement, we will have community, implementation scientists, and 

communication scholars present on best practices on how these new data technologies can (and 

should) be incorporated into community engagement activities, to ensure that all populations have 

access to these new scientific approaches and insights. Workshop attendees will learn approaches 

to manage the gap between a) public expectations of science or assumptions of how biocomputing 

is performed, and b) the reality of the modern healthcare system, methodologic innovations within 

the biomedical research data ecosystem. 
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2.  Workshop Topics and Presenters 

2.1.  Opportunities and Challenges of Synthetic Data, Digital Twins, and Data Governance  

2.1.1.  Expanding Information Accessibility through Synthetic Data 

Presented by: Randi Foraker, PhD, MA, FAHA, FAMIA, FACMI (University of Missouri) 
 

Synthetic healthcare data allow informaticians, data scientists, and clinicians to unlock siloed 

data and provide access to clinical researchers and consumers (e.g., students, citizen scientists) for 

improving the health of patients. The core benefit of synthetic data in medicine is that they can 

address obstacles to rapid research, methods development, and data sharing by representing the 

trends and relationships in the data without exposing the individual patients, and data — and 

therefore knowledge — can be shared while protecting individuals’ privacy. This talk will explore 

the current and future state of synthetic data, highlighting its ability to support data sharing, to 

address privacy and confidentiality, and to advance national and international initiatives. The 

presenter will share their own work with synthetic data, which spans statistical validation 

(comparing results of analyses between real and computationally derived data); national and 

international research partnerships; and leveraging synthetic data for informatics, biostatistics, and 

data science education.  

2.1.2.  The Role of Synthetic Data in Patient Privacy, Healthcare, and Biomedical Research 

Presented by: Jason Moore, PhD, FACMI, FIAHSI, FASA (Cedars-Sinai Medical Center)  
 

Paramount to healthcare and biomedical research is the protection of patient privacy and the 

security of their data. Synthetic data may address these concerns by providing artificial data points 

that preserve the correlation structure and patterns of the original patient data. The presenter will 

review artificial intelligence methods the generation of synthetic data and their use in clinical and 

biomedical research. These will include deep learning and large language model approaches. They 

will highlight several use cases from the literature and will discuss the use of synthetic data for 

creating digital twins that might improve the prediction of clinical outcomes. Limitations and 

challenges of these methods will be discussed. 

2.1.3.  The Long View on Emerging Data Science Technologies 

Presented by: Anjali Deshmukh, MD, JD (Georgia State University College of Law) 
 

This talk will examine emerging data technologies in children, focusing on privacy, longitudinal 

impacts, and FDA regulation. Real world data of children’s health outcomes are difficult to obtain 

and analyze, and technologies including digital twins have the potential to solve the current 

limitations of claims data. Yet, the potential benefits must be considered against the risk. Current 

data policy choices will impact children’s privacy rights and drug safety over the long-term. 

Therefore, understanding current FDA regulations and creating regulatory flexibilities to optimize 

outcomes for children over their lives is important.  
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2.1.4.  Technical Approaches to Balance Patient Privacy and Shared Analytic Utility  

Presented by: John Wilbanks (Astera Institute) 
 

National biobanks such as the UK Biobank, the All of Us Research Program, and similar 

emergent state-level efforts around the world hold the promise of driving novel research on large, 

diverse participant cohorts. Many such biobanks simultaneously center ideals of aggressive 

participant empowerment and Open/FAIR science, which can create tensions between protecting an 

individual patient's privacy while seeking thousands of researchers to generate analysis and insights. 

Some privacy-enhancing technology approaches can enable multi-party computation, or create 

synthetic data sets, which can introduce other tensions between data availability and data trustability. 

This talk will explore how intentional choices in cloud architecture can address these tensions, with 

specific examples drawn from the All of Us Researcher Workbench and the Broad Institute's Data 

Science Platform.   

2.2.  Data Work from the Perspective of Scholars in Community Engagement, Ethics, and 

Science Communication 

2.2.1.  Biorepositories and Group Harm: A Choice Architecture for Researchers 

Presented by: Meg Doerr, MS LGC (Sage Bionetworks) 
 

This talk will help workshop participants (1) distinguish between individual and group harm 

from research; (2) appreciate why group harm should be a primary consideration of AI researchers 

and those that enable AI research including data access committees, ethics boards, and funders; (3) 

renew their understanding of current regulations on individual and group harm in research; and (4) 

learn about new tools (created in a project funded by the Robert Wood Johnson Foundation) to aid 

researchers, data access committees, ethics boards, and funders in enabling responsible AI-driven 

research. 

2.2.2.  Nothing About Us, Without Us Leading 

Presented by: Maile Tauali‘i, PhD MPH (Hawaii Permanente Medical Group) 
 

Indigenous Peoples are often the target of research and not the owners of the research process. 

We are also domestically dependent under nations and are often subjected to rules and decisions 

made about us and not with us. So, when we speak about “own-voice” research, we are speaking in 

opposition to colonial settler science which subjects us to decisions made without us. We want our 

voices heard. Learning objectives: 1) Participants will be able to identify 3 laws that uphold 

Indigenous ownership of data 2) Participants will have 3 strategies to respectfully engage with 

Indigenous Peoples 3) Participants will learn 3 examples where Indigenous Peoples rights were 

violated by scientists.  

2.2.3.  Bounded Justice, the Performance of Trust, and Anti-Racism in Biocomputing 

Presented by: Melissa C. Creary, PhD, MPH  (University of Michigan) 
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Drawing upon her prior published works on bounded justice, the public performativity of trust11 

and the application of anti-racism in informatics,12 the speaker will discuss best practices for 

fostering community engagement while simultaneous embracing new data practices for 

biocomputing.  

2.2.4.  Communication Data, Communicating Science 

Presented by: Jasmine McNealy, PhD, JD  (University of Florida) 
 

The hallmark of any interaction between scientists and the public is communication. 

Communication is important for developing and sustaining relationships, for building trust, and 

enhancing partnerships. Effective communication is important for interactions with marginalized 

and/or vulnerable communities, especially those whose distrust of biomedical researchers is born of 

past missteps and harmful programs. Therefore, scientists should be able to communicate with both 

media and publics beyond those connected to academia and scholarly research. This is particularly 

important for helping the public to understand novel data practices. 

2.2.5.  Soulful Innovation: A New Framework to Create Responsible Technologies of the 

Future 

Presented by: Samira Kiani, MD (University of Pittsburgh) 
 

The speaker proposes a new framework for innovation by revisiting our relationship with 

ourselves, our relationship with the impact we create, the spaces in which innovation happens and 

our collective. Through this framework– called “soulful innovation”--we ask how we can move 

away from the culture of “be first” and “star is born” to a culture that celebrates our “collectiveness” 

and puts inner human values at the core of innovation.  

3.  Conclusion 

The workshop will conclude with a discussion panel facilitated by the organizers involving all 

of the workshop presenters to what they would like to see from data scientists who use synthetic 

data in the near future and to address questions and comments from workshop attendees.  

 

By attending in this workshop, participants will gain 1) expertise in understanding how new data 

technologies that use obfuscation are being implemented in the biomedical sciences, 2) awareness 

of the potential opportunities and concerns related to these practices with respect to participant and 

community engagement, and 3) familiarity with the best practices for fostering community 

engagement and science communication while simultaneously embracing these new data practices.  
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Biobanks hold immense potential for genomic research, but fragmented data and incompatible tools 
slow progress. This workshop equipped participants with Nextflow, a powerful workflow language 
to streamline bioinformatic analyses across biobanks. We taught participants to write code in their 
preferred language and demonstrated how Nextflow handles the complexities, ensuring consistent, 
reproducible results across different platforms. This interactive session was ideal for beginner-to-
intermediate researchers who want to (1) Leverage biobank data for genomic discoveries, (2) Build 
portable and scalable analysis pipelines, (3) Ensure reproducibility in their findings, (4) Gain hands-
on experience through presentations, demonstrations, tutorials, and discussions with bioinformatics 
experts. 

Keywords: bioinformatics, genomics, phenome, biobanks 
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The field of genomics has entered a transformative era fueled by the rapid expansion of biobanks. These 
repositories, including public entities like the UK Biobank (Sudlow et al., 2015) and the NIH's All of Us 
Research Program (Ramirez et al., 2022), along with numerous institutional biobanks such as Million Veteran 
Program (Gaziano et al., 2016) and Penn Medicine BioBank (Penn Medicine BioBank, n.d.), have been 
instrumental in accelerating genomic discovery at an unprecedented pace. By bringing together extensive 
collections of biological samples and rich clinical data, biobanks have been a goldmine for medical research. 
We can leverage biobanks to pinpoint genetic variations linked to diseases and unravel the complexities of 
various phenotypes. 

Despite the move towards cloud computing to share data, biobanks face significant technical hurdles that 
slow down their potential. Data is often kept in isolated pockets, and researchers have to navigate a technical 
maze to use different platforms and tools. This not only hinders the speed of research but also leads to the 
same work being repeated and a mix of data analysis practices that can cast doubt on findings and make it 
challenging to scale up genomic studies. 

As bioinformatic analyses grow in scale and popularity, the methodology and best practices are becoming 
more standardized. Rather than introducing redundant code by copying commands between projects, pipeline 
managers offer a way to re-configure the code while recycling it from the same source. Avoiding redundancy 
is important because each new copy-paste of a section of code results in propagating errors which will take 
additional time to track and fix (Leitão, 2004). Furthermore, highly parallel computational work on university 
computing clusters has often looked like manually watching the queue to wait for all jobs of a particular step 
to finish. Pipeline managers have automated interfaces which work with multiple platforms, allowing them 
to track jobs and submit dependent ones as they finish. 

Workflow languages like Nextflow play a pivotal role in the development of scalable and reproducible 
genomic pipelines by offering a platform-agnostic framework for seamless data analysis across diverse 
computing environments (Figure 1). By abstracting the complexities of platform-specific hardware/software 
configurations, Nextflow enables researchers to focus on the scientific logic of their analyses and 
interpretation of results. This abstraction allows researchers to create workflows from their pre-existing code 
written in any language that can be easily deployed on local servers, high-performance computing clusters, 
or cloud-based platforms without modification. Further, Nextflow’s containerization support through 
technologies like Docker and Singularity ensures analyses can be deployed and parallelized across different 
computing architectures without risk of data conflicts, dependency issues, or concurrent data access and 
processing.  
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Figure 1. This figure illustrates the multi-layered architecture of genomic workflow development and 
execution using Nextflow. It encompasses the development layer (including script development, 
configuration, testing, and version control), main workflows (such as GWAS/ExWAS, PheWAS, Meta-
Analysis, and Genomic Risk Score), workflow components (NF processes for various stages of analysis), 
and the configuration and execution layer (including environment-specific configurations and diverse 
execution environments). This architecture demonstrates the scalability and flexibility of the workflows 
across different computing infrastructures, from local clusters to cloud platforms. 

Through this workshop, our goal is to address a critical need within the genetic research and 
bioinformatics community. The rapid expansion of biobank data availability marks a significant milestone in 
human genetics research, offering unparalleled opportunities to study the genetic predisposition of complex 
diseases. Although there are platforms and tools for effectively utilizing these datasets for complex, 
multimodal analysis, there remains an unmet need to develop educational workshops. These workshops are 
essential to equip participants with the necessary skills and knowledge to fully exploit biobank resources, 
effectively bridging the gap between the abundance of available data and the capacity for research innovation. 
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We provided attendees with hands-on workflows to develop and deploy existing tools from institutional 
biobanks to cloud-based platforms such as the UK Biobank and All of Us. We recognize a strong demand 
for proficiency in integrating omics data with genetic findings and a growing interest in conducting cross-
biobank analyses for more extensive and robust research applications. By focusing on these areas, our 
workshop directly addresses these educational needs, offering content that builds on past experiences while 
also anticipating future research trends. 

 
2. Workshop Presentations and Tutorials 

To enable communication and discussion between experimental scientists and our expert developers, each 
module in this workshop included presentations that provided brief introductions to key topics before the 
demonstrations and hands-on exercises. The goal of these presentations was to educate participants on the 
foundational principles of developing genomic workflows using existing tools and resources. The workshop 
format featured demonstrations, hands-on tutorials, exercises, and discussions led by our five Bioinformatics 
experts. Demonstrations included pre-recorded vignettes showing how to configure and run large-scale 
genomic pipelines, with step-by-step explanations and Q&A sessions. Hands-on tutorials offered guided 
introductions to Nextflow workflows, while exercises allowed attendees to practice independently and in 
group settings, with on-demand assistance from our team. Throughout the workshop, we highlighted our: 
Case study of analysis on local and cloud platforms such as UK Biobank and All of Us. 

 
● Genomic Pipelines for Biobanks: Development and Deployment. (Speaker: Anurag Verma): 

Overview of current biobank landscapes; Challenges in developing scalable genomic pipelines;  
● PMBB Toolkit: GWAS and PRS (Speaker: Chris): Demonstration on how to utilize and understand 

genome-wide association study and polygenic score pipelines built in our PMBB Genomic Toolkit. 
● Command Line to Pipeline (Speaker: Lindsay and Zach):  Introduction to cloud-agnostic workflow 

languages with a focus on demystifying Nextflow pipeline management concept so participants can write 
their own Nextflow pipeline with the help of our experts. 

● Overcoming Limitations of Working Across Biobanks & Cloud Platforms (Speaker: Katie): 
Deploying a workflow across cloud environments and coding collaboratively with Google Cloud Shell.  
 

3. Conclusion 

Through this workshop, participants gained the essential tools and expertise to harness the full potential of 
biobank data, ultimately accelerating the pace of genomic research and discovery. By the end of this 
workshop, participants were equipped with the knowledge and skills to develop and deploy scalable and 
reproducible genomic workflows, navigate the complexities of cloud-based platforms, and conduct 
meaningful cross-biobank analyses to advance their research projects. This workshop provided a platform 
not only as a repository of knowledge but also as a forum for academic exchange. Throughout the workshop, 
scientists discussed (1) The challenges of conducting bioinformatic analyses across different cloud platforms, 
(2) Best practices for integrating different biobanks with an emphasis on reproducibility, interpretability, and 
scalability, and (3) How to use GitHub for transparency, version control, and collaboration. 
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Anurag Verma, PhD, University of Pennsylvania. Anurag is an Assistant Professor in the Department of 
Medicine at the University of Pennsylvania, and he also serves as Associate Director of Clinical Informatics 
and Genomics for Penn Medicine BioBank. His research has focused on the study of the genetic basis of 
complex diseases using big data techniques with the main focus on studying the genetic architecture of 
multimorbidity, the phenotypic architecture of common genetic risk, polygenic risk scores, and phenome-
wide association studies to identify the complex phenotypic and genomic interactions that lead to complex 
disease. In his capacity at PMBB, Anurag leads a team called CodeWorks that develops scalable workflows 
and harnesses both in-house and cloud computing resources for advancements in genetic research. His team's 
efforts are in expanding the boundaries of how data informatics can be applied to keep pace with the rapidly 
changing landscape of large-scale biobanks. 

Lindsay Guare, University of Pennsylvania. Lindsay is a second-year PhD student in the Genomics 
and Computational Biology Program at UPenn with a focus in Biomedical Informatics. She has been involved 
in many large-scale genetic association study collaborations, but her research will be focused on leveraging 
innovative computational data science approaches to explore clinical and genetic heterogeneity in 
endometriosis. Her interdisciplinary background includes computer science, contributing to her leadership in 
CodeWorks. 

Katie Cardone, BS, University of Pennsylvania. Katie is a Research Specialist in the Department of 
Genetics at the University of Pennsylvania and is a Graduate Student in the University of Pennsylvania’s 
Master of Biomedical Informatics Program. In her role, Katie executes a wide range of bioinformatic 
analyses, including genome-wide association studies, phenome-wide association studies, exome-wide rare 
variant association studies, and polygenic scores on large biobanks, including the Penn Medicine BioBank, 
the eMERGE network, and the All of Us research program. She also develops Nextflow pipelines for 
polygenic score tools. 

Christopher Carson, MS, University of Pennsylvania. Chris is a Bioinformatician at the University of 
Pennsylvania Institute for Biomedical Informatics. His role in the Verma lab covers an extensive range of 
workflow pipeline development, conducting genetic analysis requests for the Penn Medicine Biobank 
(PMBB), and producing bioinformatics software for analyzing large-scale genomic and phenomic datasets. 
He has experience conducting genome-wide, phenome-wide, and exome-wide association studies using the 
large-scale datasets retained in the PMBB with the use of SAIGE. 

Zachary Rodriguez, PhD, University of Pennsylvania. Zach is a Bioinformatician at the University of 
Pennsylvania’s Perelman School of Medicine. His research has focused on the study of the genetic basis of 
complex diseases using big data techniques with the focus on studying the genetic architecture of 
multimorbidity, the phenotypic architecture of common genetic risk, polygenic risk scores, and phenome-
wide association studies to identify the complex phenotypic and genomic interactions that lead to complex 
disease. He has informatics expertise in machine learning, natural language processing, and pipeline 
development, with extensive experience in analyzing large-scale genomic data, electronic health records 
(EHR), and biobank datasets, including Penn Medicine BioBank. 
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Large Language Models (LLMs) have shown significant promise across a wide array of fields, 
including biomedical research, but face notable limitations in their current applications. While they 
offer a new paradigm for data analysis and hypothesis generation, their efficacy in computational 
biology trails other applications such as natural language processing. This workshop addresses the 
state of the art in LLMs, discussing their challenges and the potential for future development tailored 
to computational biology. Key issues include difficulties in validating LLM outputs, proprietary 
model limitations, and the need for expertise in critical evaluation of model failure modes.  

Keywords: Generative AI, Large Language Models, Foundational Models, Computational Biology 

1. Background

Large Language Models (LLMs) have demonstrated immense potential1–9 within and outside of the 
biomedical domain but currently have substantial limitations when applied to biomedical 
research.10,11 These models promise a new paradigm for data analysis, interpretation and hypothesis 
generation, but it is not clear how fully this promise will be fulfilled. LLMs are just one class of 
foundational models, and while they have already made a significant impact to computational 
biology, it is unlikely that a singular architecture geared at processing natural language will be the 
ideal framework for general learning in computational biology. This workshop aims to provide an 
understanding of the state of the art today, current challenges in the application or development of 
models tailored to computational biology, as well as to start a discussion of what the future holds 
for our community.  

At present, LLMs are commonly used in attempt to directly answer complex problems in ways 
that are difficult to validate. Existing methods for interpretation are limited, and it is difficult without 
a ground truth to tell whether an answer is accurate or a “hallucination”.12 These challenges contrast 

* This work is partially supported by NIH grant R00NS114850
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with typical goals in biomedical research where researchers aim to understand the underlying 
system. Issues with LLM hallucination have been well documented and approaches for dealing with 
uncertainty within generative models are nascent. Proprietary models create challenges to 
reproducibility, privacy, and present barriers to finetuning and open sharing. The successful use of 
LLMs for research still requires a high degree of expertise in order to “red team”, or critically 
interrogate and evaluate failure modes of LLMs. This process is currently poorly defined with best 
practices not yet widely agreed upon.  
 

Most prior work has focused on either training LLMs or using available models (locally or via 
vendor provided APIs) for related tasks. A critical issue with the status quo is that the field is rapidly 
evolving, meaning building upon any one model is a risk and there is a constant need to retrain 
models and update workflows based on newly released models. Additionally, the majority of 
innovation has come either through using large general-purpose models (e.g., GPT4), or in training 
models derived from architectures designed for natural language processing. Increasingly we are 
seeing the development of foundational models for multimodal data in addition to more specific 
subfields. As a new state of the art model is released, within a relatively short period of time, 
researchers have developed smaller, domain or task specific models that appear to achieve 
comparable or slightly worse performance despite having access to vastly fewer resources. Recently, 
we have seen the emergence of novel architectures for foundational models trained on electronic 
medical record data13,14 and multimodal models for medical-imaging and text.15–19 While these 
models have demonstrated early promise, their impact does not yet compare to that of LLMs.  

 
Topics around foundational models, specifically LLMs, have been widely covered at academic 

journals, conferences, and in a wide variety of other settings. However, the majority of discussions 
around these models have focused on the low hanging fruit, posing questions like how GPT-4 can 
be used as a knowledge integration tool for hypothesis generation or evaluating its capabilities 
against professional exams or clinical case diagnostics. There has been decidedly less attention paid 
to the methodological side of tailoring these models to workflows in computational biology through 
techniques like the programmatic generation of prompts and labels for supervised and even weakly 
supervised instruction fine-tuning, interpretation and/or explanation leveraging expert knowledge-
based uncertainty exploration, retrieval-augmented generation strategies with “-omics” style data, 
multimodal approaches to include assets like clinical notes and medical imaging for phenotyping. 
Finally, with the rapid advancement of the larger field of foundational models, it is nearly impossible 
for the transdisciplinary scientists who typically attend PSB to keep up with all of the literature in a 
critical but separate field from their primary research.  
 
 
2.  Leveraging Foundational Models in Computational Biology: Workshop 

LLM’s and the broader field of generative AI are in period of rapid evolution. This workshop aims 
to help attendees of PSB differentiate between the signal and the noise. What are the breakthrough 
ideas, technologies, and applications that are already or are poised to have substantial impacts on 
the field of computational biology.  
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This workshop aims to provide: 
1. Provide an understanding of the current state of the art for foundational models both in general

and specifically within computational biology
2. Understand common failure modes and survey methods to validate results
3. Explore recent innovations in foundational models and LLMs that address prior challenges most

relevant to computational biology (e.g., novel approaches for tokenization, representation of
modalities outside of natural language, uncertainty estimation and explanation)

4. Showcase innovative uses of LLMs in computational biology through a "year-in-review"
overview of the past years most interesting works in this area

5. Plan for the future based on invited talks by researchers on the strategies for development and
utilization of the next generation of LLMs.

To do this, the workshop will be composed of three invited talks covering, “What is the current
state of the art?”, “What are the Strategies for recognizing and Mitigating Failure Modes”, and a 
“Year-in-Review” talk based on extensive literature review. Our aim with this is to help the PSB 
audience determine what is worth paying attention to and which developments are simply “shining 
objects” that are potential distractions. Additionally, there will be a panel discussion covering the 
challenges and shortcomings of current approaches and what does the future look like?  

3. Conclusion

LLMs hold immense potential for transforming biomedical research, but their current limitations, 
such as hallucinations and challenges in reproducibility, necessitate careful scrutiny. The field is 
evolving rapidly, with new foundational models being introduced frequently, requiring constant 
retraining and workflow updates. It is essential to develop methodologies specifically suited to 
computational biology, as general-purpose models may not be optimal for this domain. The 
workshop seeks to guide researchers in discerning between valuable advancements and distractions 
in this rapidly changing environment. 
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Large language models (LLMs) and biomedical annotations have a symbiotic relationship. LLMs
rely on high-quality annotations for training and/or fine-tuning for specific biomedical tasks. These
annotations are traditionally generated through expensive and time-consuming human curation.
Meanwhile LLMs can also be used to accelerate the process of curation, thus simplifying the
process, and potentially creating a virtuous feedback loop. However, their use also introduces new
limitations and risks, which are as important to consider as the opportunities they offer. In this
workshop, we will review the process that has led to the current rise of LLMs in several fields, and
in particular in biomedicine, and discuss specifically the opportunities and pitfalls when they are
applied to biomedical annotation and curation.

Keywords: large language model; LLM; biomedical curation; generative AI; biomedicine and
health; education; ethics.
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1.  Background

High-quality, well-annotated biomedical data is crucial for training LLMs to understand and
process scientific information. These annotations can include labeling entities (genes, proteins),
relations (interactions), and other relevant information. By incorporating annotated data, LLMs
can learn specific domain knowledge and improve their accuracy in tasks like information
extraction, knowledge base creation, and text summarization. Diverse and unbiased annotations
can help mitigate bias in LLMs, ensuring their outputs are fair and representative of the underlying
data. At the same time, LLMs can be used to automate some aspects of annotation, such as
identifying potential entities or suggesting relevant relations. This can significantly reduce the
workload for human annotators. LLMs can identify areas of uncertainty in the data and suggest
which annotations would be most valuable for improving their performance. This creates a
feedback loop where LLMs guide the annotation process for optimal results. Finally, LLMs can be
used to check the consistency and accuracy of annotations, identifying potential errors or
inconsistencies.
A recent survey of LLMs for data annotation [1] describes how advanced large language models
(LLMs), like GPT-4, can transform data annotation by automating and improving accuracy in this
traditionally labor-intensive process. It categorizes the methods used for LLM-based data
annotation, explores the effectiveness of LLM-generated annotations, and discusses learning
strategies incorporating these annotations. The paper also highlights the challenges and limitations
of using LLMs in this field, offering guidance for future research and development in automating
data annotation. Goel et al [2] proposes a method that uses Large Language Models (LLMs)
combined with human expertise to speed up medical text annotation for information extraction,
significantly reducing human labor while maintaining high accuracy in generating labeled
datasets. Several recent approaches exploit the in-context learning capabilities of LLMs based on a
limited number of examples (few-shot) to create annotations, using suitably engineered prompts
[3,4,5]. Other recent works discuss the usage of LLMs for knowledge distillation [6,7], or even
how LLMs could themselves be used as evaluators [8]. Finally, several studies evaluate the
reliability of the annotations generated by LLMs [9,10].
While opportunities with LLMs are actively being explored, it is equally important to be aware of
the potential pitfalls that may arise during their use. The limitations and risks associated with
using LLMs have been thoroughly examined in previous studies [11]. Some research has explored
these challenges within the contexts of biology and medicine [12,13], offering more specific case
studies and proposing mitigation strategies. These insights provide invaluable guidance that
should be shared with researchers in the field to help avoid unnecessary risks and complications.
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2.  Workshop

The years 2022 and 2023 marked the emergence of Large Language Models (LLMs). Reflecting
this pivotal shift, PSB2024 organized a workshop entitled "Large Language Models (LLMs) and
ChatGPT for Biomedicine," aimed at providing introductory insights into LLMs within the realm
of Biomedicine. In the meantime, a wealth of diverse experiences with LLMs has been
accumulated, and the emphasis of the workshop will be on sharing these varied encounters. As
such, presentations showcasing a spectrum of application cases of LLMs have been considered,
encompassing both successful implementations and instances where expectations were not met.
The intention is to focus in particular on the impact of LLMs on biomedical annotation and
curation. Some of the issues and questions to be addressed in the workshop include but not limited
to:

● Are annotation and curation still necessary in the age of LLMs?
● Can LLMs replace those completely?
● How can we assess the quality of automated annotations?
● What are the limitations?

By addressing these challenges this workshop aims to clarify the potential and limits of LLMs in
advancing biomedical research and knowledge discovery.

3.  Conclusions

LLMs are already making major inroads in our social fabric, rapidly changing the way several
highly skilled activities are performed, and leading to serious challenges to societal organization
and profound questions about how to best make use of their capabilities for the advantage of
humanity. We hope that this workshop will offer a valuable contribution to this ongoing
discussion.
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1. Overview

The rapid expansion of medical artificial intelligence (AI) is generating vast amounts of 
data, leading to increased energy consumption and a growing environmental footprint. While this 
growth is advancing healthcare, it also presents the risk of worsening the climate crisis, which 
could impact global health. The session, "Earth Friendly Computation: Applying Indigenous Data 
Lifecycles in Medical AI" at PSB 2025, will explore how Indigenous communities have 
historically approached technology development with a focus on sustainability and long-term 
resource management, in contrast to Western societies’ focus on resource extraction and 
maximizing profit through exponential growth. 

Indigenous communities have long optimized technologies in ways that prioritize 
harmony, balance, and the maintenance of abundance rather than short-term gains. This approach 
stands in stark contrast to the Western model of technological advancement, which prioritizes 
profit and efficiency, often leading to environmental degradation. The EFC 574 initiative 
embodies this Indigenous approach by proposing sustainable, renewable-powered data centers on 
tribal lands, promoting data sovereignty while addressing climate resilience. Complementary to 
building this infrastructure, the AI in Point-of-Care (POCT) project harnesses edge computing to 
deliver AI-driven diagnostics to remote areas, reducing energy consumption and supporting 
healthcare in resource-limited regions. 

The projects featured in this session are supported by initiatives like the Univeristy of 
California Systems, California Cares Policy initiative, the Canadian government’s Abundant 
Intelligences initiative and the University of Cambridge’s, Green Algorithms initiative, which aim 
to create transparency around the environmental impacts of AI through carbon footprint 
calculators and incentivization programs. Together, these efforts demonstrate how Indigenous 
communities are positioned not just to participate in the AI revolution, but to lead it by prioritizing 
sustainable development that maintains harmony with the planet's health. Rather than optimizing 
every advancement for profit and exponential growth, this framework advocates for a future 
driven by industrial symbiosis and long-term relationships with the earth, ensuring technology 
serves both people and the environment for generations to come. 
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2. Background & key terms

“We live in the future. Come join us.” 
—Prof. Bryan Kamaoli Kuwada 

For the past five centuries, Indigenous communities have directly witnessed seismic shifts 
in the integrated global economy, from natural resource extraction such as that of spices, fur, 
wood, oil, uranium, and tourism, to the rise of movies, gaming, casinos, and other parts of the 
entertainment and attention economy. These industries have served as vital sources of income, yet 
they are also subject to the winds of change, as generations pass and the global economy evolves. 
Despite the rapid advancement of technology the underlying economic models and values often 
remain static, unresponsive to the shifting technological landscape or the rights and needs of the 
communities participating in them. As we stand on the brink of a new era, it is clear that data is 
emerging as the next pivotal economic base. The ten largest companies on earth no longer deal in 
steel, railroads, or oil, but in vast amounts of data and the tools needed to process it. This shift 
demands not only technological acumen to overcome the pressing challenges of scaling these new 
technologies but also a reevaluation of our values and the way we envision progress for future 
generations. 

Tired stereotypes of Indigenous communities like - “Hawaiian people have 1,000 ways to 
describe the rain" - obscure the truth that in these high resolution environmental or natural 
observations are also “our data,” informed by thousands of years of observations, input, and 
action. This collective knowledge, and the practices developed from it, will be critical to spurring 
the transition into an economy that incorporates artificial intelligence in a way that is sustainable 
for the planet and individual and collective sovereignty. 

The right of Indigenous peoples to own, control, access, and possess data that pertains to 
them, their lands, and their cultures is called Indigenous data sovereignty. It is rooted in the 
principle that Indigenous nations hold the inherent authority to govern themselves and manage 
their own affairs. Indigenous data governance, on the other hand, refers to the mechanisms, 
processes, and systems through which Indigenous communities control and manage this sovereign 
data. Functionally, this means developing policies, standards, and practices for data collection, 
storage, access, and dissemination that align with the community's values and needs. 

Indigenous peoples have historically been separated from their resources using violent 
means. In 1965, Fairchild Semiconductors - which would soon lose founding engineers that would 
go on to found Intel and other semiconductor behemoths opened their assembly plant in Shiprock, 
New Mexico on the Navajo nation reservation. At its peak, the plant employed over a thousand 
Navajos, the majority of whom were women. Yet despite simultaneously drawing on Navajo 
women’s expertise and exploiting their labor, never once were Navajo or Indigenous knowledge 
systems considered, integrated, or acknowledged as guiding forces in the development of 
integrated circuit architecture and what would later become an entire economy that today spans 
cloud computation, data center architecture, e-waste management, and parallel computing (See, 
Figure 1). Until now. 
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Fig 1. Left: A traditional Navajo rug; Right: the die layout of a Fairchild 9040 integrated circuit. These images are adapted from a Fairchild 
commemorative brochure for the 1965 opening of a new manufacturing plant on the Navajo Nation Reservation in Shiprock, NM. At this facility, 

Navajo women were specifically recruited to assemble early integrated circuits because their exceptional dexterity and precision, developed through 
generations of intricate rug-weaving, were invaluable for handling delicate components. The rug-weaving traditions, which involved complex 

pattern recognition and fine motor skills, directly translated into their ability to work with early microelectronics. 

3.  Earth Friendly Computation 574: Indigenous Data Sovereignty, Circular Systems, 
and Solarpunk Solutions for a Sustainable Future 

Indigenous communities are not only envisioning but actively leading efforts to reshape AI 
through Earth-friendly principles. Alipio et al. present a policy and technology development 
proposal rooted in the idea of Indigenous Data Sovereignty and the establishment of decentralized, 
sustainable computing systems built on sovereign Indigenous lands. The number "574" refers to 
the 574 federally recognized Indigenous tribes in the United States, each uniquely positioned to 
lead this initiative. 

This approach draws inspiration from Indigenous knowledge systems that promote circular 
economies and sustainable land stewardship, integrating these values with modern technology 
solutions. For example, the Hawaiian ahupua’a land management system, which operates on 
closed-loop cycles of resource renewal, provides a model for designing data centers that reuse 
resources, minimize waste, and generate less heat. 

Here are some key recommendations for the development of policy and technology to 
decentralize sustainable access to machine intelligence among Indigenous communities: 
- Indigenous Data Sovereignty: EFC 574 empowers the 574 federally recognized tribal nations to
build and maintain control over their own data infrastructure, ensuring data governance that aligns 
with cultural values, autonomy, and the unique legal frameworks of sovereign tribal lands. 
- Sustainable Data Center Development: This initiative focuses on creating environmentally
sustainable data centers on tribal lands by integrating renewable energy sources like solar, wind, 
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and hydroelectric power. These centers will serve as models for climate-resilient and sovereign 
data management. 
- GIS-Based App for Sustainable Planning: EFC 574 will develop an app that overlays GIS data
onto Indigenous reservation topography and coordinate data, combined with renewable energy 
availability (solar, wind, hydroelectric), megawatt capacity, and biodiversity data. This tool will 
determine the most sustainable locations for data center architecture on sovereign tribal lands, 
promoting responsible and efficient development. 

  By leveraging ideas from Solarpunk—a speculative genre that imagines harmonious 
relationships between humans, technology, and the environment—Indigenous-led initiatives can 
guide the development of circular data systems. These systems would recycle electronic 
components, repurpose waste heat for energy generation, and use renewable power sources like 
solar and wind energy to fuel AI development. 

4.  AI in Point-of-Care: A Sustainable Healthcare Revolution at the Edge 

AI-enhanced Point-of-Care Testing (POCT) is transforming healthcare by bringing 
diagnostics closer to patients, particularly in underserved areas. AI-driven POCT offers rapid, real-
time diagnostic insights, reducing the need for centralized laboratory testing and improving 
healthcare outcomes in regions with limited access to medical infrastructure. However, this 
progress comes with a cost: the increased use of AI in healthcare systems exacerbates energy 
consumption and contributes to e-waste through the frequent upgrading of diagnostic devices. 
  To address these concerns, Rajput et al. present edge computing as a promising solution. By 
processing data locally on devices closer to the point of care—rather than relying on cloud-based 
infrastructure—edge computing reduces energy consumption and lowers the environmental impact 
of AI-driven healthcare technologies. This localized processing significantly reduces latency and 
energy costs associated with transmitting large amounts of data to distant data centers. 

Here are some key recommendations for the utilization of AI in edge computing settings: 
- AI-Enhanced POCT: AI reduces diagnostic latency in hospitals, delivering real-time results
crucial for urgent care and improving access in underserved areas. 
- Scalability vs. Sustainability: Balancing AI scalability with sustainability is key, favoring
energy-efficient models over large, resource-intensive LLMs. 
- LLM Limitations: LLMs aren't always ideal for point-of-care; careful selection of AI models is
necessary to meet healthcare needs without increasing environmental impact. 

In healthcare settings, edge computing can support AI-driven genome sequencing, disease 
diagnostics, and patient monitoring systems, enabling faster and more accurate medical decisions 
while minimizing energy use. For instance, edge-powered AI devices have shown success in 
reducing diagnostic times for infectious diseases like COVID-19 and improving personalized care 
in intensive care units (ICUs). These innovations illustrate that sustainable AI is not only possible 
but can also enhance healthcare delivery, making it more accessible, eco-friendly, and efficient. 

5.  Conclusion: The Future of Earth Friendly Computation 

The future of Earth-friendly computation is one where AI development coexists with 
environmental sustainability and technological sovereignty. Indigenous communities, leading with 
principles of data sovereignty, circular systems, and land stewardship, are charting a path toward a 
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more sustainable digital future. From reducing the carbon footprint of algorithms to promoting 
secondhand markets for GPUs, these innovative solutions offer a blueprint for mitigating the 
environmental impact of AI. 

In the coming years, it is essential to prioritize the development of green algorithms, 
sustainable hardware, and decentralized computing systems that emphasize energy efficiency and 
waste reduction. By incorporating Indigenous knowledge and practices into the fabric of AI 
development, the world can harness the power of AI for the greater good, while preserving the 
health of the planet. Sovereign AI should be informed by the knowledge hard-won by Indigenous 
data scholars over many generations. 

The integration of edge computing into healthcare systems, the expansion of secondhand 
GPU markets, and the implementation of policies like Earth Friendly Computation 574 represent 
critical steps in achieving this vision. As demand for AI, its technological capabilities, and the 
systems available to train and use these tools continue to grow, so too must our commitment to 
ensuring that this growth aligns with the needs of both the planet and future generations. Aligning 
AI development and deployment with Indigenous data lifecycles and principles makes it possible 
to advance these technologies while preserving our planet’s past, present, and future (See, figure 
2). 

Fig 2. Art by Wally Dion (Canadian and Yellow Quill First Nation/Saulteaux, born 1976). Left: “Green Star Quilt (2019).” E-waste, circuit boards, 
brass wire, copper tube. Right: "Caterpillar, Egg, Chrysalis, Moth (2018).” E-waste, circuit boards on plywood, nails. Serves as a powerful 

commentary on humanity’s hidden environmental toll, symbolizing the lifecycle of AI and data-driven technologies. The artwork, crafted from 
discarded e-waste and circuit boards, evokes the transformation of a moth, paralleling the unseen extraction of rare earth metals and natural 

resources required to sustain our addiction to data centers, AI, and cloud computation. It highlights the environmental cost and the unsustainable 
hunger for energy that drives the digital age. 
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sustainability and energy use. Current policy and infrastructure for data centers prioritize
economic gain and resource extraction, inherently unsustainable models which generate
massive amounts of energy and heat waste. Our team proposes the formation of policy
around earth-friendly computation practices rooted in Indigenous models of circular
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1. Data Center Infrastructure and Environmental Impact
The energy industry is the top contributor to the growing climate crisis, with fossil fuel burning
being the main culprit for decades. However, in recent years the rapid growth of data center
infrastructure — driven by advancements in Artificial Intelligence (AI) and Graphics Processing
Unit (GPU) technology — has become a significant contributor to global heat emissions and
electronic waste (e-waste). The GPU, originally designed for rendering 3D graphics, has
accelerated AI training, contributing to immense concentrations in heat waste from data centers.
Modern bioinformatics, like other disciplines reliant on large-scale computation, is contributing
to the environmental impact of data centers (Grealey et al., 2022). This rise in heat production
poses critical questions about the environmental cost of accelerated computing in both the AI
sector and biocomputing more broadly, necessitating new policies and sustainable infrastructure
to mitigate these impacts.

As the AI sector has continued to boom in recent years, several large corporations have
cornered the market in key areas including NVIDIA’s monopoly as the sole producer of the GPU,
and Amazon Web Services as they have the money and reach to build numerous data centers
around the globe. This should concern communities who wish to retain control and ownership
over their data. NVIDIA’s monopoly over the GPU led to a “141% increase in the company’s
data center segment compared to the previous quarter” indicating the massive interest in AI
technology (De Vries, 2023).

Additionally, companies like Microsoft and Google’s parent company Alphabet have led
the push to integrate generative AI into basic web searches, creating their chatbots Bing Chat and
Bard, after seeing the success of Open AI’s ChatGPT, leading to a significant increase in energy
use and heat waste (De Vries, 2023). In a 2023 study, researchers estimated that if generative AI
was integrated into every Google search, it would result in an energy use increase as high as 29.3
TWh per year which is the equivalent of the yearly energy use of an entire country the size of
Ireland (De Vries, 2023). Despite the fact that this study was only published last year and the
authors predicted that Google would not integrate AI into their searches due to the significant
energy and monetary costs – an estimated 100 billion U.S. dollars for a year of server space – at
the time of writing this article, Google currently has generative AI answers at the top of most
Google searches. When considering the fact that 2023 and 2024 have consistently broken heat
records, the need to investigate the environmental impacts of AI and data center infrastructure is
more pressing than ever.

1.2 Current infrastructure model
The current infrastructure model for deciding where to build data centers is based around
Western ideologies of economic gain, terraformation, and extraction of resources. These values
are inherently opposed to sustainability and in direct conflict with environmental protection laws
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such as the Executive Orders on Climate issued by President Joe Biden in January 2021 that seek
to reduce emissions to net zero economy-wide by 2050 and emphasize the transition to clean
energy (U.S. Council on Environmental Quality, 2021). Despite these types of laws, current
environmental oversight on how data center infrastructure contributes to these emissions does
not do enough. Current policies surrounding the environmental impact of AI call for “voluntary
reporting” from data centers on the amounts of energy used and how their infrastructure affects
the environment (Markey, et.al. 2024). Voluntary reporting is flawed in its conception because
statistics are often underreported and there is no oversight or enforcement. Instead, these bills
serve as a smokescreen for companies to hide behind while pretending that they are altruistically
reporting their emissions. Therefore, the most popular cloud service companies including
Amazon Web Services, Microsoft Azure, and Google Cloud, hold a majority of the power in the
cloud computing market and are projected to continue making “Year-over-Year” (YoY)
increases in profit revenue (AAG IT, 2024).

Data center locations are notoriously secretive and the largest companies within the
sector, Amazon Web Services, Google, and Microsoft, often go to great lengths to not advertise
their locations. Buildings are usually non-descript with high security measures as the only
indication that there is valuable data being held inside. However, although these data centers may
be inconspicuous to the average passerby, they are not invisible under infrared visualization.
Data centers can be located through heat mapping GIS sensing technology which highlights the
central problem with the current “status quo” – the immense amount of heat being generated by
computational action (Johnson-Zafiris, 2024).

1.3 Proposed Policies: Earth Friendly Computation (EFC 574)
In this paper, we propose the formation of policies around the construction and location of data
center infrastructure, entitled “EFC 574” which stands for Earth Friendly Computation among
the 574 federally recognized Indigenous tribes located in the so-called United States (See Figure
1). Proposed policies would be structured around Indigenous values of land stewardship, circular
systems of sustainability, and data sovereignty. Drawing upon lessons from the past and applying
them to the future, we can begin to imagine a world in which technology and nature are
intertwined harmoniously, rather than at odds with one another.

Building upon discourse from environmental justice and Indigenous futurism through the
lens of the genre Solarpunk, we propose alternative solutions rooted in tangible decolonial
actions of sovereignty. Inspired by the wisdom of Robin Wall Kimmerer’s Braiding Sweetgrass,
we hope to show how Indigenous values of sustainability and working to serve nature through
cycles of renewal instead of linear extraction can be visualized in the data center industry
(Kimmerer, 2013). In doing so, we hope to provide a blueprint for Indigenous Data Sovereignty
rooted in the sovereignty of our lands.

Pacific Symposium on Biocomputing 2025

719



Figure 1: Indian Lands of Federally Recognized Tribes of the United States
Map of the 574 federally recognized tribes and their regional designations within
the United States from the Bureau of Indian Affairs.

2. Indigenous Leadership in Earth-Friendly Computation
Current models for data center construction contribute to the already devastating effects of
climate change and colonial extraction on Indigenous communities. From diverting and polluting
water tables, to mining and extracting dangerous elements for technological components,
extractive processes currently threaten the already precariously limited resources in areas like
drought-prone Nevada, or the rising sea levels and sand erosion of the California coast
(Fernández‐Llamazares et.al., 2020). As highlighted by Potawatomi scholar Kyle Whyte,
climate mitigation strategies often fail to consider how they will impact Indigenous communities,
who disproportionately experience the impacts of climate change, leading to a dilemma in which
urgent races to adapt to climate change and prevent increases in temperature are implemented
without the necessary “kin relationships” to sustain such changes (Whyte, 2019). Instead, EFC
574 provides a pathway for Indigenous communities to further empower Indigenous Data
Sovereignty principals through decentralized data center infrastructure. Indigenous communities
are poised to lead the way in earth-friendly computation policies by shifting the focus away from
Western ideologies of linear consumption and toward sustainable practices inspired by closed
loop or circular economy systems like the Hawaiian ahupua’a, a land division system based on
the value of aloha ʻāina, the Hawaiian term for circular systems of care in which the people and
the land are continuously reciprocating care for each other (Vitousek and Beamer, 2013; Beamer,
2023; Smith, 2021). In Hawaiian resource management, every system is connected to feeding
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each other; fish feed the people, leftover food waste feeds the fish, the fish ponds make the soil
fertile, and the plants grow strong, which in turn feed the people and the fish (Beamer, 2023).
This sort of closed loop circular economy allowed island communities throughout the pacific to
thrive for centuries, developing nuanced techniques for recycling resources (Vitousek and
Beamer, 2013) . Importantly, we emphasize the weaving of Traditional Ecological Knowledge
(TEK) like the ahupua’a system and aloha ʻāina values with Western technology and imaginative
concepts like Solarpunk, rather than absorbing one into the other (Whyte, 2013).

Applying such an approach to data center infrastructure, we suggest the creation of a
federated decentralized network where Indigenous communities can choose to retain control and
possession of their data rather than sending it off to a centralized cloud at a large corporation like
Amazon Web Services (Boscarino et al., 2022). By creating a decentralized network of data
centers where servers are built on Indigenous sovereign land, with sustainable technologies that
aim to work with the environment rather than against it, we aim to enact “good relations with the
land” as described by Métis scholar Max Liboiron in Pollution is Colonialism (Liboiron, 2021).
Liboiron’s use of anticolonial science to critique the plastic industry provides a framework for
moving away from Western ideologies of extraction and unsustainable profit. Similarly, we hope
to show how being in good relations with the land is important for sustainable data computation.
Land is central to this argument; the concept of data sovereignty and its connection to the land is
important since data can not be considered sovereign if it is not on sovereign land.

2.2 Addressing Heat Waste through Circular Systems
In addition to data sovereignty concerns, the heat waste generated by centralized cloud
computing contributes to the current climate crisis through the demands of air conditioning,
water extraction for liquid cooling, and the creation of heat waste as a byproduct. Several
solutions have been proposed including Sea Water Air Conditioning (SWAC) a method of
cooling which relies on a network of cooling tubes that run continuous seawater through in order
to cool down components (Elahee and Jugoo, 2013). This is one solution that could be helpful in
areas along coastlines, particularly in communities where sea levels are rising quickly and
forcing the abandonment of structures. If these structures could be reinforced for SWAC and
repurposed into data centers this would be one example of earth friendly computation where
technologies work with nature rather than against it. However, it is important to consider the
ways in which these technologies can be misappropriated. While utilizing water to cool
components might be a helpful tool, we must be careful not to reproduce the same kinds of water
exploitation and pollution that are already occurring throughout Indigenous lands
(Fernández‐Llamazares et.al., 2020).

Inspired by our Indigenous and Islander roots, we propose looking to circular systems of
sustainability like “the moku system” of “biocultural resource management” in the Hawaiian
islands (Winter et al., 2018). This pre-contact system divided the islands into socio-ecological
sections from mauka to makai (mountain to ocean) called an ahupua’a, which are often referred
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to as models of sustainability (Winter et al., 2018). This system was unique because it took into
account all the different regions, weather patterns, resources, and conservation needs that were
unique to various parts of the island. The Hawaiian islands include a diverse range of climate
types, with the Koppen classification system being used as early as 1937 to highlight the five
different types of climate commonly experienced including; humid tropical, arid and semi-arid,
temperate cold continental, and ice or alpine climates (Jones and Bellaire, 1937; Peel et al.,
2007). Given the diversity of climate and the limited landmass, the moku system was developed
to be sustainably integrated into the landscape demonstrating how watershed systems can be
implemented in data center construction without having to shape the earth to bend to the will of
current infrastructure models. Drawing from these systems of knowledge we propose looking to
speculative visions of the future for inspiration on policy regarding sustainable data center
infrastructure and earth-friendly computation.

2.3 E-waste and Data Centers
In addition to concerns around heat waste, electronic waste (e-waste) is also a major issue in
current data center infrastructure. One proposed solution is to repurpose old GPU technology to
build out these sovereign data centers. Technological components under the current standard are
often built with planned obsolescence in mind, pushing for constant upgrades in order to
maintain performance. However, there are still many less intensive computing tasks that these
older components could be repurposed to handle. Therefore, in addition to rethinking the
locations of data centers, our team also proposes the formation of policy around recycling GPU
and CPU components into these new sovereign data centers in order to maintain the cyclical
pattern of reuse and renewable energy. This is where envisioning futures through the lens of the
Solarpunk genre can be helpful, as it allows us to step outside the current energy landscape and
imagine what a stronger investment in solar energy use could look like for data centers.

2.4 Indigenous Futurism and Solarpunk Solutions
Solarpunk is a term that describes the utopian vision of a futuristic society in which technology is
intertwined with nature and facilitates sustainable innovation and development (Wagner and
Wieland, 2022). Indigenous communities around the world have been inspired to envision
futures through the lens of these Solarpunk themes coupled with already established networks of
Indigenous sovereignty (Reina-Rozo et al., 2024). Indigenous futurism is about taking the values
that our communities are built around – such as sustainability, circular closed loop systems, and
TEK practices – and forming policies that will begin to push back against the centuries of
colonial extraction and destruction of ecosystems. In turning to such solutions, we begin to
imagine a world that unsettles the status quo, in which data centers are thought of as inert and
isolated ‘heat objects’. Instead, data centers are ontologically understood as non-human kin
(TallBear, 2017; Lewis et al., 2018), whose heating, cooling, and other infrastructural needs are
always already entangled with their landscape in harmonious circular systems of reciprocal
renewal.
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For example, in the case of heat waste, excess heat generated by machine components
inside a data center could be harnessed and redirected into other appliances that would otherwise
need to generate more energy for heating. Imagine a data center located next to a gym or a salon
where the excess heat could be funneled into a heating, ventilation and air conditioning (HVAC)
system attached to heated floors or hooded hair drying stations. In a cold environment it could be
redirected into district heating for homes (Ding et al., 2024). The applications are endless if we
just shift our thinking from “we must create more energy” to “how do we re-use the energy we
already have” and the first step in this paradigm shift is to re-think the way data centers are
constructed and located.

Our team proposes reforming the data center industry by emphasizing these values
through public policy. Building on the already established networks throughout Indigenous
communities we hope to build policy around the establishment of data center nodes located on
sovereign Indigenous lands. Tribal Nations would be asked if they would like to establish their
own independent data centers on their land and should they choose to share any pieces of
information with other communities, organizations, or other entities, they would have full control
and autonomy to do so without having to go through third party companies that could exploit or
endanger their data.

3. Importance of Sovereign Indigenous Nations Controlling Their Data
Current models for cloud computing rely on centralized networks that force users to surrender
consent, ownership, and other rights in order to use those services (Boscarino et al., 2022;
Mackey et al., 2022). This should be considered particularly alarming in the context of genomic
data and the future of precision medicine. Standard Practices for storing data do not take into
account the massive multiplicity of data being generated through genetic research, both by
for-profit companies like 23 and Me, and by health industries (Mackey et al., 2022). Indigenous
communities can be leaders in this space by implementing decentralized federated networks for
genetic research at places like The Native BioData Consortium (NBDC) (Boscarino et al., 2022).
Located in The Cheyenne River Reservation, NBDC, would be the first demonstration of one of
these data center “nodes” serving as an example of the power of Indigenous data sovereignty
applications in the medical field.

This is important for many reasons, first through the implementation of edge computing,
which aims to bring technology out of the lab and into the field, data could be kept closer to the
point of collection, creating less computational energy (Raith et al., 2023). Secondly, this would
allow Indigenous communities to choose with whom and under what circumstances they would
like to share such data giving them more autonomy over their data (Mackey et al., 2022).
Additionally, this would also be an opportunity for communities to engage with meaningful
medical research that is urgently needed in their specific communities. As mentioned by Tuck
and Yang in their highly cited paper, Decolonization is not a metaphor, the decolonization of the
data and tech services needs to be grounded in sovereignty and that is rooted in the land (Tuck
and Yang, 2012). Ownership and control over Indigenous peoples’ data is integral to the fight for
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sovereignty and decolonization (Walter and Carroll, 2020). When a community is forced to use a
large corporation for their data processing services, they have to sign away at least some part of
ownership, consent, and/or rights to that data. All too often “green computing” solutions are
offered in ways that systemically harm Indigenous communities by clustering benefits around the
most wealthy and pushing the harm on to marginalized communities. In the context of data
center infrastructure, the result is building centers in low income areas, diverting water away
from the community for machine cooling, and venting heat waste and other harmful emissions
into the surrounding air. Instead, we propose a solution that is oriented in Indigenous
epistemologies of sustainability and circular systems, based on TEK maintained by Indigenous
communities around the world since time immemorial (Vitousek and Beamer, 2013; Whyte,
2013; Smith, 2021).

3.1 Digital Anthropology and Indigenous Data Sovereignty
Frameworks from the newly rising field of digital anthropology allow us to conceptualize the
massive amounts of data being collected and stored in cloud servers. In recent years scholars
have highlighted the need for digital archivists and anthropologists who can apply their
archaeological excavation skills to the digital realm (Geismar and Knox, 2021). This should raise
concern for communities who have a history of being exploited and their data stolen. As more
and more information is stored on cloud servers and housed in data centers, this build up of
digital clutter generates massive amounts of heat waste driving an ever rising need for additional
cooling systems. This in turn leads to more exploitation of Indigenous lands and values for the
sake of maintaining unsustainable systems. Through the formation of policy around data center
construction and infrastructure and by emphasizing the need for Indigenous perspectives in
shaping future sustainable policy, we hope to provide an alternative path for communities to opt
out of such digital excavation and retain full sovereignty and control over their data.

3.2 Biological Data
The importance of Indigenous Data Sovereignty and the need for a decentralized data center
network can be seen in examples of genomic data related to human health as well as
environmental data. Since the inception of the Human Genome Project scientists and
entrepreneurs have been racing to mine and map the human genome in order to commodify and
control specific genes for the sake of drug development (Sunder Rajan, 2006). This has created a
dangerous mainstream framework for economic value to be the main driver behind decisions
about data use including whose genome gets studied and for what purposes.

Similarly, in the case of environmental data, the need for bioremediation solutions to
clean up pollution through the use of synthetic biology and metagenomics, presents a precarious
dilemma. Researchers who want to develop solutions, but fear having those genetic discoveries
patented by large corporations which in turn sell the solutions back to the communities in need
for a profit are in a difficult position. Synthetic biology is poised to harness the power of
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biotechnology to create bioremediation solutions (Rylott, 2020), but at what cost to the
communities which are most affected by climate change and pollution? Instead, through the lens
of a circular economy, we propose protections for Indigenous Data Sovereignty that go hand in
hand with our proposed policies for more sustainable data center infrastructure.

3.3 New GIS Tools to Guide the Development of Policy
Advancements in Geographic Information Systems (GIS) technology have decentralized the
power of map making, allowing more communities to have a say in their territories'
self-determination. For example, GIS mapping technology has been used to track the
repercussions of the Morrill Act of 1862, which granted land to U.S. colleges and universities by
expropriating nearly 11 million acres of Indigenous land. This land, scattered across 24 Western
states, became the financial foundation for many of today’s top universities. The money raised
from land sales remains on university ledgers today, and some states still hold unsold parcels and
mineral rights, which continue generating revenue for higher education institutions. The act
masked a massive wealth transfer, contributing to the violent history of North American
colonization. Scholars have used GIS tools to map how these land transfers occurred showing the
money trail and corruption through story maps (Ahtone and Lee, 2020). Additionally, Scholars
are already implementing GIS technology to combat environmental risks with algorithms that
analyze and predict complex wildfire patterns (He, 2022).

As the demand for data centers escalates, so does the urgency around identifying
environmentally favorable locations for their construction. We propose the development of
policy utilizing tools to assess and identify the most appropriate way to integrate data center
infrastructure into existing landscapes. Considering variables such as climate vulnerability,
natural resource availability, biodiversity hubs and other unique environmental variables, we
plan to build out a prototype resource tool which Indigenous communities can be in control of
for strategic guiding of sustainable data center development (See, Figure 2). Looking at the Agua
Caliente Band of Cahuilla Indian (ACBCI) Reservation as an example, due to its unique
reservation boundaries which form a sort of checkerboard pattern, we can see that there are solar
and wind resources which could be beneficial in building out sustainable data centers, as well as
areas with high biodiversity which should be considered and protected as infrastructure is
developed. Looking at the Intersection of Resources map, we see that the northwestern quadrant
of the ACBCI Reservation where solar and wind resources are abundant but biodiversity hubs
are not present, would be the most ideal place to construct a data center. Our aim is to guide
decision-makers, including policymakers and industry leaders, in coming up with informed
choices that balance the need for data center expansion with environmental responsibility. Our
suitability map tool would include geolocating information to make these sites easy to identify.
Ultimately, we strive to promote sustainable development in the digital infrastructure sector,
ensuring a greener and more efficient future for data centers worldwide.
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Figure 2: Suitability Maps for Data Center Locations within The Agua Caliente Band
of Cahuilla Indians (ACBCI) Reservation (see appendix for larger maps)

4. Conclusion
In considering the future of AI and data center policy, we are concerned about the exponential
increases in data center construction, the implementation of generative AI into basic web
searches, and heat waste production driven by current models of western expansion and
extraction. By looking to alternative systems of sustainability rooted in Indigenous values of
aloha ‘āina, or love for the land, we find examples of TEK that can be integrated into Solarpunk
visions of a future that integrates technology with the environment, reusing electronic waste
(e-waste) and improving data life cycles for a more sustainable future.
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1. Introduction

POCT enables rapid diagnostics and treatment at the patient’s location, revolutionizing
healthcare delivery, particularly in remote or resource-limited settings. However, traditional
POCT systems face challenges like slow diagnostic times and limited reach. The integration of
AI offers a promising solution, enhancing POCT capabilities while addressing sustainability
concerns.

AI’s potential in healthcare is clear in its ability to improve diagnostic precision and
efficiency. By leveraging AI advancements, POCT technologies can deliver rapid diagnostics
and improve clinical decision-making, making them essential in modern healthcare, especially
in underserved regions.

This paper explores AI’s role in enhancing POCT through sustainable means, showing how
AI can boost accuracy, accessibility, and eco-friendliness. Through real-world examples, the
paper demonstrates AI-enhanced POCT applications in medical scenarios, such as infectious
disease management.

The paper also addresses potential barriers to AI integration with POCT systems and
proposes solutions to ensure seamless adoption. By incorporating sustainable practices, AI in
POCT aims to reduce the ecological footprint of diagnostics, promoting eco-friendly healthcare
solutions.

2. AI in Clinical Setting & POCT: Where do we begin?

While there is skepticism about the role of supervised learning in identifying pathogenic vari-
ants in clinical settings, recent advancements in rapid genome sequencing highlight its growing
utility as a decision-support tool. In critical care settings, for example, ultrarapid nanopore
genome sequencing was used to diagnose genetic conditions in as little as 7 hours, enabling
immediate treatment decisions for critically ill patients.1

A similar application can be seen in Pediatric Inten-
sive Care Units (PICUs), where rapid whole genome
sequencing (rWGS) has significantly impacted pa-
tient care, providing molecular diagnoses that in-
fluenced clinical management in 76% of cases. In
both settings, AI-driven supervised learning models
could be employed to prioritize genetic variants for
review by genetic counselors and clinicians, thereby
streamlining the diagnostic process. While human
expertise remains critical, supervised learning can
enhance the efficiency of this process, especially in
urgent cases where time is of the essence.

POCT has been a pivotal tool in healthcare, especially in rural and remote areas where
access to hospitals and trained staff is limited. Early POCT technologies focused on simple
diagnostics, such as lateral flow immunoassays (LFIAs), which are user-friendly and could
deliver results within minutes. These systems were designed to be portable and easy to use
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without specialized training. However, challenges with accuracy, sensitivity, and quality control
persist, particularly in low-resource settings, which limits the reliability of traditional POCT
systems.2,3

3. Building the POCT Ecosystem: A Holistic Approach to Enhanced
Healthcare Delivery

The POCT ecosystem is an interconnected network that integrates technology, healthcare
providers, manufacturers, regulatory bodies, and patients. Its aim is to create a multifaceted
framework that enhances patient outcomes and reduces healthcare disparities worldwide.

By fostering collaboration among key stakeholders—such as technology developers, health-
care professionals, policymakers, and patient advocacy groups—the POCT ecosystem seeks
to leverage AI innovations. This collaboration aims to streamline processes, facilitate person-
alized medicine, and empower patients with timely and precise health information.

Fig. 1: This figure illustrates the cyclical approach that AI will introduce into the health-
care ecosystem. It shows the interaction among stakeholders, technological contributions, and
patient outcomes, highlighting how AI creates a continuous improvement cycle that benefits
communities as scientific advancements progress.
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Collaboration between healthcare providers and regulatory bodies is essential for designing
POCT systems that meet clinical and regulatory standards. The use of POCT by patients gen-
erates valuable data, enabling technologists to apply AI and advanced computing to enhance
these tools continuously. Additionally, eco-friendly practices and energy-efficient AI contribute
to reducing the environmental impact of increased technology use in healthcare. AI-enhanced
POCT offers predictive diagnostic analyses, with stored data available for future research,
creating a feedback loop that ultimately benefits patients.

3.1. Attributes that Make POCT Effective in Healthcare

POCT has evolved significantly, offering critical benefits that enhance healthcare delivery.
Its primary goal is to improve healthcare provision, enabling healthcare providers to deliver
better treatment to patients in both critical and non-critical settings. The growing demand for
POCT is driven by its attributes, which are continuously refined to meet the evolving needs
of the healthcare industry.

The effectiveness of POCT in healthcare is significantly influenced by several key factors,
with accuracy, ease of use, and availability standing out. Each of these factors plays a crucial
role in ensuring that POCT achieves its intended benefits of rapid diagnostics, improved
patient outcomes, and enhanced healthcare efficiency.

Table 1: Attributes of POCT and Their Importance

Attributes Importance Example AI/Cloud Integration
Accuracy Prevents misdiagnosis

and inappropriate
treatment.

42% success rate in
nanopore sequencing.

Classification algorithms
improve detection.

Availability Ensures accessibility in
diverse settings.

Mobile POCT units for
rural areas.

Edge computing
enhances access.

Ease of Use Usable by professionals
and patients.

User-friendly devices for
COVID-19 tests.

Cloud platforms simplify
data management.

These attributes are not only fundamental to the success of POCT but also set the stage
for the transformative impact of AI in this field. AI’s capabilities in data analysis, ML, and
automation can significantly enhance the accuracy of POCT by providing rapid and precise
diagnostic insights.

By enhancing the speed and precision of diagnostics, AI has the potential to further amplify
the effectiveness of POCT, leading to more personalized and data-driven care while reducing
the dependency on centralized lab testing.

3.2. AI’s Transformative Power in POCT

AI has also showcased its transformative potential, enabling rapid diagnostic feedback. For in-
stance, an AI-based POCT device for glucose monitoring can achieve a mean absolute relative
error (MARE) of approximately 9.5%, indicating high accuracy in managing blood glucose
levels for diabetes patients.4
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Similarly, AI-enhanced cardiac biomarker tests offer real-time analysis with high sensitivity
and specificity, enabling healthcare providers to diagnose acute coronary syndrome with up
to 94% sensitivity and 89% specificity.4 The use of AI in POCT extends to infectious disease
diagnostics as well. For example, AI-driven diagnostic tests for COVID-19 achieved diagnostic
accuracies of up to 98% in detecting SARS-CoV-2, which was crucial for managing public
health during the pandemic.5 By providing real-time, actionable diagnostic information, AI-
powered POCT devices significantly enhance clinical decision-making processes and improve
patient outcomes.

3.3. AI in POCT Use Case - Genome Sequencing

Ultra-rapid nanopore sequencing has proven to have profound impacts on diagnosing genetic
conditions and variations.1 Distinguishing between benign and pathogenic genetic variants
relies heavily on the genetic sequencing and variant classification scheme used6 and can play
a significant role in the patient’s overall wellbeing. Supervised and unsupervised algorithms
can, therefore, play an impactful role in this diagnostic process.

By leveraging cloud-based bioinformatics, researchers have achieved significant reductions
in processing times, transforming genetic diagnostics from a lengthy process into one that can
be completed in hours. Nanopore genome sequencing demonstrates how technological contri-
butions enhance our ability to interpret complex genetic data.1 With the further integration of
AI, we will be able to pave the way for advancements in genomic medicine to further heights.

The link between nanopore sequencing and AI is particularly evident in improving base
calling accuracy and managing large genomic datasets generated by sequencing technologies.
Nanopore sequencing, while fast, can produce noisy data, but AI algorithms have been shown
to improve base calling by learning from large datasets and correcting errors in raw signals.1

In Pediatric Intensive Care Unit (PICU) settings, where rapid diagnoses can make the
difference between life and death, AI-driven analysis of nanopore-generated data has proven
invaluable. The combination of AI with cloud-based bioinformatics not only reduced processing
times by 93% but also helped to more effectively mine and interpret vast genomic datasets.1,7

This demonstrates the critical role of AI in enhancing the speed and accuracy of genomic
diagnostics in PICUs, where timely and accurate information is essential.

Additionally, one of the main challenges in genome sequencing lies in the ability to quickly
and accurately classify genetic variants. Machine learning (ML) algorithms, mainly supervised
and unsupervised learning algorithms, have shown to be effective in aiding diagnostic results
in medicine and healthcare.8 Supervised learning algorithms in AI have the potential to play a
pivotal role in classifying genetic variants due to their ability to categorize known inputs into
discrete categories.8 These algorithms can be used to analyze sequencing data and identify
pathogenic variants that could explain the patients’ critical conditions.
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Fig. 2: This diagram illustrates the general pipeline of an AI-driven system for POCT, high-
lighting the integration of various machine learning methodologies from data collection to
diagnostic output.

3.3.1. Pipeline Overview

The patient data analysis pipeline begins with collecting clinical metrics and medical history.
This data undergoes exploratory data analysis (EDA) using unsupervised learning techniques
to identify patterns and prepare the dataset. Key features are engineered to enhance model
performance before training various machine learning algorithms.

Post-training, the models are evaluated for accuracy and effectiveness, allowing for the
classification of new patient data and delivery of diagnostic results. These results can be
processed in real-time for urgent care or through batch processing for less critical analysis. Ul-
timately, the AI-driven system provides healthcare providers with rapid and precise diagnostic
outcomes, facilitating informed medical decision-making.
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Table 2: Comparison of ML Methods and Edge Computing in Genomic Diagnostics and POCT

Technique Type Application Benefits
Random Forests
(RF)

Supervised
Learning

Classifies genetic variants by
analyzing large genomic
datasets to identify pathogenic
patterns.

Reduces manual review time;
effectively handles complex
interactions and non-linear
relationships.

Supervised
Learning Models

Integrated with
POCT

Provides immediate diagnostic
insights for informed
decision-making in critical
care settings.8

Quickly distinguishes between
disease-causing and benign
variants, guiding the
diagnostic process.6

K-means
Clustering

Unsupervised
Learning

Identifies clusters of genetic
variants based on features
such as nucleotide changes or
genomic position.

Uncovers new patterns and
subtypes, refining diagnostic
frameworks, and processing
large datasets.8

Edge Computing Data Processing Enhances genomic diagnostics
at the point of care, especially
in rural areas with limited
infrastructure.

Ensures timely access to
advanced diagnostics,
bypassing extensive cloud
infrastructure; supports
collaborations like NVIDIA
and SoftBank’s AI and 5G
performance.9

4. Environmental Challenges of AI in POCT

4.1. Energy Consumption

As POCT tools continue to evolve with AI integration, they introduce significant environ-
mental sustainability challenges. These challenges primarily stem from the energy-intensive
processes required to train and operate AI models, as well as the associated data storage
demands. These factors, coupled with issues like heat emissions, e-waste generation, and the
ethical concerns of using personal health data, necessitate a careful consideration of the envi-
ronmental impact of AI-enhanced POCT systems.

Training AI models using significant amounts of data to accurately diagnose medical condi-
tions demands vast amounts of computational power, resulting in substantial energy consump-
tion.10 For instance, tech companies such as Amazon and NVIDIA have noted that inference
processing after training a model makes up to 80–90% of the energy cost of neural networks.4

Inference consumes the greatest amount of energy but is also responsible for accuracy. There
is a correlation of higher accuracy and higher energy consumption, further increasing the chal-
lenge of increased climate and environmental impact with further technological advancements.

Furthermore, as these models scale to meet the demands of real-time data analysis in
POCT, the environmental impact increases. The reliance on large datasets for training AI
models necessitates significant energy use, contributing to the carbon footprint of these sys-
tems.11

In order to minimize energy consumption, while also maintaining essential health data, we
can look into byte pair encoding. This encoding practice adds shortcuts in text or records that
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compress the data while retaining the same information. This can indirectly lead to decreased
energy usage by simplifying tokens, a practice that has already been utilized in the medical
field for large language models (LLM) and record management.

4.2. Electronic Waste (E-Waste)

E-waste is another critical concern associated with AI-integrated POCT tools. The hardware
used in AI applications, such as GPUs, TPUs, FPGAs, and CPUs, becomes obsolete as newer,
more efficient models are developed.12 This results in a continuous cycle of hardware disposal,
contributing to the growing issue of electronic waste.

Medical providers can look into EPEAT (Electronic Product Environmental Assessment
Tool) to help them choose greener AI devices. EPEAT is a metric of sustainability for elec-
tronics. For them to be rated highly, they must fall under 75% of their criteria. The goal is
to promote green products and sustainability for electronic life cycles. This metric has al-
ready been used to showcase greener computers, displays, imaging equipment, mobile phones,
photovoltaic modules and inverters, servers, and televisions.13

4.3. Data Centers and Cooling Systems

In addition to energy consumption, heat emissions from data centers pose a challenge, as
cooling systems account for approximately 30% of their power consumption.14,15

There have been initiatives that work with nature to provide natural cooling. Data centers,
for example, have been built in the Arctic, which require less energy that would otherwise be
allocated towards cooling.16

A downside is that there will need to be new infrastructure built in harsher climates and
higher latency due to their location. A different approach by Microsoft was started in 2013
under the name Project Natick.17 They submerged a data center off the coast of Scotland and
utilized the seawater’s more consistent temperature as a form of cooling.

Reliable information on the energy consumption and emissions of data centers is often
fragmented and difficult to authenticate. This lack of transparency has led to accusations of
”greenwashing,” where companies might exaggerate their environmental efforts while avoiding
genuine sustainability improvements.

4.4. Sustainable AI and Community Engagement

Addressing the environmental challenges posed by AI-powered POCT tools, the focus must
shift towards developing more sustainable AI models and technologies that prioritize efficiency
without sacrificing accuracy. Emerging AI algorithms with reduced computational demands,
such as model compression, quantization, and efficient hardware utilization, offer the poten-
tial to significantly cut energy consumption and reduce the environmental footprint of these
systems.

However, technological advancements alone are insufficient. Engaging the broader commu-
nity is essential to ensuring that these innovations translate into meaningful change. Medical
providers, technology developers, and even patients need to be educated on the sustainable
use of AI-driven tools. Community knowledge-sharing initiatives could play a pivotal role
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in promoting awareness of energy consumption, the life cycle of electronic devices, and the
importance of greener alternatives like EPEAT-rated products.

An impactful approach could be creating an online platform where healthcare professionals
and technology users can share best practices, resources, and case studies focused on sustain-
able AI use. This platform could feature interactive content such as webinars, forums, and
sustainability toolkits, enabling users to learn from real-world examples and collaborate on
solutions for reducing energy consumption and electronic waste in their AI-driven practices.

5. Scalability of Sustainability

Although there are a number of sustainable practices that can enhance the use of POCT
devices in the context of environmental impact, the scalability of AI in POCT faces several
explicit barriers, but there are also key facilitators that can drive its widespread adoption. One
major barrier is the need for robust quality assurance protocols and the availability of trained
staff to ensure reliable interpretation of test results, particularly in remote or resource-limited
settings.2,3

Additionally, regulatory challenges and the slow pace of adopting AI-driven tools in clinical
environments create significant hurdles. On the other hand, facilitators include the increasing
reliability of AI in improving diagnostic accuracy, particularly in technologies such as lateral
flow immunoassays and hematology analyzers, where AI-driven tools have shown enhanced
sensitivity and specificity.3

Finally, advances in mobile and edge computing can enable faster data processing at the
point of care, improving access to high-quality diagnostics even in underserved regions.3 By
addressing these barriers and leveraging the facilitators, AI-driven POCT can become a more
integral part of global healthcare systems.

6. Edge Computing vs. Centralized Data Centers

Edge computing has emerged as a crucial technology for enhancing the effectiveness and
accessibility of POCT in rural and remote areas. Unlike traditional cloud computing, which
relies on centralized data centers for processing, edge computing facilitates data processing at
or near the data source, such as a mobile POCT device or a local healthcare facility.

6.1. Energy Consumption and Efficiency

Energy Savings: Edge computing can significantly reduce energy consumption by processing
data closer to where it is generated, thereby reducing the need to transmit large volumes of
data to centralized locations. According to a study by Gartner, edge computing can reduce
energy consumption by 40-60% compared to traditional data centers.18 For example, edge
computing for video analytics could reduce the amount of data transmitted by 95%, resulting
in significant energy savings.19,20

6.2. Data Transmission and Latency

Lower Latency: Edge computing can reduce latency by up to 90%, as data does not need
to travel as far to be processed. This is crucial for real-time health diagnostics, where ev-
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ery millisecond counts.21 Additionally, mobile POCT units equipped with edge computing
capabilities could perform real-time analyses of patient samples and deliver results within 10
minutes, compared to the 24 to 48 hours required for traditional lab-based testing methods.22

6.3. Environmental Impact

Reduced Resource Use: Smaller, localized edge devices require fewer materials to build
and maintain, which can reduce the environmental impact associated with construction and
maintenance. In a rural healthcare setting, edge computing devices can manage patient infor-
mation and perform data analysis directly at the point of care. For example, edge computing
solutions can handle up to 90% of data processing tasks locally, significantly reducing latency
and improving the speed of data access.23

While edge computing reduces energy use by minimizing data transfers, it’s not inher-
ently more energy-efficient than centralized data centers, which optimize power consumption
at scale. In healthcare, however, the efficiency of edge computing is enhanced when paired
with smaller, less energy-intensive AI models designed for localized tasks. Smaller AI models,
designed to perform well with fewer computational resources, are suited for edge comput-
ing environments and better suited for specialized tasks.24 These models not only reduce the
energy consumption, heat emissions, and cooling requirements that are typically associated
with traditional centralized data centers, but they allow real-time processing in decentralized
POCT systems.

Table 3: Comparison of Edge Computing and Centralized Data Centers

Parameter Centralized Data Centers Edge Computing

Energy Consumption High 40-60% reduction

Carbon Footprint 2% of global emissions Significantly lower

Data Transmission Energy Use Up to 5% of total energy use Minimal

Latency High Up to 90% reduction

Cooling Requirements Up to 40% of energy use Lower

Resource Use High Lower

7. Application in Healthcare

A practical example can be drawn from the deployment of edge computing in healthcare.
In a pilot program, rural clinics in India used edge computing devices to perform real-time
diagnostics for diseases like tuberculosis and malaria. These edge devices reduced the need for
data transmission to central labs. This led to reduced energy consumption of approximately
50% and allowed healthcare providers in remote areas to conduct advanced diagnostics locally,
significantly reducing the time and resources needed for traditional lab analysis.25

This reduction of data transmission time is not only effective in reducing energy usage but
also leads to reduced latency, enabling healthcare providers to make faster informed decisions.
By reducing the dependency on central data centers, edge computing not only conserves
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energy but also empowers local healthcare facilities to deliver timely and accurate diagnostics,
improving patient outcomes.

8. Limitations of Specialization

The integration of modern technological advancements in POCT underscores the importance
of thorough diagnosis and understanding the complexities of patient narratives. While tech-
nology can provide invaluable data and diagnostic support, it should complement rather than
replace the critical human element in healthcare.26

By streamlining routine diagnostic processes, these technologies empower clinicians to be
better at their jobs, ensuring that the art of medicine—listening to and understanding the
patient’s story—remains at the forefront of healthcare. This synergy between advanced diag-
nostics and personalized care enhances overall patient outcomes and reinforces the essential
role of healthcare providers in the diagnostic process.

For example, in a pilot program, AI-assisted diagnostic tools in emergency departments
reduced the average patient wait time by 20%, allowing doctors more time to engage with
patients and discuss treatment options.27

Incorporating the principles of the 4Ps of medicine—Personalized, Preventive, Predictive,
and Participatory—further emphasizes the importance of this balance: personalized medicine
tailors treatment to the individual, preventive approaches aim to ward off diseases before
they occur, predictive analytics forecast potential health risks, and participatory care involves
patients in their own health decisions.

Another critical limitation of AI in POCT is the introduction of bias, which can arise when
AI algorithms are trained on non-diverse data sets.28 If the training data lacks representation
from various demographic groups, the AI system may perform well for some populations but
poorly for others, exacerbating existing health disparities.

This bias not only limits the effectiveness of AI in diverse clinical settings but also high-
lights the need for inclusive data collection and algorithm development. Addressing these
biases is crucial for ensuring that AI technologies in POCT contribute to equitable healthcare
improvements rather than reinforcing existing inequalities.

9. Discussion: Challenges, Future Research, & Call to Action

AI in POCT enhances diagnostic accuracy and healthcare accessibility but poses environmen-
tal and ethical challenges. High energy consumption from AI model training and centralized
data centers, along with AI hardware obsolescence, contribute to carbon emissions and e-waste.
Addressing these requires energy-efficient algorithms and sustainable hardware innovations,
such as biodegradable components.

The substantial carbon emissions and e-waste resulting from outdated AI hardware high-
light the need for energy-efficient algorithms and sustainable hardware innovations, such as
biodegradable components. Ethically, AI must complement human decision-making in health-
care. Future research should focus on improving AI’s energy efficiency, addressing biases, and
ensuring equitable access to POCT technologies. Achieving sustainability requires concerted
efforts from researchers, healthcare providers, and policymakers to responsibly integrate AI
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without compromising environmental and social values.
Additionally, the reliance on edge computing in POCT introduces its own set of challenges.

While edge computing can reduce latency and improve efficiency, it may also raise concerns
related to data security, privacy, and the potential for increased hardware obsolescence. The
environmental impact of the widespread deployment of edge devices, particularly in resource-
limited settings, must also be considered.

The integration of AI in POCT enhances diagnostic accuracy and healthcare accessibility
but also presents significant environmental, ethical, and technological challenges. While AI
offers the potential to improve healthcare outcomes, it also carries the risk of biases in algo-
rithmic decision-making. These biases can lead to unequal access to diagnostics and misin-
terpretation of data, particularly for underrepresented populations. Ensuring that AI systems
are developed and validated using diverse datasets is essential to mitigate these biases.

By optimizing AI for sustainability and equity, we can transform healthcare with more
accessible diagnostics and personalized care, aligning with global sustainability goals.

Achieving sustainability in healthcare requires a collaborative effort among researchers,
healthcare providers, and policymakers. By responsibly integrating AI while upholding envi-
ronmental and social values, we can optimize these technologies for greater sustainability and
equity. By focusing on these areas, we can transform healthcare delivery, making diagnostics
more accessible and personalized while aligning with global sustainability goals.
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Polygenic risk scores (PRS) have predominantly been derived from genome-wide association 
studies (GWAS) conducted in European ancestry (EUR) individuals. In this study, we present an 
in-depth evaluation of PRS based on multi-ancestry GWAS for five cardiometabolic phenotypes in 
the Penn Medicine BioBank (PMBB) followed by a phenome-wide association study (PheWAS). 
We examine the PRS performance across all individuals and separately in African ancestry (AFR) 
and EUR ancestry groups. For AFR individuals, PRS derived using the multi-ancestry LD panel 
showed a higher effect size for four out of five PRSs (DBP, SBP, T2D, and BMI) than those derived 
from the AFR LD panel. In contrast, for EUR individuals, the multi-ancestry LD panel PRS 
demonstrated a higher effect size for two out of five PRSs (SBP and T2D) compared to the EUR 
LD panel. These findings underscore the potential benefits of utilizing a multi-ancestry LD panel 
for PRS derivation in diverse genetic backgrounds and demonstrate overall robustness in all 
individuals. Our results also revealed significant associations between PRS and various phenotypic 
categories. For instance, CAD PRS was linked with 18 phenotypes in AFR and 82 in EUR, while 
T2D PRS correlated with 84 phenotypes in AFR and 78 in EUR. Notably, associations like 
hyperlipidemia, renal failure, atrial fibrillation, coronary atherosclerosis, obesity, and hypertension 
were observed across different PRSs in both AFR and EUR groups, with varying effect sizes and 
significance levels. However, in AFR individuals, the strength and number of PRS associations 
with other phenotypes were generally reduced compared to EUR individuals. Our study 
underscores the need for future research to prioritize 1) conducting GWAS in diverse ancestry 
groups and 2) creating a cosmopolitan PRS methodology that is universally applicable across all 
genetic backgrounds. Such advances will foster a more equitable and personalized approach to 
precision medicine. 

Keywords: Polygenic risk scores, multi-ancestry GWAS, cardiometabolic phenotypes, precision 
medicine 

1. Introduction

The era of precision medicine has been marked by significant efforts to identify the genetic and 
environmental factors that influence the risk of disease as well as the disease prognosis and 
treatment. Advance knowledge of these factors can provide a major health benefit to individuals, 
as preventative strategies and tailored therapies can be targeted toward individuals at higher risk. 
Results from genome-wide association studies (GWAS) have highlighted the polygenic nature of 
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most common, complex diseases in that they have identified a large number of loci with small 
genetic effects1,2. The polygenic risk score (PRS) has thus emerged as a promising factor for 
predicting disease risk. PRS is the cumulative, mathematical aggregation of risk derived from the 
contributions of many DNA variants across the genome3. 

Recent studies have shown the high prevalence of cardiometabolic conditions among adults in 
the United States4, and together they are the leading cause of mortality around the world5,6. GWAS 
have identified hundreds of loci associated with common diseases such as coronary artery disease 
(CAD)7, obesity8, hypertension9 (measured using systolic blood pressure [SBP] and diastolic blood 
pressure [DBP]), and type 2 diabetes (T2D)10. Among the individuals that are diagnosed with one 
disease (for example, T2D), the prevalence of comorbidities such as hypertension, CAD, heart 
failure, and chronic kidney disease is also increased. To fully evaluate disease risk in an individual, 
it is therefore essential to also consider comorbid or secondary conditions related to the primary 
disease. There are several GWAS that have identified shared genetic associations between 
cardiometabolic conditions, demonstrating similarity in the underlying genetic architecture11,12. 
Pathophysiology of these conditions also shows the cross-talk between organ systems and its effect 
on disease progression, such as hemodynamic interaction between heart and kidney in heart 
failure13. With PRS, it is possible to derive an individuals’ disease risk for each cardiometabolic 
condition using GWAS summary statistics. PRS represents an aggregate measure of the 
cumulative effect of numerous genetic variants on a particular disease, capturing an individual's 
genetic predisposition. As such, PRS can be instrumental in assessing the genetic interplay among 
coexisting or comorbid conditions.  

Numerous methodologies exist for constructing PRS targeted at specific diseases. 
Conventionally, genetic risk scores (GRS) were derived using the genome-wide significant SNPs 
from a GWAS; however, recent studies show that using association results with much lower p-
value significance (p<0.05) segregate individuals risk with better accuracy1. The development and 
clinical utility of PRS is under active investigation, especially in globally diverse populations14–16. 
Most large-scale GWAS have been conducted in individuals from European ancestry populations 
and most PRS are derived from these studies. Subsequently, the majority of PRS investigations 
published to date have been conducted in populations of European ancestry17.  There can be several 
differences such as linkage disequilibrium (LD) structure and allele frequency of the variants, 
which can lead to inaccurate PRS for non-European populations17. This is not unique to PRS 
studies, and the majority of human genetic research suffers from this same phenomenon18. To 
ensure the successful clinical implementation of PRS, it is imperative to evaluate its performance 
in diverse global populations that closely reflect the healthcare population being treated. Moreover, 
for PRS to become a truly inclusive and effective tool for precision medicine, they must be 
applicable to individuals of all genetic backgrounds, including those with mixed ancestral 
backgrounds. Achieving this level of equity and broad usability will contribute significantly to the 
advancement of personalized healthcare practices. 

In this study, we investigated the implementation of PRS for cardiometabolic conditions in 
individuals in the Penn Medicine BioBank (PMBB). PMBB is a cohort of >250,000 individuals 
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established for genomic and precision medicine research. Approximately 45,000 of the individuals 
have genetic data imputed using the Trans-Omics for Precision Medicine (TOPMed) v2 dataset19. 
20% of the PMBB study population is classified as African (AFR) ancestry based on genetic 
similarity to the 1000 genome (1KGP)20 AFR superpopulation group. We calculated PRS in the 
PMBB based on GWAS summary statistics generated in multi-ancestry data to evaluate 1) risk 
prediction accuracy among all individuals, and among AFR and European (EUR) subpopulations; 
and 2) the utility of PRS in determining genetic overlap among cardiometabolic conditions. 
 
2.  Methods 

2.1. Penn Medicine BioBank 
 

The Penn Medicine BioBank (PMBB) recruits participants through the University of Pennsylvania 
Health System by enrolling at the time of appointment21. Patients participate by donating either 
blood or a tissue sample and allowing researchers access to their electronic health record (EHR) 
information. This academic biobank provides researchers with centralized access to a large number 
of blood and tissue samples with extensive health information from the EHR. The facility banks 
both blood specimens (i.e., whole blood, plasma, serum, buffy coat, and DNA isolated from 
leukocytes) and tissues (i.e., formalin-fixed paraffin-embedded, fresh, and flash frozen).  
 
2.2. Genotyping and Quality Control and Imputation 
 

The DNA extracted from blood samples was genotyped using the Illumina Global Screening 
Array. To ensure data integrity, we conducted quality control measures, excluding SNPs with a 
marker call rate of less than 95% and samples with a call rate of less than 90%. Additionally, 
individuals with sex discrepancies were removed from the analysis. Imputation was carried out 
using the Michigan Imputation server, leveraging the TOPMed Reference panel19. To determine 
genetic ancestry, we employed principal component analysis (PCA) using the smartpca tool22 and 
the 1KGP dataset20. Genetic ancestry was inferred through a k-means clustering approach, utilizing 
the 1KGP super populations as genetic ancestry labels. 
 
2.3. Polygenic Risk Scores 
 

To derive PRS, we used the multi-ancestry summary statistics from the largest and/or most recent 
GWAS studies for each trait (See Table 1).  
 
 
 
 
 
 
 

Table 1. Multi-ancestry GWAS 
Phenotype Sample size (N cases) PMID 
BMI 241,258 284436258 
CAD 547,261 (122,733) 292127787 
Hypertension (DBP, SBP) 318,891 305784189 
T2D 1,407,282 (228,499) 3254192510 
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Weights for each SNP were calculated using PRS‐CS23 (version from April 24, 2020), a method 
that performs Polygenic Prediction via Bayesian regression and continuous shrinkage priors. PRS‐
CS requires a reference panel that matches the ancestry distribution of the target data set. We 
generated multiple reference panels for analyses: a multi-ancestry LD reference panel using the 
HapMap SNPs from the entire 1KGP populations (2504 individuals), an African‐only reference 
panel from the 1KGP African ancestry population, and a European‐only reference panel from 
1KGP European ancestry population. We identified LD patterns within the 1KGP population by 
using PLINK (version 1.90) to determine LD blocks and calculate the LD between the SNPs in 
each block. For PRS‐CS, the global shrinkage parameter φ was fixed to 0.01, and default values 
were selected for all other parameters. PRSs were then calculated using the weights with PLINK. 
Only the SNPs in the target data set, summary statistics, and LD reference panel were included in 
the PRSs.  
 
2.4. Phenotypes 
 

We focused on four primary phenotypes to derive and evaluate the PRS association: CAD, 
hypertension (for DBP and SBP PRS), T2D, and BMI. Cases and controls for each binary 
phenotype were defined using International Classification of Diseases (ICD‐9 and ICD‐10) 
diagnosis codes (CAD: 414.0*, I25.1*; T2D: 250*, E11*; hypertension: 401*, I10*). Participants 
were coded as cases of a given phenotype if their records contained at least 1 of the corresponding 
ICD‐9 or ICD‐10 codes. The median value for BMI was extracted from the EHR. 
 
For Phenome-wide Association Study (PheWAS) analysis, we derived phenotypes using ICD-9 
and ICD-10 data from individuals from the Penn Medicine EHR. ICD-9 codes were aggregated to 
phecodes using the phecode ICD-9 map 1.224,25; ICD-10 codes were aggregated to phecodes using 
the phecode ICD-10 map 1.2 (beta)26. Individuals are considered cases for the phenotype if they 
have at least 2 instances of the phecode on unique dates, controls if they have no instance of the 
phecode, and ‘other/missing’ if they have one instance of the phecode or a related phecode.  
 
2.5. Statistical Analysis 
 

PRS were normalized (mean of 0 and standard deviation of 1) for each analysis separately 
(stratified by ancestry and overall). Logistic or linear regression models accounting for age, sex, 
and the first 5 within-ancestry principal components (PCs) were used to test for association of PRS 
with each of the primary phenotypes (T2D, BMI, hypertension, and CAD). Area under the receiver 
operator curve (AUC) and DeLong test was determined using the R package pROC, using the full 
logistic regression model as above. AUC was also calculated for a reduced logistic regression 
model including covariates alone (age, sex, and the first 5 PCs). The DeLong test27 is a non-
parametric approach used to compare the AUCs of two correlated ROC curves, especially when 
the models are applied to the same set of samples. This test was used to compare null model and 
full model that includes PRS and obtain a p-value indicating the statistical significance of the 
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difference between the two AUCs. For BMI, we treated it as a continuous trait and provided the 
R^2 value for all analyses. 
 

A PheWAS was performed using logistic regression models with each PRS as the independent 
variable, phecodes as the dependent variables, and age, sex, and the first 10 PCs as covariates. A 
phenome-wide Bonferroni significance threshold of 4.2 × 10-5 (0.05/1190) in AFR and 3.6 × 10-5 
(0.05/1377) in EUR was applied to account for multiple testing.  
 
3.  Results 

3.1. Penn Medicine BioBank (PMBB) Demographics 
 

PMBB currently consists of >250,000 consented individuals. Approximately 45,000 of these 
participants have been genotyped to date. Demographics of the sample included in this study are 
shown in Table 2. 
 

Table 2. Demographics of PMBB sample 
 All AFR EUR 
Total patients 43,530 11,189 30,094 

% Female 50.1% 62.8% 44.9% 
Mean age 55.2 51.7 57.3 
% CAD 23.8% 18.8% 26.4% 
% Hypertension 54.4% 65.2% 51.7% 
% T2D 23.5% 35.1% 19.3% 

Patients with BMI data 40,043 10,619 27,489 
% Female 50.4% 63.4% 44.9% 
Mean age 55.6 51.9 57.7 

 
3.2. Determining the effect of linkage disequilibrium panel on PRS in the overall sample 
 

Using publicly available multi-ancestry GWAS data (Table 1), we generated a PRS for each 
primary phenotype of interest: type 2 diabetes, body mass index, hypertension (SBP and DBP), 
and coronary artery disease.  We assessed the impact of using a multi-ancestry LD panel, akin to 
the GWAS data, and compared it with an AFR LD panel (in all PMBB individuals and in AFR 
PMBB individuals) and an EUR LD panel (in all PMBB individuals and in EUR PMBB 
individuals). AUC values were computed for each binary phenotype PRS in all individuals (Table 
3) and contrasted between the full model (AUC, covariates + PRS) and the model containing 
covariates alone (AUC Null). The addition of PRS consistently improved the covariate model for 
all phenotypes, showing an average AUC improvement of 0.014. Across the entire dataset, the 
PRS created with the multi-ancestry LD panel (DBP, BMI) or the EUR LD panel (CAD, SBP, 
T2D) demonstrated the strongest association with their respective primary phenotypes (Table 3). 
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Table 3. Comparison of LD panel for PRS in all  
PRS LD Panel AUC1 

Null 
AUC1 DeLong P Model 

OR 
Model P-
value 

CAD 
Multi-ancestry 

0.795 
0.808 1.22E-53 1.495 5.82E-186 

AFR 0.807 1.22E-52 1.472 7.11E-182 
EUR 0.807 2.33E-52 1.515 1.00E-184   

    
 

DBP 
Multi-ancestry 

0.770 
0.773 8.90E-06 1.236 1.65E-49 

AFR 0.772 1.32E-15 1.219 1.59E-49 
EUR 0.772 6.15E-14 1.226 6.32E-43   

    
 

SBP 
Multi-ancestry 

0.770 
0.775 4.47E-23 1.365 2.48E-83 

AFR 0.775 3.74E-22 1.338 2.78E-80 
EUR 0.775 7.40E-23 1.376 2.31E-83   

    
 

T2D 
Multi-ancestry 

0.695 
0.730 5.41E-88 2.223 1.24E-286 

AFR 0.727 2.68E-79 2.095 3.18E-266 
EUR 0.731 2.44E-91 2.263 1.46E-297   

    
 

PRS LD Panel R2 Null R2 R2 difference Model 
Beta 

Model P-
value 

BMI 
Multi-ancestry 

0.067 
0.110 0.043 2.205 0 

AFR 0.110 0.043 2.125 0 
EUR 0.108 0.042 2.198 0 

 
3.3. Determining the effect of linkage disequilibrium panel on PRS within ancestry 
 
In both AFR (Table 4) and EUR (Table 5) individuals, the addition of PRS to the covariate model 
enhances model performance. However, it is noteworthy that PRS performance was relatively 
stronger in EUR individuals compared to AFR individuals. In AFR, the full model shows a 
somewhat smaller improvement over the covariate-based model (average improvement in 
AUC=0.011) compared to the improvement observed in EUR (average improvement in 
AUC=0.021).  
 
Notably, in AFR individuals, the PRS calculated using the multi-ancestry LD panel exhibited a 
higher effect size in four out of the five PRSs (DBP, SBP, T2D, and BMI) compared to the AFR 
LD panel (Table 4). This indicates the potential benefits of using a multi-ancestry LD panel to 
derive PRS in populations with diverse genetic backgrounds. 
 

 
1 AUC rounded to three decimal points 
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Table 4. Comparison of LD panel for PRS in AFR individuals 
PRS LD Panel AUC Null AUC DeLong P Model 

OR 
Model P-
value 

CAD 
AFR 

0.764 
0.770 1.33E-06 1.261 2.75E-18 

Multi-ancestry 0.770 4.52E-06 1.253 2.45E-17 
       

DBP 
AFR 

0.793 
0.797 1.72E-05 1.208 4.56E-15 

Multi-ancestry 0.797 1.25E-05 1.214 2.56E-15 
       

SBP 
AFR 

0.793 
0.797 3.82E-06 1.252 3.00E-18 

Multi-ancestry 0.797 1.11E-06 1.277 9.65E-20 
       

T2D 
AFR 

0.681 
0.710 3.03E-25 1.630 5.73E-77 

Multi-ancestry 0.711 4.21E-26 1.689 1.73E-79 
       

PRS LD Panel 
R2 Null R2 R2 difference Model 

Beta 
Model P-
value 

BMI 
AFR 

0.041 
0.065 0.024 1.449 1.02E-59 

Multi-ancestry 0.063 0.022 1.462 6.84E-56 
  
In EUR individuals, the PRS calculated using the multi-ancestry LD panel demonstrated a higher 
effect size in two out of the five PRSs (SBP and T2D) when compared to the EUR LD panel (Table 
5). This observation highlights the potential advantages of leveraging a multi-ancestry LD panel 
in deriving PRS for certain phenotypes in populations with European ancestry. 
 

Table 5. Comparison of LD panel for PRS in EUR individuals 
PRS LD Panel AUC Null AUC DeLong P Model 

OR 
Model P-
value 

CAD 
EUR 

0.796 
0.812 9.49E-48 1.533 5.65E-166 

Multi-ancestry 0.812 2.38E-48 1.531 5.73E-165 
       

DBP 
EUR 

0.747 
0.750 6.17E-11 1.173 9.17E-34 

Multi-ancestry 0.750 1.51E-12 1.158 9.43E-29 
       

SBP 
EUR 

0.747 
0.753 6.64E-21 1.251 1.49E-64 

Multi-ancestry 0.753 1.61E-20 1.255 2.40E-66 
       

T2D 
EUR 

0.651 
0.708 8.26E-87 1.721 5.68E-243 

Multi-ancestry 0.710 1.12E-82 1.757 8.59E-258 
       

PRS LD Panel 
R2 Null R2 R2 difference Model 

Beta 
Model P-
value 
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BMI 
EUR 

0.006 
0.076 0.070 1.637 0 

Multi-ancestry 0.075 0.069 1.626 0 
 
3.4 PheWAS of polygenic risk scores    
 
We conducted a PheWAS of each multi-ancestry LD panel PRS in AFR and EUR individuals, 
identifying additional phenotypes associated with the PRS for our primary phenotypes (Figure 1, 
full results in Supplemental Tables Online: https://shorturl.at/uBDSX). The results reveal 
significant associations between the PRS and various phenotypic categories, shedding light on the 
potential implications of PRS in predicting disease susceptibility. All PRS exhibited associations 
with other phenotypes. However, in AFR individuals, the strength and number of PRS associations 
with other phenotypes were generally reduced compared to EUR individuals.  
 

In our analysis, the CAD PRS in AFR individuals was associated with 18 distinct phenotypes, 
including notable associations with hyperlipidemia (OR=1.12, p=1.1x10-6) and renal failure 
(OR=1.12, p=1.0x10-5). In contrast, EUR individuals exhibited associations with a broader range 
of 82 phenotypes, with hyperlipidemia (OR=1.23, p=7.3x10-45) and renal failure (OR=1.10, 
p=2.1x10-8) being among them.  
 

For the DBP and SBP PRS, AFR individuals showed associations with 9 and 20 phenotypes 
respectively. Specific associations of interest included atrial fibrillation for DBP (OR=1.20, 
p=1.4x10-5) and both coronary atherosclerosis (OR=1.20, p=3.7x10-7) and T2D (OR=1.12, 
p=3.2x10-5) for SBP. EUR individuals, on the other hand, had DBP and SBP PRS associated with 
12 and 27 phenotypes, respectively. This encompassed associations like coronary atherosclerosis 
for both DBP (OR=1.09, p=4.9x10-7) and SBP (OR=1.13, p=1.6x10-13), and T2D specifically for 
SBP (OR=1.17, p=1.0x10-17).  
 

The T2D PRS in AFR individuals was linked with a vast array of 84 phenotypes. Key associations 
here were hyperlipidemia (OR=1.30, p=6.0x10-16), obesity (OR=1.20, p=6.6x10-10), and 
hypertension (OR=1.22, p=4.5x10-9). EUR individuals had a slightly lesser range with 78 
phenotypes, but with significant associations like hyperlipidemia (OR=1.31, p=9.2x10-17), obesity 
(OR=1.29, p=9.9x10-57), and hypertension (OR=1.22, p=3.2x10-38). Lastly, the BMI PRS in AFR 
was associated with 19 phenotypes, including T2D (OR=1.17, p=1.6x10-8) and hypertension 
(OR=1.18, p=8.6x10-8). In EUR individuals, this PRS was linked with a more extensive 72 
phenotypes, with notable associations being T2D (OR=1.26, p=4.6x10-39) and hypertension 
(OR=1.19, p=2.2x10-32). 
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Figure 1. Phenome-wide Association Study (PheWAS) Results for Polygenic Risk Scores (PRS) for coronary artery 
disease (CAD), Diastolic Blood Pressure (DBP), Systolic Blood Pressure (SBP), Type 2 Diabetes (T2D), and Body 
Mass Index (BMI). The x-axis represents the phecode categories, and the y-axis shows the -log10 p-values, color-
coded by category. 
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4.  Discussion 

We generated five polygenic risk scores representing genetic liability for cardiometabolic diseases 
and assessed their performance across different ancestry groups in the Penn Medicine BioBank 
(PMBB), a biobank including DNA linked with electronic health records. For all PRS tested, we 
identified a statistically significant association with the primary phenotype in both ancestry groups, 
as validated by the DeLong test comparing the null and the full model.  
 

Type 2 diabetes consistently exhibited the highest effect size, reflecting the large number of cases 
in the GWAS used to generate this PRS and the PMBB dataset. Contrarily, the hypertension PRSs 
(DBP and SBP) showed a weaker effect size, even with a larger GWAS and over 50% of PMBB 
patient participants with hypertension. These observations suggest that factors beyond sample size, 
such as disease heterogeneity, prevalence, and non-additive effects, influence PRS associations. 
Consequently, understanding the interplay of these factors will be pivotal in refining and 
optimizing the application of PRS in disease prediction and risk assessment.  
 

Our PheWAS analyses were conducted to explore the broader phenotypic landscape associated 
with each PRS with an EHR-linked biobank. Many of the identified phenotypes could be linked 
to broader effects of known disease risk factors and established comorbidities. For instance, risk 
for Type 2 diabetes was associated with hypertension, a known commonly co-occurring trait28. 
Similarly, the BMI PRS was associated with sleep apnea, diabetes, and hypertension, all of which 
are known to be more prevalent in individuals with higher BMI29–32. However, these associations 
don’t necessarily imply causality. The high prevalence of comorbidities among these phenotypes 
complicates the task of discerning whether the genetic risk for one condition directly influences 
the onset of another. 
 

Our findings underscore a significant challenge in the future implementation of PRS into routine 
clinical care. While PRS derived from multi-ancestry GWAS can be associated with phenotypes 
in individuals of African ancestry (AFR), their impact is not as pronounced as those generated in 
European ancestry (EUR). This observation, although expected, has been a topic of extensive 
discussion in recent years, emphasizing a notable disparity in genetic research15,17. Our results here 
affirm that these expectations persist even in large-scale, diverse ancestry datasets. Furthermore, 
our study suggests that PRS for cardiometabolic diseases based on multi-ancestry GWAS data 
might not perform as robustly for the primary disease and its associated secondary cardiometabolic 
traits. 
 

Our utilization of a multi-ancestry LD panel to compute PRS for all individuals from multi-
ancestry GWAS demonstrated robust performance across all populations. This was especially true 
for African ancestry individuals, emphasizing the potential advantages of leveraging a multi-
ancestry reference panel in PRS generation. As the field of precision medicine continues to evolve, 
advocating for the adoption of such panels becomes increasingly important. By addressing these 
challenges, we can pave the way for more inclusive and accurate personalized healthcare 
strategies. 
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One notable limitation of our study is the modest gain in predictive performance over the null 
model across all categories, as reflected in the AUC values. While we observed differences in 
AUC between the ancestry groups, the absolute increase in AUC over the null model was relatively 
small. This underscores the need for further refinement in PRS methodologies to achieve more 
substantial improvements in predictive performance. Additionally, in our PheWAS approach, 
there are inherent challenges when comparing results between AFR and EUR groups. The 
difference in sample sizes between these groups can lead to variations in statistical power, 
potentially influencing the observed associations. Moreover, the generally lower PRS performance 
in the AFR group, as highlighted in our results, can further compound these challenges. It's 
essential to interpret the PheWAS results with these considerations in mind. 
 

In conclusion, while there’s considerable enthusiasm surrounding PRS in clinical care, there 
remains a significant amount of research to be conducted to determine its optimal 
implementation.  It is essential to explore how PRS can be incorporated alongside other commonly 
used predictors33, such as family history, clinical comorbidities, and environmental/lifestyle 
factors. By combining PRS with established clinical guidelines, we can aim for a more 
comprehensive risk assessment, leading to personalized interventions.  Another important issue to 
address is whether we will ultimately need ancestry-specific PRS models or if we can develop the 
statistical framework to integrate global and local LD patterns into the PRS model to produce a 
cosmopolitan PRS approach.  For clinical implementation, a cosmopolitan PRS approach will be 
easier for clinicians to adopt; however, it is unclear how this can be done effectively, given the 
heterogeneity in LD patterns, effect sizes, and causal variants in different ancestry groups. Our 
work here suggests that the use of multi-ancestry GWAS and LD panels may be a step towards 
this goal. The ultimate success of PRS in precision medicine lies in integrating it seamlessly with 
published clinical guidelines and incorporating an individual's ancestry within the PRS framework. 
This integration will empower clinicians to make informed decisions based on a comprehensive 
and personalized risk profile for each patient. By addressing these key aspects and enhancing our 
understanding of PRSs role in precision medicine, we can unlock its full potential as a 
transformative tool in healthcare, facilitating early interventions and preventive measures that cater 
to each individual's unique genetic makeup and health needs. 
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