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Crowd-powered telemedicine has the potential to revolutionize healthcare, especially during times 
that require remote access to care. However, sharing private health data with strangers from around 
the world is not compatible with data privacy standards, requiring a stringent filtration process to 
recruit reliable and trustworthy workers who can go through the proper training and security steps. 
The key challenge, then, is to identify capable, trustworthy, and reliable workers through high-
fidelity evaluation tasks without exposing any sensitive patient data during the evaluation process. 
We contribute a set of experimentally validated metrics for assessing the trustworthiness and 
reliability of crowd workers tasked with providing behavioral feature tags to unstructured videos of 
children with autism and matched neurotypical controls. The workers are blinded to diagnosis and 
blinded to the goal of using the features to diagnose autism. These behavioral labels are fed as input 
to a previously validated binary logistic regression classifier for detecting autism cases using 
categorical feature vectors. While the metrics do not incorporate any ground truth labels of child 
diagnosis, linear regression using the 3 correlative metrics as input can predict the mean probability 
of the correct class of each worker with a mean average error of 7.51% for performance on the same 
set of videos and 10.93% for performance on a distinct balanced video set with different children. 
These results indicate that crowd workers can be recruited for performance based largely on 
behavioral metrics on a crowdsourced task, enabling an affordable way to filter crowd workforces 
into a trustworthy and reliable diagnostic workforce. 
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1. Introduction

Autism spectrum disorder (ASD, or autism) is a pediatric developmental condition affecting 1 in 40 
children in the United States [1], with prevalence continuing to rise [ 2]. While access to care relies 
on a formal diagnosis from a clinician, an uneven distribution of diagnostic resources across the 
United States contributes to increasingly long waitlists. Some evidence suggests that 80% of 
counties lack sufficient diagnostic resources [3], with underserved communities disproportionately 
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affected by this shortage [4]. Telemedicine has the potential to minimize this gap by capitalizing on 
the increasing pervasiveness and affordability of digital devices. Such diagnostic solutions are 
especially pertinent during times of pandemic, most notably the coronavirus, which further hinders 
access to diagnosis and care.  

Mobile digital autism interventions administered on smartphones [5-12] and on ubiquitous 
devices [13-27] passively collect structured home videos of children with neuropsychiatric 
conditions for use in subsequent diagnostic data analysis [27-28]. In order for the video data 
collected from digital therapies to become widely used, trustworthy data sharing methodologies 
must be incorporated into the diagnostic pipeline [29]. One possible approach, which we realize in 
the present study, is to carefully recruit a trustworthy set of workers to transform the video streams 
into a secure, quantitative, and structured format. While modern computer vision algorithms could 
handle this task in several domains, extracting complex behavioral features from video is currently 
beyond the scope of state-of-the-art machine learning methods and therefore requires human labor. 
However, the collected videos naturally contain highly sensitive data, requiring careful selection of 
trustworthy and reliable labelers who are allowed access to protected health information (PHI) after 
completion of Health Insurance Portability and Accountability Act (HIPAA) training, Collaborative 
Institutional Training Initiative (CITI) human subjects training, and whole disk encryption.  

In the present study, we examine strategies for quantitatively determining the credibility and 
reliability of crowd workers whose labels can be trusted by researchers. It is important that the 
metrics for evaluating workers are speedy and simple, as formally credentialing recruited crowd 
workers through institutional channels is laborious and slow. We crowdsource the task of providing 
categorical feature labels to videos of children with autism and matched controls. For each 
crowdsourced worker, we evaluate correlations of their mean classifier probability of the correct 
class (PCC) using their answers as input with (1) the mean L1 distance between their responses to 
the same video spaced one month apart, (2) the mean L1 distance between their answer vector to 
each video and all other videos they rated, (3) the mean time spent rating videos, and (4) the mean 
time and L1 distance of answers when the worker is explicitly warned about not spending enough 
time rating a video and provided with a chance to revise their response. We then feed the metrics 
which are correlated with PCC into a linear regression model predicting the PCC. 

2. Methods

2.1.  Clinically representative videos 

We used a set of 24 publicly available videos from YouTube of children with autism and matched 
neurotypical controls (6 females with autism, 6 neurotypical females, 6 males with autism, and 6 
neurotypical males). Criteria for video selection and inclusion were that (1) the child’s hand and 
face must be visible, (2) opportunities for social engagement must be present, and (3) an opportunity 
for using an object such as a toy or utensil must be present. Child diagnosis was determined through 
the video title and description. The videos were short, with a mean duration of 47.75 seconds (SD 
= 30.71 seconds). The mean age of children in the video was 3.65 years (SD = 1.82 years).  
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Fig. 1.  Crowd worker feature tagging user interface deployed on Microworkers.com. Each 
worker answered a series of multiple-choice questions corresponding to each input feature of a 

gold standard classifier. 

2.2.  Crowdsourcing task for Microworkers 

Prior work has validated the capability of subsets of the crowd recruited from the Amazon 
Mechanical Turk crowdsourcing platform [ 30] to provide feature tags of children with autism 
comparable to clinical coordinators working with children with autism on a daily basis [31-32]. We 
instead recruited workers from Microworkers.com, as Microworkers consists of a diverse 
representation of worker nationalities [ 33] compared to Mechanical Turk, which contains workers 
mostly from the United States and India [34]. Furthermore, Microworkers provides built in 
functionality for allowing workers to revise their answers if a requester is unsatisfied but believes 
the worker can redeem their response. This functionality was crucial for our trustworthiness metric.  
      The task consisted of a series of 13 multiple choice questions identified, in prior work which 
employed feature selection algorithms on electronic health records [35-44], as salient categorical 
ordinal features for autism prediction. Workers were asked to watch a short video and answer the 
multiple-choice questions using the interface depicted in Fig. 1. Microworkers automatically records 
the time spent on each task. 

Through a pilot study of internal lab raters providing 9,374 video ratings for which we logged 
labeling times, we observed that the mean time per video was 557.7 seconds (9 minutes 18 seconds), 
with a standard deviation of 929.7 seconds (15 minutes 30 seconds). The pilot task consisted of 
answering 31 multiple choice questions, while the Microworkers task only contained 13 questions; 
the proportional mean time is 233.9 seconds (3 minutes 54 seconds). We therefore required workers 
to spend at least 2 minutes per video, a time threshold significantly below the 233.9 second mean 
proportional time. If any crowd worker spent less than 2 minutes rating a video, we leveraged the 
built-in functionality on Microworkers to prompt these users to revise their answers and sent them 
a warning message disclosing that we know the “Impossibly short time spent on task.” We measured 
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the additional time spent by the worker, if any, as well as the changes in the answer vector (L1 
distance) after receiving this message. 
      We posted all tasks for all 24 videos exactly 30 days after the original task, allowing workers 
who completed the first task to complete the task again while minimizing the chance that they 
could use the memory of their prior responses to bias the test. Previous studies which evaluate 
test-retest reliability consider 2 weeks to be sufficient time to prevent memorization of prior 
administrations of the questionnaire [45-48], and we increased this time frame to 30 days to 
minimize the likelihood that any memory of the workers’ previous answers remained. The same 
video of the child was provided for both administrations of the task. Workers were not provided 
with their original answers for reference. The difference between the worker’s original answers 
and their revised answers on the same video served as quantitative information about the 
reliability of the worker. 

2.3.  Classifier to evaluate performance 

 
Fig. 2.  Process for collecting the data needed to evaluate trust and reliability metrics for crowd 

workers. Each crowd worker watches unstructured videos of children with autism and 
neurotypical controls, answering multiple choice questions about each video. These multiple-
choice answers serve as categorical ordinal feature vectors for a previously validated logistic 

regression classifier, trained on clinician-filled electronic health records, that predicts the 
probability that a child has autism. 

 
For a gold standard, we use a previously published and validated [49-54] logistic regression 
classifier (Fig. 2), trained on electronic health record databases of autism diagnostic scoresheets 
filled out by expert clinicians, which emits a probability score of autism using the crowd workers’ 
multiple-choice responses as categorical ordinal feature vectors. Because logistic regression 
classifiers produce a probability, we treat the probability as a confidence score of the crowdsourced 
workers’ responses. We analyze the probability of the correct class (referred to as PCC), which is p 
when the true class is autism and 1-p when the true class is neurotypical. When assessing classifier 
predictions, we use a threshold of 0.5. We use a worker’s average PCC for videos the worker has 
rated as a metric of the worker’s video tagging capability, with a higher mean PCC corresponding 
to greater mean performance by the worker. 
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2.4.  Metrics evaluated 

We strive to develop metrics which only take input parameters that do not depend on a priori 
knowledge about the correct classification score of the videos. We test the following metrics for 
correlation with the PCC, where N is the number of videos rated by a worker, M is the number of 
questions per video rating task (inputs to the diagnostic classifier), and Ai,j,k is the answer for video 
i and question j for the kth time. 
 

 
Fig. 3.  Process for calculating trust and reliability metrics for crowd workers. The reliability of 
workers is determined by how different their answers are when rating the same video one month 
apart. The trustworthiness of workers is determined by whether they spend the minimal amount 

of time needed to properly answer the questions, whether they spend sufficient time when 
receiving a warning, and whether their original answers change after receiving the warning. 

 
        Mean same-child L1 distance (MSCL1): We asked crowd workers to rate the same child at 
least one month apart. Workers did not have access to their originally recorded answers and were 
unaware that they would be asked to rate the same video a second time when providing the first set 
of ratings. We observe the mean deviation for all videos between a worker’s original ratings for the 
video and their subsequent ratings one month later. We call this metric the mean same-child L1 
distance (MSCL1), which we consider as a metric of the worker’s test-retest reliability. Higher 
values for the MSCL1 correspond to greater variation in worker responses when re-rating the same 
video one month apart. Formally, MSCL1 is calculated as: 

 

𝑀𝑆𝐶𝐿! =
∑ ∑ |𝐴",$,% −	𝐴",$,!|&
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        Mean pairwise internal L1 distance (MPIL1): To analyze the reliability of the worker’s 
answers across videos, we look at the mean L1 distance between a worker’s answer to each video 
and all other videos they rated. We call this metric the mean pairwise internal L1 distance (MPIL1). 
MPIL1 is high when workers provide a wide variety of answer patterns across videos. If the worker 
answers all questions the same way per video, the MPIL1 will be 0. Formally, MPIL1 is calculated 
as: 
 

𝑀𝑃𝐼𝐿! =
∑ ∑ ∑ |𝐴"%,$ −	𝐴"!,$|&
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        Penalized time (PT): We aimed to build a metric that prioritizes rewarding workers who spent 
sufficient time rating the first time while rewarding, to a lesser extent, workers who spend sufficient 
time rating after receiving a warning. We also aimed to penalize workers who either do not spend 
more time rating after receiving a warning or who do not sufficiently update their answers. We 
create a metric of worker trustworthiness taking both of these factors into account which we call the 
penalized time (PT). If workers spend longer than a time threshold T rating, then they are not asked 
to revise their answers and receive a baseline score M. If they do not spend a sufficient time (T) 
rating, then they are asked to spend more time and to revise their answers. In this case, the metric 
consists of two terms, balanced by a weighting constant c. The first term is the “revision” mean 
same-child L1 distance (𝑅𝑀𝑆𝐶𝐿!) between initial and revised answers only for videos that the 
worker was explicitly asked to revise. The second term is the mean of the total time spent rating, 
which is the time spent initially (t1) and the time spent revising the answers (t2). Formally, PT is 
calculated as: 

 

𝑃𝑇 = 	 :
			𝑀,																																										𝑡! ≥ 𝑇

			
𝑡! + 𝑡%
𝑁 + 𝑐	𝑅𝑀𝑆𝐶𝐿!, 𝑡! < 𝑇 

        
        Time spent: Finally, we record the mean amount of time spent rating per video, in seconds. 
We hypothesized that workers who spend more time on the rating task will tend towards achieving 
higher performance. 
        We hypothesized that all four metrics are correlated with PCC. We only calculate metrics for 
workers who rated at least 10 videos. Because 13 questions were asked, an MSCL1 or MPIL1 of 13 
means that, on average, the worker’s answer differed by 1 categorical ordinal answer choice per 
question (e.g., the difference between “Mixed: some regular echoing of words and phrases, but also 
some language” and “Mostly echoed speech” in Fig. 1). 

2.5.  Prediction of crowd worker performance from metrics 

We train and test a linear regression model to predict the mean PCC of the workers using 5-fold 
cross validation. We evaluate all non-empty subsets of the correlative metrics described in section 
2.4 as inputs to the model. Since not all workers reopened the task after receiving a warning and not 
all workers conducted the second task in the series, we evaluated our model both using all available 
workers with complete data for all metrics as well as using the subset of 55 workers with data for 
all metrics. 
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3.  Results 

3.1.  Correlation between metrics and probability of the correct class 
Correlations of each of the worker metrics with their mean PCC are displayed in Fig. 4. Mean 
values per worker are only plotted and analyzed if at least 5 data points are available for the 
worker. MSCL1, MPIL1, and mean time spent were all significantly correlated with PCC 
(r=0.31, p=0.0212 for MSCL1; r=0.57, p<0.0001 for MPIL1; r=0.16, p=0.0284 for time), 
supporting the predictive power of these metrics. Intuitively, this means that higher variability 
in worker answers for the same video and across videos correlates with increased worker 
performance. We note that only MPIL1 passes Bonferroni correction. Penalized time was not 
significantly correlated with PCC (r=0.17, r=0.1413 for penalized time).  

Interestingly, Fig. 4 reveals that the presence of enough data to calculate certain metrics is in 
itself predictive of worker performance. Fig. 4C shows that there are several workers who had a 
mean PCC below 50%. However, none of these workers appear in the plot for MSCL1 (Fig. 4A), 
MPIL1 (Fig. 4B), or penalized time (Fig. 4D), indicating that workers with low average 
performance did not rate videos again after one month and did not revise their answers when 
prompted.  

 
Fig. 4.  Correlations between metrics and probability of the correct class (PCC). (A) Correlation 
between mean same-child L1 distance and PCC. (B) Correlation between mean pairwise internal 
L1 distance and PCC. (C) Correlation between time spent (s) and PCC. (D) Lack of correlation 

between penalized time and PCC. 
 

We evaluate all values of the weighting constant c for the penalized time metric in the interval 
[0.05, 10.0] using a step size of 0.05. No value resulted in a metric that positively correlates with 
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PCC. To investigate, we review the correlation between both terms of penalized time: (1) the 
mean total time spent rating post-warning and (2) the mean L1 distance between the answer vector 
before and after the warning (Fig. 5). Neither of these metrics are correlated with PCC (r=-0.10, 
p=0.3414 for revision L1 distance; r=0.11, p=0.2908 for total time), explaining the inability of the 
penalized time metric to predict PCC regardless of the parameters chosen. 

 

 
Fig. 5.  Lack of correlation between PCC and (A) the total time spent rating post-warning and 

(B) the L1 distance between the answer before and after the warning.  

3.2.  Regression prediction of the mean probability of the correct class 

Table 1 contains the mean average error (MAE) of a linear regression model predicting the 
probability of the correct class for each worker using metrics on the same set of videos. There were 
55 workers with data for all 3 metrics used in the regression model. For these workers, all metrics 
predicted the PCC with less than 10% MAE.  

The MAE when using all 3 features performs nearly identically, to two decimal places, 
compared to using only MSCL1 and MPIL1. Mean time does not contribute much predictive power 
given the other metrics. Interestingly, the most predictive input configuration when using the same 
55 workers is MPIL1 together with mean time (6.97% MAE), followed by MPIL1 alone as a close 
second (6.98% MAE). This is a testament to the success of the MPIL1 metric. 
 

Input Features 5-fold MAE (%)  
All data points 

5-fold MAE (%)  
55 workers with all 

metric data 

N 

MSCL1, MPIL1, mean time 7.51 7.51 55 
MSCL1, mean time 8.89 8.89 55 
MPIL1, mean time 7.43 6.97 81 

MSCL1, MPIL1 7.51 7.51 55 
MSCL1 9.24 9.24 55 
MPIL1 7.39 6.98 81 

Mean time 15.56 9.83 193 
Table 1.  5-fold cross validated mean average error (MAE) of a linear regression model predicting the 

probability of the correct class for each worker using metrics on the same set of videos. 
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Table 2 contains the mean average error of a linear regression model predicting the probability 
of the correct class for each worker using metrics from one set of children and mean probability of 
the correct class calculations for a distinct set of children. The most predictive input feature 
configuration (MSCL1 and MPIL1) results in a MAE of 10.41%, only 3.44% higher than the best 
MAE when training and testing on the same set of videos and workers using cross-validation (Table 
1). MPIL1 is involved in all of the top-4 input metric configurations resulting in the lowest MAE, 
again verifying the success of the MPIL1 metric. 
 

Input Features MAE (%)  
All data points 

MSCL1, MPIL1, mean 
time 

10.93 

MSCL1, mean time 13.03 
MPIL1, mean time 11.50 

MSCL1, MPIL1 10.41 
MSCL1 11.87 
MPIL1 10.91 

Mean time* 12.10 
Table 2.  Mean average error (MAE) of the linear regression model predicting the probability of the correct 
class for each worker using the same metric data and resulting classifier weights for the workers and videos 

used in Table 1 and mean probability of the correct class calculations for a distinct set of videos for a 
distinct set of workers. *Mean time as the only feature is the only configuration of input features that 

requires a different set of data points: N=102 instead of a subset of size N=62 for all other configurations. 

4.  Discussion and Future Work 

We identify three metrics which are individually highly correlated with the mean probability of the 
worker’s categorical behavioral feature tags predicting the correct class. In particular, one of our 
two reliability metrics - the mean pairwise internal L1 distance, which is the mean L1 distance 
between a worker’s answer to each video and all other videos they rated - stood out as the most 
predictive metric. Mean pairwise internal L1 distance alone can predict a worker’s PCC within 7% 
MAE when trained on the same set of workers as in the test set but with different videos, and it 
can predict PCC within 11% MAE when trained on one group of workers and tested on an entirely 
district set of workers and videos. This metric alone therefore provides a powerful behavioral 
predictor of worker performance and is therefore likely to be useful for rapidly filtering workers. 
The positive correlation shown in Fig. 4B suggests that unreliable workers will provide the same 
or similar patterns of answer sequences for each task. We see that an increasing diversity of 
answers between tasks results in a higher PCC for the entire spectrum of possible L1 distances. 
Intuitively, this may be a result of the diverse set of features exhibited by the heterogeneous 
behavioral characteristics of the children in our dataset.  

Interestingly, the raw time metric is not particularly correlative with PCC, indicating that 
analyzing the answer domain is more informative than the time domain.  For workers who received 
a warning for low time spent, neither the time spent revising post-warning nor the L1 distance 
between the original and revised set of answers was predictive of the workers’ final performance. It 
is possible that once workers are aware that their time is tracked, they idly keep the rating interface 
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open, accumulating time without accumulating thoughtful work. This hypothesis is speculative, and 
more fine-grained timing information must be recorded to evaluate such hypotheses. 

Future work should evaluate workers on a larger scale, which will validate the preliminary 
findings of the present study. It is possible that predictive time-based trustworthiness metrics exist. 
Evaluation on a larger scale in conjunction with more fine-tuned worker metrics will lead to more 
precise predictions. 

5.  Conclusion 

We demonstrate that behavioral metrics about crowd workers can predict, with a high degree of 
accuracy, the performance of crowd workers on behavioral feature extraction tasks for the binary 
diagnosis of autism. Metrics like these can be used for quickly and efficiently identifying crowd 
workers who are trustworthy and reliable enough for exposure to highly sensitive PHI based on a 
quantification of their reliability. 
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