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Epigenetics is a reversible molecular mechanism that plays a critical role in many developmental, 
adaptive, and disease processes. DNA methylation has been shown to regulate gene expression and 
the advent of high throughput technologies has made genome-wide DNA methylation analysis 
possible. We investigated the effect of DNA methylation on eQTL mapping (methylation-adjusted 
eQTLs), by incorporating DNA methylation as a SNP-based covariate in eQTL mapping in African 
American derived hepatocytes. We found that the addition of DNA methylation uncovered new 
eQTLs and eGenes. Previously discovered eQTLs were significantly altered by the addition of DNA 
methylation data suggesting that methylation may modulate the association of SNPs to gene 
expression. We found that methylation-adjusted eQTLs that were less significant compared to PC-
adjusted eQTLs were enriched in lipoprotein measurements (FDR=0.0040), immune system 
disorders (FDR = 0.0042), and liver enzyme measurements (FDR=0.047), suggesting that DNA 
methylation modulates the genetic regulation of these phenotypes. Our methylation-adjusted eQTL 
analysis also uncovered novel SNP-gene pairs. For example, we found that the SNP, rs1332018, was 
associated to GSTM3. GSTM3 expression has been linked to Hepatitis B which African Americans 
suffer from disproportionately. Our methylation-adjusted method adds new understanding to the 
genetic basis of complex diseases that disproportionally affect African Americans. 
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1. Introduction

DNA methylation plays an important role in the regulation of gene expression which in turn affects 
many complex diseases and traits.1 Integration of DNA methylation into expression Quantitative 
Trait Loci (eQTL) mapping, can be challenging as the addition of SNP-based covariates is 
computationally intensive and multi-omics datasets with matching samples are sparse.2 Moreover, 
matching datasets in minority populations are nearly absent from public databases. DNA 
methylation patterns, in particular, are complex, vary greatly from sample to sample3, and change 
with environmental exposures.4 Therefore, DNA methylation studies can be hard to generalize. The 
advent of high throughput and next generation sequencing technologies, however, has made it 
possible for DNA methylation to be analyzed genome-wide.4  Several investigators have previously 
integrated genome-wide sequencing data and DNA methylation to uncover SNPs that significantly 
associate to CpG methylation status, called methylation QTLs (meQTLs).5, 6  These studies have 
found that DNA methylation plays a significant role in the onset of diseases and phenotypes such 
as obsessive-compulsive disorder and drug response.5, 6  Most of these studies have been conducted 
in populations of European ancestry.  
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   The African American population is widely underrepresented in genetic studies. In GWAS 
studies, only 19% of individuals are non-European and less than 5% are non-European and non-
Asian.7 While other eQTL mapping studies have used African American samples, the number of 
individuals have been very small, thus making them underpowered to adequately account for 
population specific variation. Furthermore, these studies did not account for DNA methylation as a 
SNP-based covariate.7 In this study, we perform the first investigation of the effect of DNA 
methylation on eQTL mapping in African Americans and evaluate methylation-adjusted eQTL 
associations to complex diseases, phenotypic traits, and metabolic traits. These findings may explain 
the role DNA methylation plays in health disparities observed in African Americans.  

2. Methods

2.1. Cohort

Sixty-eight African 
American hepatocyte 
cultures were acquired. 
After genotyping, DNA 
methylation quality 
control and RNA-
sequencing quality 
control, 53 samples were 
used to conduct this 
analysis as shown in Fig. 
1. Hepatocytes were
either purchased from
commercial companies
(BioIVT, TRL, Life
technologies, Corning,
and Xenotech) or isolated
from cadaveric livers
using the same procedure
described in Park et. al.8 

All genomic, 
transcriptomic and 
methylome data were 
gathered from the same 
hepatocyte samples. 

2.2. Genotyping, Imputation, and QC 

DNA was extracted from each hepatocyte culture using Gentra Puregene Blood kit (Qiagen) and 
all the DNA samples were bar coded for genotyping. The SNPs were genotyped using the Illumina 
Multi-Ethnic Genotyping array (MEGA) at the University of Chicago Functional Genomics Core 

Fig. 1. Flowchart showing the study design and the methods used in each dataset. 
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using standard protocols. The outputs were then created by Genome Studio using a 0.15 GenCall 
score as the cutoff. PLINK9 was then used to perform a sex check and to identify individuals with 
discordant sex information. The identity-by-descent method was used with a cut off score of 0.125 
to identify duplicated or related individuals, where the cutoff score indicates third-degree 
relatedness. The following SNPs were excluded: SNPs on the sex and mitochondrial chromosome, 
A/T or C/G SNPs which may introduce flip-strand issues, SNPs with missing rate > 5% or failed 
Hardy-Weinberg equilibrium (HWE) tests (p < .00001), leaving 674,996 SNPs. Genotypes were 
phased using SHAPEIT and imputed with IMPUTE2. After imputations, SNPs were excluded for 
minor allele frequency < 0.05, imputation quality scores < 0.8, and HWE p-value < .00001, 
leaving 7,180,502 SNPs in the analysis.  

2.3. RNA-sequencing and QC 

Total RNA was extracted from each primary cell culture after three days of plating using the Qiagen 
RNeasy Plus mini-kit. Only the samples with RNA integrity number (RIN) score > 8 were 
sequenced. RNA-seq libraries were prepared using TruSeq RNA Sample Prep Kit, Set A (Illumina 
catalog # FC-122-1001) in accordance with the manufacturer’s instructions. Illumina HiSeq 2500 
and HiSeq 4000 machines were used to prepare the cDNA libraries sequence and. This resulted in 
50 million reads per sample (single-end 50bp reads).  
   Quality of the raw reads from FASTQ files was assessed by FastQC (v0.11.2). A per base 
sequence quality threshold of > 20 across all bases was set for the fastq files. STAR 2.510 was used 
to align the reads to human Genome sequence GRCh38 and Comprehensive gene annotation 
(GENCODE version 25). Only uniquely mapped reads were retained and indexed by SAMTools 
1.2.11 To assess the nucleotide composition bias, GC content distribution and coverage skewness of 
the mapped reads read_NVC.py, read_GC.py and geneBody_coverage.py from RNA-SeQC 
(2.6.4)12 were used. Lastly, Picard CollectRnaSeqMetrics was applied to evaluate the distribution 
of bases within transcripts. Fractions of nucleotides within specific genomic regions were measured 
and only samples with > 80% of bases aligned to exons and UTRs regions were retained for analysis. 

2.4. Gene expression quantification 

To quantify gene expression for the 17,992 genes used in the study a collapsed gene model was 
used, following the GTEx isoform collapsing procedure.13 The reads were mapped to genes 
referenced with Comprehensive gene annotation (GENCODE version 25) to evaluate gene-level 
expression using RNA-SeQC.12  The Bioconductor package, DESeq2 (version1.20.0)14  was used to 
supply HTSeq15 raw counts for the analysis of gene expression. DESeq2 was also used to perform 
principal component analysis (PCA). Using regularized log transformation, the counts were 
normalized. The two PC’s used in the study, PC1 and PC2, were plotted to visualize the expression 
patterns of the samples and two samples with distinct expression patterns were excluded as outliers. 
   The gene expression was normalized by the trimmed mean of M-values normalization method 
(TMM), which was implemented in edgeR.16 The TPM (transcript per million) was calculated by 
first normalizing the counts by gene length and then normalizing by read depth. The thresholds for 
gene expression values were set at < 0.1 TPM in at least 20% of samples and ≤ 6 reads in at least 
20% of samples. Inverse normal transformation was used to normalize the expression values for 
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each gene. The gene coordinates were remapped to hg19/GRCh 37 (GENCODE version 19) due to 
genotype imputation limitations. 

2.5. Methylation Sample Preparation and QC 

DNA was isolated from hepatocytes as described in Park et al.8 As shown in Fig. 1, 56 of the 
hepatocyte samples produced sufficient bisulfite-converted DNA for analysis. The Illumina 
MethylationEPIC BeadChip microarray (San Diego, Ca, USA), consisting of approximately 
850,000 probes17 was used for methylation profiling from 56 AA hepatocytes that overlapped the 
samples used for gene expression analysis.  
   Methylation data QC and normalization was performed using the ChAMP R package (version 
2.10.1)18 as previously described in Park et.al.8 This process removed: 9204 probes for any sample 
that did not have a detection p value <0.01, 1043 probes with a bead count <3 in at least 5% of 
samples, 49 probes that align to multiple locations as identified by Nordlund et al.19,  2975 probes 
with no CG start sites, and 17,235 probes located on X and Y chromosomes. After QC, three samples 
were excluded, resulting in 53 samples remaining in the analysis. 

2.6. Methylation-adjusted eQTLs 

The R package Matrix eQTL20 was used to determine the methylation site(s) that correspond to each 
SNP within a 2.5 kB window. CpG sites were then grouped together by SNP to determine the 
number of CpG sites on average at each SNP and to determine the pairwise correlation between 
CpG sites at each SNP. We used a weighted average based on the distance of the CpG site from the 
SNP to determine the methylation values for each SNP. If only one CpG site was linked to a SNP, 
then the weight of the CpG site would be: 

w = 1 − ( $
%&''

)                                                             (1) 

, where d is the genomic distance (in base pairs) between the CpG site and the SNP and 2500 
represents the 2.5kB window size used in this analysis. This weight would then be multiplied by the 
methylation value of the CpG site to get the normalized methylation value used in the analysis. This 
weighting system allowed proximal CpG sites to have a greater weight. If more than one CpG site 
was found within the 2.5kB region then each CpG site’s weight, 𝑤i, was calculated using equation 
(1) above and the final weight for each CpG site was calculated as: 

𝑤*  =	 ,-
∑ ,/0
/12

                                                                     (2) 

, where N is the total number of CpG sites that correspond to a particular SNP and ∑ 𝑤3
456 k 

represents the sum of the initial weights of all the CpG sites that correspond to that SNP.  This 
calculation ensures the sum of the final weights of all CpG sites corresponding to a single SNP are 
equal to one. The SNP-based methylation value was then calculated by: 

M = ∑ 𝑤* ∗	𝑚*
3
*56                                                        (3) 

, where M is the SNP-based methylation value and ∑ 𝑤* ∗	𝑚*
3
*56  represents the weighted sum of 

all of the methylation values for the CpG sites corresponding to that SNP. These averaged 
methylation values used as a SNP based covariate and eQTLs were mapped using the LAMatrix R 
package.21 The methylation-adjusted eQTLs and PC-adjusted eQTLs were adjusted for sex, 

Pacific Symposium on Biocomputing 26:244-255 (2021)

247



 
 

 

platform, batch, genotype-derived PCs 1 and 2, and 10 PEER variables estimated from normalized 
expression values as previously described in Zhong et.al.7 The genotype-gene expression 
associations within a cis region (1 Mb around the gene) were tested. PC-adjusted eQTLs (mapped 
in the same hepatocyte cultures) were compared to methylation-adjusted eQTLs to investigate if 
changes in the eQTL statistical significance or change in effect size (Spearman’s correlation).21 
All relevant data are within the manuscript are available from the GEO (GSE124076 and 
GSE147628). 

2.7. eQTL and GWAS overlap 

To understand how the methylation-adjusted eQTLs may explain the underlying mechanisms in 
GWAS findings, the method presented in Zhong et. al.7 was used with some modifications. This 
included downloading the NHGRI/EBI GWAS Catalog file (v.1.0.2, 2019-03-22) and keeping only 
the associations that passed the genome-wide significant level (p<5e-8). Furthermore, the rsids were 
remapped from Build38 to Build37 using Ensembl API. The 1000 Genomes YRI population were 
used to extract all the variants in LD with the independent GWAS variants (r2 > 0.8) and the traits 
of the corresponding GWAS hits were put into 17 groups which corresponded to ontology-based 
trait categories.22 A false discovery rate (FDR) threshold of 0.05 was set as significant enrichment 
for an ontology. The methylation-adjusted eQTLs were split into three groups for this analysis: (i) 
eQTLs that were significant with PC-adjustment and increased in significance with methylation-
adjustment, (ii) eQTLs that were not significant with PC-adjustment and became significant with 
methylation- adjustment (FDR<0.05), and (iii) eQTLs that were significant with PC-adjustment and 
became less significant with methylation-adjustment. These three groups of eQTLs were compared 
to the GWAS variants. 

3.  Results 

Fifty-three African American hepatocyte samples were used in this analysis, with 28 (52.8%) males 
and 25 (47.2%) females. The age (mean ± standard deviation) of the cohort was 39 ± 18.4 years old. 
To account for methylation in this eQTL mapping analysis, LAMatrix was used.21 Instead of 
incorporating local ancestry into the analysis as previously done7, DNA methylation was used in its 
place. LAMatrix was chosen because the R package has increased power and controls false positives 
when gene expression differs by locus-specific covariate, such as methylation.21  

3.1 Methylation-adjusted eQTLs vs PC-adjusted eQTLs 

Out of the 7,180,502 total SNPs in the dataset, 2,494,181 SNPs had at least one CpG site within the 
2.5 kB window, with an average of 3.08 CpG sites per SNP (ranging between of 1 to 95 CpG sites 
per SNP). We identified 2,296 eQTLs with methylation-adjustment at an FDR threshold of 0.05. To 
ascertain if any methylation-adjusted eQTLs resulted in the novel discovery of regulatory variation, 
we compared significant methylation-adjusted eQTLs (FDR<0.05) against significant PC-adjusted 
eQTLs (FDR<0.05). This comparison resulted in 308 unique methylation-adjusted eQTLs that were 
not found with PC-adjusted analysis, and 1,954 eQTLs which were common to both analyses. The 
remaining 19,567 found in PC-adjustment were not significant in this analysis (Fig.2A). The 
comparison revealed that there were 11,485 eQTLs that were significant with PC-adjustment and 
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decreased in significance with methylation-adjustment and 50 eQTLs that were significant with PC-
adjustment increased in significance with methylation-adjustment (Fig. 2B). We compared the 
effect size for methylation-adjusted eQTLs (all methylation-adjusted eQTLs and by the groups 
defined in Fig.2B) versus PC-adjusted eQTLs. All groups showed high correlation of effect size 

(Spearman’s correlation = 0.32-0.42, p < 2.2e-6, data not shown). 

3.2 GWAS Associations for Methylation-adjusted eQTLs 

We overlapped the methylation-adjusted eQTLs with SNPs in previously reported GWAS. Variants, 
from NHGRI-EBI GWAS catalog, or their tagging variants (r2 > 0.8, 1000 Genomes YRI 
population) were used to determine the overlap with h the methylation-adjusted eQTLs. To analyze 
the effect of methylation even further, the methylation-adjusted eQTLs were broken into three 
groups: (i) eQTLs that are only significant with methylation-adjustment, (ii) eQTLs that were 
significant with PC-adjustment but became more significant with methylation-adjustment, and (iii) 
eQTLs that were significant with PC-adjustment but became less significant with methylation-
adjustment. In total, there were 285 GWAS associations that intersect with methylation-adjusted 
eQTLs across the three groups.  

3.2.1. Group 1: eQTLs that were only significant with methylation-adjustment (N = 308) 

For eQTLs that were only significant with methylation-adjustment, 16 GWAS associations were 
found that intersected with these eQTLs. There was significant enrichment for digestive system 
disorders (FDR = 0.011), as shown in Fig. 3A. One of the eQTLs enriched for digestive system 
disorders, rs11546996, was associated with primary biliary cirrhosis.23 Due to the intergenic location 
of rs11546996, the causal gene was reported as SPIB in this study. However, our analysis associated 

Fig. 2.  Methylation-adjusted eQTLs as compared to PC-adjusted eQTLs 
A) The Venn-Diagram showing the number of eQTLs that are significant with methylation-

adjustment, significant with PC-adjustment, and significant in both analyses.  
B) Comparison of the p-values of the 308 eQTLs that became significant with methylation-

adjustment (black), 11,485 that were significant with PC-adjustment and decreased in 
significance with methylation-adjustment (red), and 50 that were significant with PC-adjustment 
and increased in significance with methylation-adjustment (gold).  
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rs11546996 to PNKP (P-value = 1.05e-6, FDR = 0.026) thereby potentially identifying a new causal 
gene for primary biliary cirrhosis by accounting for methylation in eQTL mapping.  

3.2.2. Group 2: eQTLs that were significant with PC-adjustment and increased in significance with 
methylation-adjustment (N = 50) 

For eQTLs that were significant with PC-adjustment and increased in significance with methylation-
adjustment, eight GWAS associations intersected with this group of eQTLs. No significantly 
enriched was found (Fig. 3B). This may be due to the very small number of eQTLs in this group. 

3.2.3. Group 3: eQTLs that were significant with PC-adjustment and decreased in significance with 
methylation-adjustment (N = 11,485) 

For eQTLs that were significant with PC-adjustment and decreased in significance with 
methylation-adjustment, 261 GWAS associations intersected with eQTLs in this group. There was 
significant enrichment for lipid or lipoprotein measurements (FDR = 0.0040), immune system 
disorders (FDR = 0.0042), and liver enzyme measurements (FDR = 0.047) (Fig. 3C). This suggests 
that these SNPs may be associated to susceptibility of disease, but that susceptibility may be 
modulated by DNA methylation.  

   Novel SNP-gene associations were also found. Two examples are rs7528419 and rs12740374, 
which are associated with SORT1, a gene known to influence LDL-cholesterol levels and 
lipid/lipoprotein measurements.24 When accounting for DNA methylation the p-value of these two 
SNP-gene pairs increased from 1.99e-9 for both to 4.92e-8 and 1.25e-7, respectively. The FDR also 
increased from 3.01e-5 for both to 3.12e-3 and 6.08e-3, respectively. Furthermore, both SNPs had 
proportion of DNA methylation ranging from 0.12 to 0.33. Although these SNP-gene pairs remained 
significant with methylation-adjustment, their significance decreased dramatically indicating that 
methylation, near these SNPs, may play a role in the association between these SNPs to lipid 
phenotypes. This suggests that DNA methylation should be considered when assessing genomic risk 
of LDL-cholesterol levels and cholesterol-related diseases, such as myocardial infarction. 

Fig. 3. Enrichment of methylation-adjusted eQTLs in GWAS findings 
A) eQTLs, that were only significant with methylation-adjustment. B)  eQTLs, that were significant with PC-
adjustment and increased in significance with methylation-adjustment. C)  eQTLs, that were significant with 
PC-adjustment and decreased in significance with methylation-adjustment. The X-axis represents the 
proportion of SNPs within each category that were within each group and FDR for enrichment is shown by 
the color of the dot. 
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   The methylation-adjusted eQTL, rs9296736 associated with the expression of MLIP, was 
previously found to be associated with liver enzyme measurements.25 High levels of liver-enzymes 
in plasma are widely associated with an increased risk for developing many diseases including 
cirrhosis and cardiovascular disease.25 This SNP-gene pair decreased in significance considerably 
when it was adjusted for methylation. The p-value and FDR of this methylation-adjusted eQTL went 
from 2.08e-9 and 3.13e-5 with PC-adjustment to 0.037 and 0.94, respectively, with methylation-
adjustment. For this SNP-gene pair, rs9296736 was highly methylated, with proportion of DNA 
methylation ranging from 0.89 to 0.97. This result suggests that the association of rs9296736 to 
MLIP and liver enzyme measurements may depend on the DNA methylation landscape. 

3.3. Discovery of eGenes associated to disease traits using methylation-adjusted eQTL mapping 

There were 179 eGenes found through methylation-adjusted eQTL mapping (FDR<0.05) of which 
80 eGenes that were not significant with PC-adjustment. Two of these eGenes, GSTM3 (FDR = 
0.014) and HSPA6 (FDR = 0.029), have been associated to disease traits such as Hepatitis B (HBV) 
for GSTM3 and Hepatocellular Carcinoma (HCC) for both eGenes.26-29 African Americans have a 
higher incidence and worse outcomes of HBV and HCC when compared to other demographics.30, 

31  Since these eGenes were not significant with PC-adjusted eQTL mapping, they may explain how 
methylation plays a role in the health disparities observed in African Americans. As shown in Fig. 

Fig. 4. Boxplots of genotype vs gene expression and DNA methylation for GSTM3 and 
HSPA6.   

A) A significant increase in GSTM3 gene expression (p = 1.1e-6) and a significant 
decrease in DNA methylation (p = 9.2e-13) are associated with rs1332018. The 
number of individuals (n) is shown for each genotype.  

B) A significant increase in HSPA6 gene expression (p=0.0099) and an increase in 
DNA methylation (p=0.20) are associated with rs57711775. The number of 
individuals (n) is shown for each genotype.  
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4A, there is a significant assocication between rs1332018 genotype and GSTM3 expression as well 
as rs1332018 genotype to DNA methylation. From this we can see that the T allele is associated 
with both increased gene expression and lower DNA methylation. A total of 18 CpG sites 
contributed to this association. As shown in Fig. 4B, there is also relationship between HSPA6 gene 
expression and DNA methylation with the A allele associated with both increased gene expression 
and increased DNA methylation, though the later did not reach statistical significance. A total of 7 
CpG sites contributed to this association.  

4.  Discussion 

Through the integration of DNA methylation into eQTL mapping, we showed how methylation 
potentially plays a critical role in SNP-gene associations as well as the association of these eQTLs 
to diseases and metabolic traits. Our analysis was aided by using the computationally efficient R 
package, LAMatrix, which allows for the addition of a SNP based covariate to eQTL mapping. 
Additionally, our use of data from African Americans aided in the discovery of new regulatory 
variants as this population is more genetically diverse than European ancestry populations. Previous 
meQTLs studies have shown that SNPs can affect the methylation status of nearby CpGs, not only 
CpGs that overlap the SNP location. Shultz et. al. showed that SNPs within 0.2Mb of a CpG can 
significantly associate with methylation status.32 We used a weighted approach which assumes that 
SNPs have a larger effect on closer CpG sites as previous studies showed a decrease in the 
association p-values of meQTLs with distance.33, 34 In our analysis we accounted for methylation 
within a 2.5Kb window. Larger window sizes may be more appropriate, but as no previous study 
has incorporate methylation into eQTL mapping we took a conservative approach. 
   We found unique eGenes in our analysis that were not found by eQTL mapping with only PC-
adjustment. Two of these eGenes, GSTM3 and HSPA6, are associated with diseases such as HBV 
for GSTM3 and HCC for both eGenes.26-29 These are diseases that disproportionately affect 
African Americans.30, 31 GSTM3 has also been associated to oxidative stress and specifically 
several studies have found that epigenetic suppression of GSTM3 in HBV-infected cells causes 
oxidative stress27, 28, which can lead to HCC.26  Furthermore, other studies showed that GSTM3 
expression was lowered with promoter hypermethylation35 and in chemical-induced HCC.36  This 
finding agrees with the previous studies mentioned, showing that epigenetic suppression of 
GSTM3 leads to HCC in HBV-infected cells.26-28  We found a significant inverse relationship 
between GSTM3 expression and DNA methylation around rs1332018. This suggests that 
individuals with rs1332018 genotypes that have a lower GSTM3 expression and higher 
methylation may be at a higher risk for HCC.  HSPA6 was also found to be overexpressed in 
human HCC tissues and a potential risk factor for HCC reccurence.29  We found that the 
expression of HSPA6 increased with methylation around rs57711775, which could mean that 
methylation potentially plays a role in upregulating HSPA6. Furthermore, the A allele of 
rs57711775 that is associated with higher HSPA6 expression and higher methylation in our 
analysis. This SNP is not found in European ancestry populations according to the Ensembl 
database. Thus, we potentially elucidated a causal variant and risk allele for HCC specific to 
African Americans by incorporating methylation into this analysis. As has previously been 
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reported, the direction of effect of DNA methylation is dependent on the location of 
methylation.37, 38 Previous studies have shown that methylation within the transcriptional start site 
of the promoter is well known to repress gene expression while methylation within the gene body 
results in more variable expression.37, 38 Therefore, both GSTM3 expression and HSPA6 expression 
may contribute to the onset of HCC in African Americans.     
   In our GWAS enrichment, we found a significant enrichment for digestive system disorders for 
the eQTLs significant only with methylation-adjustment and a significant enrichment for lipid or 
lipoprotein measurements, immune system disorders, and liver enzyme measurements for the 
eQTLs that are less significant with methylation-adjustment. Both immune-related phenotypes and 
lipid and lipoprotein measures differ by population and may contribute to disease disparities. Our 
findings suggest that methylation may play a role in these diseases. Further studies are needed to 
determine if DNA methylation around these specific SNPs and genes differ between populations. 
This analysis also revealed an interesting association with eQTLs that were only significant after 
methylation-adjustment. The SNP, rs11546996, a SNP associated with primary biliary cirrhosis, 
was a methylation-adjusted eQTL for PNKP. In a previous GWAS study, a causal SNP-gene 
association for primary biliary cirrhosis was found with rs11546996 and the causal gene was 
assumed to be SPIB, as it is the closest gene.23 Since our study specifically looked at gene expression 
in hepatocytes, a tissue relevant for this disease, we may have found a potentially novel SNP-gene 
pair associated with primary biliary cirrhosis whose expression is regulated by both DNA 
methylation and gene variation. PNKP has also been associated with repairing DNA after damage 
from oxidative stress39, so rs11546996 could be a SNP that effects this process.  
   There were several limitations to our study. First, we were only able to include 53 samples 
into this analysis and hence our analysis was underpowered. Second, we assessed DNA 
methylation with the Illumina EPIC array which is limited to the CpG sites chosen for the chip. 
Unmeasured DNA methylation may have effects on eQTLs that were not captured by our 
analysis. Third, our results, compared to the findings in the entire GWAS catalog, are only 
applicable to diseases in which hepatocytes play a key role. Our findings may not be 
generalizable to other cell or tissue types. Finally, we have assumed that DNA methylation 
closer to the SNP is more likely to influence eQTL mapping, however this may not always be 
the case. Additionally, we do not account for differences in effect size in our method. With 
greater meQTL analysis in relevant cell types and populations, we may be able to weight 
SNP/DNA methylation interactions more precisely as a SNP-based covariate. 
    In conclusion, this is the first study to explore the effect of DNA methylation in eQTL mapping 
in African Americans. The African American demographic is widely underrepresented in genetic 
studies and their greater genetic diversity may allow us to find novel SNP-gene pairs as well as 
population specific SNPs. Our findings can be used to understand how DNA methylation potentially 
plays a role in complex diseases, phenotypic traits, and metabolic traits in African Americans.  
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