Pacific Symposium on Biocomputing 26:232-243 (2021)

CheXclusion: Fairness gaps in deep chest X-ray classifiers
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Machine learning systems have received much attention recently for their ability to achieve
expert-level performance on clinical tasks, particularly in medical imaging. Here, we exam-
ine the extent to which state-of-the-art deep learning classifiers trained to yield diagnostic
labels from X-ray images are biased with respect to protected attributes. We train convo-
lution neural networks to predict 14 diagnostic labels in 3 prominent public chest X-ray
datasets: MIMIC-CXR, Chest-Xray8, CheXpert, as well as a multi-site aggregation of all
those datasets. We evaluate the TPR disparity — the difference in true positive rates (TPR)
— among different protected attributes such as patient sex, age, race, and insurance type as
a proxy for socioeconomic status. We demonstrate that TPR disparities exist in the state-
of-the-art classifiers in all datasets, for all clinical tasks, and all subgroups. A multi-source
dataset corresponds to the smallest disparities, suggesting one way to reduce bias. We find
that TPR disparities are not significantly correlated with a subgroup’s proportional disease
burden. As clinical models move from papers to products, we encourage clinical decision
makers to carefully audit for algorithmic disparities prior to deployment. Our supplementary
materials can be found at, http://www.marzyehghassemi.com/chexclusion-supp-3/.
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1. Introduction

Chest X-ray imaging is an important screening and diagnostic tool for several life-threatening
diseases, but due to the shortage of radiologists, this screening tool cannot be used to treat
all patients.!? Deep-learning-based medical image classifiers are one potential solution, with
significant prior work targeting chest X-rays specifically,®* leveraging large-scale publicly avail-
able datasets,®%% and demonstrating radiologist-level accuracy in diagnostic classification.®

Despite the seemingly clear case for implementing Al-enabled diagnostic tools,” moving
such methods from paper to practice require careful thought.'® Models may exhibit disparities
in performance across protected subgroups, and this could lead to different subgroups receiving
different treatment.!! During evaluation, machine learning algorithms usually optimize for, and
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report performance on, the general population rather than balancing accuracy on different
subgroups. While some variance in performance is unavoidable, mitigating any systematic
bias against protected subgroups may be desired or required in a deployable model.

In this paper, we examine whether state-of-the-art (SOTA) deep neural classifiers trained
on large public medical imaging datasets are fair across different subgroups of protected at-
tributes. We train classifiers on 3 large, public chest X-ray datasets: MIMIC-CXR,? CheXpert,©
Chest-Xray8,2 as well as an additional datasets formed of the aggregation of those three
datasets on their shared labels. In each case, we implement chest X-ray pathology classifiers
via a deep convolutional neural network (CNN) chest X-ray images as inputs, and optimize
the multi-label probability of 14 diagnostic labels simultaneously. Because researchers have
observed health disparities with respect to race,'? sex,'® age,'* and socioeconomic status,'?
we extract structural data on race, sex, and age; we also use insurance type as an imperfect
proxy!! for socioeconomic status. To our knowledge, we are the first to examine whether SOTA
chest X-ray pathology classifiers display systematic bias across race, age, and insurance type.

We analyze equality of opportunity!® as our fairness metric based on the needs of the
clinical diagnostic setting. In particular, we examine the differences in true positive rate (TPR)
across different subgroups per attributes. A high TPR disparity indicates that sick members
of a protected subgroup would not be given correct diagnoses—e.g., true positives—at the
same rate as the general population, even in an algorithm with high overall accuracy.

We find three major findings: First, that there are indeed extensive patterns of bias in
SOTA classifiers, shown in TPR disparities across datasets. Secondly, the disparity rate for
most attributes/ datasets pairs is not significantly correlated with the subgroups’ proportional
disease membership. These findings suggest that underrepresented subgroups could be vul-
nerable to mistreatment in a systematic deployment, and that such vulnerability may not be
addressable simply through increasing subgroup patient count. Lastly, we find that using the
multi-source dataset which combines all the other datasets yields the lowest TPR disparities,
suggesting using multi-source datasets may combat bias in the data collection process. As re-
searchers increasingly apply artificial intelligence and machine learning to precision medicine,
we hope that our work demonstrates how predictive models trained on large, well-balanced
datasets can still yield disparate impact.

2. Background and Related Work

Fairness and Debiasing. Fairness in machine learning models is a topic of increasing at-
tention, spanning sex bias in occupation classifiers,'® racial bias in criminal defendant risk
assessments algorithms,!” and intersectional sex-racial bias in automated facial analysis.'®
Sources of bias arise in many different places along the classical machine learning pipeline.
For example, input data may be biased, leaving supervised models vulnerable to labeling and
cohort bias.'® Minority groups may also be under-sampled, or the features collected may not
be indicative of their trends.'” There are several conflicting definitions of fairness, many of
which are not simultaneously achievable.?’ The appropriate choice of a disparity metric is
generally task dependent, but balancing error rates between different subgroups is a common

consideration,'™!” with equal accuracy across subgroups being a popular choice in medical set-
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tings.?! In this work, we consider the equality of opportunity notion of fairness and evaluate
the rate of correct diagnosis in patients across several protected attribute groups.

Ethical Algorithms in Health. Using machine learning algorithms to make decisions
raises serious ethical concerns about risk of patient harm.?? Notably, biases have already been
demonstrated in several settings, including racial bias in the commercial risk score algorithms
used in hospitals,?® or an increased risk of electronic health record (EHR) miss-classification
in patients with low socioeconomic status.?* It is crucial that we actively consider fairness
metrics when building models in systems that include human and structural biases.

Chest X-Ray Classification. With the releases of large public datasets like Chest-
Xray8,3 CheXpert, and MIMIC-CXR,> many researchers have begun to train large deep
neural network models for chest X-ray diagnosis.*5825 Prior work® demonstrates a diagnostic
classifier trained on Chest-Xray8 can achieve radiologist-level performance. Other work on
CheXpert® reports high performance for five of their diagnostic labels. To our knowledge,
however, no works have yet been published which examined whether any of these algorithms
display systematic bias over age, race and insurance type (as a proxy of socialeconomic status).

3. Data

We use three public chest X-ray radiography datasets described in Table 1: MIMIC-CXR
(CXR),> CheXpert (CXP),5 Chest-Xray8 (NIH).? Images in CXR, CXP, and NIH are associ-
ated with 14 diagnostic labels (see Table 2). We combine all non-positive labels within CXR
and CXP (including “negative”, “not mentioned”, or “uncertain”) into an aggregate “nega-
tive” label for simplicity, equivalent to “U-zero” study of ‘NaN’ label in CXP. In CXR and
CXP, one of the 14 labels is “No Finding”, meaning no disease has been diagnosed for the im-
age and all the other 13 labels are 0. Of the 14 total disease labels, only 8 are shared amongst
all 3 datasets. Using these 8 labels, we define a multi-site dataset (ALL) that consists of the
aggregation of all images in CXR, CXP, and NIH defined over this restricted label schema.
These datasets contain protected subgroup attributes, the full list of which includes sex
(Male and Female), age (0-20, 20-40, 40-60, 60-80, and 80-), race (White, Black, Other, Asian,
Hispanic, and Native) and insurance type (Medicare, Medicaid, and Other). These values are
taken from the structured patient attributes. NIH, CXP, and ALL only have the patient sex
and age, while CXR also has race and insurance type data (excluding around 100,000 images).

4. Methods

We implement CNN-based models to classify chest X-ray images into 14 diagnostic labels. We
train separate models for CXR,> CXP,® NIH? and ALL and explore their fairness with respect
to patient sex and age for all 4 datasets as well as race and insurance type for CXR.

4.1. Models

We initialize a 121-layer DenseNet?® with pre-trained weights from ImageNet?” and train
multi-label models with a multi-label binary cross entropy loss. The 121-layer DenseNet was
used as it produced the best results in prior studies®® . We use a 80-10-10 train-validation-test
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Table 1. Description of chest X-ray datasets, MIMIC-CXR (CXR),? CheXpert (CXP),
Chest-Xray8 (NIH).? and their aggregation on 8 shared labels (ALL). Here, the number
of images, patients, view types, and the proportion of patients per subgroups of sex,
age, race, and insurance type are presented. ‘Frontal’ and ‘Latral’ abbreviate frontal and
lateral view, respectively. Native, Hispanic, and Black denote self-reported American
Indian/Alaska Native, Hispanic/Latino, and Black/African American race respectively.

Subgroup  Attribute CXR? CXP¢ NIH? ALL
# Images 371,858 223,648 112,120 707,626
# Patients 65,079 64,740 30,805 129,819
View Frontal/Lateral ~Frontal/Lateral Frontal Frontal/Lateral
sex Female 47.83% 40.64% 43.51% 44.87%
Male 52.17% 59.36%  56.49% 55.13%
Age 0-20 2.20% 0.87% 6.09% 2.40%
20-40 19.51% 13.18%  25.96% 18.53%
40-60 37.20% 31.00% 43.83% 36.29%
60-80 34.12% 38.94% 23.11% 33.90%
80+ 6.96% 16.01% 1.01% 8.88%
Race Asian 3.24% — — —
Black 18.59% — — —
Hispanic 6.41% — — —
Native 0.29% — — —
White 67.64% — — —
Other 3.83% — — —
Insurance Medicare 46.07% — — —
Medicaid 8.98% — — —
Other 44.95% — — —

split with no patient shared across splits. We resize all images to 256 x 256 and normalize via
the mean and standard deviation of the ImageNet dataset.?” We apply center crop, random
horizontal flip and random rotation, as some of the images maybe flipped or rotated within
the dataset. The initial degree of random rotation is chosen by hyperparameter tuning. We
use Adam?® optimization with default parameters, and decrease the learning rate (LR) by
a factor of 2 if the validation loss does not improve over three epochs; we stop learning if
validation loss does not improve over 10 epochs. Thus the ultimate number of epochs for
training each model is varied based on the early stop condition. For NIH, CXP and CXR we
first tune models to get the highest average area under the receiver operating characteristic
curve (AUC) over 14 labels by fine tuning the LR. For the best achieved model, we fine tune
the degree of random rotation data augmentation from the set of 7, 10 and 15 and select the
best model. Following this, best initial LR is 0.0005 for CXR and NIH where it is achieved
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as 0.0001 for CXP. Also, best initial degree for random rotation data augmentation is 10 for
NIH and 15 for the CXR and CXP. For training on ALL, we use the majority vote of the
best hyperparameters per individual dataset (e.g. 0.0005 initial LR and 15 degree random
rotation). We then, fix the hyperparameters of the best model and train four extra models
with the same hyperparameters but different random seeds between 0 to 100, per dataset.
We report all the metrics based on the mean and 95% confidence intervals (CI) achieved over
five studies per dataset. We choose batch size of 48 to use the maximum memory capacity of
the GPU, for all datasets except NIH where we choose 32 similar to prior work.® The output
of the network is an array of 14 numbers between 0 and 1 indicating the probability of each
disease label. The binary prediction threshold per disease is chosen to maximize the F1 score
measure on the validation dataset. We train models using a single NVIDIA GPU with 16G of
memory in approximately 9, 20, 40, and 90 hours for NIH, CXP, CXR, and ALL, respectively.

4.2. Classifier Disparity Evaluation

Our primary measurement of bias is TPR disparity. For example, given a binary subgroup
attribute such as sex (which in our data we classify as either ‘male’ or ‘female’), we mimic
prior work!'® and define the TPR disparity per diagnostic label i as simply the TPR of label
i restricted to female patients minus that for male patients. More formally, letting g be the
binary subgroup attribute, we define TPR,; = P[Y; = 4G = ¢,Y; = ], and the TPR disparity
as, Gap,; = TPRy; —TPR-g;. For non-binary attributes Si,...,Sy, we use the difference
between a subgroup’s TPR and the median of all TPRs to define TPR disparity of the jth

subgroup for the ith label as, Gapg, ; = TPRg, ; —Median(TPRs, 4, .., TPRsg, ;).

5. Experiments

First, we demonstrate that the classifiers we train on all datasets reach near-SOTA level
performance. This motivates using them to study fairness implications, as we can be confident
any problematic disparities are not simply reflective of poor overall performance. Next, we
explicitly test these classifiers for their implications on fairness. We target two investigations:

(1) TPR disparity: We quantify the TPR disparity per subgroup/disease for sex and age
across all 4 datasets, and due to data availability for race and insurance type on CXR.

(2) TPR disparity in proportion to membership: We investigate the distribution of the
positive patient proportion per subgroup S; and label y; (which is given by P[S = S;|Y =
yi]) and the effect on TPR disparities. Prior work on chest X-ray diagnosis prediction has
suggested data imbalance can explain sex TPR disparities?® while work in other domains
illustrates that disparities in small or vulnerable subgroups could be propagated if put
into practice,'%3% and these experiments are meant to probe that hypothesis.

6. Results

One potential reason that a model may be biased is because of poor performance, but we
demonstrate that our models achieve near-SOTA classification performance. Table 2 shows
overall performance numbers across all tasks and datasets. Though results have non-trivial
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Table 2. The AUC for chest X-ray classifiers trained on CXP, CXR, NIH, and ALL averaged over
5 runs +95%CI, where all runs have same hyperparameters but different random seed. (‘Airspace
Opacity’ and ‘Lung Opacity’® denote the same label.)

Label (Abbr.) CXR CXP NIH ALL
Airspace Opacity (AO) 0.782 4+ 0.002  0.747 4 0.001 — —
Atelectasis (A) 0.837 £0.001  0.717 £ 0.002  0.814 £ 0.004 0.808 = 0.001
Cardiomegaly (Cd) 0.828 £ 0.002  0.855 £ 0.003  0.915 £+ 0.002 0.856 = 0.001
Consolidation (Co) 0.844 £0.001  0.734 £ 0.004  0.801 £ 0.005 0.805 £+ 0.001
Edema (Ed) 0.904 £ 0.002  0.849 + 0.001  0.915 £ 0.003 0.898 = 0.001
Effusion (Ef) 0.933 £ 0.001  0.885 £ 0.001  0.875 £ 0.002  0.922 + 0.001
Emphysema (Em) — — 0.897 £ 0.002 —
Enlarged Card (EC) 0.757 +£ 0.003  0.668 £ 0.005 — —
Fibrosis — — 0.788 £+ 0.007 —
Fracture (Fr) 0.718 4+ 0.007  0.790 £ 0.006 — —
Hernia (H) — — 0.978 £ 0.004 —
Infiltration (In) — — 0.717 £ 0.004 —
Lung Lesion (LL) 0.772 £ 0.006  0.780 £ 0.005 — —

Mas (M) — — 0.829 £ 0.006 —
Nodule (N) — — 0.779 £ 0.006 —

No Finding (NF) 0.868 + 0.001  0.885 £ 0.001 — 0.890 + 0.000
Pleural Thickening (PT) — — 0.813 £ 0.006 —
Pleural Other (PO) 0.848 + 0.003  0.795 £ 0.004 — —
Pneumonia (Pa) 0.748 £ 0.005  0.777 £0.003  0.759 + 0.012 0.784 + 0.001
Pneumothorax (Px) 0.903 £+ 0.002 0.893 £0.002 0.879 £+ 0.005 0.904 + 0.002
Support Devices (SD) 0.927 + 0.001  0.898 + 0.001 — —

Average 0.834 £ 0.001 0.805+£0.001 0.840 + 0.001 0.859 £+ 0.001

variability, we show similar performance to the published SOTA of NIH,® the only dataset for
which a published SOTA comparison exists for all labels. Note that the published results for
CXPS are on a private, unreleased dataset of only 200 images and 5 labels. Our results for
CXP are on a randomly sub-sampled test set of size 22,274 images, so the numbers for this
dataset are not comparable to the published results there.

6.1. TPR D:isparities

We calculate and identify TPR disparities and 95% CI across all labels, datasets and attributes.
We see many instances of positive and negative disparities, which can denote bias for or against
of a subgroup, here referred to favorable and unfavorable subgroups. As an illustrative example
Fig. 1 shows the race TPR disparities distribution sorted by the the gap between least and
most favorable subgroups per label. In a fair setting, all subgroups would have no appreciable
TPR disparities, yielding a gap between least and most favorable subgroups within a label at
‘0’. Table 3 shows the summary of the disparities in all attributes and datasets. We note that
the most frequent unfavorable subgroups are those with social disparities in the healthcare
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Fig. 1. The sorted distribution of TPR race disparity of CXR (y-axis) with label (z-axis). The
scatter plot’s circle area is proportional to group size. TPR disparities are averaged over five runs
+95%CI ( shown with arrows). Hispanic patients are most unfavorable (highest count of negative
TPR disparities, 9/13) whereas White patients are most favorable subgroup (9/13 zero or positive
disparities). Labels ‘No Finding’ (‘NF’) and ‘Pneumonia’ (‘Pa’) have smallest (0.119) and largest
(0.440) gap between least/most favorable subgroups. The average cross 14 labels gap is 0.226.

Table 3. Disparities overview over attributes and datasets. We average per label gaps between the
least and most favorable subgroup’s TPR disparities per attributes/datasets to obtain the average
cross-label gap. The labels (full names on Table 2) that obtained the smallest and largest gaps are
shown next to the average cross-label gap column, along with their gaps. We summarize and label
in columns the most frequent “Unfavorable” and “Favorable” subgroups count, which are the ones
that experience TPRs disparities below or above the zero gap line. See Section 6.1 for more details.

Attribute Dataset Average Cross-Label Gap Unfavorable Favorable
Gap Lowest Greatest

Sex ALL 0.045 Ef:0.001 Pa:0.105  Female (4/7) Male (4/7)
CXP 0.062 Ed:0.000 Co0:0.139  Female (7/13) Male (7/13)
CXR 0.072 Ed:0.011 EC:0.151 Female (10/13) Male (10/13)
NIH 0.190  M:0.001  Cd:0.393  Female (8/14) Male (8/14)

Age ALL 0.215 Ef:0.115 NF:0.444  0-20 (5/7) 40-60,60-80(5/7)
CXR 0.245 SD:0.091 Cd:0.440  0-20, 20-40 (7/13) 60-80 (10/13)
CXP 0.270  SD:0.084 NF:0.604  0-20, 20-40, 80- (7/13) 40-60 (8/13)
NIH 0.413 In:0.188 Em:1.00 60-80 (7/14) 20-40 (9/14)

Race CXR 0.226 NF:0.119 Pa:0.440  Hispanic (9/13) White (9/13)

Insurance ~ CXR 0.100 SD:0.021 PO:0.190 Medicaid (10/13) Other (10/13)
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system, e.g., women and minorities, but no disease is consistently at the highest or lowest
disparity. We show the average cross-label gap between and the labels of the least and most
favorable subgroups per dataset and attributes. We count the number of time each subgroups
experience negative disparities (unfavorable) and zero or positive disparities (favorable) across
disease labels and report the most frequent unfavorable and favorable subgroups by count in
Table 3. For CXP and CXR, we exclude “No Finding” label in the count (counts are out of
13) as we want to check negative bias in disease labels. Notably, the model trained on ALL
has the smallest average cross- label gap between least /most favorable groups for sex and age.

6.2. TPR Disparity Correlation with Membership Proportion

We measure the Pearson correlation coefficients (r) between the TPR disparities and patients
proportion per label across all subgroups/datasets. As we test multiple (33) hypotheses, (33
total comparisons amongst all protected attributes considered) with a desired significance
level (p < 0.05), then based on Bonferroni correction,®* the statistical significance level for
each hypothesis is p < 0.0015 (0.05/33). The majority of correlation coefficients listed are
positive, but the only statistically significant correlations are: race Other (r: 0.782, p: 0.0009)
& age subgroups, 20-40 (r: 0.766, p: 0.0013), 60-80 (r: 0.787, p: 0.0008) and 80- (r:0.858 , p:
0.0000) in CXR, age group 60-80 (r: 0.853, p: 0.0001) in CXP, and age group 60-80 (r: 0.936,
p: 0.0006) in ALL.

7. Summary and Discussion

We present a range of findings on the potential biases of deployed SOTA X-ray image classifiers
over the sex, age, race and insurance type attributes on models trained on NIH, CXP and
CXR. We focus on TPR disparities similar to prior work,'® checking if the sick members of
the different subgroups are given correct diagnosis at similar rates.

Our results demonstrate several main takeaways. First, all datasets and tasks display non-
trivial TPR disparities. These disparities could pose serious barriers to effective deployment
of these models and invite additional changes in either dataset design and/or modeling tech-
niques to ensure more equitable models. Second, using a multi-source dataset leads to smaller
TPR disparities, potentially due to removing bias in the data collection process. Third, while
there is occasionally a proportionality between protected subgroup membership per label and
TPR disparity, this relationship is not uniformly true across datasets and subgroups.

7.1. Extensive Patterns of Bias

We find that all datasets and tasks contain meaningful patterns of bias although no diseases are
consistently at the highest or lowest disparity rates across all attributes and datasets. These
disparities are present with respect to age and sex in all settings, with consistent subgroups
(female, 0-20) showing consistently unfavorable outcomes. Note that in the case of the sex
disparities, “female” patients are universally the least favored subgroup despite the fact that
the proportion of female patients is only slightly less than male patients in all 4 datasets.
We also observe TPR disparities with respect to the patient race and insurance type in the
CXR dataset. White patients, the majority, are the most favorable subgroup, where Hispanic
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patients are the most unfavorable. Additionally, bias exists against patients with Medicaid
insurance, who are the minority population and are often from lower socioeconomic status.
They are the most unfavorable subgroup with the model often providing incorrect diagnoses.

7.2. Bias Reduction Through Multi-source Data

Of the four datasets, the multi-source dataset led to the smallest disparities with respect to
age and sex. Based on notions of generalizability in healthcare,'%3? we hypothesize that this
improvement stems from the combination of large datasets reducing data collection bias.

7.3. Correlation Between TPR D:isparities and Membership Proportion

Although prior work has raised data imbalance as a potential cause of sex bias,?® we observe
TPR disparities are not often significantly correlated with disease membership. While we
observe positive correlation between subgroups membership and TPR disparities, only 6 of
33 subgroups showed statistically significant correlation. By inspection, we identify diseases
with the same patient proportion of a subgroup and completely different TPR disparities
(e.g. ‘Consolidation’, ‘Nodule’ and ‘Pneumothorax’ in NIH have 45% Female, but the TPR
disparities are in diverse range, -0.155, -0.079 and 0.047, respectively). Thus, having the same
portion of images within all labels may not guarantee lack of bias.

7.4. Discussion

We identify subgroups that may experience more bias through the exploration of variance in
TPR and FPR. Based on the equality of opportunity notion of fairness, a fair network should
exhibit the same TPR on average among all subgroups regardless of how likely a subgroup
may have a disease. Such an improvement would allow two patients with the same condition,
but in different subgroups, to be diagnosed correctly and receive the same level of care. While
we focused on some of the more obvious protected attributes, it is important to note that
there are several other factors, subgroups, and attributes that we have not considered.

Identifying and eliminating disparities is particularly important as large datasets begin
to be used by high-capacity neural models, but are based on highly skewed population, e.g.,
kidney injury prediction in a population that is 93.6% male.?®> While chest X-ray images
datasets are not sex-skewed, we note that the age, race and insurance type attributes are
highly unbalanced, e.g., 67.6% of patients are White, and only 8.98% are under Medicaid
insurance. Subgroups with chronic underdiagnosis are those who experience more negative
social determinants of health, specifically, women, minorities, and those of low socioeconomic
status. Such patients may use healthcare services less than others. In some groups, such a
dataset skew can increase the risk of miss-classification.?*

Although “de-biasing” techniques®*35 may reduce disparities, we should not ignore the
important biases inherent in existent large public datasets. There are a number of reasons
why dataset may induce disparities in algorithms, from imbalanced datasets to differences in
statistical noise in each group (e.g. unmeasured predictive features) to differences in access
to healthcare for patients of different groups.'?' For instance, an algorithm that can classify
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skin cancer®® with high accuracy will not be able to generalize on different skin color if similar
samples have not been represented enough in the trained dataset.!® Intentionally adjusting the
datasets to reduce disparities in to protect minorities and the subgroups with high disparities is
one potential option in dataset creation, though our analyses suggest that dataset membership
cannot always ameliorate bias.

With the great promise of advanced models for clinical care, we caution that advanced
SOTA models must be carefully checked for such biases as those we have identified. Disparities
in small or vulnerable subgroups could be propagated3® within the development of machine
learning models. This raises serious ethical concerns?? about the equal accessibility to the
required medical treatment. Usually the SOTA classifiers are trained to provides high AUC
or accuracy on the general population. However we suggest additionally applying rigorous
fairness analyses before deployment. Clear disclaimers about the dataset collection process
and potential resulting algorithmic bias could improve model assessment for clinical use.

8. Limitations and Future Work

As SOTA deep learning diagnosis algorithms become more promising for medical screening,
model bias investigation is essential. This work is a first step in quantifying these biases so
that approaches for amelioration can be developed. However, important future work remains.

First, we note that across these models, our source of diagnostic labels for these images
must be considered at best “silver” labels, as all currently existing public chest X-ray datasets
use automatically deteremined labels based on natural language processing (NLP) techniques
to extract labels from the radiology reports. These silver labels may be incorrect, in ways that
could compound with observe biases or model errors, a risk that warrants further investigation.
Additionally, we must consider the quality of the imaging devices themselves, the region of
data collection, and the patient demographics at each hospital collection site. For instance,
NIH was gathered from a hospital that covers more complicated cases, CXP contains more
tertiary cases, and CXR was gathered from an emergency department, and prior literature has
already shown that models are fully capable of taking advantage of such confounders.?? These
challenges may affect both the label quality,3” and any patterns of bias in the labels, thereby
affecting the resulting fairness metrics. Finally, exploration of existing de-biasing techniques,
however limited, should also be undertaken over this modality to see if any of the problems
we identified here can be resolved.

9. Conclusion

While the development and deployment of machine learning models in a clinical setting poses
exciting opportunities, great care must be taken to understand how existing biases may be
exacerbated and propagated. We show the TPR disparity of SOTA chest X-ray pathology
classifiers trained on 4 datasets, (MIMIC-CXR, ChestX-ray8, CheXpert, and aggregation of
those three on shared labels) across 14 diagnostic labels. We quantify the TPR disparity across
datasets along sex, age, race and insurance type. Our results indicate that high-capacity models
trained on large datasets do not provide equality of opportunity naturally, leading instead to
potential disparities in care if deployed without modification.

241



Pacific Symposium on Biocomputing 26:232-243 (2021)

Acknowledgment

We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC, funding number PDF-516984), Microsoft Research, CIFAR, NSERC Dis-
covery Grant, and high performance computing platforms of Vector Institute. We also thank
Dr. Alistair Johnson, Dr. Errol Colak and Grey Kuling for productive discussions.

References

1.

2.

3.

11.

12.

13.

14.

15.

16.

A. Rimmer, Radiologist shortage leaves patient care at risk, warns royal college, BMJ (Clinical
research ed.) 359, p. j4683 (2017).

F. S Ali, S. G Harrington, S. B Kenned and S. Hussain, Diagnostic radiology in liberia: a country
report, Journal of Global Radiology 1(2) (2015).

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri and R. M. Summers, ChestX-ray8: Hospital-Scale
Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization
of Common Thorax Diseases, 2097 (2017).

L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard and K. Lyman, Learning to diagnose
from scratch by exploiting dependencies among labels, arXiv:1710.10501 (2017).

A. E. W. Johnson, T. J. Pollard, S. J. Berkowitz, N. R. Greenbaum, M. P. Lungren, C.-y. Deng,
R. G. Mark and S. Horng, MIMIC-CXR: A large publicly available database of labeled chest
radiographs, arXiv:1901.07042 (2019).

J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo,
R. Ball, K. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi, J. K. Sandberg, R. Jones, D. B.
Larson, C. P. Langlotz, B. N. Patel, M. P. Lungren and A. Y. Ng, CheXpert: A Large Chest
Radiograph Dataset with Uncertainty Labels and Expert Comparison, arXiv:1901.07031 (2019).
P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz,
K. Shpanskaya, M. Lungren and A. Ng, Chexnet: Radiologist-level pneumonia detection on chest
x-rays with deep learning (2017).

P. Rajpurkar, J. Irvin, R. L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,
C. P. Langlotz, B. N. Patel, K. W. Yeom, K. Shpanskaya, F. G. Blankenberg, J. Seekins, T. J.
Amrhein, D. A. Mong, S. S. Halabi, E. J. Zucker, A. Y. Ng and M. P. Lungren, Deep learning for
chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing
radiologists, PLOS Medicine 15, p. 1002686 (2018).

V. Institute, Thousands of images at the Radiologist’s fingertips seeing the invisible (2019).

. M. Ghassemi, T. Naumann, P. Schulam, A. L. Beam, I. Y. Chen and R. Ranganath, Practical

guidance on artificial intelligence for health-care data, The Lancet Digital Health 1, €157 (2019).
1. Y. Chen, P. Szolovits and M. Ghassemi, Can ai help reduce disparities in general medical and
mental health care?, AMA journal of ethics 21, 167 (2019).

I. Kawachi, N. Daniels and D. E. Robinson, Health disparities by race and class: why both
matter, Health Affairs 24, 343 (2005).

D. E. Hoffmann and A. J. Tarzian, The girl who cried pain: a bias against women in the treatment
of pain, The Journal of Law, Medicine & Ethics 28, 13 (2001).

J. Walter, A. Tufman, R. Holle and L. Schwarzkopf, “age matters”—german claims data indicate
disparities in lung cancer care between elderly and young patients, PloS one 14, p. e0217434
(2019).

M. Hardt, E. Price and N. Srebro, Equality of Opportunity in Supervised Learning, NIPS’16 ,
3323 (2016).

M. De-Arteaga, A. Romanov, H. Wallach, J. Chayes, C. Borgs, A. Chouldechova, S. Geyik,
K. Kenthapadi and A. T. Kalai, Bias in bios: a case study of semantic representation bias in a

242



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Pacific Symposium on Biocomputing 26:232-243 (2021)

high-stakes setting (2019), Atlanta, GA.

A. Chouldechova, Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments, Big data 5, 153 (2016).

J. Buolamwini and T. Gebru, Gender Shades: Intersectional Accuracy Disparities in Commercial
Gender Classification, 81, p. 15 (2018).

I. Chen, F. D. Johansson and D. Sontag, Why Is My Classifier Discriminatory?, in NIPS’31,
2018 pp. 3539-3550.

J. Kleinberg, S. Mullainathan and M. Raghavan, Inherent Trade-Offs in the Fair Determination
of Risk Scores, arXiv:1609.05807 (2016).

M. Srivastava, H. Heidari and A. Krause, Mathematical notions vs. human perception of fairness:
a descriptive approach to fairness for machine learning, arXiv preprint arXiv:1902.04783 (2019).
D. S. Char, N. H. Shah and D. Magnus, Implementing machine learning in health care —
addressing ethical challenges, New England Journal of Medicine 378, 981 (2018).

Z. Obermeyer and S. Mullainathan, Dissecting racial bias in an algorithm that guides health
decisions for 70 million peoples, p. 89 (2019), Atlanta, GA.

M. A. Gianfrancesco, S. Tamang, J. Yazdany and G. Schmajuk, Potential biases in machine
learning algorithms using electronic health record data., JAMA internal medicine 178, 1544
(2018).

S. Akbarian, L. Seyyed-Kalantari, F. Khalvati and E. Dolatabadi, Evaluating knowledge transfer
in neural network for medical images, arXiv preprint arXiv:2008.13574 (2020).

G. Huang, Z. Liu, L. v. d. Maaten and K. Q. Weinberger, Densely Connected Convolutional
Networks, 2261 (2017).

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical
Image Database (2009).

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980v9 (2017).
A. J. Larrazabal, N. Nieto, V. Peterson, D. H. Milone and E. Ferrante, Gender imbalance in
medical imaging datasets produces biased classifiers for computer-aided diagnosis, Proceedings
of the National Academy of Sciences 117, 12592 (2020).

T. B. Hashimoto, M. Srivastava, H. Namkoong and P. Liang, Fairness Without Demographics
in Repeated Loss Minimization, arXiv:1806.08010 (2018).

R. G. J. Miller, Simultaneous Statistical Inference (Springer-Verlag New York, 1981).

J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano and E. K. Oermann, Confounding
variables can degrade generalization performance of radiological deep learning models, PLOS
Medicine 15, p. €1002683 (2018).

N. Tomagev, X. Glorot, J. W. Rae, M. Zielinski, H. Askham, A. Saraiva, A. Mottram, C. Meyer,
S. Ravuri, I. Protsyuk et al., A clinically applicable approach to continuous prediction of future
acute kidney injury, Nature 572, p. 116 (2019).

A. Amini, A. P. Soleimany, W. Schwarting, S. N. Bhatia and D. Rus, Uncovering and Mitigating
Algorithmic Bias through Learned Latent Structure, in Proceedings of the 2019 AAAI/ACM
Conference on Al, Ethics, and Society - AIES ’19, (ACM Press, Honolulu, HI, USA, 2019).

B. H. Zhang, B. Lemoine and M. Mitchell, Mitigating Unwanted Biases with Adversarial Learn-
ing, arXiv:1801.07593 (2018).

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau and S. Thrun, Dermatologist-
level classification of skin cancer with deep neural networks, Nature 542, 115 (2017).

~. Lukeoakdenrayner, Half a million x-rays! First impressions of the Stanford and MIT chest
x-ray datasets (2019).

243





