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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a close relative of SARS-CoV-1, 

causes coronavirus disease 2019 (COVID-19), which, at the time of writing, has spread to over 19.9 

million people worldwide. In this work, we aim to discover drugs capable of inhibiting SARS-CoV-

2 through interaction modeling and statistical methods. Currently, many drug discovery approaches 

follow the typical protein structure-function paradigm, designing drugs to bind to fixed three-

dimensional structures. However, in recent years such approaches have failed to address drug 

resistance and limit the set of possible drug targets and candidates. For these reasons we instead focus 

on targeting protein regions that lack a stable structure, known as intrinsically disordered regions 

(IDRs). Such regions are essential to numerous biological pathways that contribute to the virulence 

of various viruses. In this work, we discover eleven new SARS-CoV-2 drug candidates targeting 

IDRs and provide further evidence for the involvement of IDRs in viral processes such as enzymatic 

peptide cleavage while demonstrating the efficacy of our unique docking approach. 

1. Introduction

IDRs lack a fixed three-dimensional structure, and instead fold dynamically into a set of continuous 

conformations based on surrounding conditions [1]. This allows IDRs to have a wide range of 

binding partners, and as a result, serve significant roles in critical biological processes such as cell 

signaling and transcription [2-3]. Moreover, certain short IDRs known as molecular recognition 

features (MoRFs) are essential for initiating protein-protein interactions (PPIs) [4]. For over a 

decade now, it has been clear that IDRs are functionally important to and incredibly abundant in 

proteins implicated across the disease spectrum [5]. 

While IDRs are not incredibly common in the SARS-CoV-2 proteome, the IDRs that do exist 

contribute greatly to the functioning and overall virulence of the pathogen [6-7]. In fact, nearly all 

SARS-CoV-2 proteins are predicted to have MoRFs, highly suggestive of the importance of IDRs 

in PPI networks [7]. SARS-CoV-2 IDRs therefore serve as promising drug targets for antiviral drug 

discovery. 

Of the 27 mature viral proteins within the SARS-CoV-2 proteome, the majority of current drug 

discovery research is largely focused on three main targets: the RNA polymerase, the Papain-like 
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protease, and the 3C-like protease (3CLpro) [8-9]. The 3CLpro’s main role is to cleave the 

polyproteins into functional parts [10]. While all three targets are disordered [7], in this study we 

focus on the CoV-2 3CLpro since it is highly similar (96% sequence identity) to its CoV-1 relative, 

for which an abundance of bioassay data is available [10]. In particular, we concentrate our efforts 

on the N-terminally short IDR (residues 1-6; see footnote ‘b’) predicted to be a MoRF in both CoV-

1 and CoV-2 [7]. A drug capable of binding to this IDR could thereby inhibit PPIs within the virus. 

Our approach to drug discovery consists of two major steps. First, we compute binding affinities 

between the CoV-2 3CLpro IDR and over 1400 ligands from the NCI Diversity Set III through a 

unique docking procedure. While older docking procedures focus on targeting structured protein 

pockets [11], in this study we account for the wide range of IDR conformations through the 

allowance of residue side chain rotation as well as through ensemble docking. High binding 

affinities are a key first indicator of drug potential since they imply a great attractive force toward 

the receptor and demonstrate that the binding energy can be used to alter the receptor structure. We 

discovered over 60 ligands with binding affinities of -8.0 kcal/mol or better. However, drug 

discovery approaches relying solely on docking often fail to produce seriously meaningful results, 

and expert opinion suggests the cross-verification of results using distinct techniques [12-13]. Thus, 

in the second step of our approach, we validate and filter our results using a statistical model. The 

results of bioassay AID 1706, which screens over 290,000 compounds for inhibition of CoV-1 

3CLpro-mediated peptide cleavage [14], are used to train a message passing neural network 

(MPNN) to distinguish between positive (3CLpro inhibiting) and negative (non-inhibiting) 

compounds. Due to the high similarity between the two CoV 3CLpros, such a model is likely to 

make meaningful predictions relevant to CoV-2 3CLpro inhibition [10, 15] . This model is then 

used to predict activity scores for each of the previously docked ligands. We show a correlation 

between activity scores and binding affinity, suggesting the efficacy of our docking approach. 

Moreover, we combine the results of our steps to determine 11 new CoV-2 drug candidates, many 

of which show antibiotic or antiviral properties. Figure 1 summarizes the process. 

 

 
Fig. 1.  Drug discovery flowchart. 
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2.  Methods 

2.1.  Molecular dockinga 

2.1.1.  Data collection 

The three-dimensional structures of all 27 mature viral proteins were predicted by the Oak Ridge 

National Laboratory (ORNL) with a workflow consisting of X-ray crystallography results, 

homology modeling, and disorder prediction among other techniques. In particular, the structure of 

the monomeric form of 3CLpro was obtained directly from ORNL’s COVID-19 site.b 

In this study, we use the National Cancer Institute (NCI) Diversity Set III as our ligand dataset. 

Diversity sets are constrained such that no two ligands can be overly similar to one another, resulting 

in heterogeneity. A single SDF file was retrieved from NCI’s websitec describing the structures of 

each of the ligands in the set. 

2.1.2.  Data preprocessing 

AutoDockTools was used to prepare and preprocess the PDB file for the 3CLpro before docking. 

Water molecules were removed, polar hydrogen atoms were added, and Kollman charges were 

added to the entire structure. The structure was then saved as a PDBQT file. 

The ligands were extracted from the SDF file into individual PDB files. Then, the prepare_ligand 

function from the AutoDock Flexible Receptor (ADFR) suited was used to preprocess each of these 

ligand files, generating PDBQT files ready for docking. 

2.1.3.  Target file generation 

The protein-ligand docking software used in this study is AutoDock Flexible Receptor (ADFR). 

ADFR requires at least two parameters to be passed: the protein receptor, specified by a target file, 

and the ligand, specified by a PDBQT file. Target files specify the docking box size and position, 

calculated binding pockets, residue side chains to be made flexible, affinity maps, as well as other 

meta-data. AutoGridFR was used to generate such a target file for the 3CLpro. In particular, the 

docking box was specified to enclose residues 1-9, and residues within the IDR (1-6) were specified 

as having flexible side chains. Additionally, AutoSite 1.0 was used to generate ligand binding 

pockets through a clustering algorithm that groups high affinity points into disjoint “fills.” Fills with 

high scores in close proximity to the disordered region were chosen to be targeted during docking. 

Figure 2 graphically summarizes the parameters chosen for target file generation. 

a Our code, data and results are available at https://github.com/Biomedical-Cybernetics-Lab2/IDR-SARS-CoV-2. 
b https://compsysbio.ornl.gov/covid-19/covid-19-structome/. 
c https://wiki.nci.nih.gov/display/NCIDTPdata/Compound+Sets. 
d https://ccsb.scripps.edu/adfr/. 
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Fig. 2. Orange residues are part of the IDR and specified as flexible. The docking box is shown in white. Fills chosen 

are shown in purple, light blue, green and orange. 

2.1.4.  Flexible docking 

ADFR is unique from other protein-ligand docking software in that it can handle both ligand and 

receptor flexibility. As a result, ADFR is of incredible use when performing IDR-related docking. 

ADFR employs a genetic algorithm (GA) to find the best docked position of a given ligand. For 

each protein-ligand pair, the GA is run several times in case the GA converges to local rather than 

global optima. Moreover, the user can specify both how many runs are executed as well as an upper 

bound for the number of times the scoring function is called per run. This allows us to drastically 

cut down on compute time by potentially terminating searches before they converge. The default 

values for the number of GA runs and the maximum number of score evaluations are 50 and 2.5 

million respectively; in this study, at least initially, we modify these parameters to 7 runs with at 

most 28,000 evaluations each. Docking is performed with these parameters for 1405 distinct ligands 

from the NCI Diversity Set III, and results are compiled. 

2.1.5.  Ensemble docking 

In our pursuit of simulating the conformational flexibility of the IDR for accurate drug discovery, 

we also utilize ensemble docking. In this approach, we generate many possible conformations of the 

IDR, and dock each ligand onto each possible conformation. In this study, we generate 

conformations by treating the IDR as a loop of the protein. Loop modelling implemented by 

MODELLERe is then used to generate five likely IDR conformations. We then repeat the processes 

outlined in the above sections: we preprocess each newly generated PDB file, generate a target file 

for each, and perform docking on each conformation-ligand pair using ADFR. Figure 3 illustrates 

how the five different conformations of the IDR compare to each other. After docking is complete, 

results are compiled. 

e https://salilab.org/modeller/. 
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Fig. 3. Five conformations of the 3CLpro IDR superimposed onto the original structure. 

 

2.2.  Statistical model 

2.2.1.  Chemprop 

Chempropf is a freely available implementation of a message passing neural network. Such models 

are designed to predict properties of graph-based inputs. In the case of molecular property 

prediction, molecules are transformed to graphs by treating atoms as nodes and the bonds between 

atoms as edges. Using this representation, a feature vector is generated through a learned algorithm 

that aggregates chemical features within the graph. This vector is then passed to a typical feed-

forward neural network [16]. For our purposes, this neural network outputs a real value between 0 

and 1 representing the model’s confidence that a certain molecule has a desired binary property. 

2.2.2.  Data and training 

Our aim was to train a MPNN model to predict whether a molecule can inhibit the CoV-2 3CLpro 

in vitro to further validate and filter our results from molecular docking. We make use of the results 

from bioassay AID 1706, which screens over 290,000 compounds for inhibition of CoV-1 3CLpro 

peptide cleavage, to train such a model. Concretely, the bioassay screens for cleavage inhibition by 

attaching a fluorescent compound and a quencher to opposite sides of a 3CLpro substrate. A 

compound can then be classified as active or inactive since fluorescence increases if and only if 

cleavage occurs [14]. Due to the high similarity between the two CoV 3CLpros, a model trained on 

CoV-1 data is likely to make meaningful predictions relevant to CoV-2 3CLpro inhibition. Each 

training example in the datasetg consists of one feature (the SMILES string of the compound) and 

one label (a binary output; 1 for inhibition, 0 for no inhibition). Just 405 of the compounds are 

classified as positive (label = 1), whereas the other 290,321 compounds are negative (label = 0). To 

f https://github.com/chemprop/chemprop. 
g Retrieved from https://github.com/yangkevin2/coronavirus_data. 
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account for this imbalance between positive and negative data points in the training set, an equal 

number of positives and negatives are used in each batch during training. Furthermore, additional 

features generated by RDKit are appended to the feature vector generated before being passed into 

the neural network during training and predicting. Once trained, the model achieves a test ROC 

AUC of .739. We then apply the model to predict activity scores for each of the previously docked 

ligands. 

3.  Results 

3.1.  Interaction modelling 

The binding affinities of over 1400 ligands with the proposed IDR target were analyzed in silico 

using molecular docking. We first simulated IDR conformational flexibility by allowing IDR 

residue side chains to rotate while searching for the optimal ligand pose. With this docking 

procedure, 57 ligands were found to have binding affinities of -8.0 kcal/mol or better. Considering 

that we terminated the docking searches before convergence by bounding the maximum number of 

score evaluations, their true binding affinities are likely to exceed -8.0 kcal/mol. Therefore, we 

deemed all 57 ligands as ideal drug candidates. Table 1 summarizes these results of this first docking 

procedure. 

With a binding affinity of -9.8 kcal/mol, the top molecule found is NSC-70931, also known as 

the triterpenoid named celastrol. Celastrol displays antiviral properties against influenza A virus as 

well as dengue virus in mice [17-18]. In fact, celastrol has already been suggested as an anti-

inflammatory therapeutic for the lethal pneumonia stage of COVID-19 [19]. These results indicate 

the potential of our first docking method.  

When we reran the docking of celastrol onto the 3CLpro IDR with the default parameters 

mentioned above, the search converged and found a pose with an improved docking score of -11.4 

kcal/mol (shown in Figure 4). This further solidifies our claim that the binding affinities presented 

in this study are likely sub-optimal. 

Table 1. Binding affinity results from flexible docking (abridged) 

Molecule (NSC) Binding Affinity (kcal/mol) 

70931 -9.8 

177862 -9.7 

16437 -9.3 

96541 -9.1 

117987 -8.8 

45527 -8.8 

… … 
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Fig. 4.  Docked pose of celastrol (-11.4 kcal/mol) after search converged. 

 

We then simulated IDR conformational flexibility using a different approach known as ensemble 

docking. Concretely, each ligand was docked onto five distinct conformations of the IDR generated 

by loop modelling techniques. These five binding affinities were retrieved, but only the highest of 

the five was used to compare ligands with each other. With this docking procedure, 49 ligands were 

found to have highest binding affinities of -8.0 kcal/mol or better. Table 2 summarizes the results 

of this second docking procedure. 

 

The top molecule found is NSC-166259, a close relative of succinic acid found to have a highest 

binding affinity of -9.3 kcal/mol with conformation 2 of the IDR. NSC-166259 displays anticancer 

properties, showing activity in human tumor cell bioassays. Upon closer inspection of NSC-

166259’s docked pose, it becomes apparent that NSC-166259 interacts with the receptor at two sites: 

residue 126 as well as residue 3, which is within the IDR (see Figure 5). This confirms the notion 

that our docking approach can find ligand poses that interact directly with the IDR.  

Finally, given the current need for efficient drug discovery through repurposing, a set of well-

known compounds such as danazol, genistein and estramustine found to perform well in both 

docking procedures are listed along with their modern uses in Table 3. 

Table 2. Binding affinity results from ensemble docking (abridged) 

Molecule (NSC) Best Binding Affinity (kcal/mol) 

166259 -9.3 

37641 -9.1 

121868 -9.1 

727038 -9.1 

117987 -8.7 

70931 -8.6 

… … 
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Fig. 5. NSC-166259 interacting with IDR. 

3.2.  Activity prediction 

The goal of this work is to find CoV-2 3CLpro inhibitors by concentrating our efforts on the 

IDR/MoRF present at the N-terminus. The first step in this effort using molecular docking yielded 

promising results; however, in general, docking approaches need to be cross verified by a different 

method. Thus, our next goal was to create a statistical model capable of predicting in vitro inhibition 

of our protein target to filter and provide further evidence for our docking results. Such a model 

would be capable of making predictions many orders of magnitude faster than standard bioassays. 

Here, we train a model to predict whether a compound can inhibit 3CLpro-mediated peptide 

cleavage. 

Due to the scarcity of CoV-2 data, we train our model using CoV-1 3CLpro peptide cleavage 

inhibition data from bioassay AID 1706. The model structure chosen is a MPNN implemented by 

Chemprop. Our model achieves a test ROC AUC of .739 (80% train, 10% validation, 10% test). 

We then apply the trained model to predict activity scores for each of the previously docked 

ligands. A total of 11 ligands (see Table 4) are identified as having both high affinity (absolute 

affinity ≥ 7.9 kcal/mol) as well as high activity (≥ 0.8). These ligands have high probabilities of 

binding to the IDR, having enough binding energy to deform the 3CLpro, and inhibiting peptide 

cleavage. Therefore, we deem these 11 ligands promising drug candidates. Furthermore, known use 

Table 3. Drug repurposing candidates with their uses and additional information. 

Drug Pharmacological Use Additional Information 

Celastrol Inflammation, cancer (lung, prostate) Suppresses NF-kB signaling 

Danazol Fibrocystic breast disease, endometriosis Targets estrogen receptor alpha 

Estramustine Cancer (prostate) Targets estrogen receptor alpha/beta 

Camptothecin Cancer Targets topoisomerase 

Genistein Cardiovascular risk, cancer Targets estrogen receptor alpha/beta 

Benzbromarone Heart failure, chronic kidney disease Targets cytochrome P450 2C9 
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cases for these 11 ligands include orthopoxviruses, foot-and-mouth disease virus, human tumors, 

and malaria. We are currently investigating a potential collaboration to validate the efficacy of these 

11 new drug candidates in vitro. 

 

We also investigate the possible link between 3CLpro cleavage inhibition and IDR binding 

affinity. A scatter plot of the binding affinities and activity scores for each of the 1405 docked 

ligands is shown in Figure 6. The correlation coefficient r measuring the strength and direction of 

the linear relationship between the two variables is computed to be 0.38, suggesting a weak to 

slightly moderate correlation. This means that higher binding affinities to the IDR of the CoV-2 

3CLpro weakly/moderately correlate with higher rates of cleavage inhibition. This suggests that the 

IDR/MoRF of the CoV-2 3CLpro is involved in the peptide cleavage process. As a matter of fact, it 

is well known that the dimerization of 3CLpro that develops its active site involves our targeted IDR 

[7]. Therefore, since our method realizes this relationship, it suggests that targeting the IDR in the 

monomeric form is an effective way of finding 3CLpro peptide cleavage inhibitors. This also could 

suggest that our approach of cross verifying docking results with statistical models could be used to 

hypothesize other biological relationships key to drug discovery in the future. In Figure 7, we show 

the distribution of the IDR binding affinities of known CoV-1 3CLpro inhibitors from bioassay AID 

1706, and in Figure 8 we show the same distribution for the NCI Diversity Set III. We find the 

average binding affinity of CoV-1 3CLpro inhibitors to be -6.74 kcal/mol, which is above the typical 

threshold for choosing possible drug candidates, whereas the average for the NCI Diversity Set III, 

which we assume to be a representation of the drug-like ligand space, is just -5.93 kcal/mol. 

Consequently, the distributions indicate that the average 3CLpro inhibitor falls within the top 23.5% 

of all ligands in terms of binding affinity to the IDR of 3CLpro, further supporting our previous 

claims. Furthermore, it is possible that the correlation between the IDR and cleavage inhibition is 

higher than mentioned above but is dampened in our data since the MPNN was trained on in vitro 

results, but high binding affinities do not always correspond to in vitro binding. 

Table 4. Top 11 drug candidates in terms of affinity and activity. 

Molecule (NSC) Activity Affinity Active Bioassays 

16437 .859 -9.3 Foot-and-mouth disease (FMD) virus  

117987 .872 -8.8  

601359 .855 -8.4 Melanoma cell line, Malaria 

13294 .825 -8.4  

127133 .908 -8.3  

61610 .823 -8.2 Malaria 

107582 .877 -8.1  

128606 .920 -8.0  

211490 .808 -8.0 Hepatitis C virus, Human cytomegalovirus 

679525 .894 -8.0 Orthopoxviruses, FMD virus 

204232 .800 -7.9 DNA Polymerase Beta 
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Fig. 6.  Affinity versus activity 

 

 
 

Fig. 7. Distribution of 3CLpro inhibitor binding affinities. 
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Fig. 8. Distribution of NCI Diversity Set III binding affinities. 

4.  Conclusion 

Currently, there are no widely approved CoV-2 antivirals or vaccines available. Given the infectious 

and fatal nature of COVID-19, there exists a dire need for immediate drug discovery research. In 

this work, we make advancements by specifically focusing on targeting disordered protein regions. 

We demonstrate how these IDRs can be targeted through molecular docking and illustrate how 

results can be verified in a multi-faceted approach. Ultimately, we identify 11 new drug candidates 

with high binding and activity scores, along with known antiviral properties. In the future we would 

like to validate our results in vitro as well as further explore the IDR interactions within the SARS-

CoV-2 proteome through MoRF mimicry. 
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