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Pharmacogenetics studies how genetic variation leads to variability in drug response. Guidelines            
for selecting the right drug and right dose for patients based on their genetics are clinically                
effective, but are widely unused. For some drugs, the normal clinical decision making process may               
lead to the optimal dose of a drug that minimizes side effects and maximizes effectiveness. Without                
measurements of genotype, physicians and patients may adjust dosage in a manner that reflects the               
underlying genetics. The emergence of genetic data linked to longitudinal clinical data in large              
biobanks offers an opportunity to confirm known pharmacogenetic interactions as well as discover             
novel associations by investigating outcomes from normal clinical practice. Here we use the UK              
Biobank to search for pharmacogenetic interactions among 200 drugs and 9 genes among 200,000              
participants. We identify associations between pharmacogene phenotypes and drug maintenance          
dose as well as differential drug response phenotypes. We find support for several known              
drug-gene associations as well as novel pharmacogenetic interactions.  
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1. Introduction

Pharmacogenetics promises to revolutionize patient care by offering personalized drug selection           
and dosage based on an individual’s genetics ​1​. Variations in the genes that encode proteins              
involved in drug pharmacokinetics and pharmacodynamics are known to lead to interindividual            
heterogeneity in drug response and can greatly affect clinical outcome. Dosage guidelines have             
been developed by organizations such as the Clinical Implementation of Pharmacogenetics           
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Consortium (CPIC; cpicpgx.org) to aid physicians in incorporating pharmacogenetics into their           
practice, however the adoption of pharmacogenetics by practicing physicians has not lived up to              
the optimism in the field​2,3​. 

Doctor’s may not directly be using pharmacogenetics to inform practice, but genetics            
influences how patients respond to drugs nonetheless. Some drugs, such as warfarin, have a              
narrow therapeutic index and blood concentration of the drug must be frequently measured to              
ensure patient safety​4​. The ultimate dose at which the patient achieves the appropriate, stable              
blood concentration of the drug is the maintenance dose. For warfarin, this dose is strongly               
influenced by genetic factors such including variations in the metabolizing enzymes CYP2C9 and             
CYP4F2​, ​ as well as the drug target VKORC1.  

In other instances genetic variation may lead patients to be at higher risk for side effects.                
The frequently prescribed drug simvastatin has well known pharmacogenetic interactions with           
SLCO1B1 that can lead to simvastatin-induced myopathy​5​. While this is a rare side effect,              
individuals with poor functioning SLCO1B1 are at higher risk for simvastatin-induced myopathy.            
CPIC guidelines for simvastatin recommend that individuals with poor functioning SLCO1B1 take            
a reduced simvastatin dose or a different drug altogether. 

Numerous pharmacogenetic drug-gene relationships have been discovered, but most         
pharmacogenetic studies are small and narrowly focused. The use of electronic health record and              
biobank scale data as a means for pharmacogenetic discovery and validation of known             
relationships has been proposed, but until recently databases linking clinical data with genetic data              
for a large number of patients were unavailable ​1,6​. Biobanks offer an opportunity to retrospectively              
assess known drug-gene relationships in a clinical setting as well as offer the opportunity to               
discover new drug-gene associations. Biobanks and electronic health records have been used to             
perform targeted association studies between genomics and response to individual drugs​7 as well             
as characterize frequency of pharmacogenetic alleles in populations​8,9​, but studies of drug response             
across a large number of drugs have not yet been performed. 

The UK Biobank has been widely used to perform genome-wide association studies on a              
wide variety of traits, but it also includes primary care data from the United Kingdom’s National                
Health System​10​. This dataset offers longitudinal, structured clinical data for more than 220,000             
participants that includes diagnoses, laboratory tests, and prescription data. This dataset offers a             
unique opportunity to identify associations between drug response phenotypes and genetics. Here            
we present a retrospective pharmacogenetic analysis linking drug exposure for 200 drugs to             
clinical outcome using the UK Biobank primary care data. We focus on two types of clinical                
outcomes of interest: maintenance dose and differential drug response.  
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2.  Methods 

2.1.  Pharmacogenetic Allele Calling 

We investigated drug-gene relationships for nine important pharmacogenes in the UK Biobank for             
222,114 participants using primary care data from the National Health System, provided by the              
UK Biobank​10​. The pharmacogenetic alleles used in this study were derived from a previously              
reported procedure, described here in brief​8​. We used imputed genotypes from the Axiom Biobank              
Array released by the UK Biobank​11​. We included nine genes in our analysis: ​CYP2B6, CYP2C19,               
CYP2C9, CYP2D6, CYP3A5, CYP4F2, SLCO1B1, TPMT, ​and ​UGT1A1 ​. The proteins encoded by            
these genes play critical roles in drug pharmacokinetics and each is included in a CPIC dosing                
guideline for a drug. We assigned pharmacogenetic phenotypes for each gene using PGxPOP, a              
tool designed for high throughput mapping of pharmacogenetic alleles and phenotypes           
(https://github.com/PharmGKB/PGxPOP). The analysis was limited to individuals of European         
descent. This included participants who self reported as European and were confirmed as             
European using principal component analysis. 

2.2.  Drug Dosage Association with Pharmacogenetics 

Drugs used in this study were derived from the PharmGKB curated drug list             
(​https://www.pharmgkb.org/downloads​, drugs.zip)​12​. For each drug, we extracted prescription        
information from the UK Biobank primary care prescription data by matching the drug name and               
brand names in the prescription data. Dosage information and drug quantity was extracted using              
regular expressions that searched within the drug description. We excluded combination therapies            
from the analysis.  

We calculated maintenance dose by determining the average milligrams of drug per day             
for the last five prescriptions of each drug. This was done by calculating the total milligrams of                 
drug administered for a single prescription divided by the number of days until the next               
prescription. We then averaged the milligrams of drug per day over the five most recent               
prescriptions. Prescriptions with a quantity outside two standard deviations from the mean            
quantity across all participants for that drug were excluded. Subjects were required to receive a               
minimum of five prescriptions to be included in the analysis. We required drugs to have a                
minimum of 50 subjects with a maintenance dose to be included in the analysis. 

We divided the analysis of maintenance dose associations into three groups of drug-gene             
pairs. First, we investigated the relationship between drug-gene pairs that have an existing CPIC              
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guideline. This indicates a strong level of evidence of a relationship between a drug and a gene.                 
Second, we investigated drug-gene pairs which have some level of evidence in PharmGKB, but no               
existing CPIC guideline. These pairs still have some prior evidence indicating an association, but              
not enough to develop a dosage guideline. Third, we investigated all other drug-gene pairs where               
an interaction is indicated in DrugBank​13​. These pairs have no prior evidence of a              
pharmacogenetic association. Data was grouped within each gene by predicted phenotype. For            
example, for ​CYP2C9 participants were put into bins by metabolizer class (normal metabolizers             
(NM), intermediate metabolizers (IM), and poor metabolizers (PM). Phenotype groups with less            
than ten participants for a drug are excluded from analysis. 

Association between maintenance dose and pharmacogenetic phenotypes was tested for          
200 drugs using two types of non-parametric statistical association tests. We used both a              
Kruskal-Wallis one-way analysis of variance and Jonckheere-Terpstra trend tests to test for            
associations between each drug and gene pair. Both types of tests are necessary to detect various                
relationships between dosage and genetics. First, the Kruskal-Wallis test was used to identify any              
pharmacogenetic phenotype (e.g. CYP2C9 PMs) that have a significant difference in the dosage             
from other metabolizer classes. Second, Jonckheere-Terpstra tests for an ordered relationship in            
ranked groups. This is a natural fit for pharmacogenetic phenotypes since there is an inherent               
order in function which may lead to a linear relationship with dosage (e.g. NM > IM > PM).                  
Resulting p-values are adjusted using a Bonferroni correction. We used a covariate-adjusted dose             
as the response variable for each test. To do this we fit a linear regression model to the dosage                   
using several covariates: age (at time of last prescription), sex, BMI, genotyping array, and the               
first for principal components of a principal component analysis (PCA) using genotype data (UK              
Biobank Data-Field 22009). 

We tested the impact of the intronic ​CYP2C19 variant rs3814637 on warfarin dose. We              
used a two-sided Jonckheere-Terpstra test on the allele dosage against the warfarin maintenance             
dose. Allele dosage was determined as the sum of the alternate alleles for rs3814637. 

2.3.  Differential Drug Response Phenotype Association 

In a separate analysis, we tested the relationship between pharmacogenes and drug response for all               
drugs using diagnosis codes in primary care data. We sought to identify pharmacogenomic             
phenotypes that would lead to a differential drug response phenotype, for example, instances             
where poor metabolizers have an increased risk of developing some side effect compared to              
normal metabolizers. For each drug included in the dosage analysis we identified all diagnoses in               
the primary care data in the year following the first exposure to the drug. Diagnosis codes in the                  
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primary care data are provided as Read Codes (version 2 and version 3), we mapped the Read                 
Codes to ICD-10 codes including only the first three digits (the chapter and first two numerals).                
ICD-10 codes from chapters V, W, X, Y, and Z were excluded from analysis. Codes were required                 
to have at least 100 events per drug to be included in the analysis. Diagnosis codes may represent                  
the primary disease indication for the drug, side effects, comorbidities, or other unrelated events. 

We used logistic regression to test the association between gene phenotypes and ICD-10             
code incidence for each drug. This was set up using a binary indicator as the response variable and                  
a one-hot encoding of gene phenotype. We included age (at time of first prescription), sex,               
genotyping array, and the first four principal components from a genotype PCA as covariates. 

We evaluated three tiers of drug-gene relationship, as in the maintenance dose analysis.             
Drug-gene pairs with CPIC guidelines, drug-gene pairs with any level of evidence in PharmGKB              
but no CPIC guideline, and an exploratory analysis. For the exploratory analysis of side effect               
relationships we limited our search to drugs known to interact with ​CYP2C9 ​, ​CYP2C19 ​, and              
CYP2D6​, as indicated by DrugBank. These genes were selected because they are promiscuous             
metabolizing enzymes with well defined pharmacogenetics.  

3.  Results 

The pharmacogenetic analyses presented here included a total of 201,498 participants, after            
removing 20,615 participants not of European descent. More than 57 million prescriptions are             
contained within the primary care data, an average of 262 prescriptions per participant. Our initial               
drug list included 3,358 drugs. Of this, 200 were found in the UK Biobank prescription data with                 
sufficient counts to be included in subsequent analysis. 

3.1. Drug Dosage Association with Pharmacogenetics 

We sought to evaluate methods for testing the relationship between maintenance dose and             
pharmacogenes at a biobank scale. We performed this analysis using three groups of drug-gene              
pairs. Of the drugs with CPIC guidance for any of the nine genes queried, there were 24 that had                   
the minimum of 50 participants for whom a maintenance dose could be calculated. We find that                
nine of the drug-gene pairs have a significant difference in the dosage across gene phenotypes               
(Kruskal-Wallis or Jonckeere-Terpstra ​p < 0.05, Table 1). We do not adjust for multiple tests               
because these are known relationships not discoveries. Warfarin and ​CYP2C9 ​phenotypes had the             
most significant relationship (​p ≅ 0, Jonckeere-Terpstra). The remaining twenty drug-gene pairs            
did not have a significant relationship between maintenance dose and gene phenotype. 

 

Pacific Symposium on Biocomputing 26:184-195 (2021)

188



 
 
 

Table 1. Drug-gene dose relationship results. Drug-gene pairs are presented in three            
groups: drugs with CPIC guidelines, without guidelines but PharmGKB evidence, and           
novel associations. Level of Evidence represents the maximum level of evidence for the             
drug-gene relationship in PharmGKB. p-values with a * are significant at ​p ​<= 8.6 x 10​-6​,                
bonferroni adjusted. Test indicates which type of test achieved the p-value shown            
(JT=Jonckheere-Terpstra, KW=Kruskal Wallis). Only results with a standard error less          
than 0.2 are included. 

Group Drug Gene 
Level of 
Evidence # Samples Test p-value 

CPIC guidance warfarin CYP2C9 1A 6,409 JT 0.00E+00 

 phenytoin CYP2C9 1A 459 KW 1.04E-05 

 azathioprine TPMT 1A 799 KW 9.13E-03 

 imipramine CYP2C19 2A 348 JT 1.10E-23 

 lansoprazole CYP2C19 2A 2,793 JT 2.52E-02 

 pantoprazole CYP2C19 3 114 JT 2.56E-02 

 simvastatin SLCO1B1 1A 34,611 KW 3.52E-02 

 warfarin CYP4F2 1A 4,559 KW 3.69E-02 

 paroxetine CYP2D6 1A 2,804 KW 4.22E-02 

No guidance warfarin CYP2C19 3 6,410 KW 2.22E-14 

 nicotine CYP2B6 3 391 JT 6.38E-04 

Novel associations cyclosporine CYP2C19 NA 166 JT 1.87E-05* 

 rabeprazole CYP2C9 NA 223 JT 4.55E-05* 

We then investigated association between maintenance dose and gene phenotype for           
drug-gene pairs with any level of evidence in PharmGKB but no CPIC guideline. We found two                
drug-gene pairs with a p-value less than 0.05 for either the Kruskal-Wallis test or              
Joncheere-Terpstra trend test (Table 1). The most significant was the Kruskal-Wallis test for             
warfarin and CYP2C19 phenotype. Investigating the dose relationship with phenotype reveals that            
CYP2C19 normal metabolizers have a decreased maintenance dose compared to the other            
CYP2C19 metabolizer classes (Figure 1, second row, first column). We followed up on this              
finding by interrogating the association between rs3814637 and warfarin maintenance dose. 

The intronic variant rs3814637 within ​CYP2C19 has been previously reported to be            
associated with warfarin response​14–16​. This variant is contained within several ​CYP2C19 star            
alleles: ​CYP2C19*1.004 ​, ​CYP2C19*1.005 ​, and ​CYP2C19*15.001 ​, all of which are normal          
functioning alleles. We observed that normal metabolizers had an average daily dose of 4.8 mg               
(compared to 5.3 mg for the other metabolizer classes). We then tested the association between               
rs3814637 and warfarin maintenance dose. We find a significant relationship between rs3814637            
dosage and warfarin maintenance dose ( ​p​ <= 1.0 x 10​-46​, two-sided Jonckheere-Terpstra, Fig. 2). 
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Figure 1. Box plots of maintenance dose for most significant drug-gene pairs. The top two most significant pairs are 
shown for each group (columns). Enzyme metabolizer classes are represented along the x-axis and the distribution 

of maintenance dose along the y-axis. 

We then analyzed the relationship between maintenance dose and gene phenotype for            
drug-gene pairs that had no previous indication of a pharmacogenetic relationship but are known              
to interact. We tested 581 drug-gene pairs and found two significant relationships between dose              
and gene phenotype: cyclosporine and ​CYP2C19 ​, and nicotine and ​CYP2B6 (​p < 8.6 x 10​-6​,               
Jonckheere-Terpstra, bonferroni adjusted, table 3: Novel associations).  

 

Fig. 2. CYP2C19 intronic variant rs3814637 has a strong influence on warfarin maintenance dose. The x-axis 
indicates the alternate allele dosage. The y-axis is the maintenance dose. 
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3.2. Differential Drug Response Phenotype Association  

We investigated the degree to which adverse drug reactions related to pharmacogenetics could be              
discovered by performing a statistical analysis of pharmacogene phenotypes and coded medical            
events within a one year window following the first administration of a drug. We again evaluated                
three drug-gene groups starting with drug-gene pairs with CPIC guidelines (Table 2, CPIC             
Guidance Group). The most significant side effect is a decreased incidence of herpes zoster              
diagnoses among CYP2C19 intermediate metabolizers ( ​p ​ <= 8.76 x 10​-5​).  
 

Table 2. Drug-gene side effect relationship results. Associations are presented in three groups: drug-gene pairs with                
CPIC guidelines, pairs with no guidelines but evidence in PharmGKB, and novel associations. Phenotype is the gene                 
phenotype (IM: Intermediate Metabolizer, PM: Poor Metabolizer, RM: Rapid Metabolizer, UM: Ultrarapid            
Metabolizer, IF: Increased Function, PF: Poor Function). Odds ratio is the odds ratio relative to normal metabolizer                 
or normal function alleles. * indicates significance with Bonferroni adjusted p-value threshold of 1.0 x 10​-5​. Only                 
results with a standard error less than 0.2 are included. 

Group Drug Gene 
Level of 
Evidence Phenotype ICD-10 Code definition 

Odds 
ratio p-value 

CPIC 
Guidance 

citalopram CYP2C19 1A IM B02 Herpes zoster 0.53 8.76E-05 

simvastatin SLCO1B1 1A IF M65 Synovitis and tenosynovitis 1.82 1.42E-04 

 amitriptyline CYP2C19 1A RM R53 Malaise and fatigue 1.55 1.74E-04 

 amitriptyline CYP2C19 1A UM J30 Vasomotor and allergic rhinitis 1.94 2.75E-04 

 codeine CYP2D6 1A PM A52 Late syphilis 1.78 3.30E-04 

 ibuprofen CYP2C9 1A PM E13 Other specified diabetes mellitus 2.00 4.90E-04 

 clopidogrel CYP2C19 1A RM B08 Viral infections characterized by skin and 
mucous membrane lesions 

0.59 5.17E-04 

 tamoxifen CYP2D6 1A IM C50 Malignant neoplasm of breast 0.62 6.98E-04 

 simvastatin SLCO1B1 1A PF M79 Unspecified soft tissue disorders 1.49 7.46E-04 

 simvastatin SLCO1B1 1A DF M65 Synovitis and tenosynovitis 1.79 7.75E-04 

No 
Guidance 

citalopram CYP2D6 3 IM J45 Asthma 1.44 9.13E-05 

citalopram CYP2D6 3 IM I50 Heart failure 1.56 1.12E-04 

 simvastatin CYP2C9 3 PM J01 Acute sinusitis 1.74 1.56E-04 

 citalopram CYP2D6 3 IM J64 Unspecified pneumoconiosis 1.56 5.74E-04 

 propranolol CYP2D6 4 IM O86 Other puerperal infections 1.85 6.38E-04 

Novel 
associations 

diazepam CYP2C9 NA PM M19 Osteoarthritis 2.33 4.52E-06* 

zopiclone CYP2C9 NA IM H91 Unspecified hearing loss 2.20 1.73E-05 

 loratadine CYP2D6 NA IM M16 Osteoarthritis of hip 1.98 1.20E-04 

 tramadol CYP2B6 NA PM H61 Disorders of external ear 1.95 1.86E-04 

 quinine SLCO1B1 NA IF N39 Disorders of urinary system 1.95 1.87E-04 

Next we looked to see if there are any differential drug response phenotypes enriched              
among drug-gene pairs with any level of evidence but no CPIC guideline. The top five results are                 
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shown in Table 2 under “No Guidance”. We find several phenotypes enriched among CYP2D6              
intermediate metabolizers taking citalopram, including respiratory issues and heart failure. We           
also find an increased risk of sinus infections among CYP2C9 poor metabolizers on simvastatin,              
and an increased risk of puerperal infections among CYP2D6 intermediate metabolizers on            
propranolol. 

We interrogated all other drugs known to be metabolized by CYP2C9, CYP2C19, or             
CYP2D6 for differential drug response phenotypes. This resulted in 4,806 independent association            
tests across 81 drugs. After multiple hypothesis corrections one side effect was significantly             
associated with a drug-gene pair: increased incidence of osteoarthritis in CYP2C9 poor            
metabolizers after taking diazepam. We show the top five results from the exploratory analysis in               
Table 2.  

4.  Discussion 

Biobanks offer a powerful solution for enabling the study of relationships between drugs and              
genes. Large datasets linking genetic and longitudinal clinical data are becoming more broadly             
available and allow interrogation of the relationship between drug response and pharmacogenetic            
phenotypes. Here we derived drug phenotypes in the form of maintenance dose and differential              
drug response phenotypes for more than 200,000 participants across 200 drugs in the UK Biobank               
and tested their association with well established pharmacogenetic phenotypes for nine genes.  

Pharmacogenetic testing is not yet common practice, but for some drugs the standard             
clinical procedures used to determine maintenance dose are influenced by genetics. We find             
evidence to support existing pharmacogenetic associations with maintenance dose. Among 24           
drugs with CPIC guidance in our study we find evidence for a genetic influence on maintenance                
dose for nine drugs. For the remaining pairs with guidance, it is possible we are not likely to                  
observe an association with maintenance dose because efficacy is difficult to measure or side              
effects are rare. Among drugs with any prior evidence of a pharmacogenetic relationship but no               
CPIC dosage guideline we find that maintenance dose supports the association for two drug-gene              
pairs. Most notably, carriers of the ​CYP2C19 intronic variant rs3814637 have a significantly             
decreased warfarin maintenance dose. The causal mechanism through which this effect occurs is             
unclear, and this variant itself may not be causal, rather in linkage disequilibrium with a causal                
variant. In GTEx, rs3814637 is associated with increased expression of ​CYP2C9 (the gene             
typically associated with warfarin response) in several tissues, although importantly not in liver.             
There is a gap in the amount of warfarin dosing variability that can be explained by genetics                 
among individuals of African descent​17​. rs3814637 has nearly twice the allele frequency in the              
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African population as it does in the European population (11.6% vs 6.7%)​18​. Although this study               
focuses on Europeans, this variant may explain some of the missing heritability of warfarin              
response among Africans, but further study is needed to confirm this relationship. 

We discovered potential novel pharmacogenetic associations with maintenance dose for          
two drugs: cyclosporine with ​CYP2C19 ​, and nicotine with ​CYP2B6 ​. Both drugs are known to be               
metabolized by their respective associated enzymes, however there is no prior literature evidence             
suggesting a pharmacogenetic relationship. For both drugs, we find a decreasing association            
between dose and metabolizer class of their associated enzymes, where individuals with higher             
rates of metabolism tend to be on lower doses.  

Our analysis of differential drug response phenotypes reveals associations with side effects            
among drug-gene pairs. This analysis is limited due to the large number of tests requiring a strict                 
multiple hypothesis testing threshold, but produces interesting hypotheses. At first glance many of             
the differential phenotype associations seem unlikely, but literature evidence exists for many of             
the findings. For example, the most significant association among drugs with CPIC guidelines was              
a decreased incidence of herpes zoster among CYP2C19 intermediate metabolizers compared to            
CYP2C19 normal metabolizers treated with citalopram. However, two previous studies have           
demonstrated that SSRIs can lead to increased resistance to herpes​19,20​. CYP2C19 intermediate            
metabolizers have an increased blood concentration of citalopram and may have an increased             
resistance to a herpes infection. We also find CYP2C19 rapid metabolizers on clopidogrel have a               
decreased risk of viral skin lesions compared to CYP2C19 normal metabolizers. There is evidence              
that clopidogrel may inhibit viral clearance ​21​. It may be possible that CYP2C19 rapid metabolizers              
have a lower concentration of clopidogrel and therefore the degree to which they are able to fight                 
off viral infections is higher than that of CYP2C19 normal metabolizers. The most significant              
association is between CYP2C9 poor metabolizers on diazepam having an increased incidence of             
osteoarthritis. There is no literature that suggests osteoarthritis may be a side effect of diazepam,               
although there are studies that suggest diazepam could be used to treat pain as a result of                 
rheumatoid arthritis. Without further evidence we cannot say whether this relationship results from             
pharmacogenetics and not a correlation with the drug indication or a statistical artifact. 

This work has several limitations. First, we use pharmacogenetic alleles called from data             
imputed from genotyping arrays. We previously reported limitations in accuracy of the ability to              
accurately call alleles in several pharmacogenes from imputed data, notably in ​CYP2D6 ​8​. The lack              
of structural variants in the dataset in addition to the inability to call rare variants may lead to                  
inaccurate prediction of CYP2D6 phenotypes. Second, we broadly apply our maintenance dose            
algorithm to drugs in the UK Biobank. While this is effective for some drugs, better clinical end                 
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points may provide an improved representation of patient response. For example, a dose response              
curve may provide more fine grained insight into individual response and yield better insight into               
the genetics of drug response. It is challenging to broadly define response across drugs from               
numerous classes with varying indications and therapeutic indices. Even a single drug can be used               
for different indications and may require different doses to treat each indication. Additionally, this              
approach will miss patients who take a drug once and experience side effects that lead them to                 
immediately switch drugs. No catch-all definition will suffice, but maintenance dose does reveal             
insight into patient response. Third, the data we used to define drug usage is in the form of                  
prescription orders. We do not know whether the prescriptions were filled or if the patient took the                 
drug as prescribed. Finally, we do not provide any clinical validation of the predictions presented               
here; further followup is needed. 

Biobanks are an immense resource that allow for pharmacogenetic association testing at an             
unprecedented scale. Longitudinal clinical data is critical to be able to define drug response              
phenotypes in order to accurately assess patient response to treatment and ultimately test genetic              
associations. As access to biobanks continue to expand and more data is available, the ability to                
perform pharmacogenetic studies at large scale will increase. We believe that these resources offer              
a promising avenue for discovery and will further advance the field of pharmacogenetics. 
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