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Acute infection, if not rapidly and accurately detected, can lead to sepsis, organ failure and
even death. Current detection of acute infection as well as assessment of a patient’s severity
of illness are imperfect. Characterization of a patient’s immune response by quantifying
expression levels of specific genes from blood represents a potentially more timely and pre-
cise means of accomplishing both tasks. Machine learning methods provide a platform to
leverage this host response for development of deployment-ready classification models. Pri-
oritization of promising classifiers is dependent, in part, on hyperparameter optimization for
which a number of approaches including grid search, random sampling and Bayesian opti-
mization have been shown to be effective. We compare HO approaches for the development
of diagnostic classifiers of acute infection and in-hospital mortality from gene expression
of 29 diagnostic markers. We take a deployment-centered approach to our comprehensive
analysis, accounting for heterogeneity in our multi-study patient cohort with our choices
of dataset partitioning and hyperparameter optimization objective as well as assessing se-
lected classifiers in external (as well as internal) validation. We find that classifiers selected
by Bayesian optimization for in-hospital mortality can outperform those selected by grid
search or random sampling. However, in contrast to previous research: 1) Bayesian opti-
mization is not more efficient in selecting classifiers in all instances compared to grid search
or random sampling-based methods and 2) we note marginal gains in classifier performance
in only specific circumstances when using a common variant of Bayesian optimization (i.e.
automatic relevance determination). Our analysis highlights the need for further practical,
deployment-centered benchmarking of HO approaches in the healthcare context.

Keywords : hyperparameter optimization; Bayesian optimization; acute infection; sepsis; dis-
ease severity; mortality; classification; molecular diagnostics; genomics.

1. Introduction

Patient lives depend on the swiftness and accuracy of 1) assessment of the severity of their
illness and 2) detection of acute infection (when present). The COVID-19 pandemic has put
this fact into stark relief. Currently, clinicians determine severity of illness by computing scores
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(e.g. SOFA1) based on patient physiological features associated with the risk of adverse events
(e.g. in-hospital mortality, organ failure). Similarly, detection of acute infection generally in-
volves evaluation of symptoms (e.g. cough, runny nose, fever) as well as laboratory tests for
the presence of specific pathogens. However, these methods provide superficial and imprecise
measures of patient illness. Recent work has highlighted the potential of using gene expression
measurements from patient blood to detect the presence and type of infection to which the
patient is responding2–5 as well as the patient’s severity of illness.6

Coupled with these host response signatures, advances in machine learning (ML) provide
a platform for the development of robust, diagnostic classifiers of acute infection status (e.g.
bacterial or viral) and in-hospital mortality from gene expression. An important step in this
development is optimization of the classifier’s hyperparameters (e.g. penalty coefficient in a
LASSO logistic regression, learning rates for gradient descent). Hyperparameter optimization
begins with specification of a search space and proceeds by generating a user-specified number
of hyperparameter configurations, training the classifier models given by each configuration,
and evaluating the performance of the trained classifier in internal validation. Internal vali-
dation performance is typically assessed either on a separate validation/tuning dataset or by
cross-validation. Configurations are then ranked by this performance, with the top configura-
tion selected and retained for external validation (application to a held-out dataset).

Multiple HO approaches have been proposed. For classifiers with relatively small hyper-
parameter spaces (e.g. support vector machines), optimizing over a pre-defined grid of hyper-
parameter values (grid search; GS) has proven effective. More recent work has shown that
optimization by randomly sampling (RS) hyperparameter configurations can lead to better
coverage of high-dimensional hyperparameter spaces and potentially better classifier perfor-
mance.7 Bayesian optimization (BO) is a global optimization procedure that has also proven
effective for hyperparameter optimization in classical8–12 and biomedical13–16 ML applications.
In BO, one uses a model (commonly a Gaussian process (GP)17) to approximate the objective
function one wants to optimize; for hyperparameter optimization, the objective function maps
from hyperparameter configurations to the internal validation performance of their correspond-
ing classifiers. In contrast to GS/RS, BO proceeds by sequentially evaluating configurations
with each newly visited configuration used to update the model of the objective function.

In this work, we compare GS/RS and BO methods for hyperparameter optimization of
gene expression-based diagnostic classifiers for two clinical tasks: 1) detection of acute infec-
tion and 2) prediction of mortality within 30 days of hospitalization. We optimize and train
three different types of classifiers using gene expression features from 29 diagnostic markers
in a multi-study cohort of 3413 patient samples for acute infection detection (3288 for 30-
day mortality prediction). Patient samples were assayed on a variety of technical platforms
and collected from a range of geographical regions, healthcare settings, and disease contexts.
Our extensive analysis evaluates the BO approach, in particular, under a range of compu-
tational budgets and optimization settings. Crucially, beyond assessing and comparing the
performance of top classifiers in internal validation, we further evaluate top models selected
by all HO approaches in a multi-cohort external validation set comprising nearly 300 patients
profiled by a targeted diagnostic instrument (NanoString). Our analysis provides important
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insights for diagnostic classifier development using genomic data, and, more generally, about
the implementation and practical usage of HO methods in healthcare.

2. Related Work

Previous studies comparing HO approaches in the ML community have demonstrated that
BO can select promising classifiers more efficiently (with fewer evaluations of hyperparame-
ter configurations) than GS/RS methods.8–12,15,16,18 However, these studies have focused on
internal validation performance and on benchmark datasets whose composition and handling
(i.e. partitioning into training-validation-test splits) doesn’t necessarily reflect characteristics
of healthcare settings (i.e. smaller, structured, and more heterogeneous datasets; high propen-
sity for models to be applied to out-of-distribution samples at test time19).

Bayesian optimization has also found recent success in genomics and biomedical appli-
cations.20–22 Ghassemi et al.13 compare multiple HO approaches, including BO, for tuning
parameters of the multi-scale entropy of heart rate time series to aid mortality prediction
among sepsis patients. Colopy et al.14 analyzed RS and BO methods for optimization of
patient-specific GP regression models used in vital-sign forecasting. A study by Nishio et al.15

evaluated both RBF SVM and XGBoost classifiers tuned by either RS or BO for detection of
lung cancer from nodule CT scans. Borgli et al.16 evaluated BO for tuning and transfer learn-
ing of pre-trained convolutional neural networks to detect gastrointestinal conditions from
images. Again, however, these studies only reported either internal validation performance
or performance on a test set partitioned from a full, relatively small and homogeneous (e.g.
collected from a single hospital) dataset, making conclusions difficult to draw about the gen-
eralizability of selected models in other segments of the deployment population. Moreover,
these studies focused on: 1) no more than two classifier types, 2) a narrow range of settings
for BO, and 3) physiological or image data. To our knowledge, no studies have evaluated the
external validation performance of selected models, an important pre-requisite for eventual
model deployment. In addition, no comparison of HO approaches has yet been attempted for
development of diagnostic classifiers using genomic data.

3. Methods

3.1. Cohort & Feature Description

To build our datasets, we combined gene expression data from public sources and in-house
clinical studies designed for research in diagnosing acute infections and sepsis. We collected
the publicly available studies from the NCBI GEO and EMBL-EBI ArrayExpress databases
using a systematic search.2 The public studies were profiled using a variety of different technical
platforms (e.g. mostly microarrays). Samples from the in-house clinical studies were profiled on
the NanoString nCounter platform using a custom codeset for 29 diagnostic genes of interest.
All included studies consisted of samples from our target population: both adult and pediatric
patients from diverse geographical regions and clinical settings. Each included study had
measurements taken from patient blood for all 29 markers. To account for heterogeneity across
studies, we performed co-normalization (see5 and the Supplement).

The features we used in our analyses were based on the expression values of 29 genes pre-
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viously found to accurately discriminate three different aspects of acute infection: 1) viral vs.
bacterial infection (7 genes),3 2) infection vs. non-infectious inflammation (11 genes),2 and 3)
high vs. low risk of 30-day mortality (11 genes).6 Building on our previous work,5 we computed
both the geometric means and arithmetic means of these six groups of genes, producing 12
features. We optimized and trained our classifiers on the combination of these 12 features and
the expression values of all 29 genes (41 features in total). Labels for one of three classes of the
acute infection detection or BVN task (Bacterial infection, Viral infection, or Non-infectious
inflammation) were determined differently for each of the training and validation studies de-
pending on available data. For training set studies, we used the labels provided by each study,
deferring to each study’s criteria for adjudication which may have involved multi-clinician
adjudication with or without positive pathogen identification or positive pathogen identifica-
tion alone. When BVN adjudications were not directly provided by the study, we assigned
class labels based on available pathogen test results from the study metadata/manuscripts.
For validation data, one study was adjudicated by a panel of clinicians using all available
clinical data (including pathogen test results) while all other validation studies were labeled
by us using only pathogen test results. Non-infected determinations did not include healthy
controls. Binary indicator labels of whether a patient died within 30 days of hospitalization
were derived from study metadata (when available) and the associated study’s manuscripts.

For both tasks, we separated studies into a training set and an external validation set. For
the BVN task, the training set consisted of 43 studies (profiled outside Inflammatix) and 3413
patients (1087 with bacterial infection, 1244 with viral infection, and 1082 non-infected). The
BVN external validation set consisted of six studies (profiled by Inflammatix) and 293 patients
(153 with bacterial infection, 106 with viral infection, and 34 non-infected). For the mortality
task, the training set consisted of 33 studies (profiled outside Inflammatix) and 3288 patients
(175 30-day mortality events) while the mortality external validation set comprised four studies
(profiled by Inflammatix) and 348 patients (80 30-day mortality events). A description of the
publicly available studies in our training set appears in Supplementary Table 1.

3.2. Grouped cross-validation

Previous analyses by our group5 suggested that alternative cross-validation strategies were
preferable over conventional k-fold cross-validation (CV) for identifying classifiers able to
generalize across heterogeneous patient populations. We use 5-fold grouped CV (full studies
are allocated to one and only one of five folds) to rank and select hyperparameter configurations
from GS/RS methods and as an objective function in BO.

3.3. Classifier types and performance assessment

We evaluated three types of classification models: 1) support vector machines with a radial
basis function (RBF) kernel, 2) XGBoost (XGB23) and 3) multi-layer perceptrons (MLP).
MLP models were trained with the Adam optimizer24 with mini-batch size fixed at 128.

For the BVN task, we ranked and selected models based on multi-class AUC (mAUC).25

For the mortality task, we selected models by binary AUC but report both AUC and average
precision to account for class imbalance. To determine performance of models in grouped 5-
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fold CV, we pooled the model’s predicted probabilities for each fold and computed the relevant
metric from the pooled probabilities. The top-performing hyperparameter configuration was
then trained on the full training set and applied to the external validation set. We computed
external validation performance for these top models using their predicted probabilities for
the validation samples. We computed 95% bootstrap confidence intervals for differences in
classification performance by sampling predicted probabilities with replacement 5000 times
(using the same set of bootstrap sample IDs for both sets of predicted probabilities in the
comparison), computing the relevant performance metric on each bootstrap sample, computing
the difference between performance metrics for each bootstrap sample in a given comparison,
and reporting the 2.5th and 97.5th quantiles of the 5000 differences.

3.4. Hyperparameter optimization details

For RBF SVM, we conduct a grid search over configurations of the cost, C, and bandwidth
hyperparameters, γ. C values ranged from 1e-03 to 2.15 and γ values ranged from 1.12e-04
to 10. We generated RS samples for XGBoost and MLP uniformly and independently of one
another from pre-specified ranges or from grids (Suppl. Tables 2 and 3).

For BO, the objective function maps from hyperparameter configurations to 5-fold grouped
CV performance of the corresponding classifiers. The two main components of BO are: 1) a
model that approximates the objective function, and 2) an acquisition function to propose the
next configuration to visit. We use a GP regression model with Gaussian noise to approximate
the objective function. To initialize construction of the objective function, we uniformly and
independently sample configurations (either 5 or 25) from the hyperparameter space.

We investigate both the expected improvement and upper confidence bound acquisition
functions. We use both standard and automatic relevance determination (ARD) forms of
the Matern5/2 covariance function in BO’s GP model of the objective (further details in
Supplement). We also perform BO in the hyperparameters’ native scales (original space) or
in which continuous and discrete hyperparameter dimensions are searched in the continuous
range 0 to 1 and transformed back to their native scales prior to their evaluation (transformed).

4. Results

We compared BO and GS/RS approaches for hyperparameter optimization of three types of
classifiers for two clinical tasks. For the BVN task, we sought classifiers that could achieve high
performance in predicting whether a patient had a bacterial or viral infection or was showing
a non-infectious inflammatory response. For the mortality task, we sought high-performing
classifiers of mortality events within 30 days of hospital admission. Though we considered BO
at two initialization budgets (5 and 25 configurations), we did not see substantial differences
in performance between classifiers with 5 and 25 initial configurations (Suppl. Table 4, Suppl.
Figs. 3-6). We focus on BO results with 25 initial configurations and the expected improvement
acquisition function for the remainder of this work (results for all runs in Supplement).

General comparison of classifier performance across tasks and HO approaches
Across both tasks and HO approaches, we note distinct performance characteristics of the
selected classifiers of each type. While RBF SVM classifiers performed similarly to the other
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two classifier types on the BVN task, they were the worst performers on the mortality task.
XGB classifiers selected by either RS or BO demonstrated competitive performance in both
tasks and were remarkably consistent in their performance regardless of the number of hyper-
parameter configurations evaluated for HO. MLPs achieved the highest internal and external
validation performance for both acute infection detection and mortality prediction (Table 1),
suggesting potential benefits of learning latent features (hidden layers) for these tasks. We also
find that, despite the considerable class imbalance in the mortality task, all classifier types
selected by AUC still demonstrated average precision considerably higher than the respective
baselines for internal ( 175

3288
≈ 0.053) and external ( 80

348
≈ 0.230) validation.

A. B.

Fig. 1: Differences in classification performance of models selected by either BO
or GS/RS using BO evaluation budgets. Performance differences greater than 0 on
the BVN (A; mAUC) and mortality (B; AUC) tasks indicate better performance for the
BO-selected classifier. Classifiers were selected with the indicated number of hyperparameter
configurations evaluated. Automatic relevance determination was not enabled for BO. Points
represent observed differences while error bars represent 95% bootstrap confidence intervals.

Evaluation of BO- and GS/RS-selected classifiers at evaluation budgets typical of
BO. Previous studies have shown that BO can select promising classifiers more efficiently
than GS/RS methods. Surprisingly, we find that at smaller numbers of configurations evalu-
ated (more typical of BO), classifiers selected by GS/RS showed similar or better performance
in both internal and external validation (Table 1 and Figs. 1) when compared with corre-
sponding BO-selected classifiers. We observed similar trends when using the upper confidence
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Table 1: Grouped 5-fold CV and external validation (Val.) performance of selected classi-
fiers for the BVN and mortality tasks. BO results used the EI acquisition function and 25
initialization points. The ARD column indicates whether automatic relevance determination
was enabled (Y/N) in BO’s GP model of the objective function. Bold numbers indicate the
best performance for a column. BVN column shows performance in mAUC; mortality col-
umn shows AUC performance with average precision in parentheses. ∗Grid specified only 4757
configurations.

Model
HO
Type

No. of
Evals. ARD

BVN
CV

BVN
Val.

Mortality
CV

Mortality
Val.

RBF

GS 10 - 0.808 0.862 0.758 (0.182) 0.736 (0.375)
GS 50 - 0.814 0.853 0.797 (0.169) 0.739 (0.372)
GS 100 - 0.814 0.853 0.800 (0.192) 0.782 (0.533)
GS 250 - 0.814 0.853 0.801 (0.191) 0.749 (0.386)
GS 500 - 0.815 0.853 0.801 (0.191) 0.749 (0.386)
GS 1000 - 0.815 0.853 0.839 (0.225) 0.708 (0.444)
GS 5000* - 0.815 0.853 0.839 (0.225) 0.708 (0.444)
BO 10 Y 0.811 0.788 0.800 (0.190) 0.747 (0.383)
BO 10 N 0.815 0.851 0.800 (0.187) 0.746 (0.381)
BO 50 Y 0.816 0.852 0.801 (0.196) 0.752 (0.389)
BO 50 N 0.816 0.852 0.801 (0.194) 0.749 (0.385)
BO 100 Y 0.816 0.852 0.800 (0.197) 0.753 (0.392)
BO 100 N 0.816 0.852 0.801 (0.196) 0.752 (0.389)

XGB

RS 50 - 0.809 0.830 0.880 (0.315) 0.819 (0.542)
RS 100 - 0.813 0.827 0.885 (0.288) 0.819 (0.526)
RS 250 - 0.812 0.826 0.885 (0.308) 0.829 (0.556)
RS 500 - 0.810 0.829 0.885 (0.320) 0.826 (0.559)
RS 1000 - 0.810 0.822 0.885 (0.311) 0.822 (0.552)
RS 5000 - 0.813 0.830 0.888 (0.310) 0.823 (0.552)
RS 25000 - 0.815 0.860 0.889 (0.303) 0.816 (0.532)
BO 50 Y 0.818 0.865 0.887 (0.301) 0.814 (0.540)
BO 50 N 0.812 0.828 0.881 (0.275) 0.817 (0.516)
BO 100 Y 0.811 0.825 0.885 (0.314) 0.825 (0.559)
BO 100 N 0.809 0.826 0.878 (0.288) 0.817 (0.521)
BO 250 Y 0.818 0.865 0.886 (0.290) 0.826 (0.539)
BO 250 N 0.816 0.834 0.882 (0.272) 0.802 (0.483)
BO 500 Y 0.818 0.865 0.889 (0.346) 0.827 (0.591)
BO 500 N 0.812 0.831 0.880 (0.313) 0.815 (0.538)

MLP

RS 50 - 0.818 0.860 0.763 (0.121) 0.631 (0.288)
RS 100 - 0.814 0.863 0.785 (0.156) 0.640 (0.301)
RS 250 - 0.824 0.861 0.807 (0.211) 0.625 (0.366)
RS 500 - 0.819 0.859 0.853 (0.240) 0.691 (0.401)
RS 1000 - 0.835 0.872 0.809 (0.158) 0.637 (0.333)
RS 5000 - 0.837 0.835 0.826 (0.249) 0.796 (0.546)
RS 25000 - 0.840 0.856 0.859 (0.267) 0.743 (0.428)
BO 50 Y 0.816 0.820 0.888 (0.340) 0.823 (0.554)
BO 50 N 0.814 0.824 0.888 (0.290) 0.820 (0.564)
BO 100 Y 0.822 0.845 0.886 (0.296) 0.847 (0.631)
BO 100 N 0.828 0.854 0.884 (0.292) 0.825 (0.577)
BO 250 Y 0.817 0.848 0.890 (0.312) 0.842 (0.614)
BO 250 N 0.832 0.832 0.889 (0.335) 0.812 (0.566)
BO 500 Y 0.837 0.855 0.894 (0.304) 0.835 (0.593)
BO 500 N 0.826 0.822 0.890 (0.330) 0.806 (0.561)
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bound acquisition function (Suppl. Figs. 7 and 8, Suppl. Table 5) or the transformed hyperpa-
rameter space (Suppl. Figs. 11 and 12, Suppl. Table 6). However, we do note two instances in
which BO-selected classifiers exceeded performance of GS/RS-selected classifiers: 1) XGBoost
classifiers in external validation for the BVN task and 2) MLP classifiers for the mortality
task. While these instances support prior findings of BO’s efficiency, our results also suggest
that simply committing to a single HO approach could miss models that generalize well and
that performance of selected classifiers will depend on the task and classifier type.

Evaluation of BO- and GS/RS-selected classifiers at evaluation budgets typical
of GS/RS. In the previous analysis, we compared BO- and GS/RS-selected classifiers at
evaluation budgets typical of BO (i.e. fewer configurations evaluated). In Figure 2, we compare
BO-selected classifiers from their highest evaluation budgets (100 evaluations for RBF and 500
evaluations for XGB and MLP) to classifiers selected by GS/RS at larger evaluation budgets.
Interestingly, we find that the BO-selected MLP classifiers for the mortality task continue
to outperform their corresponding RS-selected counterparts, even with 25000 configurations
evaluated for RS. Similarly, we find that BO-selected XGBoost classifiers exceed external
validation performance of RS-selected classifiers on the BVN task up to an evaluation budget
of 25000 configurations (though the differences do not persist at 25000 configurations). We
observe these differences when conducting BO with the upper confidence bound acquisition
function or with a transformed hyperparameter space (Suppl. Figs. 9, 10, 13 and 14). These
results indicate the relative efficiency of BO in candidate classifier selection in these two
instances but also illustrate the competitiveness of GS/RS-selected classifiers in our setting.

Assessment of effects on classifier performance of automatic relevance determi-
nation in BO. For high-dimensional hyperparameter spaces, some hyperparameters may
have a greater impact on the model’s generalization performance than others. Automatic
relevance determination (ARD;26) in the GP model of BO’s objective provides the means
to estimate effects of variations in hyperparameter dimensions on the objective’s value and
has been used in multiple implementations of BO (e.g. Snoek et al., 20128 and BoTorch,
https://botorch.org/docs/models). We directly compare the internal and external vali-
dation performance of classifiers selected by BO with and without ARD. In Figure 3, we
find that enabling ARD seems to lead to comparable if not slightly better internal valida-
tion performance at higher evaluation budgets. Moreover, enabling ARD seems to improve
external validation performance for both XGB (BVN task) and MLP classifiers (both tasks).
In fact, the highest external validation performance by XGB classifiers on the BVN task is
only achieved with ARD enabled (Table 1). However, these differences in performance are not
as evident when using the upper confidence bound acquisition function (Suppl. Fig. 15) or
conducting BO in the transformed hyperparameter space (Suppl. Fig. 16). Thus, ARD may
not be necessary to select top-performing diagnostic classifiers for these two clinical tasks.

5. Discussion & Conclusions

In this analysis, we compared HO approaches for diagnostic classifier development to deter-
mine what approach (if any) led to improvements in: 1) external validation performance or
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A. B.

Fig. 2: Differences in classification performance of models selected by either BO
or GS/RS using GS/RS evaluation budgets. Run settings and figure layout are the
same as in Figure 1 except that here, indicated evaluation budgets apply to GS/RS-selected
classifiers; BO-selected classifiers are taken from 100-evaluation (RBF) or 500-evaluation (XGB
and MLP) runs.

2) computational efficiency. Consistent with previous findings, we found that BO was able
to prioritize candidate classifiers for two tasks relevant to emergency and critical care with a
fraction of the configurations evaluated using GS/RS. As embarrassingly parallel approaches
like GS/RS can necessitate the use of commodity computing clusters, BO’s efficiency makes
the approach a potentially cost-effective solution. We also found that external validation per-
formance of BO-selected MLPs for in-hospital mortality was consistently better across a range
of HO evaluation budgets than that of GS/RS-selected classifiers, highlighting BO’s potential
to uncover diagnostic classifiers that generalize better to unseen patients.

However, and in contrast to previous comparisons of HO approaches, our analyses indicated
that GS/RS methods could select classifiers for both tasks with evaluation budgets comparable
to those used for BO. We also found mixed evidence in support of enabling ARD in the kernel
of BO’s GP model of the objective function. Thus, while we hoped we would uncover distinct
and general differences between HO approaches in order to develop better guidelines about
when (or even if) to use one approach over another, we did not identify such clear differences
across tasks, classifier types, and optimization settings. Rather, our analysis suggests that
both GS/RS and BO approaches should be investigated for classifier development.

We acknowledge limitations of our approach. For our RS runs, we sampled configurations
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A. B.

Fig. 3: Differences in classification performance for BO-selected classifiers with or
without automatic relevance determination (ARD) enabled. Performance differences
greater than 0 on the BVN (A; mAUC) and mortality (B; AUC) tasks indicate better perfor-
mance for the classifier selected by ARD-enabled BO. Points represent observed differences
while error bars represent 95% bootstrap confidence intervals.

uniformly and independently from pre-defined ranges or grids of values. Other random sam-
pling approaches could’ve been used in which configurations are generated dependent on the
values of previously generated configurations (e.g. Latin hypercube or low-discrepancy Sobol
sequences) in order to encourage diversity of the resulting sample.7 We felt that the similar
performance we observed between BO and GS/RS-selected models using basic variants of
GS/RS didn’t necessarily justify further analysis with more sophisticated GS/RS variants. A
second limitation is that we used a single set of features derived from a previously identified
set of 29 gene expression markers. We chose these features based on previous analyses5 and
consistent with our goal of developing diagnostic classifiers from these specific markers for
clinical deployment. We acknowledge our conclusions may not hold with other feature sets.

Throughout this work, we wanted our hyperparameter optimization to reflect our clinical
deployment scenario: that classifiers would likely be evaluated on structured populations (e.g.
from a given geographic region) not seen in training. A recent study by Google highlighted this
challenge for deployment in healthcare: their AI system for breast cancer screening showed
drops in predictive performance when trained on mammograms from the UK and applied to
mammograms from the US.27 However, our survey of ML studies comparing hyperparameter
optimization approaches highlighted important differences from our setting in terms of dataset
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partitioning and, consequently, in the choice of internal validation-based objective function.
For example, we found that ML studies primarily focused on larger (N >∼100k) datasets
composed mainly of natural images. These benchmarks were often constructed (e.g. MNIST;
http://yann.lecun.com/exdb/mnist/) to satisfy the assumption that the distribution of
training and external validation samples are similar if not the same. Internal validation was
then performed on subsets of these ’mixed’ datasets, with samples from the same structured
group in the full dataset appearing in both the training and validation set. However, as
patient data is known to be heterogeneous due to biological differences as well as differences in
geography, healthcare delivery, and assay technologies used, that assumption of distributional
similarity between training and external validation samples is likely to be violated. Indeed, our
recent work found that standard k-fold cross-validation gives optimistically biased estimates of
generalization error in our setting,5 breaking the group structure in left-out folds by randomly
distributing patients from the same study into different cross-validation folds (akin to test
set contamination). Consequently, in difference to the ML studies we reviewed, we opted for
grouped 5-fold cross-validation as our objective function as well as evaluation of performance
in external validation to aid model selection.

In conclusion, we find that both GS/RS and BO remain promising avenues for hyper-
parameter optimization and represent key components in the development of more effective
diagnostics for emergency and critical care.
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