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Viruses such as the novel coronavirus, SARS-CoV-2, that is wreaking havoc on the world,
depend on interactions of its own proteins with those of the human host cells. Relatively
small changes in sequence such as between SARS-CoV and SARS-CoV-2 can dramatically
change clinical phenotypes of the virus, including transmission rates and severity of the dis-
ease. On the other hand, highly dissimilar virus families such as Coronaviridae, Ebola, and
HIV have overlap in functions. In this work we aim to analyze the role of protein sequence
in the binding of SARS-CoV-2 virus proteins towards human proteins and compare it to
that of the above other viruses. We build supervised machine learning models, using Gener-
alized Additive Models to predict interactions based on sequence features and find that our
models perform well with an AUC-PR of 0.65 in a class-skew of 1:10. Analysis of the novel
predictions using an independent dataset showed statistically significant enrichment. We
further map the importance of specific amino-acid sequence features in predicting binding
and summarize what combinations of sequences from the virus and the host is correlated
with an interaction. By analyzing the sequence-based embeddings of the interactomes from
different viruses and clustering them together we find some functionally similar proteins
from different viruses. For example, vif protein from HIV-1, vp24 from Ebola and orf3b

from SARS-CoV all function as interferon antagonists. Furthermore, we can differentiate
the functions of similar viruses, for example orf3a’s interactions are more diverged than
orf7b interactions when comparing SARS-CoV and SARS-CoV-2.

Keywords: protein interaction prediction; SARS-CoV-2; SARS-CoV; generalized additive
models ; protein sequence

1. Introduction

Disease-causing pathogens such as viruses introduce their proteins into the host cells where
they interact with the host’s proteins enabling the virus to replicate inside the host. These
interactions between pathogen and host proteins are key to understanding infectious diseases.
The experimental discovery of protein-protein interactions (PPI) in general, and including
those between host and pathogen, involves biochemical and biophysical methods, most fre-
quently on a large scale using yeast two-hybrid (Y2H) assays and co-immunoprecipitation
(co-IP) usually combined with mass spectrometry, but also many others usually applied at
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smaller scales such as co-crystallization or surface plasmon resonance. Computational tech-
niques complement laboratory-based methods by predicting highly probable PPIs. Supervised
machine learning based methods use the known interactions as training data and formulate
the interaction prediction problem in a classification setting.1–3

For a newly emerged virus such as SARS-CoV-2, the type of information that is most
easily obtained is genome sequence information. Within the first few weeks of its discovery,
thousands of DNA sequences had been deposited. The much more complex task of discovering
the interactome took a few months of the pandemic and the first global interactome study was
published in Gordon et al.4 A sequence based PPI prediction approach, which can use protein
sequences derived from the viral DNA sequence, can thus be very informative in the initial
stages of understanding a new virus. The rationale behind a sequence-based approach is that
the amino-acid sequences of proteins determine its structure and consequently its function in
the organism. By using amino-acid sequences of the two proteins of interest as inputs to a
model, we can capture the dependence between their individual structural properties, their
functions and their binding affinities. Towards this, we make the following contributions:

• We present an interpretable model for SARS-CoV-2 − human PPI prediction using
only sequence-based features and evaluate these models on various metrics. We show
that the performance of our interpretable model on SARS-CoV-2 PPI prediction, is
better than that of Random Forests (which have been popular in prior work) and a
deep learning approach that uses a Transformer based architecture for modeling protein
sequences

• We analyze the interactomes from a sequence perspective, within SARS-CoV-2 and in
comparison to other viruses and find interesting observations

• We validate predictions from our model using an additional recently published dataset
from Stukalov et al.5

2. Methods

Given a virus-human protein interaction represented as the tuple: (pv, ph), we model the joint
dependence of both the virus protein pv and human protein ph’s sequences on the output
variable, explicitly in the form of sequence feature level interactions. Towards this, we use a
non-linear model GA2M (Lou et al.6), which extends traditional Generalized Additive Models
(GAMs) by incorporating higher-order feature interactions.

The standard GAM model is a generalized linear model in which the predictor depends
linearly on unknown smooth functions fi of some input covariates xi. It has the following form:
g(E[y]) =

∑
i∈[1,...,d]

fi(xi), where d is the number of features or covariates, y is the output variable

for an input, g is the link function (for instance: log). Here fi is a linear function over the ith

feature of example x.

2.1. Generalized Additive Models with interactions (GA2M)

While GAMs usually model the dependent variable as a sum of univariate terms, GA2M
permits interactions and consists of univariate and a small number of pairwise interaction
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terms between pairs of features:

g(E[y]) =
∑

i fi(xi) +
∑

i,j∈[1,...,d],i6=j

fij(xi, xj)

Here i, j are indices over the set of all features. In Section 3.2 we describe our feature set
in detail. To represent each virus-human PPI example (pv, ph), we concatenate the protein
sequence features of both pv and ph to get a single feature vector of dimension d.

Since GA2M only include one- and two-dimensional components, these components can be
visualized and interpreted which has been difficult with neural networks. Lou et al.6 propose
an algorithm to learn GA2M models that learn non-linear functions (trees) for every univariate
and bivariate term, with pairs of features for the latter being selected by efficiently ranking all
possible pairs of features as candidates and choosing the top k, where k is a hyper-parameter.

3. Gold Standard Interaction Datasets

We consider the following datasets (details in Table 1) in various experimental settings.

(1) a set of human proteins that physically interact with SARS-CoV-2 in human embryonic
kidney cells (HEK293) based on affinity-purification mass spectrometry4

(2) a multi-level proteomics study5 of SARS-CoV and SARS-CoV-2 proteins that also involves
an affinity-purification mass spectrometry-based binding study but carried out in a human
lung epithelial cell line (A549)

(3) Virus-human interactions data for other viruses was downloaded from VirHostNet7a

Unlike the interactions reported in the first mass spectrometry study,4 the data from the
second study5 has homologous PPI within each dataset as well as several interologs between
SARS-CoV and SARS-CoV-2. We downloaded the sequences for Ebola and HIV-1 proteins
from UniprotKB and those for SARS-CoV and SARS-CoV-2 from the respective publications’
supplementary materials.

Table 1. Dataset characteristics

Virus and source Interactions Human proteins Virus proteins

SARS-CoV-2 (Gordon et al.4) 332 332 28
SARS-CoV (Stukalov et al.5) 711 624 24
SARS-CoV-2 (Stukalov et al.5) 1089 882 22
SARS-CoV (VirHostNet)7 141 122 23
Ebola (VirHostNet)7 221 221 7
HIV-1 (VirHostNet)7 618 583 8

ahttp://virhostnet.prabi.fr/
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3.1. Dealing with the lack of negative examples

Due to the way protein interaction studies are designed, it is not possible to identify non-
binding proteins: we cannot rule out interactions between baits and preys that are not co-
purified in an affinity purification experiment, for instance. In order to build supervised ma-
chine learning models from PPI data, negative datasets comprising pairs of proteins that
are unlikely to interact are constructed using heuristics such as (a) randomly selecting pairs
of proteins from the set of all possible protein pairs,8 which has ≈600,000 pairs (b) consid-
ering two proteins that do not co-locate within a cell. An approach using (b) is infeasible
when considering cross-species protein interactions and also has a bias towards functionally
dissimilar proteins. Other negative sets are manually curated in databases like Negatome b,
which are based on known protein domain properties such as hydrophobicity and derived
from observational studies that note specific protein domains’ lack of affinity towards certain
other domains. While this data adjusts the bias mentioned above, it does not contain protein
domains or families of many viruses, in particular none from Coronaviridae.

We found that using the set of 6,532 non-interacting pairs from Negatome resulted in
models that were discriminating virus proteins from other proteins (AUC-PR of 0.98) due to
the lack of virus proteins in the negative class. The negatives generated by approach (a) do
not have this issue or the functional bias discussed above. Hence we randomly sample the
requisite number of negatives from a combination of Negatome and the heuristic in (a).

Choice of class skew: We sample negatives at various positive to negative class-skews:
balanced, 1:5 meaning we sample five times as many negatives as the number of positives, 1:10,
1:20 and 1:50. Using a balanced set of positives and negatives results in a biased model that
has many false positives whereas using a large class-skew (1:50) that represents our prior that
most pairs of proteins are unlikely to interact results in a model that captures the properties of
the random protein pairs rather than the positive class (which is out-numbered). We analyzed
the ranking of positives from the validation data (using the metric Precision @ 10% Recall)
to decide the class-skew, which we treat as a global hyper-parameter. We found 1:10 to be the
optimal setting that lead to the best Precision @ 10% Recall.

3.2. Features

We derived amino acid sequence k-mer features: consisting of the normalized frequency of
1-mers, 2-mers and 3-mers in the protein sequence. In addition to the above, we also derive
conjoint triad features.9 This approach first partitions the twenty amino acids into seven classes
based on their dipoles and the volumes of the side chains. Trimers are represented using the
classes of amino acids; hence trimers with amino acids belonging to the same classes, such as
ART and VKS, are treated identically. There are 73 such tri-mers owing to the 7 classes. The
protrc package was used for generating the conjoint triad features and the fasta2matrixd

bhttp://mips.helmholtz-muenchen.de/proj/ppi/negatome/
chttps://cran.r-project.org/web/packages/protr/vignettes/protr.html#46_conjoint_

triad_descriptors
dhttps://noble.gs.washington.edu/proj/nucsvm/fasta2matrix.py
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utility was used to generate other k-mer features. For each virus-host protein pair, we concate-
nated the feature vectors of the individual proteins. Therefore, each virus-host protein pair
had a feature vector of length 17,526 (20 + 202 + 203 + 73 from each protein).
Feature selection: The implementation of GA2M that we usee does not scale well beyond a
few thousand features because the number of pairs of features to consider is very large and
the computational complexity of the feature-pair ranking algorithm.6 To reduce the number
of feature-pairs to consider, we select the top 2500 tri-mers in a feature selection step that
builds a linear model on other virus-human interactions. This reduces the number of features
in our model to ≈7000 features (20 + 202 + 73 + 2500 features per protein to be precise).

4. Experiments

We train various supervised machine learning models on these datasets to explore the strengths
and weaknesses of each approach and illustrate that our method of choice, namely GA2M
perform well while giving us interpretability. We compare GA2M with Random Forests, which
have been popular in prior work on protein-sequence based prediction and a deep learning
embeddings based approach, TAPE.10

4.1. TAPE: Transformer based model for protein sequences

We use the Unirep modelf from the TAPE repository10 which was pretrained on masked
language modeling of 31 million protein sequences using a Transformer architecture derived
from BERT. This model takes as input, a protein, in the form of its amino acid sequence
x = (x1, . . . xn), where n is the length of the protein sequence and outputs a sequence of
continuous embeddings y = (y1 . . . yn). The architecture comprises 12 encoder layers, each of
which includes multiple attention heads. Intuitively, attention weights define the influence of
every token on the next layer’s representation for the current token.

To derive TAPE-based embeddings, we apply a UniRep babbler-1900 model on all pro-
tein sequences in our dataset, which gives us 1900 dimensional embeddings for each protein
in two modes: pooled and avg where the former incorporates the temporal aspect of the
input sequence and the latter averages over the per-position embeddings. We concatenate
the embeddings from the virus and human proteins to get a 3800 dimensional embedding.
We trained two types of supervised models using these as features: Logistic Regression and
Random Forests. We found no significant difference in the performance from either and show
results from the Logistic Regression based models due to computational efficiency. For the
embeddings, we found the setting avg worked better probably because it captures homology
better. The hyper-parameters of all algorithms were trained using nested cross-validation and
grid-search over various values. For GA2M, the main hyper-parameter is the number of inter-
action terms k for which we tried the following values: 0, 10, 50, 100, 200, 500. We observed that
the performance improved until k = 100 and then got worse with higher k. We choose k = 50

to trade-off computational speed against a small drop in accuracy.

ehttps://github.com/interpretml/interpret
fhttps://github.com/songlab-cal/tape
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5. Results

5.1. Prediction performance and validation of predicted interactions

In Fig 1 we show the predictive performance of all approaches in a 5-fold cross validation
setup, for a class-skew of 1:10, where each experiment was repeated 20 times, each time with
a different set of negative examples. The reported numbers show the mean (horizontal line in
the bar) and standard deviation of the metrics. The GA2M model has an AUC-PR of 0.67
on predicting SARS-CoV-2-human PPI and 0.59 on predicting SARS-CoV-human PPI. The
results from the TAPE embeddings are similar to that of Random Forests on SARS-CoV-2-
human PPI possibly due to the small scale of PPI data.

To evaluate our models further, we score the set of all possible SARS-CoV-2-human
protein-pairs: let us call this set U comprising of 29 x ≈ 21, 000 = 609, 000 for ≈21,000 reviewed

proteins from UniprotKB, and validate these scores using the more recently published PPI
from Stukalov et al.5 Towards this, we first train 100 different models on the gold standard
dataset from Gordon et al.4 by using the 332 positives and sampling a random set of negatives
from the unlabeled protein pairs for each of the 100 runs. Since the predictions from a single
model are likely to have a bias dependent on the exact set of negatives used, we train 100
different models and apply each of them on the set U . The score for each example from U is
averaged over the scores from the 100 different models.

After excluding the gold-standard PPI from the set U , we found that 10,211 examples
crossed the classifier score threshold of 0.5. Suppl. Table S1 shows the 28 predictions from
this list of 10,211 which appear as experimentally determined interactions in.5We performed
Fisher’s exact test to evaluate the statistical significance of this observation (i.e the probability
of seeing 28 of 1089 interactions if 10,211 pairs of proteins are sampled from 609,840 pairs)
and obtained a p-value of 0.014. Since pull-down/mass spectrometry based methods are prone
to false negatives because of technical limitations in the technology, it is likely that additional
pairs within the 10,211 highly ranked predictions are also interacting.

5.2. Enrichment analysis of predicted human binding partners

Our models predicted 113 unique human proteins to have at least one interaction with a SARS-
CoV-2 protein having a score larger than 0.9. We used Fisher’s exact test to determine the
enrichment of Gene Ontology (GO) biological processes and cellular components in this set of
proteins. We considered terms with Benjamini-Hochberg corrected p-value ≤ 0.01. To remove
the redundancy resulting from the parent-child relationships in the GO, we used REVIGO11

to simplify the sets of enriched terms. REVIGO forms groups of highly similar GO terms
using a clustering algorithm (which is similar to hierarchical clustering) and then chooses one
representative for each cluster while ensuring that no two representatives are more similar
than a user-provided cutoff. We used SimRel12 as the semantic similarity measure and 0.7 as
the cutoff. We now discuss some key enriched GO cellular components. The full set of enriched
cellular components and biological processes is available in the supplementary materials.

The GO cellular component “actin cytoskeleton” was significantly enriched (p-value
1.74 × 10−14) in the predicted human binding proteins. Many viruses use and modify the
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Fig. 1. (left) AUC-PR and Precision at 10% Recall averaged over 20 runs for a class skew of
1:10. (center) Sequence features relevant to predicting interactions between SARS-CoV and human
proteins and (right) SARS-CoV-2 and human proteins. Statistics obtained by averaging feature
weight from 20 models. Feature names with no suffix are from the virus protein and the suffix ‘.h’
refers to that feature from the human protein. Pairwise interaction features are shown as: f1 x f2, for
instance: I x GA.h refers to an interaction between feature I from the virus protein and GA from the
human protein. Features with a prefix of VS are conjoint triad features. VS612 represents a trimer
that contains amino-acids from classes 6, 1, and 2. See Fig 3 for the mapping of these classes.

host cell’s actin cytoskeleton at different stages of their life cycle including entry, replication,
egress, and infection of new cells.13 In uninfected host cells, viral particles bind to cellular
receptors associated with actin filaments in order to travel along filopodia and reach entry
sites where endocytosis occurs.13 Filopodial extensions also act as bridges between infected to
uninfected cells to transport virus particles.13 A global phosphoproteomic analysis14 of SARS-
CoV-2 infection in Caco-2 cells found that the virus induced substantial increase in filopodial
protrusions. The authors hypothesized that induction of filopodia might be crucial for egress
of SARS-CoV-2 and/or its spread from one cell to another within epithelial monolayers.

The GO cellular component “kinesin complex” was significantly enriched (p-value 1.28 ×
10−8). Kinesins are a family of motor proteins that play an important role in the replication
and spread of different viruses by mediating their long distance movement in the microtubule
transport system.15 Our predictions suggest that SARS-CoV-2 may also use kinesins for trans-
port within infected host cells.

6. Discussion

6.1. Visualizing the virus-human interactions

Fig. 2(left) shows the embedding of the PPI datasets from Stukalov et al5 in comparison to
HIV, Ebola and SARS. PCA was used for dimensionality reduction from 17,526 features to
100 dimensions, followed by t-SNE to visualize the embedding. The interactive versions of
these figures are available in our repository g, where the user can hover over each entry and

ghttps://github.com/meghana-kshirsagar/sars_ppi/blob/master/allviruses_plot.html
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Fig. 2. Embedding of the SARS-CoV and
SARS-CoV-2 PPI from Stukalov et al5 jointly
with the Ebola and HIV-1 PPI described in Ta-
ble 1. Each dot represents a virus-human PPI,
colored by the virus species (details in Section
6.1). The large cluster of overlapping yellow and
green points at the center shows the interologs
between SARS-CoV and SARS-CoV-2.
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Fig. 3. (top) K-means clustering of the dimen-
sionality reduced data from the left panel. Each
dot is a virus-human PPI coloured by the clus-
ter it was assigned to by the k-means algorithm.
(bottom) The seven amino-acid classes used in
the conjoint triad features; details of the prop-
erties used in their classification can be found in
Shen et al.9

find the protein pair’s identity. One can see that in both graphs, there are obvious clusters
of interactions, some of which involve only proteins from a single type of virus. In contrast,
others show overlap with several viruses.

For further analysis of the PPI clusters, we apply k-means clustering on the 100-
dimensional data obtained from PCA and colour the PPI based on which cluster they were
assigned to. The result of k-means clustering is shown in Fig. 3 (right). There are 8 clusters,
some of which we discuss here. Cluster 0 contains several visually distinct sub-clusters. On the
right, there are mostly SARS N protein interactions, overlapping with SARS-CoV-2 N protein
interactions, while those on the left are mostly M protein interactions. Cluster 1 includes sub-
clusters for HIV-1 rev, SARS nsp6 (a protein with 4 transmembrane helices and a protease
domain), as well as SARS and SARS-CoV-2 E and orf7a proteins. In the vicinity of the E
protein interactions there are several Ebola vp40 interactions as well as a subcluster of HIV-1
vpu interactions. The close proximity of all four viruses implies that there may be commonality
in the functions of these interactions. Indeed, in SARS the M, E, and N proteins are required for
efficient assembly, trafficking, and release of virus-like particles, as evidenced by the need for
co-expression of both E and N proteins with M protein.16 This is remarkably similar to what has
been observed in Ebola, where expression of vp40 alone in mammalian cells induces the pro-
duction of virus particles with a density similar to that of virions but proper particles require
co-expression of vp40 and GP.17 How do the nsp6 and orf7a proteins fit into this process?
While it is known that nsp6 is involved in autophagy (it limits autophagosome diameter), the
proximity to the SARS/SARS-CoV-2 E protein interactions and the Ebola vp40 interactions
suggest that there is a connection to virion formation. Unclear is also the role of the HIV-1
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accessory protein vpu, and this proximity may shed light on its function.
Cluster 2 contains a small subcluster on the left, composed mostly with orf9b SARS, and

a few orf9b SARS-CoV-2 interactions, but the majority of this cluster are orf3 interactions
from SARS-CoV-2, lined with some on the top and the bottom of orf3a from SARS. Cluster
4 contains three subclusters, left: HIV-1 vif interactions, middle: SARS orf3b interactions
and right: Ebola vp24 interactions. The functions of vif are not well understood, but for vp24
and orf3b it is clear that they act as IFN antagonists,18 although the two proteins don’t share
any detectable sequence similarity. Furthermore, the vif protein in another virus, the caprine
arthritis encephalitis virus, appears to be an interferon antagonist as well.19 This cluster is
a particularly strong validation for the concept that the PPI network that a virus protein
engages in defines its functions and provides a novel way to identify functional similarity
where sequence and structure similarity is not detectable.

Cluster 6 is a large cluster that contains only orf7b from SARS and SARS-CoV-2. Clusters
0, 2 and 6 are the ones most unique to the coronaviruses but with different levels of similarity
within. It has been speculated that the differences between orf9b in SARS and SARS-CoV-2
may contribute to the enhanced transmissibility of SARS-CoV-2, possibly due to increased
ability to suppress the interferon response.20 Finally, cluster 7 involves three subclusters, HIV
tat, SARS orf8, and orf8a. tat activates RNA Polymerase II,21 while the functions of orf8/a
are not known.22 Thus, it is tempting to speculate that there may be overlap in these functions
with those of tat in HIV.

6.2. Highly ranked sequence features

Fig. 1 (center) shows the top-ranked features from SARS-CoV-human interactions and (right)
SARS-CoV-2-human interactions. Single letters refer to amino acids in the k-mer, while those
with a prefix VS refer to the conjoint triad feature with amino acid groups shown in Fig. 3
(bottom). An extension .h indicates that the feature refers to the human binding partner.
One can clearly see that the top-ranked features for the two viruses are different in their detail
(which supports that experimental observation that the sequence variations between the two
viruses affect their PPIs5) but follow similar trends. For example, many of the features refer
to hydrophilic amino acid combinations such as QD, PQ, DPQ, QD reflecting the fact that it
is the water-exposed surfaces of proteins that engage in PPI interfaces. Furthermore, it is
well established that the bulky aromatic, yet hydrophilic side-chain Y is often found as anchor
residues in PPI interfaces. Thus, it is encouraging to find PDY, PYD and triad features involving
class 3 amongst the top ranked features.

6.3. Structural analysis

Highly ranked sequence features from the model correspond to amino acid residues that form
cryptic pockets. Cryptic pockets are cavities that form in protein structures due to thermal
fluctuations in vivo, but are not observed in experimentally derived protein structures.23 These
pockets can expose functionally important residues to the surface of a protein and can also
be used as targets for drug development.24 A recent study performed molecular dynamics
simulations on the majority of proteins in the SARS-CoV-2 proteome to sample the ensemble of
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structural poses that each protein adopts,25 using a specialized algorithm to focus on sampling
cryptic pockets.26 The group curated a dataset indicating which residues are part of a cryptic
pocket based on analysis using LIGSITE,27 which performs a grid-based search for pockets, and
exposons,28 which identifies residues that have cooperative changes in their solvent exposure.
Overlaying sequence features from the PPI model onto one of the SARS-CoV-2 proteins,
Nonstructural protein 16 (nsp16), we find that the positions found significant by the model
coincide with the location of 3 out of the 5 pockets. This protein is of particular interest since
it has more pockets than any other protein in the dataset, and is an interesting drug target
since it is known to be involved in evading the host immune response.29

7. Prior Work

Network analysis of SARS-CoV-2 has been carried out since the first SARS-CoV-2 related PPI
dataset was deposited in BioRxiv on March 22, 2020.4 The majority of analyses have focused
on identifying targets for repurposing drugs,30–32 and/or to better understand the molecular
details underlying viral pathogenesis.33,34 These network analysis papers use known human-
human PPI to follow the paths from original human-virus pair into the human interactome.
This network propagation approach has also been extended to include predicted human-human
PPI.35 A few groups have also looked at the prediction of new interactions between virus and
human host proteins: PIPE36 uses sequence-based PPI predictors PIPE4 and SPRINT to
predict interactions for only 14 of the 29 SARS-CoV-2 proteins based on known PPI obtained
from the VirusMentha database37 which currently contains 5 SARS (not SARS-CoV-2) PPIs.

8. Conclusion

We developed a sequence-only based feature prediction model for interactions between SARS-
CoV-2 and human proteins. Validation by an independent dataset showed significant en-
richment of experimentally validated interactions in the highly-ranked predictions, strongly
supporting the approach. The interpretability of our model also allows designing hypotheses
toward disrupting these interactions, a crucial step in exploiting PPI prediction for antiviral
drug discovery.
Supplementary material: Additional plots, tables, predicted PPI and enrichment analysis
are available at: https://github.com/meghana-kshirsagar/sars_ppi
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