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Privacy and trust of biomedical solutions that capture and share data is an issue rising to the center 
of public attention and discourse. While large-scale academic, medical, and industrial research 
initiatives must collect increasing amounts of personal biomedical data from patient stakeholders, 
central to ensuring precision health becomes a reality, methods for providing sufficient privacy in 
biomedical databases and conveying a sense of trust to the user is equally crucial for the field of 
biocomputing to advance with the grace of those stakeholders. If the intended audience does not trust 
new precision health innovations, funding and support for these efforts will inevitably be limited. It 
is therefore crucial for the field to address these issues in a timely manner. Here we describe current 
research directions towards achieving trustworthy biomedical informatics solutions.  
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1. Introduction

The importance of trust in biomedical and healthcare technologies, especially consumer-facing 
artificial-intelligence (AI) software, cannot be overstated. Issues of privacy and trust with regard to 
large-scale data capture and analysis, particularly passive data capture by mobile devices and social 
media, have recently come to the forefront of public and academic discourse across multiple 
domains [1-4]. Such issues are especially important for healthcare, where solutions must prioritize 
patient privacy. At a minimum, biomedical tools in the United States must satisfy the Health 
Insurance Portability and Accountability Act of 1996 (HIPAA), which mandates a set of regulations 
regarding the privacy of patient health data [5]. While satisfying legal constraints is necessary, the 
true metric of achieving satisfactory patient trust will come from the patients themselves, who may 
request more stringent solutions. 

       In recent years, the biomedical research community has produced a wide array of research 
findings relating to trustworthy biomedical data, spanning multiple fields and subdomains. Work in 
these areas has included genomic data storage [6], privacy and sharing of protected health 
information (PHI) [7-9], cryptography solutions to sharing genetic data that allow public querying 
while protecting patient privacy [10], ethical considerations of new technologies and paradigms 
[11], and privacy-preserving machine learning methods [12-13]. However, the increasing 
prevalence of large-scale biomedical data collection capabilities and efforts (such as the continued 
decrease in sequencing costs), coupled with the explosion of applied machine learning systems and 
products, continually creates demand for innovations in trustworthy methods which can handle 
growing technological capabilities. 
      Here, we focus on four active themes in biomedical data science where the importance of trust 
in data has taken center stage: (1) preserving privacy and explaining the decisions of artificial 
intelligence algorithms, (2) sharing genomic and health records, (3) deploying digital health 
solutons, and (4) crowdsourcing healthcare. For each research theme, we describe several core 
methodological approaches (Figure 1)  for building trustworthy biomedical data solutions which 
apply across the data science pipeline: (1) data transformation (e.g., dimension reduction and image 
modification), (2) access control (e.g., federated learning and cryptography), (3) data aggregation 
(e.g., aggregate queries and differential privacy), and (4) transparency (e.g., explainable AI). We 
discuss how these trust-enabling methodologies can and should be invoked and describe prior 
efforts. We conclude with a brief discussion of the bioethics literature. 

2. Preserving Privacy and Explaining Decisions of Artificial Intelligence

AI in healthcare is increasingly rising in importance for solving challenges in the medicial workflow 
including clinicial decision support, preventing errors, and scaling redundant tasks. Privacy 
preservation and explainability are crucial when machine learning algorithms are deployed in these 
settings. We describe three common machine learning paradigms for attaining and preserving 
patient privacy when biomedical data are used to train algorithms: (1) transformation of the data, 
(2) federated learning, and (3) differential privacy. We also discuss efforts to attain explainable AI.

If the data can be transformed in such a way that the downstream model still yields high
predictive performance, simply altering the data to obfuscate the identity of the subject may be the 
most desired option.  For example, when using computer vision for use in activity recognition in 
hospital bedside settings [14-15], Yeung et al. leverage thermal [16] and depth [17] sensors to create 
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privacy-preserved video streams. Washington et al. simply place a face box over the patients’ faces 
and pitch shift the audio when generating behavioral phenotypes of children with autism using 
machine learning and crowdsourcing [18], only minimally degrading performance compared to 
when using unaltered videos. Machine learning models should be trained and tested on the 
maximally private alteration of the data while maintaining acceptable performance. 
       Federated learning as a privacy enhancing technique has garnered widespread attention for 
achieving privacy in distributed mobile devices that may collect multimedia data streams. In 
federated machine learning, several distributed machines train models based on local data and share 
only model weights, which do not contain any protected information, on either the other distributed 
devices or a centralized server [19]. Federated learning has been applied to analyze data from 
electronic health records [20-22], recognize activity patterns based on data from wearable devices 
[23], and improve the interpretation of medical images [24]. 
      A third commonly used privacy preserving technique is differential privacy. Differential privacy 
involves injecting random noise into the training dataset such that the identifiability of each 
individual record is destroyed while the aggregate properties of the dataset are preserved [25]. 
Examples of applying differential privacy to protect patient privacy in the biomedical domain 
include injecting noise into data from wearable sensors [26], genome wide association studies [27], 
and healthcare social networks [28]. This session includes a paper by Shi et al. that explores the 
tradeoffs between the performance of commonly used machine learning models and the level of 
privacy attained using differential privacy. 
      Another crucial property of trustworthy machine learning is explainability, including but not 
limited to interpretability. Some machine learning algorithms are inherently explainable. In 
classification with logistic regression, for example, the exact prediction can be calculated from the 
input values by plugging them into an equation. Making the coefficients associated with each 
variable transparent to the patient in a user-friendly manner would increase trust. However, with a 
large dataset of high complexity, explainable algorithms may not be sufficient, requiring more 
powerful yet less interpretable algorithms like neural networks. While components of certain neural 
networks can be interpreted, such as by visualizing the weights and activations of feature maps in 
the intermediate layers of a convolutional neural network, making neural networks explainable is 
an emerging active area of research [29]. Creating explainable AI has enabled increased reasoning 
about the decision making process behind stroke prediction algorithms [30], further understanding 
of changes in the skin microbiome [31], and elucidation of the reasoning of algorithms trained on 
electronic health record [32]. In some cases, explainable AI can lead to scientific discovery, for 
example by elucidating complex disease pathways in autism [33]. As explainable AI is becoming a 
popular research direction across computing research fields, we expect more translatable 
innovations in the coming years that safely embed AI  in a variety of sectors of the healthcare 
ecosystem. 
 
3. Sharing Genomic and Health Records 

The genome is a core foundation of precision healthcare, and shared human DNA records are 
essential to advancements in human health. Millions of human genomes have been sequenced, either 
through direct-to-consumer DNA platforms (e.g., 23andme and Ancestry) or through a healthcare 
provider, with the number likely to exponentially increase as genomic sequencing becomes 
progressively more affordable and more speedy, improving at a rate faster than Moore’s Law [34]. 
Genomic data are exceptionally sensitive, and increasingly so as advancements in bioinformatics 
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methods can uncover a patient’s identity in a dataset with a small number of queries [35-39] through 
approaches like membership inference attack [40]. Addressing secure storage and sharing of 
genomic data to solve such issues is a key research challenge required to advance genomics-based 
precision health and medicine pipelines to the clinic [41]. Several methods for preserving genetic 
privacy have been published, including differential privacy-based approaches [42-44], perturbing 
the data with Bayesian statistics and Markov Chain Monte Carlo techniques [45], applying 
cryptographic protocols and frequency-based clinical genetics [10], and encrypting the data before 
offloading it to the cloud [46]. 
      While the genome is a key data modality for precision health, it must be tightly tied to the 
phenotype, perhaps best embodied in electronic medical record (EMR) data.  EMR can be mined to 
make data driven predictions about important biomedical issues such as the risk for diseases at the 
heart of immediate public health crises (i.e., COVID-19) [47-49], understudied and unknown 
adverse drug interactions [50-51], and psychiatric and behavioral conditions with a small number 
of behavioral biomarkers [52-56], including in underserved countries with differing laws and 
expectations about data sharing [57]. EMR are susceptible to attack, for example by inferring disease 
heritability from exposed pedigree information [58]. Previously explored solutions to addressing the 
sensitive nature of such records include only performing inference on common medical events while 
keeping the remainder private [59], reducing the dimensionality of the dataset [60-61], transforming 
the dataset with the use of generative adversarial networks [62], giving the patient control over who 
has access to the electronic health records [63], only allowing aggregate queries without revealing 
the underlying dataset [64], and deploying cryptography schemes such as symmetric key or 
asymmetric key encryption [65].  
 

 
Figure 1. An opportunity space for innovation in methods for achieving trustworthy biomedical data 

solutions. We list the 4 most active areas where security and trust in the exchange of data is highest: private 
and explainable artificial intelligence; sharing and integration of genomic and medical records; construction 

and use of digital health tools; and crowdsourcing of healtcare management.  In all 4, methodologies of 
data transformation, access control, data aggregation, and transparency can and should be deployed. 
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4. Deploying Digital Health Solutions  

While EMR are traditionally generated in the clinic, digital health solutions are increasingly 
deployed to home settings [66-68]. As digital devices continue to receive FDA approval for medical 
use [69-70], it is inevitable, and exciting, that large portions of EMR data will be acquired through 
consumer devices such as smartphones and embedded hardware. Digital devices can longitudinally 
quantify patient symptoms when away from the clinic for conditions such as brain-mediated 
neurological and psychiatric disorders [71-72], cardiovascular disease [ 73-74], and infectious 
disease [75], among others. Examples of digital health solutions used in sensitive settings include 
therapeutic devices administered by clinicians [76], therapeutic tools administered in home settings 
[77-79], monitoring systems in hospital settings [80-81], dual-purpose interventions which 
explicitly collect patient health information to train machine learning models [82-84], pediatric 
healthcare interventions disguised to the child as a game [85-86], and wearable devices [87]. Many 
of these therapeutic and diagnostic devices collect potentially sensitive audio, image, and video 
streams for clinical use [88-91], and these data streams are often shared with clinicians or even 
crowdsourced with the consent of the patient. Furthermore, several digital therapies are used in 
home settings, and such rich data streams are filled with protected health information accompanied 
by potentially sensitive identifiable information such as the patient’s face, images and video of the 
patient’s home, and audio recordings of the patient or their family while using the device. It is 
therefore crucial to ensure patient privacy when these data leave the patient’s device and are 
introduced into clinical workflows. Best practices discussed by Martínez-Pérez et al. include 
creating role-based access to data, making the privacy policy precise and clear to the user, 
transferring data with TLS using 256-bit encryption, erasing the data after it has been used for its 
intended purpose, and creating a data breach notification system [92].  
      Because consumer health technologies do not have direct oversight by clinicians, biased and 
deliberately inaccurate reporting by the target audience can be a risk. Therefore, it is particularly 
important to assess the quality of incoming data to garner the trust of healthcare providers and 
scientists, using those data for healthcare management and innovation. Algorithms that perform 
quality control to safeguard against biased or inaccurate reporting must go hand-in-hand with  digital 
innovations. It is crucial for researchers to easily identify invalid or unintended data. For both 
consumers and scientists to gain confidence in the generalized applicability of digital tools, the data 
must be representative of the target population, making it pertinent to collect data that are balanced 
across race, ethnicity, geography, gender, and other relevant demographics. 
 
5. Crowdsourcing Healthcare 

Crowdsourcing is another approach used increasingly in clinical workflows [93-97]. Digital health 
and telemedical solutions that can scale through crowdsourcing approaches will become a norm for 
healthcare. The use of crowdsourcing in healthcare can be broadly partitioned into three categories:  
(1) crowdsourcing to achieve consensus on the presence or absence of medical conditions; (2) 
crowdsourced capture (whether active or passive, or a combination) of longitudinal data streams 
from from a large target cohort; (3) crowdsourcing the construction of training libraries of robustly 
labeled health data (e.g., radiological images), that enable progressive improvement of predictive 
models that can augment or replace decision points in the healthcare process.  
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      Crowdsourcing appears in diverse healthcare settings and has been used for measurement of 
autism symptoms for diagnostic decision support [98-101], ranking adverse drug reactions [102], 
and COVID-19 contact tracing and surveillance [103-105]. Despite the strong clinical utility of 
crowdsourcing approaches, studies of trust and privacy for text, audio, image, and video streams 
rated on crowdsourcing platforms (e.g., Amazon Mechanical Turk [106-107] and 
Microworkers.com [108]) are lacking in the literature, especially with respect to biomedical 
research. As with digital consumer technologies, labeled data from crowdsourcing pipelines have 
the potential to suffer from low quality [109], requiring methods to filter crowd workers and into a 
trusted workforce of repeatedly high quality workers. This session includes a paper by Washington 
et al. which introduces quantitative metrics for evaluating crowd workers for their trustworthiness 
and reliability and provides behavioral metrics for identifying a valuable subset of crowd workers 
for inclusion in private clinical workflows. We hope that this study will inspire further work toward 
ensuring trustworthy crowd-powered telemedicine. Figure 1 highlights that research into 
trustworthy biomedical crowdsourcing is relatively light. In particular, privacy-preserved 
crowdsourced annotation of transformed data and on aggregate data is a currently unexplored yet 
fruitful research direction. 

6. Considering the Bioethics 

It is important to keep sight of the ethical considerations and formal bioethical perspectives with 
respect to biomedical innovations using trustworthy methods, or the lack thereof. Bioethical 
arguments are typically grounded in traditional ethical theories. Deontology is an ethical theory that 
considers actions as moral if they pass a series of conditions or rules [110]. A contrasting family of 
ethical theories, consequentialism, requires that moral actions maximize the public good and the 
utility of the action to all relevant stakeholders [110]. A third category, virtue ethics, states that 
moral actions should be a manifestation of a virtuous character trait [110]. While all ethical theories 
sound optimal in isolation, bioethical decisions may often satisfy one ethical theory while violating 
another. For example, heavy COVID-19 surveillance will maximize the good to all people 
(Utilitarianism, a type of consequentialism) while violating a core principle (deontological ethics) 
of the right to privacy. Bioethical analyses have been applied to genome sequencing for newborn 
screening [111-112], clinical machine learning [113-114], precision medicine [115-116], wearables 
and mobile health [117-118], and crowdsourcing [119-120].  
      This session includes a paper by Greenbaum et al. discussing the implications of expanded 
access programs with respect to COVID-19, a particularly timely topic. We hope that informaticians 
and scientists will interact more often with bioethicists to understand the societal implications of 
their work. 
 
7. Anticipating the Future 

Trustworthy biomedical data solutions will be crucial for realizing wide adoption of emerging 
technologies and methodologies for precision health. This session includes promising directions of 
exploration for the biomedical informatics research community. We have summarized some of the 
methods for building trust in key parts of the data analysis pipeline: data analysis(for artificial 
intelligence), data sharing (of genomic and health records), data capture (through digital devices), 
and data labeling (through crowdsourcing).  
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      The study of trustworthy biomedical data science is in its infancy and ripe for innovations. We 
hope that this session will inspire further work in this important area, complementing the public’s 
broader discussion of privacy and security considerations related to large-scale data collection and 
analysis. We anticipate that research that aims to improve the trustworthiness of biocomputing 
methods will become a major part of the PSB and a major focus for biomcomputing research in the 
coming years. 
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