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Physiological status and pathological changes in an individual can be captured by metabolic state 
that reflects the influence of both genetic variants and environmental factors such as diet, lifestyle 
and gut microbiome.  The totality of environmental exposure throughout lifetime – i.e., exposome – 
is difficult to measure with current technologies. However, targeted measurement of exogenous 
chemicals and untargeted profiling of endogenous metabolites have been widely used to discover 
biomarkers of pathophysiologic changes and to understand functional impacts of genetic variants. 
To investigate the coverage of chemical space and interindividual variation related to demographic 
and pathological conditions, we profiled 169 plasma samples using an untargeted metabolomics 
platform. On average, 1,009 metabolites were quantified in each individual (range 906 – 1,038) out 
of 1,244 total chemical compounds detected in our cohort. Of note, age was positively correlated 
with the total number of detected metabolites in both males and females. Using the robust Qn 
estimator, we found metabolite outliers in each sample (mean 22, range from 7 to 86). A total of 50 
metabolites were outliers in a patient with phenylketonuria including the ones known for 
phenylalanine pathway suggesting multiple metabolic pathways perturbed in this patient. The largest 
number of outliers (N=86) was found in a 5-year-old boy with alpha-1-antitrypsin deficiency who 
were waiting for liver transplantation due to cirrhosis. Xenobiotics including drugs, diets and 
environmental chemicals were significantly correlated with diverse endogenous metabolites and the 
use of antibiotics significantly changed gut microbial products detected in host circulation. Several 
challenges such as annotation of features, reference range and variance for each feature per age group 
and gender, and population scale reference datasets need to be addressed; however, untargeted 
metabolomics could be immediately deployed as a biomarker discovery platform and to evaluate the 
impact of genomic variants and exposures on metabolic pathways for some diseases.  
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1. Introduction

Genetic discoveries from genome-wide association studies (GWAS) and whole-exome and -genome 
sequencing (WES/WGS) discovered risk alleles for common diseases and pathogenic genetic 
variants in 10-52% of patients with rare genetic diseases1. WES gained its clinical utility2 ; however, 
understanding functional consequences of genetic variant in the context of disease phenotype is 
essential and yet remains as an outstanding challenge since generally healthy children also harbor 
tens of putative disease-associated genetic variants. A functional read out – e.g., gene expression 
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profiling of affected tissue – could inform impacts of genetic variants3. Nonetheless, accessibility to 
affected tissue is often limited and especially challenging for developmental disorders.  
 Metabolites are direct read-outs of functional status of biological entities – i.e., cells, tissues, 
and organs – and also serve as a proxy for understanding their sources such as internal metabolic 
processes, gut microbiome, xenobiotics, dietary, and exogenous exposures 4. Moreover, metabolites 
are active regulators of gene expression and protein activity5. A limited set of blood chemistry 
analytes is routinely used in clinical care, which provide crucial information regarding 
pathophysiology.  Metabolomics aims to characterize all the small molecules in biological system 
using metabolomics platforms such as nuclear magnetic resonance (NMR) spectroscopy and 
chromatography coupled to mass spectrometry (MS)6. NMR reproducibly identifies chemical 
structure of unknown chemical features but is limited by its lower sensitivity and throughput 
compared to MS-based metabolomics. Therefore, untargeted metabolomics using a high-resolution 
MS is typically used for hypothesis-driven research studies and novel biomarker discovery4.  
 Metabolomic profiling with blood and affected tissue could be more closely associated with 
phenotype compared to other omics profiles7. More importantly, perturbed metabolic pathways 
could suggest mechanistic insights into the pathophysiology of diseases8. Previous studies showed 
the analytical validity of MS-based metabolomics platforms and successfully demonstrated a utility 
in interpreting the impact of genetic variants for generally healthy individuals9 or in discovering 
novel biomarkers for inborn errors of metabolism (IEMs)10. These studies approached an index case 
to find metabolite outliers compared to a background distribution constructed from generally healthy 
individuals for each metabolite. Here we investigated the extent of endogenous metabolites and 
exogenous chemical compounds that could be captured by untargeted metabolomics profiling of 
plasma samples from patients with diverse medical conditions to evaluate a potential of untargeted 
metabolomics profiling as a precision medicine platform.  

2.  Materials and Methods 

2.1.  Subjects 

Individuals were enrolled in the Precision Link Health Discovery cohort at Boston Children’s 
Hospital (BCH) from January 2016 to November 2017. Enrolled patients and their family members 
were consented in-person with permission to access electronic health records (EHRs), if available, 
for research and to share de-identified data and specimens within and outside of the institution11. 
We collected 169 plasma samples from 79 males and 90 females with mean ages 19.6 and 20.9 years 
old, respectively (ranges from 4.4 months to 59.7 years).  
 Data from patient databases at BCH were obtained using i2b2, which allows for queries of EHRs 
using International Classification of Diseases, Ninth Revision, Clinical Modification or Tenth 
Revision codes, Systematized Nomenclature of Medicine - Clinical Terms, and the dates when the 
codes were assigned to patients and demographic information. The queries of the institutional i2b2 
database and analyses were performed and restricted to October to December 2018. For 123 patients 
of 169 enrolled individuals with plasma samples, we collected the prescription history of 1,194 
drugs corresponding to 594,201 events in the i2b2 database. The study was approved by the 
Institutional Review Board of BCH. 
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2.2.  Untargeted metabolomics profiling of plasma samples 

Whole blood was collected in ethylenediaminetetraacetic acid (EDTA) treated lavender top tubes, 
from the Precision Link Biobank participants. EDTA tube was centrifuged at 2000 X G for 10 
minutes at room temperature to obtain plasma. Plasma samples were then aliquoted 200uL/0.5ml 
microcentrifuge tubes and stored at -80C. These samples were shipped in a dry iced box to 
Metabolon (Research Triangle Park, NC) for untargeted metabolomics profiling. Sample handling, 
metabolomic profiling, quality control and data pre-processing is described in detail in the previous 
study9. In brief, proteins were precipitated with methanol under vigorous shaking for 2 min (Glen 
Mills GenoGrinder 2000, Glen Mills, Clifton, NJ) followed by centrifugation. The resulting extract 
was divided into four fractions:  
 

• Two for analysis by two separate reverse phase (RP)/ultra-performance liquid 
chromatography (UPLC)-MS/MS methods with positive ion mode electrospray ionization 
(ESI).  

• One for analysis by RP/UPLC-MS/MS with negative ion mode ESI. 
• One for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI.  

 
To remove the organic solvent, samples were placed briefly on a TurboVap® (Zymark, Hopkinton 
MA). A Waters ACQUITY UPLC (Milford, MA) and a Thermo Scientific Q-Exactive high 
resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) 
source and Orbitrap mass analyzer (Waltham, MA) operating at 35,000 mass resolution were 
utilized to analyze aliquots covering 70 – 1,000 mass-to-charge ratio (m/z). Raw data was extracted, 
peak-identified and quantified using area-under-the-curve using Metabolon’s hardware and 
software. Deliverables from Metabolon included raw area counts, rescaled-to-median and imputed 
values, and sample volume normalized data with the retention time/index (RI), m/z, chemical 
annotation according to Metabolon’s proprietary database with public database identifiers including 
PubChem12, the Human Metabolome Database (HMDB)13 and Kyoto Encyclopedia of Genes and 
Genomes (KEGG)14 if available.  

2.3.  Statistical analysis 

We used a volume normalized and re-scaled – i.e., median equals to 1 for each metabolite – data 
generated by Metabolon software pipeline9. Missing values were imputed with minimum observed 
value for each metabolite. A complete data table including 1,244 metabolites for 169 individuals 
was used for further analysis. Overall, concentrations of both endogenous metabolites and 
exogenous chemicals showed log-normal distribution; however, some exogenous chemicals were 
detected only in a small number of samples and the distribution was skewed for some metabolites. 
The median absolute deviation (MAD) is a robust scale estimator that is widely used with the sample 
median; however, it is a symmetric estimator of dispersion and has a low efficiency for data with 
Gaussian distribution. To address these limitations of MAD in our analysis, z-scores were calculated 
from log-transformed values using Qn estimator that is considered to be more robust for data with 
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asymmetric distribution15. For each metabolite, we calculated Qn estimator using the Qn function 
implemented in the robustbase R library package. 
 To explore correlation structure of metabolome, a robust estimator of correlation was required 
since some of them (e.g., prescribed drugs) were measured in a small proportion of samples which 
could cause a bias with Pearson or Spearman correlation coefficients. Thus, we calculated rQn as 
described in Eq.(1) where u and v were calculated according to Eq.(2) with the sample medians, 𝑥" 
and 𝑦"16. 
 
 

     (1) 
 
 
 

(2) 
 
 
 Statistical significance of pairwise correlation was estimated using a t-distribution with n-2 
degrees of freedom, where t is the Fisher-transformed robust correlation coefficients. Multiple 
testing correction was performed by calculating false discovery rate (FDR) from distribution of p-
values17. All analyses were performed in the R statistical software environment18. 

3.  Results 

3.1.  Overview of untargeted metabolomics profiling 

3.1.1.  Chemical coverage 

A total of 1,244 endogenous metabolites and exogenous chemical compounds – hereafter referred 
to as features in aggregate – were measured in 169 plasma samples. On average, 1,009 features per 
sample (ranges from 906 to 1,038) were measured above detection limits. The majority of features 
(i.e., 1,073 out of 1,244) were successfully quantified in more than 50% of individual samples; 
however, 105 out of 224 xenobiotics such as drugs and food metabolites were only detected in less 
than 20% of samples. There was no difference in the number of features detected between males 
and females (Welch’s t-test, p-value 0.29); however, age was significantly correlated with the total 
number of detected features in both males and females (generalized linear model, p-value 6.78 x 10-

12). The total number of xenobiotics measured per sample was also correlated with age (p-value 5.54 
x 10-9) but not significantly different between males and females (p-value 0.922).  
 According to their chemical properties, each feature was assigned to one of nine super-classes 
(i.e., amino acids, carbohydrates, cofactor and vitamins, energy, lipids, nucleotides, partially 
characterized molecules, peptides, and xenobiotics) and unannotated molecules, and one of 112 
subpathways (Figure 1A). Lipids (N = 423) and amino acids (N = 195) were the major classes of 
endogenous features quantified by the untargeted platform used in the current study. For 
xenobiotics, we could identify 244 chemical compounds from: food (N=54), tobacco (N=6), 
benzoate (N=22), xanthine (N=15), exogenous environmental chemicals (N=26), bacterial/fungal 
(N=1), and drug metabolites including analgesics (N= 22),  anti-inflammatory (N= 5), antibacterial  

Pacific Symposium on Biocomputing 25:587-598(2020)

590



 
 

 

(N=14), antiviral  (N=2), cardiovascular (N=10), gastrointestinal  (N=4), metabolic  (N=2), 
neurological (N=18), psychotropic  (N=15), respiratory  (N=5) and topical agents  (N=3). 
 

  
 

 
 

Fig. 1. Chemical coverage and global correlation structure of 1,244 features measured by an untargeted 
metabolomics platform. (A) A significant proportion of measured features (N=256) are unannotated features 
for which chemical properties are not known although the features are consistently measured in multiple 
samples and showed correlations with known metabolites. Ten super-classes including lipids, amino acids, 
carbohydrates, vitamins, nucleotides, and xenobiotics are shown in the pie chart with subpathways in outer 
circle. (B) Correlation structure of metabolome. Lipids are clustered to multiple groups. Overall, amino 
acids, nucleotides, and carbohydrates are tightly correlated. Xenobiotics are associated with diverse 
endogenous metabolic pathways. (C) A total of 502 out of 1,244 features are significantly correlated with 
age (false discovery rate < 0.05) and correlation with age shows a nonlinear relationship for some 
metabolites. For instance, creatinine concentration level is significantly correlated with age in children but 
not in adults.  
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3.1.2.  Global correlation structure of human plasma metabolome 

To examine correlation structure of features, we created a network of 1,244 features (i.e., nodes) 
connected by edges of significant correlation for each pair. We used a robust estimator of correlation 
– i.e., rQn, and selected top-most significant correlations with correlation coefficient greater than 
0.4. Using the 1,244 features and 17,659 significant correlations (false discovery rate (FDR) < 
0.0001 and |rQn| > 0.4) as edges, we constructed a metabolomic network. A force directed layout – 
ForceAtlas2 – was used to spatialize the network19. Overall, features were clustered by super-
pathways (Figure 1B). Unconnected nodes were mostly xenobiotics and their metabolites; however, 
some xenobiotics were significantly correlated with diverse super-classes of endogenous 
metabolites such as amino acids and lipids suggesting the impact of exogenous chemical compounds 
on different metabolic pathways. Interestingly, lipid species formed four distinct clusters: 
sphingomyelins, diacylglycerols, steroid metabolism and fatty acids. Amino acids were broadly 
connected with multiple super-classes including xenobiotics. Unannotated features – i.e., features 
with unique pair of m/z and retention time without matching information in multiple databases –
formed clusters with different super-classes suggesting these unannotated features could be mapped 
to known super-classed based on correlational structure. Additional details on global network 
structure with chemical compound names and correlation structure of subnetworks are available at 
the supplementary website (https://tom.tch.harvard.edu/supples/metabolome).    

3.2.  Factors contributing interindividual variance in feature concentrations 

3.2.1.  Demographic variables 

Except for sex hormones, we did not find features showing significantly different concentrations 
between males and females. An androgenic steroid, 5alpha-androstan-3alpha,17beta-diol 
monosulfate was significantly higher in males after controlling for the effect of age. Age was 
significantly correlated with 502 features (40.4% of 1,244 features, FDR < 0.05). The complete list 
of metabolites correlated with age and statistical scores are available at the supplementary website 
(https://tom.tch.harvard.edu/supples/metabolome). We checked whether age-correlated chemical 
compounds were more frequently observed for each of nine super-classes and unannotated 
chemicals. Xenobiotics were enriched with age-correlated chemical compounds (Fisher’s exact test 
p-value 0.000027, odds ratio 2.49 with 95% confidence interval (CI) 1.595 – 3.954) and nucleotides 
were depleted for age-correlated metabolites (Fisher’s exact test p-value 0.00096, odds ratio 0.27 
with 95% CI 0.099 – 0.644). Interestingly, age-correlation could be nonlinear and only significant 
correlated in an age group (e.g., children vs. adults). For instance, creatinine was positive correlated 
with age in children then reached plateau in adults20 (Figure 1C). Therefore, background distribution 
of metabolites should be constructed for each age group.   

3.2.2.  Use of antibiotics 

Circulating metabolites of mammalian host are substantially affected by gut microbiota21. In the 
current study, 34 gut microbial products that are exclusively or mainly contributed by bacteria 
metabolism were detected (see Appendix). These microbial products were tightly correlated with 
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aromatic amino acids and bile acids metabolism, and significantly correlated with 773 features (FDR 
< 0.01). From EHR, we identified medication history for 123 out of 169 individuals. We selected 
68 individuals with active drug prescription or in a window of 14 days after finishing drug 
prescription and found 23 features matching the drugs prescribed in at least one patient. We captured 
40.9% drug prescription (Ndetected & Nprescribed = 67, Nprescribed = 164) and identified 128 drug 
consumptions with no prescription. Two antibiotic drugs were detected in the matched prescribed 
drugs and used by nine patients. Thirty-four features matched with gut microbial products including 
p-cresol and 4-hydroxyphenylacetate that are tyrosine metabolic products of anaerobic Clostridium 
difficile and certain Lactobacillus strains. The concentration of three gut microbial products were 
significantly correlated with the prescription history of the two antibiotics: 3-indoxyl sulfate, indole 
propionate and p-cresol sulfate (logistic regression, FDR < 0.01, Figure 2A). 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Impacts of xenobiotics and environmental chemicals on metabolome. (A) Three microbial products 
show significant differences in antibiotics users compared to non-users according to electronic health 
records. (B) A network of the metabolites significantly correlated with perfluorooctanesulfonic acid (PFOS) 
and perfluorooctanoic acid (PFOA). PFOS is strongly correlated with multiple metabolites (N=227) while 
PFOA is significantly correlated with PFOS and a few metabolites (N=65), suggesting different biological 
impacts of two chemical compounds of per- and polyfluoroalkyl substances (false discovery rate < 0.05). 
Only highly significant correlations (i.e., |rQn| > 0.65) are shown as edges.  
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Low indoxyl sulfate level suggested the relevance of microbiota-derived indole and features thereof 
in mucosal integrity and protection from inflammation22. p-cresol and 4-hydroxyphenylacetate are 
tyrosine metabolic products of anaerobic Clostridia, and over-growth of this genera could be 
associated with gastrointestinal symptoms. Moreover, plasma levels of trimethylamine n-oxide, 
derived from dietary choline and carnitine through the action of gut microbiota, are associated with 
several cardiometabolic traits23. 

3.2.3.  Impact of environmental chemical toxicants on blood metabolome 

Per- and polyfluoroalkyl substances (PFAS) are a group of industrial chemicals including 
perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), which are used in various 
industrial products including food containers and present in drinking water. PFOA is a toxicant 
affecting multiple biological pathways and considered as non-genotoxic carcinogens. In our cohort, 
PFOA and PFOS were detected and quantified in 102 and 169 samples, respectively. Endogenous 
features were significantly correlated with PFOA and PFOS (N = 65 and 227, FDR < 0.05) with 52 
features in common (Figure 2B).  

3.3.  Implication for medical conditions 

Forty features were detected in less than three samples and 941 features (75.6% of all measured 
ones) were not normally distributed (Shapiro-Wilke test, p-value < 0.05). Thus, we used the Qn 
estimator to calculate robust z-scores to detect outliers (i.e., |z-score| > 3) after excluding 52 features 
detected in less than three individuals. As a proof-of-concept, we checked outlier features in patients 
with IEMs and diabetes mellitus (DM). 

3.3.1.  Inborn errors of metabolism 

Significantly higher levels of phenylalanine, phenyllactate, and phenylpyruvate were observed in a 
40-year-old male with classical phenylketonuria (z-scores 9.39, 9.12 and 8.53, respectively). 
Interestingly, there were also significantly low concentration of alpha-ketoglutaramate (z-score -
7.67) potentially due to long-term use of Phe-restrictive diet throughout life. Additionally, 46 
features were outliers in this patient suggesting the perturbation of phenylalanine pathway as well 
as the other metabolic pathways (Figure 3A).  
 Alpha-1-antitrypsin deficiency (A1AD) is an autosomal recessive disorder due to a mutation in 
SERPINA1 and often presents respiratory symptoms and liver failure. An 8-year-old girl was 
diagnosed with A1AD, and her metabolomic profile showed perturbation of liver enzyme pathways 
including sterol, ceramide and bile acid metabolism. Vitamin A and its metabolites showed 
significantly low concentration compared to the others suggesting that vitamin A supplement would 
be required. We confirmed prescription history of multivitamins and the other cofactors in EHR for 
this patient.  
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3.3.2.  Diabetes mellitus 

Glucose and mannose concentrations were not consistently changed in the patients with DM; 
however, 1,5-anhydroglucitol (1,5-AG) was detected as an outlier in all patients with type I and II 
DM. For instance, metabolomic profile of a patient with type II DM showed significantly low 
concentration of 1,5-AG with higher glucose concentration (Figure 3B). When blood glucose levels 
exceed the renal glucose threshold, glucose is excreted to urine and re-absorption of 1,5-AG is 
inhibited resulting low 1,5-AG concentrations with hyperglycemic events24. Two parental samples 
also showed low concentrations of 1,5-AG suggesting DM although medical records for these 
individuals were not available. 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
 

Fig. 3. Metabolome-wide analysis of outlier features in a patient with phenylketonuria (A) and an individual 
with type II diabetes mellitus (B). Black solid line represents zero z-score for each metabolite (colored bars 
in radial). Inner and outer red dotted lines show -3 and 3 z-scores from the Qn estimator for each feature.  

4.  Discussion 

Using an untargeted metabolomics platform, we successfully profiled a broad range of internal and 
external exposures in plasma samples from a cohort comprising generally healthy and individuals 
with diverse pediatric disorders with a fraction of cost for measuring several clinical laboratory tests. 
Endogenous features such as lipids, amino acids and nucleic acids were consistently measured in 
both children and adults while the total number of detected features was correlated with age likely 
due to exposures to diverse exogenous chemical compounds with aging. Internal metabolites 
correlated with exogenous chemical compounds (e.g., PFAS and PFOS) suggested potential 
metabolic pathways affected by such compounds. Moreover, the use of antibiotics was reflected in 
the concentration changes of gut microbial products.     
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  The total number of chemical entities has not been reported in the human and no metabolomics 
platform can quantitatively measure the entirety of chemicals of endogenous and exogenous origins. 
Unbiased profiling of all chemical compounds present in the human tissues may not be possible in 
near future nor required to understand the impact of metabolomic changes due to underlying 
physiological changes and exposures, which require further investigation and 
theoretical/experimental model validations25.   

 There are few challenges that needed to be addressed for clinical research use of metabolomics 
in the context of precision medicine. Firstly, the reliability of measurement should be established 
for accurate and reproducible results. The US Environmental Protection Agency initiated the Non-
Targeted Analysis Collaborative Trial to evaluate untargeted metabolomics platforms26. A previous 
study showed a wide range of coefficient of variation from 0.96% to 119.1% for the features 
measured by the same metabolomics platform10. To gain broader applications, a systematic 
comparison of platforms would be crucial. Secondly, feature annotation is incomplete. High-
resolution MS has a potential to characterize 10,000 – 30,000 features in a single run. However, 
only a fraction of these features could be annotated with known chemical properties in the current 
study (N = 988). Current computational annotation using m/z and retention time needs to be 
improved. The Human Metabolome Project provides a repository of features from various sources13; 
however, classification of features in terms of ontology and functional characteristics are 
challenging. After all, metabolome databases do not provide the same level of organized information 
compared to genomic sequence databases. Thirdly, population-scale reference datasets would be 
essential for determining reference ranges and interindividual variation in diverse population. 
Coordinated data sharing platforms such as the MetaboLights database27 and Metabolomics 
Workbench28 are highly required to facilitate the distribution of existing data, standards, protocols, 
and analytical tools. Lastly, tissue-wide metabolomics profiling could greatly advance our 
understanding of tissue-specific metabolomic characteristics and their implication in 
pathophysiology of human disease.  
 The proportion of liability explained by genetic variants is relatively small for both common and 
rare diseases. Moreover, allelic and locus heterogeneities are frequently observed29. If one of the 
goals of translational genomic medicine is to find right drug for right patient, genetic data alone 
cannot provide sufficient insights as to diagnostic and therapeutic planning for patients30. Functional 
genomic data such as transcriptomic, proteomic and metabolomic analysis of treatment-naïve and 
during the course of treatment would be required in addition to WES/WGS. An immediate 
application of metabolomics (i.e., metabotype) is to complement genotype for prioritizing, 
optimizing and monitoring treatment strategy for patients with IEMs; however, application of 
untargeted metabolomics could be broader. One potential use case could be to model metabolite 
concentration as endophenotype that is affected by polygenic risk and exogenous environmental 
exposure for common disease. Mendelian randomization studies using metabolite profile seek for 
causal association of metabolic biomarkers in metabolic and cardiovascular diseases. Once the 
analytical validity of untargeted metabolomics platforms is established from population scale 
studies, further dissection of genetic and environmental contributions to common diseases would be 
possible.      
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6.  Appendix 

Table. The list of the 34 gut microbial products, exclusively or mainly contributed by bacteria metabolism, 
detected by the untargeted metabolomics platform used in the current study. Known metabolic pathways 
and the Human Metabolome Database (HMDB) identifiers (ID) are shown for each metabolite. Metabolites 
with a number (#), are compounds that are a structural isomer of another compound in the Metabolon 
spectral library. 

Metabolite name Bacterial pathway HMDB ID 
2-hydroxyhippurate  xenobiotic metabolism HMDB00840 
3-(3-hydroxyphenyl)propionate aromatic amino acid metabolism HMDB00375 
3-(4-hydroxyphenyl)lactate  aromatic amino acid metabolism HMDB00755 
3-hydroxyhippurate xenobiotic metabolism HMDB06116 
3-indoxyl sulfate aromatic amino acid metabolism HMDB00682 
3-phenylpropionate  aromatic amino acid metabolism HMDB00764 
4-hydroxyhippurate xenobiotic metabolism HMDB13678 
4-hydroxyphenylacetate aromatic amino acid metabolism HMDB00020 
4-hydroxyphenylpyruvate aromatic amino acid metabolism HMDB00707 
cholate bile acid metabolism HMDB00619 
daidzein sulfate (1) xenobiotic metabolism  
daidzein sulfate (2) xenobiotic metabolism  
deoxycholate bile acid metabolism HMDB00626 
genistein sulfate xenobiotic metabolism  
glycocholenate sulfate bile acid metabolism  
glycodeoxycholate 3-sulfate bile acid metabolism  
glycolithocholate sulfate bile acid metabolism HMDB02639 
glycoursodeoxycholate bile acid metabolism HMDB00708 
hippurate bile acid metabolism HMDB00714 
hyocholate bile acid metabolism HMDB00760 
indoleacetate aromatic amino acid metabolism HMDB00197 
indoleacetylglutamine aromatic amino acid metabolism HMDB13240 
indolelactate aromatic amino acid metabolism HMDB00671 
indolepropionate aromatic amino acid metabolism HMDB02302 
lithocholate sulfate (1) bile acid metabolism  
methyl-4-hydroxybenzoate sulfate xenobiotic metabolism  
propyl 4-hydroxybenzoate sulfate xenobiotic metabolism  
p-cresol sulfate aromatic amino acid metabolism HMDB11635 
phenol sulfate aromatic amino acid metabolism HMDB60015 
phenylacetate aromatic amino acid metabolism HMDB00209 
phenylacetylglutamine aromatic amino acid metabolism HMDB06344 
phenyllactate aromatic amino acid metabolism HMDB00779 
taurocholenate sulfate bile acid metabolism  
taurolithocholate 3-sulfate bile acid metabolism HMDB02580 
tauroursodeoxycholate bile acid metabolism HMDB00874 
ursodeoxycholate bile acid metabolism HMDB00946 
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