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We have previously developed a statistical method to identify gene sets enriched with 
condition-specific genetic dependencies. The method constructs gene dependency 
networks from bootstrapped samples in one condition and computes the divergence 
between distributions of network likelihood scores from different conditions. It was shown 
to be capable of sensitive and specific identification of pathways with phenotype-specific 
dysregulation, i.e., rewiring of dependencies between genes in different conditions. We 
now present an extension of the method by incorporating prior knowledge into the 
inference of networks. The degree of prior knowledge incorporation has substantial effect 
on the sensitivity of the method, as the data is the source of condition specificity while 
prior knowledge incorporation can provide additional support for dependencies that are 
only partially supported by the data. Use of prior knowledge also significantly improved 
the interpretability of the results. Further analysis of topological characteristics of gene 
differential dependency networks provides a new approach to identify genes that could 
play important roles in biological signaling in a specific condition, hence, promising 
targets customized to a specific condition. Through analysis of TCGA glioblastoma 
multiforme data, we demonstrate the method can identify not only potentially promising 
targets but also underlying biology for new targets.  

 

                                                
* This work was supported in part by the National Cancer Institute, National Institutes of Health [1U01CA168397]. 

Pacific Symposium on Biocomputing 2016

33



 
 

 

1.  Introduction 
1.1.  Gene set analysis, DDN and EDDY 
Identification of biological features underlying disease phenotypes or conditions (e.g. 
differentially expressed or mutated genes) is critical in identifying therapeutic targets. As specific 
pathways are capable of complex rewiring between conditions, methods such as Gene Set 
Enrichment Analysis (GSEA) (1) and network-based analyses (2-4) have become increasingly 
attractive for extraction of such biological features from genomic data. One can use known genetic 
interactions as a ground truth network and overlay genomic data from different conditions to 
statistically evaluate regions with differential activities (5) or condition-specific sub-networks (6-
8). Differential Dependency †  Network (DDN) approaches are able to identify individual 
differential dependencies (9-13) or condition-specific sub-networks from genome-wide 
dependency networks such as a protein-protein interaction networks. Differential co-expression 
analysis methods (14), such as Gene Set Co-expression Analysis (GSCA), test gene sets for 
differential dependencies, but they are often overly sensitive to minor correlation changes and 
produce biased results with respect to the size of gene sets (15).  

In our previous work, we have developed a novel, network-based computational method that 
overcomes the limitations of other network-based approaches (15). This novel computational 
approach – EDDY: Evaluation of Differential DependencY – combines GSEA’s gene-set-assisted 
advantages with the robustness of 
assessment of differential network 
dependency. It interrogates gene sets 
(pathways) in a database to test if 
dependencies across genes are 
significantly rewired between 
conditions (see Fig. 1). It was shown to 
be capable of sensitive and specific 
identification of pathways with 
phenotype-specific dysregulation, i.e. 
rewiring of dependencies between 
genes in different conditions, with its 
robust network inference and low false 
discovery rate (15). 

In this paper, we present a method 
to integrate known biological 
interactions to improve the performance of network inference and to enable better interpretation of 
inferred DDNs. The effect of the degree of prior knowledge integration on inferred DDNs is also 
analyzed. Finally, we describe the application of prior-knowledge assisted EDDY to glioblastoma 
(GB) gene expression downloaded from the Cancer Genome Atlas (TCGA). 

                                                
† In this manuscript, we use ‘dependency’ to denote statistical dependencies derived from data such as co-expression, 

or conditional dependencies, and ‘interaction’ to denote known direct or indirect relationships between genes. 

 
Figure 1. Advantages of EDDY compared to other tools 
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2.  Methods 

From two sets of samples representing different conditions, EDDY computes the discrepancy of 
gene dependency in a specific gene set by contrasting the two resulting probability distributions of 
candidate network structures (based on a likelihood of each network), constructed via a resampling 
approach, and evaluates its statistical significance to determine if the network structures are 
rewired between the conditions.  

2.1.  EDDY: Evaluation of differential dependency 
Let a set of variables G = {g1, g2, … } (each variable corresponds to a gene) denote the activity 
levels of the genes. For G, there are N possible gene dependency network (GDN) structures d1, d2, 
..., dN  for the variables. Let a discrete random variable D take on d1, d2, ..., dN  as its discrete 
values, then the posterior probability distribution Pr 𝐷 𝑺!  for a data 𝑺!  of a given condition C  
can represent the probability distribution of dependency network structures for G in the condition 
C. When two data sets, 𝑺!!  and 𝑺!! , are given for two different conditions 𝐶!  and 𝐶! , the 
divergence between the two corresponding probability distributions Pr 𝐷 𝑺!!  and Pr 𝐷 𝑺!!  is 
computed as a measure of difference between the conditions. The divergence between the 
conditions C1 and C2 is measured using the Jensen-Shannon (JS) divergence, an information-based 
metric to measure the similarity between two probability distributions (16) and the statistical 
significance of the divergence is computed using a permutation approach. This approach is a 
generalization of comparing the best networks from different conditions by considering many 
possible networks and their likelihoods instead of comparing the single best networks. The benefit 
of this generalization is a more reliable measure of discrepancy (15), especially when data is 
limited. Thus, there is a high chance of finding many local optima for the best network. By 
considering many probable dependency networks instead of one local optimal network, our 
approach can represent a more complete picture of dependencies at the cost of additional 
computation. EDDY then iterates through all gene sets in a database, for example, MSigDB 
(http://www.broadinstitute.org/gsea/msigdb/) to identify the dysregulated pathways. 
2.2.  Inference of gene dependency network supported by known interactions 
To reduce computational complexity, EDDY uses a heuristic method that proposes probable 
dependency structures by independently evaluating each dependency between two variables. 
Specifically, 𝜒!-test is applied to test the independence between every pair of two variables gi and 
gj (∈G), obtaining the resultant p-value pij (=pji). An edge 𝑒!" between gi and gj is included when 

Pr 𝑖; 𝑗 𝑺! = 1− 𝑝!"
! > 𝜃 (1) 

where 𝜆 ≥ 1  and a user-specified parameter 𝜃  together control sensitivity of dependency 
discovery. We integrate known interactions retrieved from pathway databases to support 
dependency discovery.  Formally, let 𝑤! ∈ 0,1  denote a prior weight to control the level of prior 
knowledge to be incorporated into the inference of GDN and 𝐸! 𝑖; 𝑗  be a binary-valued variable 
indicating the existence of known interaction between gi and gj. Known interactions can be 
retrieved from a pathway database such as Pathway Commons 2. Edge-specific threshold is given, 

𝜃! 𝑖; 𝑗 ← 𝜃 ∙ 1− 𝑤! ∙ 𝐸! 𝑖; 𝑗 . (2) 
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Prior weight (𝑤!) can be varied between 0 and 1, where 𝑤! = 0 specifies no influence of the 
known gene interactions in GDN inference and all edges in inferred GDN requires full support 
from the data 𝜃! 𝑖; 𝑗 = 𝜃, and 𝑤! = 1 makes inferred GDN include all the known interactions 
unconditionally, 𝜃! 𝑖; 𝑗 = 0.  When 𝑤! = 0.5, edges with half the support from the data will be 
included in the network. Edges are included in a network if they satisfy: 

Pr 𝑖; 𝑗 𝑺! > 𝜃! 𝑖; 𝑗 . (3) 
Since information on the condition-specificity of known interaction is generally not available, 

incorporating known interactions into GDN inference could potentially decrease the divergence 
between GDNs, hence, the sensitivity of the EDDY algorithm to detect pathways with condition-
specificity. The specific effect of prior weight (𝑤!) on the sensitivity of EDDY will be discussed 
in the Results section. 

Considerations: As opposed to data-derived edges, prior edges can have a direction, 
indicating, for example, the influence of one gene on another. While it is straightforward to 
incorporate the direction of an edge into EDDY, this may conflict with the acyclic requirement of 
Bayesian networks. For the computations in this work, directionality was determined not to create 
cycles. In addition, prior edge encompasses many types of interactions such as catalysis or 
phosphorylation. It also may describe various degrees of influence from explicitly controlling a 
state change to simply being a neighbor gene. For the work described here, we excluded these so-
called “neighbor” interactions. In future work, we may 
examine a nuanced means of weighting other types of 
interactions. 

2.3.  Estimating divergence between two conditions-
specific probability distributions of GDNs 
The empirical estimate of the probability distribution, 
Pr 𝐷 𝑺! , is yielded from bootstrapping samples and 
the construction of GDNs as described above. Once 
the probability distribution of dependency network 
structures Pr 𝐷 𝑺!!  and Pr 𝐷 𝑺!!  are computed, the 
divergence between the conditions 𝐶!  and 𝐶!  is 
measured using the Jensen-Shannon (JS) divergence 
and the statistical significance is estimated using a 
permutation test. See (15) for more detail, and the 
overall workflow is shown in Fig. 2. 

2.4.  Topological analysis of Differential Dependency 
Network (DDN) 
GDNs constructed for condition C1 and C2 are 
summarized into differential dependency networks 
(DDNs) where each edge is annotated as C1-specific, 
C2-specific, or common. While these condition-
specific dependencies can be used to identify potential 

 
Figure 2. Workflow of knowledge-assisted 
EDDY 
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targets, the DDN often comprises hundreds of edges, rendering the prioritization of those 
dependencies non-trivial. We utilize the topological analysis of EDDY-derived DDNs to discern 
biologically important signaling nodes.  These nodes could play important roles in biological 
signaling, hence, promising targets. For each node i, we will compute the normalized betweenness 
centrality metrics, 𝑔 𝑖|𝐷!!  and 𝑔 𝑖|𝐷!!  for GDNs, 𝐷!!  and 𝐷!! , respectively (17). The 
regularized difference 

𝛿!" 𝑖 𝐶!,𝐶! = ! !|!!! !! !|!!!
! !|!!! !! !|!!! !!

, (4) 

where η is a regularization parameter, is then used to assist in prioritization of genes. 
2.5.  Comparison to Knowledge-fused Differential Dependency Network (KDDN) 
The KDDN (Knowledge-fused Differential Dependency Network) model (18; 19) extends the 
DDN method by incorporating prior knowledge into its regularized linear regression problem with 
sparse constraints, where the level of prior knowledge, 𝑤!, is a parameter taking value in [0, 1] to 
adjust the degree of prior-knowledge integration into the determination of differential dependency. 
We compare the results of knowledge-assisted EDDY against KDDN’s results. KDDN does not 
aggregate differential dependencies of genes in a gene set and assign a score to a gene set as 
EDDY does, but focuses on individual differential dependencies. Hence, we focus on those 
pathways enriched with differential dependencies, identified by EDDY, and compare 
corresponding differential dependency networks between two methods. 

3.  Results 
3.1.  Data, Gene Sets and Analysis 
We used the gene expression data of 202 glioblastoma multiforme (GBM) samples assigned with 
GB subtype from TCGA to identify pathways enriched with differential dependency between 
mesenchymal (58 samples) and non-mesenchymal samples, and between proneural (57 samples) 
and non-proneural samples. The gene expression data were log-transformed, standardized, and 
quantized prior to EDDY analysis. The gene sets queried for the analysis were 472 gene sets in 
REACTOME category of MSigDB. We then mined known interactions from Pathway Commons 
2 (http://www.pathwaycommons.org) and matched these to all pairings in the REACTOME gene 
sets for prior knowledge incorporation. To investigate the effect of the degree of prior knowledge 
in identifying condition-specific dependencies, the prior weights 𝑤! = 0, 0.5, and 1 were used. 
𝑤! = 0 specifies no influence of the known gene interactions in GDN inference and all edges in 
inferred GDN requires full support from the data, and 𝑤! = 1 makes inferred GDN include all the 
known interactions unconditionally. When 𝑤! = 0.5, dependencies with known interactions are 
added with half the support from the data. 
3.2.  Pathways identified by knowledge-assisted EDDY  
Across three different prior weights (𝑤! = 0, 0.5, and 1.0), EDDY identified 57 pathways with 
statistically significant divergence between mesenchymal (MES) and non-mesenchymal for at 
least one of the weights, and 75 pathways between proneural (PN) and non-proneural. Table 1 
presents a subset (24 pathways) of 57 mesenchymal-specific pathways, and Table 2 a subset (38 
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pathways) of proneural-specific 75 pathways, based on their biological interest (bold-faced) or p-
value (𝑤! = 0.5) < 0.05. For each pathway, we include the number of genes in the pathway, p-
values, PD (the proportion of newly discovered dependencies, ED, compared to the total number of 
edges in GDN, ED+EP) and PC (the proportion of condition-specific dependencies, EC, compared 
to total edges, EC+ES), for different prior weights. As 𝑤! increases, more known interactions are 
added to GDN without condition-specificity, and this has three possible effects.  First, condition-
specific edges with weak support from data can gain support from the prior weighting, thereby 
increasing PC while reducing PD. Second, condition-specific edges with prior support can lose 
specificity and hence, result in reduced PC.  Finally, the loss of condition-specific edges can reduce 
the diversity of networks in the score distribution, having the indirect effect of increasing the 
influence of the surviving condition-specific edges on the divergence calculation. Indeed, we 
observe a consistent decrease in the number of networks in the distribution as we increase prior 
weight. As a result of these competing effects, p-value does not correlate with prior weight, even 
when examined over the finer variation of 0.1 (data not shown). However, we did note that the 
number of pathways with statistically significant divergence tends to decrease with prior weight – 
28, 20 and 16 pathways with statistically significant divergence between mesenchymal and non-
mesenchymal, and 39, 36 and 28 pathways between proneural and non-proneural, as the prior 
weight increases from 0 to 0.5 to 1.0.  

Table 1: A subset of the REACTOME pathways with significant differential dependency between GB mesenchymal 
and non-mesenchymal. PD gives the proportion of newly discovered dependencies over the total number of edges in 
GDN and PC the proportion of condition-specific dependencies over total number of edges. Systematic ID from 
MSigDB is used instead of full pathway for shorten description. Mapping from Systematic IDs for bold-faced 
pathways are provided in Table 3 and Table 4, and in Appendix at the end for the rest of pathways. 

Systematic #  p-value  PD = ED/(ED+EP) PC = EC/(EC+ES) 
ID genes wp=0 wp=0.5 wp=1 wp=0 wp=0.5 wp=1 wp=0 wp=0.5 wp=1 

M760 27 0.0165 0.1314 0.2416 0.37 
  

0.72 
  M5113 29 0.1839 0.0173 0.4192 

 
0.47 

  
0.59 

 M13748 34 0.1406 0.0299 0.0049 
 

0.51 0.45 
 

0.66 0.34 
M9271 33 0.0122 0.0304 0.2399 0.77 0.66 

 
0.75 0.68 

 M506 23 0.0223 0.0478 0.1954 0.20 0.13 
 

0.81 0.59 
 M17157 19 0.0084 0.1605 0.6331 0.51 

  
0.77 

  M764 21 0.0019 0.1777 0.3609 0.73 
  

0.83 
  M571 38 0.6392 0.2754 0.0305 

  
0.58 

  
0.49 

M9694 31 0.7833 0.0026 0.0705 
 

0.04 
  

0.35 
 M1051 16 0.2921 0.0035 

  
0.33 

  
0.57 

 M875 41 0.2310 0.0053 0.9018 
 

0.58 
  

0.76 
 M612 23 0.3943 0.0104 0.8191 

 
0.30 

  
0.59 

 M552 14 0.1828 0.0111 0.6727 
 

0.19 
  

0.58 
 M3634 13 0.0091 0.0191 

 
0.50 0.39 

 
0.86 0.53 

 M1062 21 0.1057 0.0222 0.1714 
 

0.11 
  

0.36 
 M932 19 0.1187 0.0266 0.0606 

 
0.64 

  
0.79 

 M16702 19 0.7982 0.0292 0.6791 
 

0.39 
  

0.61 
 M1016 14 0.3862 0.0348 0.0561 

 
0.47 

  
0.66 

 M1662 23 0.2844 0.0354 0.2397 
 

0.33 
  

0.64 
 M6034 12 0.0568 0.0391 0.1070 

 
0.92 

  
0.64 

 M17787 18 0.2575 0.0426 0.7349 
 

0.69 
  

0.33 
 M7169 39 0.0082 0.0427 0.1184 0.85 0.81 

 
0.80 0.76 
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M901 35 0.0136 0.0427 0.0933 0.37 0.29 
 

0.72 0.56 
 M10122 13 0.3501 0.0433 0.6130 

 
0.05 

  
0.47 

 
Table 2:  A subset of the REACTOME pathways with significant differential dependency between GB proneural 
and non-proneural. 

Systematic #  p-value  PD = ED/(ED+EP) PC = EC/(EC+ES) 
ID genes wP=0 wP=0.5 wP=1 wP=0 wP=0.5 wP=1 wp=0 wp=0.5 wp=1 

M647 16 0.0020 0.0017 0.0014 0.89 0.83 0.78 0.93 0.94 0.72 
M530 37 0.0648 0.0022 0.4847 

 
0.25 

  
0.68 

 M1092 14 0.0154 0.0071 0.0072 0.87 0.79 0.78 0.90 0.84 0.71 
M549 12 0.0335 0.0114 0.8563 0.25 0.16 

 
0.82 0.65 

 M1040 19 0.0141 0.0151 0.0463 0.59 0.52 0.51 0.51 0.43 0.23 
M13408 21 0.1654 0.0202 0.0242 

 
0.43 0.40 

 
0.65 0.33 

M714 38 0.0112 0.1503 0.5874 0.56 
  

0.75 
  M570 44 0.0440 0.2321 0.5892 0.56 

  
0.78 

  M947 25 0.0045 0.0000 
 

0.11 0.07 
 

0.87 0.68 
 M9450 12 0.3631 0.0007 

  
0.39 

  
0.68 

 M860 28 0.1070 0.0011 0.0704 
 

0.20 
  

0.68 
 M12967 35 0.0534 0.0013 0.0395 

 
0.09 0.07 

 
0.58 0.06 

M936 30 0.0050 0.0020 0.0684 0.67 0.48 
 

0.86 0.73 
 M15243 10 0.0559 0.0029 

  
0.00 

  
0.58 

 M1075 31 0.0135 0.0040 0.1367 0.39 0.29 
 

0.88 0.74 
 M846 36 0.2413 0.0052 0.5402 

 
0.22 

  
0.69 

 M1662 23 0.0026 0.0059 0.1335 0.48 0.36 
 

0.86 0.73 
 M801 11 0.0274 0.0061 0.8040 0.50 0.38 

 
0.75 0.58 

 M899 39 0.1676 0.0073 0.1689 
 

0.48 
  

0.76 
 M769 10 0.1899 0.0103 0.7851 

 
0.43 

  
0.93 

 M13115 27 0.0144 0.0122 0.2782 0.03 0.02 
 

0.77 0.64 
 M12627 11 0.0001 0.0139 

 
0.00 0.00 

 
0.86 0.72 

 M564 10 0.1861 0.0152 0.7291 
 

0.19 
  

0.48 
 M10272 11 0.0758 0.0168 0.0001 

 
0.54 0.50 

 
0.72 0.40 

M11184 15 0.0242 0.0180 0.0070 0.88 0.86 0.85 0.75 0.69 0.64 
M719 15 0.1317 0.0190 0.1944 

 
0.06 

  
0.71 

 M794 13 0.0326 0.0215 0.3349 0.61 0.49 
 

0.82 0.69 
 M1014 11 0.3598 0.0232 

  
0.03 

  
0.63 

 M907 11 0.0022 0.0273 0.7901 0.63 0.52 
 

0.68 0.65 
 M837 27 0.4998 0.0273 0.4145 

 
0.39 

  
0.74 

 M918 13 0.0023 0.0285 0.7926 0.63 0.52 
 

0.68 0.65 
 M704 44 0.1173 0.0287 0.2284 

 
0.21 

  
0.66 

 M1016 14 0.1716 0.0359 0.2208 
 

0.35 
  

0.76 
 M3661 22 0.0774 0.0416 0.0697 

 
0.35 

  
0.73 

 M15195 30 0.0953 0.0432 0.0659 
 

0.42 
  

0.70 
 M661 30 0.2166 0.0448 0.4245 

 
0.28 

  
0.65 

 M583 18 0.0162 0.0453 0.1178 0.59 0.43 
 

0.81 0.65 
 M1825 11 0.0229 0.0488 0.0961 0.50 0.37 

 
0.93 0.89 

  

3.3.  Biological Significance of Selected Signaling Pathways Identified by EDDY 

3.3.1.  Condition-specificity of Integrin αIIb β3 signaling in mesenchymal GB 
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EDDY analysis of mesenchymal vs non-mesenchymal GB show significantly different (p = 
0.0165 at 𝑤!  = 0.5) dependency network for INTEGRIN_ALPHAIIB_BETA3_SIGNALING 
(M760; http://bit.ly/1Dlgidx). This pathway is representative of biological mechanisms of 
adhesion in platelets, but there are proteins that participate in other signaling process in a diverse 
array of tissues and diseases. The class dependent DDNs show interesting differences in the state 
of this pathway’s genes in mesenchymal vs. non-mesenchymal GB. DDN and GDNs in Figure 3 
show that mesenchymal GB loses dependency on the cell surface integrins ITGA2B (betweenness 
normalized difference, 𝛿!"=-0.83‡, rank, 𝑅!!"=2) and ITGB3 (𝛿!"=-0.65, 𝑅!!"=7). Activation of 
ITGA2B/ITGB3-RAP1A-PTK2 signaling axis induces glioma cell proliferation (20). There is also 
a shift in the dependencies around SRC kinases between mesenchymal and non-mesenchymal GB 
samples with no SRC dependency evidence in mesenchymal samples but with new dependencies 
developed for Csk (𝛿!"=0.12), also a member of Src-family kinase. In previous work, it is also 
demonstrated that Src family kinases plays very important role in migration and invasion cancer 
cells (21). Lastly, there is dependency shift in intracellular signaling effectors for integrins in the 
mesenchymal samples as evidenced by the 𝛿!"  of PTPN1 (𝛿!" =0.84, 𝑅!!" =1), APBB1IP 
(𝛿!"=0.70, 𝑅!!"=6), SYK (𝛿!"=0.43, 𝑅!!"=11), RAP1B (𝛿!"=0.49, 𝑅!!"=9). These molecules 
have known roles in immunologic cell function, particularly cells of the monocytic origin (22-25). 
Mesenchymal GB samples have an appreciable amount of microglial (brain resident monocytic 
cells) cell infiltration that can be detected by RNA expression data (26), and it is interesting that 
EDDY appears to be detecting differential dependencies in molecules important for microglial 
function. In summary, this DDN demonstrates a differential wiring of ITGA2B/ITGB3 signaling 
network in mesenchymal vs non-mesenchymal GB. Functional validation of such differential 
wiring could help identifying novel nodes of vulnerability for treatment of subtype specific GB. 

3.3.2.  Condition-specificity of PI3K events in ERBB2 signaling in proneural GB 
Another example of differential network dependency is illustrated in the analysis of proneural vs. 
non-proneural samples of GB. An example significant dependency network (p = 0.044 at 𝑤! = 0) 

                                                
‡ The full data for the betweenness centrality and their difference between GDNs are not shown due to the space 

constraint. However, the betweenness centrality is indicated by the size of nodes in the GDNs. 

 
Figure 3: (a) DDN, (b) GDNMES, and (c) GDNnon-MES of Integrin αIIb β3 signaling (M760) pathway 
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is PI3K_EVENTS_IN_ERBB2 Signaling (M570; http://bit.ly/1I87dUt). This pathway highlights 
the signaling events from ERBB2, add associated family members, signal down through PIK3CA 
to AKT and mTOR signaling (Figure 4). There is a shift in the dependency of the ERBB signaling 
receptors between the proneural and non-proneural with a lessened dependency in the proneural. 
This is consistent with the observation that the proneural subtype of GB seems to be more reliant 
on PDGFRA signaling than signaling through ERBB2 (𝛿!"=0.77, 𝑅!!"=4) and EGFR (𝛿!"=0.71, 
𝑅!!"=7) (27). However, PIK3R1 (𝛿!"=0.60, 𝑅!!"=10) does show differential dependency in 
proneural samples, which agrees with observation of enrichment of PIK3R1 mutations in 
proneural samples (27). This may suggest that PIK3R1 mutations drive PIK3CA based signaling 
rather than PIK3CA mutations or ERBB alterations in the proneural subtype. It may also argue 
that PI3K signaling may needs to be targeted differently in different subtypes of GB.  
3.4.  Comparison to KDDN 
Since KDDN does not aggregate score and p-value for pathway as EDDY does, we first identify 
pathways enriched with differential dependency, and apply KDDN to the same data set using the 
same prior knowledge for comparison.  We used KDDN Cytoscape plug-in with parameters 𝜆! set 
to 0.2, 𝜆! to 0.05, and 𝛿 to 0.1, the default settings. The results are summarized in Tables 3 and 4. 

With the default settings, kDDN identifies fewer edges than EDDY. Nevertheless, the general 
trend is that EDDY and kDDN find more than twice as much agreement in condition-specific 
edges than disagreement (selecting edges for opposite conditions). Varying λ1 and λ2 can increase 
the number of kDDN edges to approach those found by EDDY, but we sought a consistent 
approach to setting these parameters for fair comparison, rather than fitting agreement ad hoc. A 
key difference between the two applications is that EDDY identifies both condition-specific and 
shared edges for both conditions. When we include these edges, the overlap improves somewhat, 
but in general, the alignment between kDDN and EDDY is not substantial. We attribute this 
disagreement to the enhanced sensitivity of the EDDY method in assessing significance over a 
distribution of network scores. This might raise a concern for potential false positive discoveries 
by EDDY. However, our previous analysis of EDDY with simulation data indicates the false 
positive rate for EDDY is low, which is also supported by low PD (< 0.5) in Table 1 and Table 2 – 

	
Figure 4: (a) DDN, (b) GDNPN, and (c) GDNnon-PN of PI3K events in ERBB2 signaling (M570) pathway 
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majority of edges identified by EDDY are known interactions. We leave more comprehensive 
comparisons between EDDY and kDDN or other similar methods to our future study. 

Table 3:  A comparison of DDNs found by EDDY and KDDN for GB mesenchymal. EDDY queries selected specific 
gene sets depending on prior weight, 𝑤!. Statistics for the two networks are common dependencies ES and condition-
specific dependencies EC for EDDY, and condition-specific dependencies EK for KDDN. The last column represents 
concordance between KDDN and EDDY DDN, specifically |[EC1∩EK1]∪[EC1∩EK1]| where ECi, represents Ci-specific 
edges identified by EDDY and EKi represents Ci-specific edges identified by KDDN.  

REACTOME Pathway (PN) ID 𝑤! |ES| |EC| |EK| concordance 
INSULIN_RECEPTOR_RECYCLING M506 0.0 25 108 28 8 

INSULIN_SYNTHESIS_AND_PROCESSING M764 0.0 15 75 22 7 
INTEGRIN_ALPHAIIB_BETA3_SIGNALING M760 0.0 41 104 34 9 

PURINE_METABOLISM M9271 0.0 62 190 63 21 
PYRUVATE_METABOLISM M17157 0.0 16 54 53 6 

GLUCONEOGENESIS M13748 0.5 96 183 41 12 
GLYCOLYSIS M5113 0.5 105 149 35 11 

INSULIN_RECEPTOR_RECYCLING M506 0.5 80 115 28 7 
PURINE_METABOLISM M9271 0.5 94 197 63 21 

GLUCONEOGENESIS M13748 1.0 205 106 41 7 
NUCLEAR_SIGNALING_BY_ERBB4 M571 1.0 185 180 65 19 

Table 4:  A comparison of DDNs found by EDDY and KDDN for GB proneural 
REACTOME Pathway (PN) ID 𝑤! |ES| |EC| |EK| concordance 

ACTIVATED_POINT_MUTANTS_OF_FGFR2 M647 0.0 4 57 5 3 
DOWNREGULATION_OF_ERBB2_ERBB3_SIGNALING M549 0.0 5 23 8 3 

FGFR1_LIGAND_BINDING_AND_ACTIVATION M1092 0.0 5 47 5 3 
G1_S_SPECIFIC_TRANSCRIPTION M1040 0.0 33 35 8 3 

PI3K_AKT_ACTIVATION M714 0.0 61 186 58 19 
PI3K_EVENTS_IN_ERBB2_SIGNALING M570 0.0 78 271 83 31 

ACTIVATED_POINT_MUTANTS_OF_FGFR2 M647 0.5 4 61 5 3 
DOWNREGULATION_OF_ERBB2_ERBB3_SIGNALING M549 0.5 15 28 8 2 

ERK_MAPK_TARGETS M13408 0.5 53 99 27 12 
FGFR1_LIGAND_BINDING_AND_ACTIVATION M1092 0.5 9 48 5 3 

G1_S_SPECIFIC_TRANSCRIPTION M1040 0.5 44 33 8 3 
NEGATIVE_REGULATION_OF_FGFR_SIGNALING M530 0.5 130 271 48 26 

ACTIVATED_POINT_MUTANTS_OF_FGFR2 M647 1.0 19 50 5 3 
ERK_MAPK_TARGETS M13408 1.0 108 54 27 5 

FGFR1_LIGAND_BINDING_AND_ACTIVATION M1092 1.0 17 41 5 3 
G1_S_SPECIFIC_TRANSCRIPTION M1040 1.0 61 18 8 2 

4.  Discussion 

Expression profiling and whole genome sequencing from hundreds of GB specimens by 
TCGA has revealed a broad spectrum of genetic alterations and discrete expression signatures and 
subtypes (27; 28). However, the issue of how to best target these molecular subtypes using 
pharmacological agents remains to be addressed. An obstacle in identifying subtype-specific drug 
vulnerabilities is how genetic alterations and gene expression affect wiring of key signaling 
networks that drives tumor phenotype (29). In this work we demonstrated that using knowledge-
assisted EDDY, it is possible to identify subtype specific network wiring and gene dependencies, 
which may be used to identify subtype specific drug vulnerabilities.  
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Finally, we have recently started an implementation of the EDDY algorithm on a GPU, which 
has shown dramatic acceleration. Besides making computations faster and allowing for the 
running of larger datasets, we envision a prior weight optimization over the number of condition-
specific edges. Additionally, experimental validation of highlighted differences is a main priority 
in the future. We have access to cohort of 64 patient derived GB xenografts that include all four 
GBM subtypes and are available to readily deploy to test novel hypothesis indicated through 
EDDY analysis. 

5.  Acknowledgments 

This work was partly funded by National Cancer Institute, National Institutes of Health (NIH) 
[1U01CA168397 — Center for Target Discovery and Development (CTD2)]. 
 

References 
 

1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. 2005. Proc Natl Acad Sci U S A 
102:15545-50 

2. Califano A. 2011. Molecular systems biology 7:463 
3. de la Fuente A. 2010. Trends in genetics : TIG 26:326-33 
4. Ideker T, Krogan NJ. 2012. Molecular systems biology 8:565 
5. Guo Z, Li Y, Gong X, Yao C, Ma W, et al. 2007. Bioinformatics 23:2121-8 
6. Hwang T, Park T. 2009. BMC Bioinformatics 10:128 
7. Kim Y, Kim T-K, Kim Y, Yoo J, You S, et al. 2010. Bioinformatics  
8. Ma H, Schadt EE, Kaplan LM, Zhao H. 2011. Bioinformatics  
9. Lai Y, Wu B, Chen L, Zhao H. 2004. Bioinformatics 20:3146-55 
10. Hu R, Qiu X, Glazko G, Klebanov L, Yakovlev A. 2009. BMC Bioinformatics 10:20 
11. Mentzen W, Floris M, de la Fuente A. 2009. BMC Genomics 10:601 
12. Zhang B, Li H, Riggins RB, Zhan M, Xuan J, et al. 2009. Bioinformatics 25:526-32 
13. Zhang B, Tian Y, Jin L, Li H, Shih Ie M, et al. 2011. Bioinformatics 27:1036-8 
14. Choi Y, Kendziorski C. 2009. Bioinformatics 25:2780-6 
15. Jung S, Kim S. 2014. Nucleic acids research 42:e60 
16. Lin J. 1991. IEEE Transactions on Information Theory 37:145-51 
17. Freeman LC. 1977. Sociometry 40:35-41 
18. Tian Y, Zhang B, Hoffman EP, Clarke R, Zhang Z, et al. 2014. BMC systems biology 8:87 
19. Tian Y, Zhang B, Hoffman EP, Clarke R, Zhang Z, et al. 2015. Bioinformatics 31:287-9 
20. Sayyah J, Bartakova A, Nogal N, Quilliam LA, Stupack DG, Brown JH. 2014. The Journal of 

biological chemistry 289:17689-98 
21. Guarino M. 2010. Journal of cellular physiology 223:14-26 
22. Traves PG, Pardo V, Pimentel-Santillana M, Gonzalez-Rodriguez A, Mojena M, et al. 2014. Cell death 

& disease 5:e1125 
23. Jakus Z, Fodor S, Abram CL, Lowell CA, Mocsai A. 2007. Trends in cell biology 17:493-501 
24. Li Y, Yan J, De P, Chang HC, Yamauchi A, et al. 2007. Journal of immunology 179:8322-31 
25. Medrano-Fernandez I, Reyes R, Olazabal I, Rodriguez E, Sanchez-Madrid F, et al. 2013. Cellular and 

molecular life sciences : CMLS 70:2395-410 
26. Engler JR, Robinson AE, Smirnov I, Hodgson JG, Berger MS, et al. 2012. PloS one 7:e43339 
27. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, et al. 2010. Cancer cell 17:98-110 
28. Cancer Genome Atlas Research N. 2008. Nature 455:1061-8 
29. Oh YT, Cho HJ, Kim J, Lee JH, Rho K, et al. 2014. PloS one 9:e103327 

Pacific Symposium on Biocomputing 2016

43



 
 

 

Appendix 

Systematic	ID	 Pathway	
M10122	 RETROGRADE_NEUROTROPHIN_SIGNALLING	
M1014	 IL_6_SIGNALING	
M1016	 SYNTHESIS_OF_VERY_LONG_CHAIN_FATTY_ACYL_COAS	
M1016	 SYNTHESIS_OF_VERY_LONG_CHAIN_FATTY_ACYL_COAS	
M10272	 IONOTROPIC_ACTIVITY_OF_KAINATE_RECEPTORS	
M1051	 INTEGRATION_OF_PROVIRUS	
M1062	 ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTIDE_LOADING_OF_CLASS_I_MHC	
M1075	 INWARDLY_RECTIFYING_K_CHANNELS	
M11184	 ENDOGENOUS_STEROLS	
M12627	 DOPAMINE_NEUROTRANSMITTER_RELEASE_CYCLE	
M12967	 MRNA_3_END_PROCESSING	
M13115	 G_PROTEIN_ACTIVATION	
M15195	 MAPK_TARGETS_NUCLEAR_EVENTS_MEDIATED_BY_MAP_KINASES	
M15243	 GAP_JUNCTION_DEGRADATION	
M1662	 SIGNALING_BY_BMP	
M1662	 SIGNALING_BY_BMP	
M16702	 ACTIVATED_AMPK_STIMULATES_FATTY_ACID_OXIDATION_IN_MUSCLE	
M17787	 GLUCURONIDATION	
M1825	 REGULATION_OF_INSULIN_SECRETION_BY_ACETYLCHOLINE	
M3634	 CASPASE_MEDIATED_CLEAVAGE_OF_CYTOSKELETAL_PROTEINS	
M3661	 FGFR_LIGAND_BINDING_AND_ACTIVATION	
M552	 PROLACTIN_RECEPTOR_SIGNALING	
M564	 MEMBRANE_BINDING_AND_TARGETTING_OF_GAG_PROTEINS	
M583	 RIP_MEDIATED_NFKB_ACTIVATION_VIA_DAI	
M6034	 SEROTONIN_RECEPTORS	
M612	 CIRCADIAN_REPRESSION_OF_EXPRESSION_BY_REV_ERBA	
M661	 SIGNALING_BY_FGFR1_MUTANTS	
M704	 SIGNALING_BY_FGFR_MUTANTS	
M7169	 NCAM1_INTERACTIONS	
M719	 SHC1_EVENTS_IN_EGFR_SIGNALING	
M769	 ELEVATION_OF_CYTOSOLIC_CA2_LEVELS	
M794	 ACTIVATION_OF_CHAPERONES_BY_ATF6_ALPHA	
M801	 ACTIVATION_OF_CHAPERONE_GENES_BY_ATF6_ALPHA	
M837	 CREB_PHOSPHORYLATION_THROUGH_THE_ACTIVATION_OF_RAS	
M846	 FRS2_MEDIATED_CASCADE	
M860	 SHC_MEDIATED_CASCADE	
M875	 NETRIN1_SIGNALING	
M899	 IL1_SIGNALING	
M901	 GLOBAL_GENOMIC_NER_GG_NER	
M907	 CALNEXIN_CALRETICULIN_CYCLE	
M918	 N_GLYCAN_TRIMMING_IN_THE_ER_AND_CALNEXIN_CALRETICULIN_CYCLE	
M932	 SYNTHESIS_SECRETION_AND_INACTIVATION_OF_GLP1	
M936	 TRAF6_MEDIATED_IRF7_ACTIVATION	
M9450	 PLATELET_ADHESION_TO_EXPOSED_COLLAGEN	
M947	 INHIBITION_OF_VOLTAGE_GATED_CA2_CHANNELS_VIA_GBETA_GAMMA_SUBUNITS	
M9694	 ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX	
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