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Online social media microblogs may be a valuable resource for timely identification of critical ad hoc
health-related incidents or serious epidemic outbreaks. In this paper, we explore emotion classification
of Twitter microblogs related to localized public health threats, and study whether the public mood
can be effectively utilized in early discovery or alarming of such events. We analyse user tweets
around recent incidents of Ebola, finding differences in the expression of emotions in tweets posted
prior to and after the incidents have emerged. We also analyse differences in the nature of the tweets
in the immediately affected area as compared to areas remote to the events. The results of this
analysis suggest that emotions in social media microblogging data (from Twitter in particular) may
be utilized effectively as a source of evidence for disease outbreak detection and monitoring.
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1. Introduction

Syndromic surveillance involves monitoring of public health information resources, to facilitate
early detection of disease outbreaks, and to monitor the size, spread, and tempo of epidemic
outbreaks.1 Many jurisdictions have regulations for reporting on infectious diseases to public
health officials, for instance requiring that laboratory-confirmed cases of influenza be notified
to the government (see, e.g., the Australian National Notifiable Diseases Surveillance Systema).
However, it is important to have surveillance mechanisms in place that identify weaker signals
of disease activity, in particular for diseases with potentially severe public health consequences,
such as Botulism or Ebola, that public health officials want to be able to respond to quickly.
Social media posts are a major source of uncurated user-generated feedback, that may have a
positive impact on critical applications related to public health and safety.2

There have been a number of efforts to develop computational approaches that enable
automated monitoring and early warning systems making use of online resources. In recent
work,3–6 prediction of near future Influenza events as well as the spread of N1H1 and Ebola
cases were studied using descriptive statistics extracted from Twitter messages as well as
utilizing data from Google Flu Trends.7 This work supports the usefulness of Twitter data
for pandemic event surveillance. However, it mostly focuses on descriptive statistics at the
level of single tweets (or single sentiments) over time and does not consider the combination or
distribution of sentiments across a collection of tweets as an early warning signal.

RSS feeds have also been classified as relating to certain pathogens without necessarily
having explicit evidence or mention of the pathogen (i.e., from reported symptoms).8 Such

awww.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-nndss-nndssintro.htm
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systems have been demonstrated to produce similar predictions to that of government health
organizations.7,8 However, these methods may not be appropriate for identifying salient out-
breaks where only a small number of people are infected, such as isolated Ebola cases, while
an influx of web and social media messages regarding the disease is encountered.

We approach disease outbreak detection from the perspective of the emotional stance of
a user towards a disease. The underlying hypothesis of our work is that a proximal disease
incident will trigger the expression of concerns about the incident, and that these expressions
will differ qualitatively (emotionally and linguistically) from the typical chatter around a
distant or less immediate threat. We propose a model, building on this hypothesis, to detect a
shift in the nature of the conversations around a specific disease on the basis of changes in
the distribution of emotions expressed in tweets containing some response to a public health
incident. Public mood has been demonstrated to relate to major socio-economic events,9 and
identifying shifts in emotions may also provide a useful early indicator that a new public health
incident has occurred. This strategy removes the need for classification of textual documents
into pre-defined syndromes or explicit prediction of future events; instead, it has a focus on
the distribution of emotional expressions in the texts of microblogs in specific periods of time.

We therefore explore the relationship between public mood and salient public health threats
in this paper. We believe that users express different emotions, thoughts and speculations and
may post different types of informational links and resources at times prior to and following
major epidemic incidents. This may be particularly true when a user feels directly impacted
by an incident, e.g., due to geographical proximity to an event. We do not pre-suppose that
there are specific emotions that will be consistently identifiable across distinct public health
issues, but rather focus on whether there is a change in the distribution of emotions.

We examine the distribution of emotion classes in tweets to estimate the differences between
emotional features before and after likely outbreaks with two component strategies:

• Emotion classification of tweets, using a trained classification model to assign each
tweet to one of several emotion classes.

• Emotion shift detection through statistical analysis of tweet corpora, comparing the
distribution of emotions expressed in tweets immediately prior to and after relevant
incidents.

To explore our hypothesis, a case study of two recent events in London, United Kingdom
where a health worker was found to have been exposed to the Ebola virus is provided. The
emotions of all tweets in London around these events explicitly mentioning Ebola were analysed.
We demonstrate that by monitoring Twitter microblogs, it is possible to capture likely outbreaks
through detection of emotional shifts in user tweets.

2. Emotion Classification of Tweets

We begin by developing an emotion classifier for outbreak-related tweets, using a new annotated
data set and an emotion inventory that adopts Ekman’s six basic emotions10 (“anger”, “disgust”,
“happiness”, “sadness”, “surprise”, and “fear”), and extends it with three additional “attitudinal”
classes, “sarcasm”, “news-related”, and “criticism”.
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Emotion detection from textual data has been previously tackled using various unsuper-
vised11 and supervised approaches.12 Aman and Szpakowicz13 utilized corpus-based unigrams,
emotion-related words extracted from Roget’s thesaurus, and features derived from WordNet-
Affect to train a supervised emotion classifier. They employed Ekman’s inventory plus a
no-emotion class in their work. Wang et al.14 utilized an overlapping emotion inventory and
similar features. They found improvements in tweet emotion classification through consideration
of the sentiment of words (positive or negative) as features.

We approach emotion detection using similar textual features to these previous studies,
testing both lexicon-based (unsupervised) and supervised methods. We developed a binary
classifier for each emotion class, experimenting with several representations of tweet texts, as
will be discussed in the following sections.

2.1. Lexicon-Based Classification

A simple unsupervised baseline emotion classifier was implemented for each emotion class,
using a lexicon-based vector model. We constructed a reference vocabulary consisting of terms
corresponding to each emotion class.b These terms include emotion-related terms from Emotion
Vocabulary,15 lexical units derived from the FrameNet16 frame Judgement-communication
(for class “criticism”), emotion terms from the Profile of Mood States,9,17 and emoticons.
We also include terms specifically for the “news-related” category, corresponding to popular
international news agency names. The resultant reference vocabulary contains 499 terms. Each
emotion class is represented as a binary vector with respect to this reference vocabulary; any
term from the vocabulary relevant to the emotion was marked 1 and irrelevant terms 0.

For classification, tweets were also mapped into this lexical vector representation, with a
1 indicating that the tweet contains a given term from the vocabulary. The cosine similarity
score between this tweet vector and each of the nine emotion class vectors was computed; the
class with the highest similarity was returned as the classification of the tweet.

2.2. Machine Learning-Based Classification

A Näıve Bayes classifier, implemented in MALLET toolkit,18 was used for our machine learning-
based classification. The basic features used to represent tweets were bag-of-words. This set of
features was augmented in a feature engineering step. The extra features included: i) the lexicon-
based similarity score for each of the nine classes obtained from the baseline lexicon-based
classifier, ii) emotion vocabulary from the same reference vocabulary that the lexicon-based
classifier made use of, iii) emoticons, iv) punctuations including question and exclamation
marks, and v) sentiment classification of the tweet text from the Stanford Sentiment Analyzer
(i.e., negative, neutral, or positive).19

2.3. Data

To train the emotion classifier on tweets relevant to an active public health threat, we collected
recent tweets regarding Ebola using the Twitter API. A total of 12,101 tweets that contained

bThe vocabulary is available at: https://bitbucket.org/readbiomed/socialsurveillance
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Table 1. The distribution of the nine emotion classes over the 4,405 Ebola tweet set labelled by Mechanical
Turk workers.

Class Sarcasm News-rel. Criticism Fear Surprise Anger Happiness Disgust Sadness
#Tweets 1,322 2,572 166 81 67 62 61 51 23

the word “ebola” were collected from all over the world in the second half of March 2015.
Non-English tweets were filtered out, leaving 7,039 tweets. After initial pre-processing of the
tweets and removal of redundant (identical) tweets, 4,405 tweets remained.

The tweet texts were normalized in the pre-processing step. All URLs, email addresses,
mentions (i.e., @replies and @usernames), and hash tags were replaced by “url”, “emailAddress”,
“atSign”, and “hashTag”, respectively. Only “#Ebola” tags were retained and converted to
“ebola” in order to preserve mentions of the disease. The “RT” tags at the beginning of the
re-tweets were also removed and any redundant tweets (e.g., re-tweets of the same text) were
then filtered out. This resulted in preserving only those re-tweets for which the original tweets
were missed in the time frame when data capture was in process.

Amazon’s Mechanical Turk20 was used to acquire human judgements of the emotion labels
for each tweet in the set of 4,405 Ebola tweets. The qualification criteria for Mechanical Turk
workers who labelled the data included: i) they were “categorization masters”, ii) located in
the US (as a proxy to ensure their English was of reasonable standard), and iii) achieved at
least 90% accuracy on a test that involved labelling of 10 tweets in to one of the nine emotion
classes. Table 1 summarizes the distribution of classes over the resultant tweet set.

A second round of pre-processing was carried out on the labelled dataset before training
the binary Näıve Bayes classifiers for the nine classes. This included tokenization, lowercasing
of tokens, removal of stop-words, and lemmatization.

2.4. Experiments and Discussion

The two classifiers were applied to the Ebola emotion dataset. The baseline classifier, as it
is unsupervised, was tested on the full dataset. The ML classifier was trained and tested in
a 10-fold cross-validation scenario. The macro average of precision, recall, and F1 measures
were calculated over the nine classes for each classifier, with each feature set (see section 2.2).
Table 2 summarizes the results (some results not shown for clarity).

The results in Table 2 demonstrate that the baseline lexicon-based classifier is strongly
outperformed by the ML-based Näıve Bayes classifier, even with the basic bag-of-words features.
Adding features beyond the bag-of-words features to the ML classifier had an incremental
effect on the performance of the classifier. In general, bag-of-words features may result in
higher classification performances as the number of input texts grow.19 Since user tweets are
mostly short pieces of text, the incremental effect of additional features is expected. On the
other hand, in most cases, lemmatization of tweet tokens had only marginal impact on the
results, so we have elided results without lemmatization from Table 2, except for the scenario
with the overall best performance. When lemmatization was off, the highest classification
performance was achieved by the ML-based classifier that utilizes all the possible feature
sets. Among the different feature sets used in combination with bag-of-words features, the
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Table 2. Binary emotion classification results on the set of 4,405 tweets with different feature sets.
The Lexicon-Based (LB) measures were obtained on the entire data set as the test set while the
Näıve Bayes (NB) measures were calculated using 10-fold cross validation. Note: bow=bag-of-words,
LBsim=lexicon-based similarity measure (see section 2.1), eVoc=emotion vocabulary, emt=emoticon,
punc=punctuation, sent=sentiment, rest=LBsim+sent+punc, p=precision, r=recall, f=F1 score,
M.avg.=macro average, +[*] means NB/bow+[*], and lem=lemmatization. Except for +sent, all results
are with +lem only.

Class Metric LB NB/bow +LBsim +eVoc +emt +punc
+sent(iment)

+rest
-lem +lem

Sarcasm p .517 .782 .793 .786 .787 .801 .798 .784 .794
r .910 .781 .791 .785 .787 .801 .798 .783 .791
f .659 .781 .790 .784 .786 .800 .797 .783 .791

News-rel. p .0 .827 .821 .824 .823 .828 .835 .829 .830
r .0 .821 .820 .822 .816 .825 .830 .825 .830
f .0 .823 .820 .823 .819 .826 .832 .827 .830

Anger p .466 .799 .726 .815 .807 .760 .776 .789 .769
r .774 .780 .726 .802 .805 .742 .768 .790 .755
f .582 .777 .720 .800 .798 .731 .747 .771 .733

Criticism p .0 .679 .688 .636 .636 .662 .675 .675 .661
r .0 .680 .683 .637 .636 .665 .670 .667 .660
f .0 .670 .679 .633 .633 .660 .663 .665 .652

Surprise p .473 .489 .566 .617 .609 .681 .658 .624 .707
r .791 .512 .546 .590 .603 .646 .618 .619 .677
f .592 .472 .486 .574 .560 .626 .594 .591 .659

Fear p .513 .711 .688 .697 .665 .695 .653 .717 .666
r .963 .701 .702 .681 .654 .687 .652 .709 .653
f .669 .678 .671 .664 .611 .676 .629 .673 .642

Happiness p .487 .717 .714 .760 .740 .668 .745 .842 .758
r .918 .702 .735 .750 .726 .658 .758 .820 .747
f .636 .681 .669 .735 .710 .646 .722 .824 .741

Disgust p .471 .742 .681 .695 .648 .686 .667 .743 .692
r .784 .716 .666 .681 .635 .684 .674 .716 .690
f .588 .661 .614 .654 .603 .661 .626 .696 .679

Sadness p .537 .829 .675 .785 .767 .729 .717 .821 .646
r .956 .829 .717 .771 .771 .729 .712 .754 .708
f .687 .799 .646 .720 .724 .686 .656 .739 .622

M.avg.p .385 .731 .706 .735 .720 .723 .725 .758 .725
M.avg.r .677 .725 .710 .724 .715 .715 .720 .743 .723
M.avg.f .491 .705 .677 .710 .694 .701 .696 .730 .706

sentiment features (with lemmatization) resulted in the highest classification macro average
values (precision=0.758, recall=0.743, and F1=0.730). This classification setting was therefore
selected for the next experiments to detect shifts in emotions expressed in user tweets.

3. Unsupervised Emotion Shift Detection

We then explored the measurement of emotional shifts in user tweets around public health
incidents using the best-performing emotion classification model. We propose a method for
shift detection, and test it on a focused dataset collected for the study.
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3.1. Data

3.1.1. Ebola Incident Tweet Corpora

We collected Twitter microblogs (tweets) around the time of two reported cases of possible
Ebola infection in London. The first event involved a health worker named Pauline Cafferkey,
who was diagnosed with Ebola in Glasgow on December 29, 2014 and transferred to London
the following day. News reporting of the event began on December 30, 2014. The second event
involved another healthcare worker who suffered a needle-stick injury in Sierra Leone and was
flown to London for treatment. News reporting of the event began on January 31, 2015.

Specifically, we collected sets of tweets from London containing a mention of the word
“ebola”, for a period of 7 days prior and 7 days after each event. In this way, the time windows
for tweets analysed for each of these events are disjoint. We refer to these datasets as the
ebola-event datasets, and the subsets corresponding to the two time periods under study as the
pre-event corpus (7 days prior) and the post-event corpus (7 days after), maintained separately
for each event. We consider the day the event was reported as the split point. Tweets on that
day are included in the post-event corpus.

To establish a reference dataset, we then downloaded a set of tweets in a similar way to
the ebola-event datasets, but at a time period distinct from the events in London, and from
a region remote to those events. We selected tweets mentioning Ebola from Australia in the
time period December 09-22, 2014. As Australia has had no known cases of Ebola infection,
and it is an issue that likely does not directly impact the Twitter users writing the collected
tweets, this dataset should capture “normal”, background dialogue about Ebola. We refer to
this as the ebola-background dataset. We divide this dataset into two subsets, arbitrarily at
the mid-point of the time period to obtain two subsets of Ebola-related tweets representing a
comparable time frame to each of the ebola-event datasets. We refer to these subsets as the
pre-ebola-background corpus and the post-ebola-background corpus. Figure 1 summarizes the
tweet datasets that were collected and analyzed in this work.

n days from the
date of the likely
incident,
including the
incident date

tpre-event
corpus

post-event
corpus

ebola-background
dataset

ebola-event dataset

pre-eb.-backg.
corpus

post-eb.-backg.
corpus

mid point
of total time period

n days before the date of the
likely incident, excluding the
incident date

date of a
known likely ebola incident

Fig. 1. The tweet collection schema used for analyzing and monitoring changes in user expressed emotions.

3.1.2. Tweet Retrieval and Processing

The tweets for the ebola-event datasets and the ebola-background dataset were collected using
the Twitter API. The geo-codes of the tweets were used to retrieve only tweets posted by the
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Table 3. Tweet and vocabulary statistics of the ebola-event datasets and ebola-background dataset with a
window of 7 days before and after set dates, tied to likely Ebola incident in the region under study for the
event data. The size of the vocabulary (|vocab.|) is equal to the number of distinct tokens.

Dataset Date (±7)
pre-corpus post-corpus

#tweets |vocab.| #tweets |vocab.|
ebola-event-1 Dec/29/14 73 204 337 906
ebola-event-2 Jan/31/15 165 700 90 417
ebola-backg. Dec/16/14 429 1453 340 1208

users from the specific regions under study. A radius of 200 kilometers was used around a
specific geo-code, which for a city roughly corresponds to the geographic center of the city.
Re-tweets and non-English tweets were excluded from the retrieved set of tweets. Only tweets
containing a mention of the specific keyword “ebola” (either as hashtag or an individual
word) were retained for both the ebola-event datasets and ebola-background dataset. No further
analysis was performed for either finding the location of tweets that did not have explicit
geo-code tags, or identifying any other tweets that may have been related to Ebola with no
explicit mention of the disease.

The ebola-event datasets and ebola-background dataset were organized by retrieving tweets
using the above query parameters, restricted to 7-day windows. This is the maximum number
of days that one can move back in history of tweets and retrieve microblogs at any given time
when using the current Twitter API. All of the tweets retrieved for each time window were
put together in one text corpus, i.e., two tweet corpora were created for each dataset; one
containing the tweets related to up to 7 days prior to the likely incident and another containing
7 days of tweets starting from the date of the likely incident in the region. Table 3 shows the
statistics of the two datasets.

Textual modeling of retrieved tweets required some pre-processing of the tweet corpora,
including tokenization, surface normalization, and removal of stop-words from the dictionary
of terms for each tweet corpus. This processing was performed using MALLET.18

3.2. Experiments and Discussion

Our experiments assess the emotion class distributions in tweet corpora, in order to determine
whether there are discernible differences in the emotions expressed in user tweets on the topic
of an infectious disease that arise when the threat shifts from being abstract to being more
immediate. To examine this, we considered the differences within the various datasets that we
have collected — comparing the pre-event and post-event corpora.

3.2.1. Corpus-Level Emotion Distribution Analysis

Each tweet in each of the tweet corpora was first classified into one of the nine emotion and
non-emotion classes introduced in section 2. For this, the highest-performing emotion classifier
model trained on the distinct set of labelled Ebola tweets (see Section 2.4) was utilized to
predict an emotion class label for each tweet. Table 4 summarizes the results of this step. Then,
the differences in the distributions of classes between pairs of corpora were measured using
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Table 4. Distribution of nine classes over the different tweet corpora obtained using the best-performing
emotion classifier. For each data set we report two numbers, (X,Y): the number of instances classified as
positive=X and the number of instances classified as negative=Y, Critic.=Criticism, Happ.=Happiness,
pre/post-e-x=pre/post-ebola-event-x, pre/post-bkg.=pre/post-ebola-background.

Dataset Sarcasm News-rel. Anger Critic. Surprise Fear Happ. Disgust Sadness
pre-e-1 71,2 73,0 73,0 73,0 73,0 73,0 73,0 73,0 63,10
post-e-1 298,39 322,15 300,37 325,12 265,72 288,49 308,29 298,39 277,60

pre-e-2 133,32 162,3 114,51 165,0 113,52 115,50 105,60 138,27 112,53
post-e-2 77,13 88,2 79,11 89,1 75,15 85,5 76,14 79,11 77,13

pre-bkg. 428,1 428,1 373,56 395,34 338,91 405,24 362,67 407,22 395,34
post-bkg. 255,85 332,8 255,85 295,45 283,57 230,110 308,32 309,31 294,46

Table 5. Statistical paired t-test analysis of class distributions in the different datasets in terms of
positive and negative classified instances. A † shows a statistically significant p-value at the 5% level.

Classes Dataset p-value
6 emotions ebola-event-1 0.004†

ebola-event-2 0.002†
ebola-backg. 0.259

6 emotions + 3 non-emotions ebola-event-1 0.009†
ebola-event-2 0.007†
ebola-backg. 0.079

statistical paired t-tests. The statistical significance analysis of the differences between class
distributions was performed for two groups of instances per class per pair of tweet corpora:
group 1) all of the instances that were classified as positive (e.g., happy), and group 2) all of
the instances that were classified as negative (e.g., not-happy). This analysis was done in terms
of the pure-emotion classes (i.e., the six basic emotions) as well as all of the nine emotion and
non-emotion classes.

The distribution differences within each tweet corpus (i.e., the two ebola-event datasets
and the ebola-background dataset) were then calculated. Each time-delimited corpus of each
dataset was compared against its neighboring counterpart; that is, the pre-ebola-event-1 and
the post-ebola-event-1 corpora were compared with each other, the pre-ebola-event-2 and the
post-ebola-event-2 corpora were compared with each other; and finally the two subsets of the
ebola-background dataset were compared. Table 5 summarizes the results of this experiment.

In Table 5, all of the p-values obtained for comparing the tweet corpora before and after
the incidents in London indicate statistically significant differences (at the 5% level) between
class distributions. On the other hand, none of the comparisons between the tweet corpora in
the ebola-background dataset shows a statistically significant difference. This suggests that the
distribution of six basic emotions and/or the nine emotion and non-emotion classes in user
tweets shift significantly as a result of salient health incidents such as Ebola.
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Table 6. KL-divergence analysis of emotion classification distributions for the three datasets.
Since KL-divergence is non-symmetric, X,Y values mean X=KL-divergence of tweet corpus
before vs. after, and Y=KL-divergence of tweet corpus after vs. before.

Class ebola-event-1 ebola-event-2 ebola-backg.
Sarcasm 0.077,0.119 0.013, 0.012 0.395, 1.377
News-rel. 0.066, ∞ 0.001, 0.001 0.023, 0.048
Anger 0.168, ∞ 0.175, 0.139 0.063, 0.074
Criticism 0.052, ∞ 0.016, ∞ 0.020, 0.024
Surprise 0.347, ∞ 0.096, 0.083 0.010, 0.009
Fear 0.227, ∞ 0.436, 0.278 0.312, 0.494
Happiness 0.130, ∞ 0.186, 0.154 0.028, 0.024
Disgust 0.177, ∞ 0.011, 0.010 0.016, 0.019
Sadness 0.009, 0.009 0.144, 0.119 0.022, 0.026

3.2.2. Emotion-Level Distribution Analysis

To understand how the emotions expressed in user tweets shift as a result of likely Ebola
incidents, further analysis was carried out. Here, we measure the distribution of the tweets
that were classified positive vs. negative with respect to each of the nine emotion classes before
and after the likely incidents.

For this analysis, Kullback-Leibler divergence21 was utilized. KL-divergence, also known
as cross-entropy or information divergence, is a non-symmetric measure for the difference
in two probability distributions P and Q over the same event space. On a finite set χ, the
KL-divergence between the two probability distributions P and Q is calculated using Equation 1.
In this case, P and Q represent probability distributions of positive and negative instances of
a specific emotion class for tweet corpora prior to and after the likely incidents. The measure
has been shown to be useful for comparing linguistic corpora in prior work.22,23

Dkl(P‖Q) =
∑
x∈χ

P (x) logn
P (x)

Q(x)
(1)

Table 6 shows the results of KL-divergence analysis of the distribution of the results
of emotion classifications (per emotion) between the two tweet corpora in each dataset. In
addition to revealing the distributions of positive and negative classified instances per emotion
class in each dataset, the results in Table 6 demonstrate how the differences in classifications
distributions across the datasets vary. For instance, it can be observed that the KL-divergence
values for class “surprise” are larger in the two event datasets (0.347,∞ and 0.096,0.083 for
positive and negative classified instances) compared with those between the two corpora of the
ebola-background dataset (0.010,0.009). In this particular case, the KL-divergence measures
re-confirm our findings in previous sections; differences in class distributions are only significant
between the tweet corpora in the two ebola-event datasets (note that smaller KL-divergence
values indicate more similar probability distributions).

4. Limitations

This work has tackled the problem of understanding emotional shift as a result of likely disease
outbreaks in particular regions of the world. However, it is important to note several limitations
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date of a known likely
ebola incident

n days from the
date of the likely
incident,
including the
incident date

the window pair
disjoint on the date of
known likely incident

t

n days before the date of the
likely incident, excluding the
incident date

Fig. 2. The detection architecture for capturing microblogs and monitoring emotional changes in user posts.

of the study, which we will address in future work.
First, the three tweet datasets that were collected may have been more directly comparable

if they were collected from exactly the same region. While the two ebola-event datasets were
from the same urban center in Europe (i.e., London, UK), ebola-background dataset was
collected from Australia. While this allowed us to compare the event-related tweets with a
neutral background set, a dataset from the same geographical region but separate in time
from the events would provide a better assessment of the methods. An additional dataset
from Australia collected over the same time period as the active events would also have been
preferable as a background set. Together, these datasets would allow us to contrast geographical
separation and temporal separation in terms of vocabulary. Due to the history restrictions on
the Twitter API, it is not possible to re-create such datasets after the fact.

Second, due to the sparseness of geo-location meta-data in tweets, a number of related
microblogs from the specific region were missed and not included in the three datasets we
collected. Other researchers have investigated this problem in other contexts.24 An extension
of this study would be to utilize other tweet features for locating microblogs to improve the
data collection procedure.

5. Towards a Detection Model

The long-term objective of our work is to provide practical evidence for early discovery and
timely alarming of localized pandemic outbreaks and salient health threats. We propose that
this aim can be achieved through continuous monitoring of user microblogs, specifically through
identification of sudden emotion shifts. Figure 2 depicts the architecture of the proposal; in
which microblog emotions are analyzed and monitored for changes in the distribution of
emotions. The size and significance of the changes in emotion distributions can subsequently
be utilized, either individually or in combination with other sources of evidence, to detect likely
incidents or outbreaks that are of concern to the public. It is expected that the proportion
of emotional shift reaches its highest value for the two time windows that are disjoint on
the specific date when a putative disease-related incident or outbreak occurs. Although our
focus has been on early identification of localized incidents, more generally, the proposed
methodology can be utilised to detect any wave of panic in public related to other phenomena.

We have taken the initial steps towards reaching this goal by validating the underlying
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assumption that it is possible to observe emotion changes in neighboring sets of Twitter
microblogs across a given time-point corresponding to the start of a reported health threat.
We have established the viability of the approach, although further experiments are required
to explore its application to real-time streaming data from Twitter, and to determine its
effectiveness for early detection. Of particular interest is whether Twitter provides a meaningful
information source for detecting concern about major diseases ahead of news reporting.

We also intend to capture a larger number of tweets and tweet corpora over time to further
our understanding of the nature of vocabulary or lexical shifts around health threats, in addition
to emotion shifts already studied in this work. We would like to implement an active monitoring
and detection procedure over specific regions of the world for any outbreaks of Ebola or similar
pandemic threats that may be both emotionally and lexically monitored and detected.

6. Conclusions

We have analyzed the variation in emotion in Twitter microblogs that are posted by users
prior to and after an identified health threat, building on a text-based emotion classifier to
produce a statistical assessment of emotion distributions. The combined classification and
corpus analysis approach has promising application in online monitoring and detection of
outbreaks in streaming textual data.

Different strategies for emotion classification in the context of serious public health events
were studied in this work, including an unsupervised lexicon-based approach and a supervised
machine learning-based classifier. Our experiments on a large set of Ebola tweets demonstrated
that the ML-based classifier achieved the highest emotion classification performance when
the tweets were represented using sentiments derived from the Stanford Sentiment Analyzer,
combined with lemmatized bag-of-words features.

We considered differences in the distributions of emotion class labels assigned to microblogs
across tweet corpora collected from two recent salient Ebola threats, examining variations in
both corpus-level emotion and emotion-level changes. In our experiments, we found that there
were statistically significant differences in the distribution of emotions in the tweet corpora
that belong to the time periods before and after likely incidents of Ebola. There were no such
differences for the two tweet corpora in a background dataset that was not aligned to any Ebola
incident. This suggests that the distribution of predicted emotion class labels for tweets, based
on Ekman’s six basic emotions plus the three non-emotion classes “sarcasm”, “news-related”,
and “criticism”, can be used as an indication of the occurrence of pandemic health threats.

We will explore the broader capacity of this work to detect emergent health threats of
concern to a localized community, prior to formal reporting, in future work. Currently, we
are developing this study to consider lexical shifts in the tweet corpora alongside the emotion
class distributions discussed in this work. We are working to identify the lexical items that
distinguish tweets from before and after likely health threats.
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