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The	use	 of	 large-scale	data	 analytics,	 aka	Big	Data,	 is	 becoming	prevalent	 in	most	
information	 technology	 discussions,	 especially	 for	 the	 life	 and	 health	 sciences.	
Frameworks	 such	 as	 MapReduce/Hadoop	 are	 offered	 as	 “Swiss-army	 knives”	 for	
extracting	 insights	out	of	 the	 terabyte-sized	data.	Beyond	 the	 sheer	volume	of	 the	
data,	the	complexity	of	the	data	structure	associated	with	such	data	sets	is	another	
issue,	 and	may	 not	 be	 so	 readily	 mined	 using	 only	 these	 technological	 solutions.	
Rather,	 the	 issues	 around	 data	 structure	 and	 data	 complexity	 suggest	 new	
representations	and	approaches	may	be	required.	The	LinkedData	standard	(W3C,	
Semantic	Web)	has	been	promoted	by	some	communities	 to	address	complex	and	
aggregatable	data,	though	it	focuses	primarily	on	querying	the	data	and	performing	
logical	 inferences	 on	 it,	 and	 its	 use	 in	 deep	mining	 application	 is	 still	 in	 the	 early	
stages.	 In	summary,	 there	appears	 to	be	a	gap	between	how	we	access	structured	
data,	 and	 the	 deeper	 analyses	 we	 want	 to	 perform	 on	 it	 that	 preserve	
representation.		
	
Over	the	last	few	years,	an	increasing	number	of	examples	from	life	science	research	
have	appeared	that	apply	topological	and	algebraic	forms	to	genomic	and	complex	
data	problems	(Isomap†,	PLEX‡,	Ayasdi,	FQL§,	BioHaskell**).	The	relevance	of	finding	
structure	 in	 rich	 data	 has	 been	 underscored	 by	 the	 increasing	 efforts	 to	 combine	

																																																								
†	http://isomap.stanford.edu	
‡	http://www.math.colostate.edu/~adams/jplex/index.html	
§	http://categoricaldata.net/fql.html	
**	http://biohaskell.org	
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clinical	data	with	genomic	analyses.	Although	much	attention	has	been	placed	on	Big	
Data	and	batching	 computational	algorithms	 (e.g.,	MapReduce),	understanding	 the	
structure	 of	 the	 data	 to	 better	 analyze,	 extract,	 and	 infer	 insights	 from	 it	 are	 also	
critical.	These	areas,	however,	are	currently	not	supported	sufficiently	for	the	health	
and	 life	 sciences	 communities,	 and	 many	 possible	 applications	 are	 only	 recently	
being	proposed1,4,6.		
	
Coming	 from	a	very	different	perspective,	 abstract	 algebra	and	algebraic	 topology	
(AAAT)	may	provide	new	powerful	insights	to	biomedical	data	sciences.	Historically,	
these	algebra	forms	have	been	very	successful	in	the	study	of	many	profound	topics,	
yielding	an	understanding	of	rich	mathematical	and	logic	structures,	as	well	as	their	
relations	 to	 one	 another.	 Several	 key	 advances	 in	 the	 computer	 sciences	 over	 the	
last	 few	 decades	 (relational	 algebras	 (SQL),	 monadic	 structures	 (javascript),	
description	 logic	 (OWL),	 homotopy	 theory),	 have	 emerged	 from	 these	 fields	 of	
study.	Yet,	due	to	their	mathematical	generalities,	other	 facets	of	abstract	algebras	
have	 not	 easily	 been	 applied	 to	 domain-specific	 applications	 such	 as	 biomedical	
research.	The	potential	is	just	beginning	to	emerge	from	limited	cross-pollination	as	
the	landscape	shifts	to	greater	use	of	large,	diverse	data	sets.	What	is	yet	lacking	is	a	
set	of	 lucid,	yet	powerful	examples	from	AAAT	to	biomedical	applications	that	will	
help	establish	a	bridge	between	these	diverse	disciplines.	
	
Life	 science	 data	 is	 a	 mix	 of	 conceptual	 relations	 (aka	 knowledge,	 e.g.,	 proteins	
encoded	 by	 genes)	 based	 on	 our	 current	 understanding	 of	 biology,	 and	 the	 data	
measurements	 gathered	 from	applying	 large-scale	 chemical	 and	genomic	profiling	
technologies.	 The	 latter	 set	 is	 often	 assumed	 to	 “rest”	 on	 top	 of	 the	 conceptual	
entities	 (genes,	 proteins,	mRNA,	 cellular	 structures),	which	have	 specific	 relations	
with	each	other	(e.g.,	protein	->	gene	deterministic	mappings).	The	logic	associated	
with	 conceptual	models	 that	 house	 data	 could	 be	 extended	with	 additional	 AAAT	
theorems	in	order	to	enable	a	much	deeper	analysis	of	the	data.	
	
As	an	initial	example,	consider	some	concepts	around	topologies,	which	can	be	used	
to	 describe	 different	 “molecular	 spaces”,	 including	 a	 sequence	 topology	 based	 on	
what	 makes	 one	 sequence	 similar	 or	 different	 from	 another.	 Here	 one	 element	
represents	 an	 entire	 genome	 for	 a	 given	 individual	 of	 a	 species,	 and	 the	 adjacent	
elements	 (neighborhood)	are	genomes	 from	other	 individuals	 that	differ	 in	only	a	
few	 bases.	 No	 scalar	 metric	 may	 exist	 in	 this	 space,	 but	 the	 overlap	 of	 subsets	
containing	 similar	 elements,	 and	 subsets	 that	 are	 only	 related	 by	 many	 different	
subset	 coverings	 provides	 a	 very	 discrete	 topology††.	 In	 addition	 to	 the	 elements,	
edges	 between	 the	 elements	 may	 be	 included	 that	 represent	 the	 incremental	
mutational	transitions,	unequal	rearrangements,	and	reciprocal	recombinations	that	
may	 occur.	 Given	 a	 starting	 set	 of	 elements	 (genomes	 with	 only	 a	 few	 alleles),	
multiple	applications	of	recombination	to	the	elements	will	define	a	limited	space	of	
“accessible”	genomes,	known	as	a	closure.	A	corollary	from	this	is	the	Founder	Effect	
																																																								
††	It	is	enormous,	since	every	1000-base	string	has	3	*	1000	one-step	neighbors	and	9,000,000	
(3000^2)	two-step	neighbors,	and	so	on.	
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and	H-W	equilibrium	for	a	limited	starting	population	cut-off	from	larger	allelic	set.	
Only	additional	mutations	can	free	genomes	from	these	closures.	
	
Topologies	can	obviously	be	applied	to	protein	sequences	as	well,	but	proteins	also	
offer	additional	relations	including	interactions	to	other	proteins.	One	also	realizes	
that	 such	 interactions	depend	 (in	 complex	ways)	 to	 their	underlying	 sequence,	 so	
that	 the	 genome	 topology	 space	 captures	 the	 interaction	 graph	 of	 the	 proteins	
“fibered”	above	each	coding	region	of	the	genome.	One	can	continue	to	build	upon	
these	 objects,	 to	 yield	 dynamic	 networks	 that	 can	 affect	 states	 and	
synthesis/degradation	 of	 all	 biomolecules.	 Eventually	 a	 topological	 mapping	
between	 genome	 space	 and	 phenotype	 spaces	 can	 begin	 to	 be	 formally	
represented2,	 and	 to	 some	 extent,	 be	 possibly	 projected	 from	 the	 underlying	
genomic	information.	
	
Categorical	 Theory3,4	 (CT)	 is	 major	 device	 that	 originates	 from	 abstract	 algebras,	
and	 has	 several	 powerful	 features	 for	 organizing	 concepts	 and	 inherent	 system	
logic.	Categories	are	composed	of	objects,	morphisms	(relations),	and	the	ability	to	
compose	morphisms	into	transitive	maps.	Here	objects	are	equivalent	to	what	most	
if	 us	 call	 classes,	 and	 the	 morphisms	 define	 the	 relations	 between	 objects.	 The	
universal	 properties	 that	 come	 along	with	 these	 entities	 allow	 combining	 objects,	
determining	 uniqueness,	 and	 establishing	 equivalencies	 between	 the	 objects	 and	
some	fundamental	morphisms,	e.g.,	maps	from	an	unique	initial	object	to	any	other	
object	 defines	 exactly	 one	 relation	 per	 object	 called	 an	 element).	 These	 can	 be	
populated	 with	 a	 set	 of	 genes	 of	 interest	 and	 the	 relations	 they	 yield,	 including	
commuting	 paths.	 For	 example,	 for	 every	 protein	 p,	 the	 map	 (i)	 from	 p	 to	 its	
transcript,	r,	can	be	composed	with	the	map	(j)	from	r	to	the	gene	g	it	is	expressed	
from,	to	yield	the	composition	(k)	=	(j)	∘	(i)‡‡.	Not	only	does	(k)	map	a	protein	to	a	
gene,	but	 it	 is	guaranteed	to	always	have	the	same	results	as	(j)	∘	(i),	even	though	
multiple	proteins	can	map	to	the	same	transcript,	and	multiple	transcripts	can	map	
to	the	same	gene.	We	say	that	these	relational	structures	commute.		
	
One	 important	 feature	of	CT	 is	 the	definition	 and	use	of	 functors3,	which	not	only	
transform	 objects	 to	 other	 objects	 (within	 or	 between	 categories),	 but	 also	 their	
morphisms	 to	 other	 morphisms.	 They	 become	 very	 useful	 when	 taking	 data	
structures	of	one	model	(e.g.,	a	genome	topology)	to	a	more	advantageous	form	for	a	
different	 problem	 (e.g.,	 a	 graph	 of	 molecular	 interactions).	 Since	 the	 relations	
(morphisms)	 come	 along	 as	 well,	 both	 the	 data	 and	 their	 semantics	 can	 be	
effectively	 transformed	 together.	 As	 will	 be	 described	 below,	 this	 applies	 to	
databases	as	well	as	analytical	manipulations.	
	
Another	 important	 area	 of	 topology	 is	 the	 representation	 of	 simplicial	 complexes,	
which	are	the	compositions	of	ordered	relations	of	entities	for	different	dimensional	
objects:	points,	edges,	 faces,	volumes,	etc.	Each	n-dimensional	object,	or	n-simplex,	
is	composed	of	n+1	(n-1)-dimensional	objects:	a	3d	tetrahedron	has	4	2d-triangular	
																																																								
‡‡	The	notation	for	composition	is	always	read	right-to-left,	since	they	are	operators.	
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faces,	 each	with	3	1d	edges,	 consisting	of	2	0d	points.	 If	 the	edges	between	any	2	
points	are	less	than	a	distance	ε,	they	can	be	chained	into	complexes.	Furthermore,	if	
any	form	a	cycle	of	3	edges,	a	face	object	is	induced	and	identified	with	directionality	
(clockwise	 or	 counter-clockwise);	 the	 same	 method	 is	 applied	 to	 successfully	
generate	and	chain	higher	structures,	such	as	tetrahedrons	(3-simplex),	and	beyond.	
When	applied	 to	 complex	data	 that	have	 some	 form	of	distance	metric,	 they	 form	
clusters	 of	 multidimensional	 simplicial	 complexes	 chains.	 The	 analysis	 of	 such	
complexes	yields	understanding	of	 the	general	structure,	or	homotopy,	of	 the	data	
field.	The	use	of	barcode	analysis,	or	persistent	homology,	by	current	researchers5,6,7	
is	 one	 path	 of	 analysis	 that	 is	 helping	 identify	 complex	 relations	with	 biomedical	
data.	
	
Altogether,	 the	 above	 areas	 support	 data	 mining	 of	 complex	 “high-feature”	 data	
while	 also	 aligning	 it	 to	 established	 and	 hypothetical	 concepts/relations	 and	 the	
logic	 they	 induce	 on	 the	 data	 elements.	 Often	 data	 analytics	 is	 tied	 to	 data	
representations	within	a	database	or	other	kind	of	 repositories.	 	As	 stated	before,	
AAAT	has	helped	 shape	 current	 tools	 and	methodologies	 supporting	 schemas	and	
ontologies.	 This	 can	 be	 further	 enhanced	 by	 recent	 work	 on	 Category	 Theory	 as	
applied	 to	 databases8.	 	 These	 can	 address	 important	 issues	 on	 data	 migration,	
schema	changes,	data	 integrity	and	normalization,	and	 intelligent	query	strategies.	
Most	database	operations	are	some	combination	of	 three	 fundamental	operations:	
project,	join,	union8,9.		
	
Combining	 the	 logical	manipulations	of	biomolecular	relations	along	with	 the	data	
captured	for	these	under	select	conditions,	new	data	constructs	can	be	produced	or	
perhaps	 even	 automatically	 generated	 to	 address	 complex	 analytics.	 Time	 series	
and	 tissue-specific	 data	 (e.g.,	 with	 gene	 expression)	 can	 be	 formally	 encoded	 as	
(Cartesian)	products	of	 simpler	objects	within	a	 category,	 and	 inherit	 their	 logical	
relations	directly	 from	original	 set	of	morphisms	by	applying	universal	properties	
(e.g.,	limits)	and	functors.	Analytic	tools	that	understand	such	composite	structures,	
as	well	 as	 the	multitude	of	 properties	 linked	 to	 each	object	 (gene,	 patient,	 tumor,	
study,	etc.),	can	then	perform	deep	analytics	intelligently	using	decomposition	rules	
on	 the	 data	 subsets	 (sigma	 algebras).	 	 The	 vision	 would	 be	 that	 biomedical	 data	
becomes	less	pre-structured	by	computer	science,	and	more	emergent	in	structure	
based	on	the	rules	for	combining	data,	on	analyzing	data,	and	inferring	hypotheses	
from	data.	What	 is	most	 important	 now	 is	 to	 come	 together	 as	 a	 community	 and	
discuss	what	directions	we	should	consider	exploring,	and	to	identify	a	few	relevant	
examplar	cases	to	work	on	in	order	to	validate	these	ideas.	
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