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CLIP-Seq protocols such as PAR-CLIP, HITS-CLIP or iCLIP allow a genome-wide analysis of
protein-RNA interactions. For the processing of the resulting short read data, various tools are
utilized. Some of these tools were specifically developed for CLIP-Seq data, whereas others were
designed for the analysis of RNA-Seq data. To this date, however, it has not been assessed which
of the available tools are most appropriate for the analysis of CLIP-Seq data. This is because an
experimental gold standard dataset on which methods can be accessed and compared, is still not
available. To address this lack of a gold-standard dataset, we here present Cseqg-Simulator, a simula-
tor for PAR-CLIP, HITS-CLIP and iCLIP-data. This simulator can be applied to generate realistic
datasets that can serve as surrogates for experimental gold standard dataset. In this work, we also
show how Cseg-Simulator can be used to perform a comparison of steps of typical CLIP-Seq analysis
pipelines, such as the read alignment or the peak calling. These comparisons show which tools are
useful in different settings and also allow identifying pitfalls in the data analysis.

1. Introduction

RNA-binding proteins (RBPs) play a central role in post-transcriptional gene regulation (e.g.
in splicing, RNA-degradation or translation). However, the mechanisms by which RBPs reg-
ulate RNA-processing are still poorly understood. This is partially due to the challenges
in quantifying protein-RNA interactions. Therefore, the recent introduction of cross-linking
immunoprecipitation-high-throughput sequencing (CLIP-Seq) protocols that allow measur-
ing protein-RNA interactions at a nucleotide level, such as PAR-CLIP [1], HITS-CLIP [2]
or iCLIP [3], present a great advance as they allow getting an accurate picture of the RBP
binding-landscape.

The approach of the CLIP-protocols is, to first UV-crosslinking RBPs to their bound
RNA [4]. Subsequently, the RNAs are fragmented and the protein-RNA complexes are im-
munoprecipitated, in order to extract the complexes that involve the RBP of interest. Next,
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the RBP is digested using Proteinase K, but typically leaving cross-linked amino acids at
the crosslinking site. Finally, the RNA-fragments are reverse transcribed to produce a cDNA
library that can, at the end, be sequenced. The amino acids that are still linked to the cross-
linking sites can introduce errors during the reverse transcription in the ¢cDNA (diagnostic
events) at the cross-linking site. For PAR-CLIP, these errors are predominately Thymine to
Cytosine conversions (T-C conversion), whereas short deletions are introduced in HITS-CLIP
and truncations in iCLIP experiments. As the diagnostic events occur at the crosslinking site,
the events can be used to infer with single nucleotide-resolution the interaction site.

After sequencing the library, the resulting reads are aligned to the genome. A difference
of CLIP-Seq reads and RNA-Seq reads is, however, that CLIP-Seq reads tend to be shorter
than RNA-Seq reads (typically around 25 bp) and that they additionally can contain diag-
nostic events. Consequently, these two differences make alignment of CLIP-Seq reads more
challenging than the alignment of RNA-Seq reads. To our knowledge there exists no spliced-
alignment tool that is specifically design to align this data. Therefore, various aligners for
gapped or ungapped alignments such as Bowtie2 [10], BWA [11], BWA-PSSM [12], STAR [18]
or TopHat2 [19] are used to map the reads. The aligned reads can then be used in order to
determine the sites of protein-RNA interactions. For this, sites where the CLIP-Seq reads are
enriched are identified (peak calling). More sophisticated approaches, such as PARalyzer [5] or
wavClusteR [7], make additionally use of the diagnostic events in order go get more accurate
predictions.

However, for the read alignment and the subsequent peak calling, a systematics evaluation
of the tools to perform the analyses has not been performed yet. This is partially due to the
fact that there is no dataset available for which the ground truth is known and on the basis
of which the tools can be benchmarked. A potential surrogate for such a dataset could be a
realistic simulated dataset. However, there exist only simulators for RNA-Seq data (e.g. Flux
Simulator [8]) but to our knowledge, there does not exist a realistic simulator for CLIP-Seq
protocols.

In this work, we therefore present the CLIP-sequencing Simulator (Cseg-Simulator), a
software to simulate data for various CLIP-protocols to address this lack of CLIP-Seq data
simulators. We show that our simulation pipeline can be used to generate CLIP-Seq datasets
that have the same characteristics as real datasets. Furthermore, we exemplify how this sim-
ulator can be used to assess the performance of various alignment tools for CLIP-Seq data.
Finally, we study how the choice of the alignment algorithms influences the peak calling and
identify potential pitfalls in the CLIP-Seq data analysis.

2. Material and Methods
2.1. Read simulation approach

Simulated data can provide a useful approximation to real dataset in cases where experimental
determination of the ground truth on a large scale is infeasible. However, for the simulation
to be useful, it is critical that it has the same characteristics as real datasets. Otherwise, the
insights gained on the simulated data may not be transferable to real data. A challenge in the
data simulation is, however, that the underlying processes are often only partially understood.
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Thus, assumptions on the modelled processes have to be made, which may not be valid and
can result in differences between simulated and real data.

In the Cseg-Simulator, we mimic key steps of the CLIP-Seq protocols in order to simulate
CLIP-Seq data that is as realistic as possible. This is done in the following manner (see Fig. 1):

First, we determine the transcriptomic RNA-binding site of the RBP of interest. To this
end, we use a position weight matrix (PWM) of the RBP of interest in order to predict its
binding sites using FIMO [9]. The binding sites are called on the positive strand of annotated
transcripts. As an alternative to the prediction of binding sites the user may also provide a
list of transcriptomic binding sites. This can be useful when the RBP has an unspecific se-
quence motif, binding depends not only on the sequence or a high-quality set of experimentally
determined binding sites is available.

After determining the binding sites, we simulated the raw reads (i.e. the reads without the
diagnostic events). The PAR-CLIP, iCLIP and HITS-CLIP protocol share many steps with
the standard RNA-Seq protocol. Therefore, we use components of the Flux Simulator [8], a
simulator that has been shown to generate realistic RNA-Seq data, for simulation of steps
of CLIP-Seq protocols that are similar to the RNA-Seq protocol. Specifically, we use the
Flux-Simulator to first simulate the transcript abundances if the abundances are not provided
by the user. As the transcripts that are not bound by the RBP are not of interest for the
simulation, we set their expression to zero and readjust the other transcripts in order to speed
up the simulation. This is done such that the overall number of transcripts remains constant.

Next, we use Flux Simulator to generate a library based on the transcript abundances.
Then, we remove all the fragments in the library that do not contain a RBP binding site. This
yields a library of RNA-fragments that have a RBP-binding site. Subsequently, we use the
Flux Simulator to simulate the library amplification and sequencing of the library. This results
in the raw reads. The advantage of using Flux simulator is that effects such as PCR-duplicates
and sequencing errors can be simulated.

Finally, in order to generate the CLIP-Seq reads, we induce the diagnostic events (e.g. T-C
conversions, deletions and truncations) in the raw reads. To this end, we sample the diagnostic
events in the reads according to user specified distribution (diagnostic event profile) that is
centred on the binding site. The resulting CLIP-Seq reads are returned in the FASTA-format.

2.2. Dataset generation

For the CLIP-Seq reads generation, we used our pipeline (see Sec. 2.1). We simulated reads for
the GRCh38 human genome using the GENCODE release 21 gene annotation. To call Pumilio
homolog 2 (PUM2) binding sites, we used the PWM that we obtained from [5]. For the read
simulation we used the T-C conversion event profile of PUM2 from [5]. For the simulation
of deletions, we assumed a uniform diagnostic event profile at all locations in the read that
were a Thymine. To simulate truncations, we assumed that they occur at random at distance.
However, we only introduced the truncation, if the location that was sampled had a distance
of at least 4 bp the binding site.
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Fig. 1. Shown is a flow chart of the Cseqg-Simulator read simulation. Shown in dark grey are the input and
output data.

2.3. Alignment algorithms

In this study, we used the following aligners to align the CLIP-Seq reads to the hg38 human
genome: Bowtie2 [10], BWA [11], BWA-PSSM [12], HISAT [15], PalMapper [16], Segemehl [17],
STAR [18] and TopHat2 [19]. The tools have been selected to cover the commonly used
short read alignment tools for CLIP-Seq data and aligners that are well suited for CLIP-Seq
data alignment. For all the tools, we allowed in general for two mismatches and one indel
during the alignment. To have a comparison that is less affected by the appropriateness of
default parameters for CLIP-Seq data, we contacted the authors to obtain optimised parameter
settings. For the tools where the authors did not reply, we used the parameters that were
recommended by experts working with PAR-CLIP. For BWA-PSSM we used the error-profile
that was provided for PAR-CLIP-Seq data. A list of the non-default parameters is given below:

Bowtie2: -f -p 1 -L 156 -N 1 --very-sensitive --end-to-end

BWA: -k 1 -n 3 -t 1

BWA-PSSM: -1 15 -m 400

HISAT: -f -p 1 --mp 3,1 --pen-cansplice 0 --known-splicesites-infile
splicesites.txt -—max-intronlen 10000

PalMapper: -M 2 -n 3 -1 10 -E 3 -m 3 -S -min-spliced-segment-len 6
-include-unmapped-reads -report-gff-init annotation.gff3 -gpalma
parameter.qgpalma -I 10000 -no-ss-pred

Segemehl: -S -D 2 -M 3 -Z
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STAR: --alignIntronMax 1 --sjdbGTFfile annotation.gtf --outSAMunmapped
"Within" --outFilterMultimapNmax 3 --outFilterMismatchNmax 2
--seedSearchStartlmax 6 --winAnchorMultimapNmax 10000 --alignEndsType
EndToEnd

TopHat2: --report-secondary-alignments --read-mismatches 2 --read-edit-dist
3 --min-anchor-length 10 --splice-mismatches 1 --max-intron-length
10000 --no-coverage-search -—-segment-mismatches 1 --max-multihits 3
--segment-length 10 --no-convert-bam

2.4. Alignment evaluation

To evaluate the alignment of a set of reads, we determined for each read whether the read
was mapping to multiple locations (multimapping) or to only one position. If the latter was
the case we further determined whether the alignment was correct (i.e. it was mapped to the
read‘s origin) or whether its mapping location was incorrect (mismapped).

2.5. Alignment filtering

For the filtering of multimappers, we only kept the best alignment for a read when the second
best alignment had more than one mismatch more than the best alignment. Otherwise, all
alignments for the respective read are discarded. In the later case, the read was treated as an
unaligned read in the alignment evaluation. If read aligned only once, we kept it.

2.6. Peak caller

To call peaks from the CLIP-Seq reads, we used three tools: wavClusteR [7], PARalyzer [5] and
BMix [?]. The tool Piranha [6] was not included in our evaluation as it could not be applied to
all alignments. As the peak calling tools had different requirements to the input SAM-format,
we standardized the SAM-files such that they were accepted by all peak callers. This was
done by discarding all unmapped reads and alignments with ”MD”-tags that included other
operations than nucleotide substitutions. The peak calling tools were run with their default
parameters. We defined the called peaks to be correct when they entirely overlapped the RBP
binding sites.

3. Results
3.1. Read generation

We generated reads for PAR-CLIP, HITS-CLIP and iCLIP experiments of PUM2 using the
Cseqg-Simulator as described below. For the read simulation, we used all transcriptomic PUM2
binding-sites that were predicted by FIMO (FDR< 0.1). Of the 23362 detected binding sites,
5233 were in transcripts that were simulated to be expressed. To simulate the reads, we first
simulated the raw reads without diagnostic events for seven different read length: 14, 16, 18,
20, 24, 28 and 32. Overall, this resulted between 0.66 x 10° and 2.74 x 10° reads per library (see
Tab. 1). We used these reads as templates to simulate three different groups of reads: Reads
with T-C conversions, deletions or truncations. This resulted in seven sets of reads for each
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type of diagnostic event. From the reads for which we simulated T-C conversions, 75% had
at least one diagnostic event. For the reads with simulated deletions and truncations between
85% and 91% resp. 15% and 69% had a diagnostic event. The high variation in the fraction
of reads having a truncation was due to the fact that we set a boundary around the motif
where truncation sites where there were no truncations. Therefore, many short reads were not
truncated.

To determine whether the simulated PUM2-dataset had a realistic diagnostic event dis-
tribution, we analysed the diagnostic event distribution for the simulated data. For this, we
compared the fraction of reads that had a T-C conversion at a given position relative to the
predicted binding site with the diagnostic event profile from [5], which was used for the sim-
ulation (See Fig. 2). Overall, we found that the two profiles were very similar. We noticed,
however, that there were subtle differences at the positions where the motif indicated a high
preference for A. We believe, that these differences are due to the fact that the binding site
prediction did not predict binding sites with a T at these positions. Consequently, a T-C
conversion could not be simulated.

Table 1. Library sizes for the different read lengths.

Read length (bp) 14 16 18 20 24 28 32
Number of reads (x10%) 0.66 1.13 1.16 1.35 1.92 222 2.74

0.6 4 =— simulated T-C conversions
experimental T-C conversions

0.5 4

04 4

0.3

0.2 4

0.1 4

Probability of T-C conversion

TGTANATA
Position relative to motif

Fig. 2. Shown is T-C diagnostic event profile that was used for the simulation (red) and the fraction of reads
that have a T-C conversion at a given position (blue) relative to the motif (bold letters).

3.2. Assessment of alignment tools for CLIP-Seq data

Short read alignment tools are used in most bioinformatics pipelines for the analysis of CLIP-
Seq data. However, the influence of the choice of the aligner on the outcome is an aspect
that has received little attention. Here, we exemplify how we can use the Cseg-Simulator to
asses the performance of aligners for PAR-CLIP, HITS-CLIP and iCLIP data. For this, we
aligned reads for a selection of commonly used short read aligners, namely Bowtie2, BWA,
BWA-PSSM, HISAT, PalMapper, Segemehl, STAR and TopHat2. We then analysed different

aspects of the alignment tools.
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We first studied the sensitivity of the aligners, i.e. how many of the alignments are correct
for reads with T-C conversions, deletions and truncations. To have a fair comparison between
aligners that can produce split-alignments and the other methods, we only considered the
reads that were unspliced in this analysis. We found, as it was expected, that the sensitivity
of the aligners increased as the reads got longer (see Fig. 3). Moreover, we found that the
sensitivity decreased as the number of diagnostic events increased.

Perfect matches

10 0 conversions 1 conversions 2 conversions
0.8
12}
©
©
206
k)
s
'80.4
©
w
0.2
0.0
14 16 18 20 24 28 3214 16 18 20 24 28 3214 16 18 20 24 28 32
Read length Read length Read length
BOWTIE2 BWA BWA-PSSM HISAT
PalMapper Segemehl STAR TopHat2

Fig. 3. Shown is the fraction of unspliced reads with 0 (left), 1 (middle) and 2 (right) conversions that map
perfectly.

For reads with T-C conversions, we found that TopHat2 and BWA-PSMM had the highest
sensitivity, although the sensitivity of TopHat2 for reads having two mismatches plateaued as
the reads got longer. Furthermore, we found that the performance of HISAT was suboptimal
for reads with mismatches. This was not surprising as it was developed to work with longer
reads. We assume that the good performance of TopHat2 can be attributed to the strategy
of TopHat2, to align reads to the transcriptome first and only perform alignment of reads to
the whole genome when no good transcriptomic hit was found. This reduces the number of
potential mapping locations significantly, thus also reducing the number of misalignments. To
confirm that the high sensitivity of TopHat2 for short read lengths can indeed be attributed to
the TopHat2 alignment strategy, we ran TopHat2 without providing a gene annotation (data
not shown). This forced TopHat2 to align to the whole genome. We did this for the 16 bp long
read-dataset. By doing this, the number of unspliced perfectly mapping reads dropped by 96%,
showing that the transcriptome alignment was indeed responsible for the good performance on
the short libraries. This suggests that the two-step alignment strategy might also be promising
for CLIP-Seq data alignment pipelines that are using other aligners than TopHat2.

Next, we analysed the performance of the aligners for reads with simulated deletions (see
Fig. 4). As we expected, the aligners achieved the same sensitivity on the reads without
deletions as on the reads without T-C conversion. This was expected because we used the
same reads as basis for the simulation of all three types of diagnostic events. For the reads
with a deletion, we found that all algorithms could align less than 10% of the reads of length
20 and shorter to the correct location. For the reads that were 24 bp and longer, Segemehl
had the highest sensitivity. The sensitivity of the other tools was considerably lower than
in the T-C conversion setting. We assume that the high sensitivity of Segemehl may be the
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Fig. 4. Shown is the fraction of unspliced reads without and with deletions (left and right, respectively) that
map perfectly.

consequence of the strategy to search, already at the seeding stage, for matches with deletions
and insertions.

After this, we analysed the performance of the aligners for reads with truncations (see
Fig. 5). For these, the performance of all the alignment tools on the reads with truncations
reflected their performance on the reads without diagnostic events. This is because the li-
braries with truncations were basically a mixture of libraries for shorter read lengths without
diagnostic event.

Perfect matches
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PalMapper Segemehl STAR TopHat2

Fig. 5. Shown is the fraction of unspliced reads without and with truncations (left and right, respectively)
that map perfectly.

In order to picture the overall performance of the selected alignment tools, we determined
the fraction of reads that could not be mapped (unmapped), that mapped to multiple loci
(multimapping), mapped to the wrong locus (errors) and both for spliced and unspliced reads,
the reads that were correctly mapping (correct unspliced resp. spliced mapping). We performed
this analysis for the reads with T-C conversions of length 32. Overall, we found that the
fraction of reads in the different categories, varied substantially between the aligners (see
Fig. 6). We found for example that the there were differences in the specificity of aligners.
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Both BWA and BWA-PSSM could align a large fraction of the reads (95.6% resp. 97.4%).
However, a substantial fraction of these alignments (9.0% resp. 10.3%) was mapping to the
wrong location. In contrast, aligners such as STAR and TopHat2 were more conservative (i.e.
did report more of the reads as unmapped): STAR and TopHat2 mapped 88.9% resp. 89.8%
of the reads from which only 1.5% resp. 4.5% were mismapped.
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Fig. 6. Shown is the fraction of reads that were unmapped (light green), errors (yellow), multimapping
(blue), correct spliced alignments (orange) and correct unspliced alignments (turquoise). Shown on right are
the results for the T-C conversion dataset for reads of length 32. Shown on the left are the results for the
dataset after filtering for multimappers.

3.3. Alignment filtering

A post-processing step that is commonly performed after the alignment, is removal of reads
that map to multiple loci. The rational behind this is that for multimapping reads at least
one alignment is wrong. This means that in the multimapping reads at least 50% map to a
wrong location, thus their removal typically increases the quality of the alignment.

In order to understand how such filtering affects the CLIP-Seq data analysis, we first
studied the influence of read-filtering on different categories of the alignments (as defined in
the previous section). To this end, we filtered the reads of length 32 with T-C conversions
for multimappers (see Sec. 2.5). We found, that the filtering affected the different alignment
categories differently (see Fig. 6). Bowtie2, BWA and BWA-PSSM were not affected as with the
parameters used, they only reported one alignment. For the other alignment tools, we observed
that the filtering reduced the number of perfect matches and more strongly also the numbers of
errors. This difference in reduction between the perfectly mapping reads and wrongly mapping
reads was most striking for TopHat2, where only 5.8% of the correct mappings were removed
but 93.8% of the errors. Overall, the filtering increased the specificity of the alignments. This
suggests that filtering for multimappers is beneficial in settings where a high specificity is
required.
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3.4. Peak calling

The second step in the typical analysis of CLIP-Seq data analysis pipelines is the determination
of binding sites by a peak calling. To analyse how the peak calling depends on the alignment
tool that was used to align the reads, we applied PARalyzer, wavClusteR and BMix to all
alignments of the 32 bp long reads with T-C conversions. We found that the number of
peaks that were reported by the tree methods varied between the different alignments (see
Fig. 7) and that PARalyzer had in general the lowest false positive rate. In our comparison
wavClusteR detected between 4080 and 5867 peaks of which between 58% and 87% overlapped
the true binding sites (n=5233). PARalyzer detected between 3336 and 4770 peaks of which
between 74% and 95% overlapped the true binding sites and BMix detected between 3534 and
5948 peaks of which between 66% and 89% overlapped the true binding sites. Furthermore, we
found that the fraction of true positives in the intersection of the peaks of all programs was
in general higher than the fraction of true positives in the calls for each program (data not
shown).

This shows that the choice of the alignments tool has a profound influence on the number of
peaks that are called and suggest that it is important to use the same alignment strategy when
comparing the performance of peak callers. We further investigated whether the difference in
the number of peaks was due to the different numbers of reads that were aligned. Therefore,
we evaluated the peak calling when the same number of reads was used from each aligner (the
number of alignments in the smallest library). In order to exclude confounding of the result
by the number of multimappers, we used the reads that have been filtered for multimappers.

We found that the number of clusters still showed a large variation (see Fig. 7). For
wavClusteR, the number of peaks varied by 837 clusters, for PARalyzer by 973 and for BMix
by 1093 clusters. This suggests that there are also systematic differences between results of the
alignment tools. Furthermore, we found that filtering increased the fraction of true positives
for all libraries for all tools.

4. Software

We have released the read simulation pipeline in a tool called Cseq-Simulator.
This tools can be used under the GNU general public licence v.3. The tool
can be obtained at: https://ohlerlab.mdc-berlin.net/software/Cseq-Simulator_\%
28Crosslinked-sequence_Simulator\%29_129/

5. Discussion

In this work, we have presented Cseg-Simulator, a simulator for different types of CLIP-Seq
data such as PAR-CLIP, HITS-CLIP or iCLIP. This simulator allows generation of datasets
with known ground truth that exhibits several characteristics of real data, e.g. the read length
or the diagnostic event profiles. In order to achieve a high resemblance of simulated and real
data, we model different steps of the CLIP-Seq protocol and build on components of an existing
RNA-Seq read simulator. For the binding site that are used for the simulation we provide two
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Fig. 7. Number of peaks that are called by PARalyzer, wavClusteR and BMiX. Light colors indicate the
number of peaks that are called and dark colors the number true peaks that are called (n=5233). Shown on
the right are the number of peaks that are called for reads with T-C conversions of length 32. Shown on the

left are the number of peaks the multimapper-filtered and subsampled reads with T-C conversions of length
32.

options: (1) Prediction of the binding sites using a PWM. We expect that this provides a
good approximation to RBP-binding in the case where the binding is mainly determined by
the sequence. (2) A user provided list of binding site, which allows users to provide binding sites
that are experimentally determined or derived using other models. We believe that the second
option is particularly helpful when the RBP has a low sequence specificity or binding depends
also on the secondary structure. Overall, Cseg-simulator allows modelling many aspects of
CLIP-Seq datasets and can therefore be applied to simulate data for a broad range of RBPs
and CLIP-Seq protocols.

Additionally, we have exemplified here, how simulated dataset can be used to assess the
steps of a typical CLIP-Seq analysis pipelines. These analyses were performed for the read
alignment, the peak calling and the interdependence of the two. In this assessment of the tools,
we have made several interesting observations: For example, we have found that there was no
best alignment tools for all CLIP-Seq data and that there was also a significant variation in the
sensitivity and specificity of the alignments. When we compared PARalayzer, wavClusteR and
BMix, we have observed that the number of peaks that were discovered, strongly depended
on the choice of the alignment tool and that this was not only due to the different number of
aligned reads. Overall, these observations show the potential of the Cseg-Simulator to inform
decision on which tools to use for an CLIP-Seq data analysis.

A shortcoming of the benchmarking that we have carried out in this study is that we have
mostly relied on default parameters for the tools. Therefore, the results might not reflect the
optimal performance of the tools when tuned to a specific task. We would like to mention,
however, that the simulated data is also valuable resource to improve the performance of the
respective tools for CLIP-Seq data.

Another important point to mention is that, as the exact properties of CLIP-Seq data have
not been characterised entirely, our simulations may not capture all aspects of this data. We
did for example not simulate any biases. Therefore, the insights that have been gained on the
basis of simulated data might not be entirely transferable to real data. However, we believe
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that independent of this shortcoming, important pitfalls in the data analysis can be identified,
which could otherwise not be identified. In the future, we plan to extend Cseqg-Simulator in
order to also simulate stochastic binding and biases, e.g. the ones introduced by the choice of
the restriction enzymes.
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