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Many recent imaging genetic studies focus on detecting the associations between genetic markers 
such as single nucleotide polymorphisms (SNPs) and quantitative traits (QTs). Although there exist 
a large number of generalized multivariate regression analysis methods, few of them have used 
diagnosis information in subjects to enhance the analysis performance. In addition, few of models 
have investigated the identification of multi-modality phenotypic patterns associated with 
interesting genotype groups in traditional methods. To reveal disease-relevant imaging genetic 
associations, we propose a novel diagnosis-guided multi-modality (DGMM) framework to discover 
multi-modality imaging QTs that are associated with both Alzheimer’s disease (AD) and its top 
genetic risk factor (i.e., APOE SNP rs429358). The strength of our proposed method is that it 
explicitly models the priori diagnosis information among subjects in the objective function for 
selecting the disease-relevant and robust multi-modality QTs associated with the SNP. We evaluate 
our method on two modalities of imaging phenotypes, i.e., those extracted from structural magnetic 
resonance imaging (MRI) data and fluorodeoxyglucose positron emission tomography (FDG-PET) 
data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results 
demonstrate that our proposed method not only achieves better performances under the metrics 
of root mean squared error and correlation coefficient but also can identify common informative 
regions of interests (ROIs) across multiple modalities to guide the disease-induced biological 
interpretation, compared with other reference methods. 

 
1.  Introduction 

Neuroimaging genetics emerges as one of the hottest research topics in recent studies, which 
identifies genetic variant associations with imaging phenotypes such as structural or 
functional imaging measures. Since neuroimaging plays an important role in characterizing 
the neurodegenerative process of many brain disease such as Alzheimer’s disease (AD) [1], 
the quantitative imaging phenotypes can provide valuable information so that it holds great 
promise for revealing the complex biological mechanisms of the disease.  

Genome-wide association studies (GWAS) have been widely used to identify the 
associations between single nucleotide polymorphisms (SNPs) and the quantitative traits (QTs) 
such as neuroimaging measures. To address the high dimensionality of the GWAS data and 
small effect size of individual SNPs, in recent imaging genetic studies, researchers have 
developed several generalized multivariate linear regression analysis methods by considering 
the priori knowledge such as inherent structural information to boost the detection power [2, 
3]. Although those methods may have the potential to help discover phenotypic imaging 
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markers related to some candidate risk SNPs [4], another problem of existing methods in 
imaging genetics is that the subjects’ diagnosis information (e.g., class labels such as patients 
or healthy controls) is not fully used for revealing disease-specific imaging genetic 
associations. More recently, some diagnosis induced methods have been proposed to solve the 
imaging genetics problem [5, 6]. A two-step strategy was adopted by [5]: 1) initially, the 
authors identified the voxels that could provide an imaging signature of the disease with high 
classification accuracy using penalized linear discriminant analysis; 2) then they detected the 
SNPs associated with the multivariate phenotypic markers discovered in the first step. 
Moreover, a Bayesian framework for detecting genetic variants associated with a disease while 
exploiting imaging as an intermediate phenotype was proposed in [6], which was designed to 
jointly identify relevant imaging and genetic markers simultaneously. In addition, most of 
imaging genetic studies focus on discovering the associations between single imaging 
modality (e.g., magnetic resonance imaging (MRI)) and SNPs, while ignoring the underlying 
interacting relationships among multiple modalities.  

With these observations, our general motivation is to identify multimodal imaging 
phenotypes serving as intermediate traits between a given AD genetic marker and disease 
status, where we hope to design a simple and powerful model to maximize disease-relevant 
imaging genetic associations. Accordingly, the ideas introduced in [7, 8] can be adopted and 
incorporated into the imaging genetics studies. Specifically in [7, 8], subjects’  similarity has 
been successfully used for designing more powerful multi-modal models on AD classification 
and clinical score regression solutions, which are inspired by multi-task modeling integrated 
with the priori relationship between sample data and the corresponding labels in machine 
learning community [9].  

In this study, we propose a novel diagnosis-guided multi-modality (DGMM) framework 
that considers robust and common regions of interests (ROIs) as well as diagnosis labels such 
as patients or healthy controls to handle the multi-modality phenotype associations with an 
AD genetic risk factor. We evaluate our DGMM method on two modalities of phenotypes, i.e., 
voxel-based measures extracted from structural MRI and fluorodeoxyglucose positron 
emission tomography (FDG-PET)) scans, as well as apolipoprotein E (APOE) SNP rs429358 
(the best known AD genetic risk factor [10, 11]) data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort. The empirical results show that our method not only 
yield improved performances under the metrics of correlation coefficient and root mean 
squared error, but also detect a compact set of consistent and robust ROIs across two imaging 
modalities which are relevant to the studied genetic risk marker. 

2.  Method 

2.1.  Genotype and Phenotype Association 

In this section, we systematically develop our computational models to explore the association 
between a candidate AD risk SNP and multimodal imaging phenotypes. That is, our proposed 
method mainly addresses the problem based on the general linear (least square) regression 
approach. Given imaging phenotypes X = [𝑥1, … , 𝑥n, … , 𝑥N]𝑇 ∈ RN×das input and a candidate 
risk SNP y= [y1, … , yn, … , yN]T ∈ RN as output in the regression model, where N is the number 
of participants (sample size) and d is the number of imaging phenotype ROIs (feature 
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dimensionality). The association model is designed to solve: 
 

min
𝑤

1

2
||𝑦 − X𝑤||2 + 𝜆𝑅(𝑤)                                                    (1) 

 
where 𝑅(𝑤) is a regularization term and  𝜆 is the corresponding parameter. The weight vector 
w measures the relative importance of the imaging phenotypes (i.e., ROI measures) in 
predicting the response of the SNP.  

In the work, the goal of the learned regression model is not to discover relevant SNPs, but 
to select biologically meaningful imaging phenotypes that are associated jointly with a given 
risk SNP and the disease status. Using the linear general regression model formulated by Eq 
(1), we aim to identify interesting imaging phenotypes that can serve as intermediate traits on 
the pathway from an AD genetic risk factor to the clinical diagnosis. 

2.2.  Diagnosis-Guided Single-modality Phenotype Association 

In this study, we consider the relationship between imaging phenotypes and the diagnosis 
information among subjects which are not fully used in conventional association analysis 
methods. More specifically, we will utilize the relationship information among subjects with 
diagnosis labels, i.e., AD, mild cognitive impairment (MCI) or healthy controls (HC). That is, if 
subjects are similar to each other in the original diagnosis feature space, their respective 
response values should be also similar. To solve this problem, we induce a new regularization 

term that can preserve the class level diagnosis information: 
 

         min
𝑤

∑ ||f(xi) − f(xj)||2
2Sij

N
i,j = 2𝑤TXTLX𝑤        (2) 

 
where S = [Sij] ∈ Rn×n denotes a similarity matrix that measures the similarity between every 
pair of samples. L = D − S represents a Laplacian matrix, where D is the diagonal matrix with 
element defined as Dii = ∑ Sij

N
j=1 . Then, the similarity matrix can be defined as: 

 

                             Sij = {
 1, if xi and xj are from the same class

 0,     otherwise                                                   
                                   (3) 

 
The penalized term Eq. (2) enforces that, after being mapped into the label space, the distance 
between the within-class data will be small, which preserves the local neighborhood structure 
of the same class. We induce the diagnosis labels constraint into the single modality 
phenotypic solution and then formulate a diagnosis-guided single modality (DGSM) 
phenotype association model as follows: 
 

min
𝑤

1

2
||𝑦 − X𝑤||2 + 𝛼𝑤TXTLX𝑤                                                    (4) 

 
The strength of DGSM method is that it explicitly models the priori diagnosis information 
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among subjects in the objective function that minimize distance within each diagnosis class 
for selecting the disease-relevant QT associated with the SNP. Especially, the DGSM model can 
generalize and handle the progressive disease with multi-diagnosis status, comparing to the 
binary diagnosis analysis methods that were adopted in [5, 6]. 

2.3.  Multi-modality Phenotype Associations 

We assume that there are N training subjects or samples, with each represented by M 
modalities of phenotypes. Denote Xm = [X1

m, … , Xn
m, … , XN

m]T ∈ RN×d  as the data matrix of the 
m -th modality, and Y= [Y1, … , Y2, … , Yn]T ∈ RN  be the corresponding response values (i.e. 

APOE SNP rs429358). Let 𝑤m ∈ Rd be the linear discriminant function corresponding to the 
m-th modality. Then the multi-modality phenotype association model can be formulated as 
follows: 

min
W

1

2
∑ ||𝑌 − X𝑚𝑤𝑚||2𝑀

𝑚=1 +β||W||2,1  (5) 

 

where W = [𝑤1, 𝑤2, … , 𝑤𝑀] ∈ Rd×M  is the weight matrix whose row 𝑤𝑗   is the vector of 
coefficients assigned to the j-th feature across different modalities, and ||W||2,1 = ∑ ||𝑤𝑗||2

𝑑
𝑗=1  

is penalize all coefficients in the same row of matrix W for joint feature selection. First, the l2,1-
norm regularization term is a “group-sparsity” regularizer, which forces only a small number 
of features being selected from different modalities [12]. Second, the parameter  β  is a 

regularization parameter that is used to balance the relative contributions of the two terms in 
Eq (5). Finally, it is worth noting that our objective function Eq (5) is formatted as a multi-task 
learning framework, where each imaging modality is used to predict the same response 
independently (i.e., Y1 = Y2 = ⋯ = Yn), but the feature selection is regularized jointly by the 
second term in Eq (5) to identify a set of consistent ROIs. 

2.4.  Diagnosis-Guided Multi-modality Phenotype Association 

In this study, we try to develop a novel diagnosis-guided multi-modality (DGMM) framework 
to discover the multi-modality phenotypic associations with an AD genetic risk factor, where 
it explicitly models the priori diagnosis information among subjects in the objective function 
for selecting disease-relevant and robust multi-modality QTs associated with the SNP. We 

induce the diagnosis label constraint into the multi-modality phenotypic solution and design 
a diagnosis-guided multi-modality (DGMM) phenotype association model as follows: 
 

      min
W

1

2
∑ ||𝑌 − X𝑚𝑤𝑚||2𝑀

𝑚=1 +𝜆1||W||2,1 + 𝜆2 ∑ (𝑤𝑚)T(X𝑚)T𝑀
𝑚=1 L𝑚X𝑚𝑤𝑚        (6) 

 

where S = [Sij
m] ∈ Rn×n  denotes a similarity matrix that measures the similarity between 

every pair of samples on the m-th modality across different subjects. Here, L𝑚 = D𝑚 − S𝑚 
represents a combinational Laplacian matrix for the m-th modality, where Dm is the diagonal 
matrix with element defined as Dii

m = ∑ Sij
mN

j=1  .  𝜆1  and 𝜆2  denote control parameters of the 
regularization terms, respectively. Their values can be determined via inner cross-validation 
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on training data. It is promising to find the better solution that is robust to noises or outliers 
via considering both multimodalities and the rich information inherent in the observations. 
The objective function can be efficiently solved using the Nesterov’s accelerated proximal 

gradient optimization algorithm which was used in [7], which is shown in the Algorithm 1. 
Firstly, we separate the objective function into the smooth part Eq (7) and non-smooth 

part Eq (8) as following: 
 

f(W) =
1

2
∑ ||Y − Xmwm||2M

m=1 + λ2 ∑ (wm)T(xm)TM
m=1 Lmwmxm               (7) 

 

g(W) = λ1||W||2,1                                                                (8) 
 

We define the approximation function Eq (9) as following, which is composited by the above 
smooth part and non-smooth one: 
 

Ω(W, Wi) = f(Wi) + (W − Wi, ∇f(Wi)) +
l

2
||W − Wi||F

2 + g(W)                 (9) 

 

where|| ∙ ||F
2 denotes the Frobenius norm, ∇f(Wi) denotes the gradient of f(W) on point Wi at 

the i-th iteration, and l is the step size. Then, the update step of Nesterov’s APG is defined as: 
 

Wi+1 = arg min
W

1

2
||W − V||

F

2
+

1

l
g(W)=arg min

w1,w2,…,wd

1

2
∑ ||wj − vj||2

2d
j=1 +

λ2

l
||wj||2 (10) 

 

where wj  and vj  denote the j-th row of the matrix W and V, respectively. NAGP performs a 
simple step of gradient descent to go from Wi to V, and then it slide a little bit further than   
 

V = Wi −
1

l
∇f(Wi)                                                                 (11) 

 

Therefore, through Eq (9), this problem can be decomposed into d separate sub-problems. The 
key of APG algorithm is how to solve the update step efficiently. The analytical solutions of 

those sub-problems can be easily obtained: 
 

wj
∗ = {

(
||vj||

2
−

λ2
l

||vj||
2

) vj, if ||vj||
2

>
λ2

l

0, otherwise

       (12) 

 

Instead of performing gradient descent based on Wi, we compute the search point as: 
 

Zi = (1 + αi)Wi − αiWi−1                                                           (13) 
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where 𝛼𝑖 =
𝜌𝑖−1−1

𝜌𝑖
  and 𝜌𝑖 =

1+√1+4𝜌𝑖−1
2

2
. 

 

Algorithm 1: to minimize J in Equation (6) 

Input: APOE genotype y= [y1, … , yn, … , yN]T ∈ RN,  

Multimodal imaging data Xm = [X1
m, … , Xn

m, … , XN
m]T ∈ RN×d,  

Subject diagnosis information (i.e., AD, MCI or HC) 

Output: Wi, J
∗ 

Initialization: λ1 > 0, λ2 > 0, l0 > 0, σ > 1, W0 = W1 = 0, ρ0 = 1 

Repeat  (For i=1 to max_iteration I) 

 1. Computed the search point Qi according to Eq (13) 

2. l = li−1 

3. while (f(Wi+1) + g(Wi+1)) >  Ω(Wi+1, Qi), l = σl; 

    Here  is computed by Eq. (10) 

4. Set li ← l  

Until Converges  

Calculate J∗ 
 
 

3.  Experiments 

In this section, we evaluate the effectiveness of the proposed method on the ADNI-1 database. 
For up-to-date data access information, see http://adni.loni.usc.edu/data-samples/access-
data/. One goal of ADNI is to test whether serial MRI, positron emission tomography, other 
biological markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) and early AD. For more details, 
see www.adni-info.org. In our experiments, baseline structural MRI, FDG-PET scans, the top 
AD risk SNP APOE rs429358, another AD risk SNP CD33 rs386544 and non-risk SNP 
rs56283507 (for comparison purpose) are included. This yields a total of 357 subjects, 
including 87 AD, 182 MCI and 88 HC participants. Table 1 shows the numbers for each 
diagnosis code and each SNP. 
 

Table 1. Diagnostic distributions on APOE SNP rs429358 and CD33 rs386544 
and random non-risk SNP rs56283507 

Diagnosis 

Label 

APOE rs429358 Code CD33 rs386544 Code non-risk rs56283507 Code 

0 1 2 0 1 2 0 1 2 

AD 29 45 13 41 34 12 37 37 13 

MCI 83 74 25 87 82 13 79 82 21 

HC 66 21 1 40 36 12 39 40 9 

 

Pacific Symposium on Biocomputing 2016

113

http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
http://www.adni-info.org/


 
 

 

3.1.  Imaging Phenotype Data 

The SPM Statistical Parametric Mapping software package (SPM version 12, for more details, 
see www.fil.ion.ucl.ac.uk/spm/software/) was used to: (1) create normalized gray matter 
density maps from MRI data in the standard MNI space, and (2) register the FDG-PET scans 
into the same space. The MarsBaR ROI toolbox [13] was used to extract mean gray matter 
density and FDG-PET glucose utilization values for each of 116 MarsBaR ROIs. These measures 
were pre-adjusted for age, gender, handedness and education.  

3.2.  Genotype Data  

APOE (located on chromosome 19) has a key role in coordinating the mobilization and 
redistribution of cholesterol, phospholipids, and fatty acids, and it is implicated in mechanisms 
such as neuronal development, brain plasticity, and repair functions [14]. In imaging genetics 
research experiments, several whole-brain studies focused on mapping this risk genetic 
variable [10, 11]. In this work, we focused on studying the susceptibility SNP rs429358, which 
was determined using APOE ɛ2/ɛ3/ɛ4 status information from the ADNI clinical database for 
each participant. We also selected another AD risk SNP CD33 rs386544 and a random non-
risk SNP rs56283507 for the comparison purpose to evaluate the performance of the proposed 
model.  

3.3.  Experimental Settings 

In our experiment, for the input of multimodal imaging phenotypes, we normalized the FDG 
and VBM whose ranges are -5.29 to 6.49 and -5.34 to 4.73, respectively. For the outcome, each 
SNP value is coded in an additive fashion as 0, 1 or 2, indicating the number of minor alleles. 
We have inserted this information in our revised manuscript. 5-fold cross-validation strategy 
was adopted to evaluate the effectiveness of our proposed method. As for parameters of 
regularization, we determined the values by nested 5-fold cross-validation on the training set. 
In current studies, we used SM (denoting single modality based method with Lasso [15] to 
detect a sparse significant subset from imaging phenotypic features (i.e., ROIs)), MC (denoting 
modalities concatenation with Lasso to detect a sparse subset from imaging phenotypes), MM 
(denoting multi-modality method to detect imaging phenotypes from a sparse subset of 
common ROIs), DGSM, DGMC and DGMM (the standard SM, MC and MM with DG, respectively, 
where DG denotes the diagnosis-guided strategy).  

3.4.  Results 

We compare our proposed diagnosis-guided based methods (including DGSM, DGMC and 
DGMM) with conventional methods (including SM, MC and MM), respectively. The 
performance on each dataset is assessed with root mean squared error (RMSE) and 
correlation coefficient (CC) between actual and predicted response values, which are widely 
used in measuring performances of regression and association analysis. The average results 
of RMSE and CC among the 5-fold test on MRI-VBM and FDG-PET modalities are calculated 
respectively as shown in Table 2 and Table 3. The corresponding values on the whole test data 
entirety (denoted Ent for short) are included in both tables, where predicted values from all 
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cross-validation trials are pulled together for calculating a single RMSE or CC. 
As shown in Table 2, the proposed DG based methods consistently outperform their non-

DG based methods in the RMSE performance measure. This demonstrates that diagnosis-
guided information can help improve regression performance from imaging phenotypes to 
genotype. DGMM and DGMC methods yield the best RMSE values of 0.9097 and 0.9096. 
Compared with the DG strategy, the joint regularization across multiple modalities showed 
negative effects on the RMSE performance in some cases (e.g., from SM to MM). Regarding the 
CC results in Table 3, our proposed method shows the best CC of 0.1499 with the MRI-VBM 
modality. The best CC of 0.1471 is obtained by DGMM in terms of the FDG measure while the 
second best performance is 0.1140 by our DGMM method. These results demonstrate the 
proposed methods can take advantage of consistent and robust multimodality information to 
find more important associations. Compared with the joint regularization across multiple 
modalities, the DG strategy had very limited contributions in most cases except the DGMM on 
MRI-VBM (compared with MM).  
 

Table 2. Comparison of regression performances of the competing methods in 
terms of Root Mean Square Error (RMSE)  

Method 
MRI-VBM FDG-PET 

(Mean ± Std) 5-fold Ent (Mean ± Std) 5-fold Ent 

SM 1.0103±0.1123 1.0185 0.9538±0.0549 0.9569 

DGSM 0.9097±0.0342 0.9107 0.9205±0.0446 0.9225 

MC 0.9547±0.1088 0.9635 0.9127±0.0364 0.9138 

DGMC 0.9096±0.0342 0.9635 0.9096±0.0342 0.9106 

MM 1.3358±0.1081 1.3417 1.2267±0.0400 1.2280 

DGMM 0.9097±0.0342 0.9107 0.9097±0.0342 0.9106 

 
 

Table 3. Comparison of regression performances of the competing methods in 
terms of Correlation Coefficient (CC) 

Method 
MRI-VBM FDG-PET 

(Mean ± Std) 5-fold Ent (Mean ± Std) 5-fold Ent 

SM -0.0154±0.1015 -0.0997 -0.1307±0.1323 -0.0557 

DGSM 0.0090±0.1326 0.0039 -0.0322±0.0857 0.0363 

MC -0.0913± 0.1609 0.0345 0.0164±0.0605 -0.1037 

DGMC -0.0241±0.1318 -0.0650 -0.0354±0.1251 0.0525 

MM 0.0928±0.0796 0.0886 0.1471±0.0804 0.1492 

DGMM 0.1499±0.0384 0.1465 0.1140±0.0780 0.1002 

 
We also selected another AD risk SNP CD33 rs386544 and a random SNP rs56283507 as 

the comparison to evaluate the performance on the proposed model. As shown in Table 4, the 
DGMM method with APOE rs429358 yield the best RMSE and CC performance measures, 
which outperform the same method involved the CD33 rs386544 or the random SNP. This 
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matches our expectation, since the APOE SNP has a larger effect size than the CD33 SNP and 
the random SNP. The originality of the work is to make full use of the risk genotype and 
corresponding disease samples to find the intermediate phenotype between an AD genetic 
marker and the disease status. For evaluation purpose, it is desired to select the top AD risk 
SNP to demonstrate our proposed model. 
 

Table 4. Comparison performances (RMSEs and CCs) in our proposed model with 
top risk SNP APOE rs429358, another risk SNP CD33 rs386544, and a random 
non-risk SNP rs56283507. 

Candidate SNPs 
MRI-VBM FDG-PET 

RMSE CC RMSE CC 

APOE-rs429358 0.9097±0.0342 0.1499±0.0384 0.9097±0.0342 0.1140±0.0780 

CD33-rs386544 0.9123±0.0779 0.0582±0.1134 0.9123±0.0779 0.0960±0.0823 

rs56283507 0.9628±0.0346 0.0677±0.1495 0.9628±0.0346 0.0125±0.0686 

 
Besides the improved performances, one major goal of this study is to identify some 

significant and robust phenotypes that are highly correlated to risk genotype marker to 
capture imaging genetics associations in AD research.  

 

 
Fig. 1. Visualization of the top 10 VBM ROIs selected by the proposed method. 

 
The top 10 selected MRI-VBM imaging features, as well as their average regression 

coefficients on 5-fold test, are visualized in Fig. 1 by mapping them onto the human brain. The 
colors of the selected brain regions indicate the regression coefficients of the corresponding 
MRI-VBM markers. As expected, Hippocampus_Left, Hippocampus_Right and Amygdala_Left 
have been detected on top 10 ROIs associated with risk genotype biomarker by the proposed 
DGMM method. It’s worth noting that these stable markers are in accordance with the existing 
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findings. For example, the reduction of hippocampal gray matter has been correlated with 
APOE SNP rs429358 [16]. The APOE polymorphism is the best established genetic risk factor 
for pathological changes that is also associated with anatomical brain changes. 
 

 
Fig. 2. Heat map of the top VBM and FDG ROI associations with APOE SNP rs429358 

learned by the proposed method. 

 
The weights of the top 20 ROIs by every fold DGMM test on the heat map are plotted in 

Fig. 2. Our proposed method tends to select the stable ROIs such as Vermis_7, Vermis_10, 
Hippocampus_Left, Hippocampus_Right and Frontal_Inf_Oper_Left that span across five cross-
validation trials. The APOE SNP is the best established genetic risk factor for pathological 
changes that is also associated with reductions of hippocampal gray matter and glucose 
metabolism [10, 16, 17]. It also demonstrates the robust and consistent ROIs should be 
selected among the independent and different modalities, which discovers the imaging genetic 
associations through biological interpretation. Although reduced volume of cerebellar vermis 
has been associated with dementia [18], the imaging genetic finding of Vermis_7 warrants 
further investigation.   
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4.  Conclusion 

In this study, we have developed a diagnosis-guided multi-modality (DGMM) framework for 
identifying neuroimaging phenotype associations with risk genetic biomarkers. This approach 
explicitly models the priori diagnosis information among subjects in the objective function for 
selecting the most relevant and robust multi-modality QTs (i.e., MRI-VBM and FDG-PET) 
associated with top risk SNP (i.e., APOE rs429358). Experimental results on the ADNI database 
showed that our proposed DGMM method not only achieved better prediction performances 
under the metrics of correlation coefficient and root mean squared error compared with other 
single modality and non-diagnosis-guided methods, but also detected a compact set of robust 
and consistent ROIs across the multimodal phenotypes among the populations to guide the 
disease-induced biological interpretation. The similar model can be also extended to the 
investigation of association analyses between multi-modal brain imaging measures and any 
other biomarkers such as those in cerebrospinal fluid.  Furthermore, the DGMM framework 
can be applied to other genetic associated diseases to investigate the complex biological 
mechanisms from genetics to intermediate traits to diagnostic outcome. An interesting future 
direction is to improve the efficiency of our implementation and apply it to larger scale studies 
such as analyzing high dimensional voxel based imaging data as well as a comprehensive set 
of genetic risk factors. 
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