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According to Cancer Research UK, cancer is a leading cause of death accounting for more than
one in four of all deaths in 2011. The recent advances in experimental technologies in cancer re-
search have resulted in the accumulation of large amounts of patient-specific datasets, which provide
complementary information on the same cancer type. We introduce a versatile data fusion (integra-
tion) framework that can effectively integrate somatic mutation data, molecular interactions and
drug chemical data to address three key challenges in cancer research: stratification of patients into
groups having different clinical outcomes, prediction of driver genes whose mutations trigger the on-
set and development of cancers, and repurposing of drugs treating particular cancer patient groups.
Our new framework is based on graph-regularised non-negative matrix tri-factorization, a machine
learning technique for co-clustering heterogeneous datasets. We apply our framework on ovarian can-
cer data to simultaneously cluster patients, genes and drugs by utilising all datasets. We demonstrate
superior performance of our method over the state-of-the-art method, Network-based Stratification,
in identifying three patient subgroups that have significant differences in survival outcomes and that
are in good agreement with other clinical data. Also, we identify potential new driver genes that
we obtain by analysing the gene clusters enriched in known drivers of ovarian cancer progression.
We validated the top scoring genes identified as new drivers through database search and biomedi-
cal literature curation. Finally, we identify potential candidate drugs for repurposing that could be
used in treatment of the identified patient subgroups by targeting their mutated gene products. We
validated a large percentage of our drug-target predictions by using other databases and through
literature curation.

Keywords: Data fusion; Tumor stratification; Drug repurposing; Cancer driver genes; Non-negative
Matrix Factorization.

1. Introduction

Cancer is a leading cause of morbidity worldwide. It is a complex genetic disease in which the
genomes of normal cells accumulate somatic mutations and other alterations that are eventu-
ally perturbing vital cellular functions. Recent advances in DNA sequencing technologies have
enabled identification of somatic mutations across tumor genomes and exomes of individual
patients1,2. These somatic mutations provide a new and rich source of data for addressing
many challenges in cancer research, such as indentifying driver genes (i.e., genes whose muta-
tions lead progression of oncogenesis), stratifying patients into biologically meaningful classes
with different clinical outcomes and creating new opportunities for development of successful
personalized treatment strategies3. Cancer is also a highly heterogeneous disease with large
genetic diversity even between tumors of the same cancer type. Namely, two clinically iden-
tical tumors rarely have a large set of common mutated genes. Moreover, very few genes are
frequently mutated across tumor samples. This makes the use of somatic mutations for iden-
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tification of driver genes, as well as for patient stratification into subtypes, much harder1,4,5.
However, despite this genetic diversity between tumor samples, the perturbed pathways are
often similar1. Therefore, integration of somatic mutations with other genomic data, such as
with molecular networks that contain pathways, is a promising direction for addressing these
problems.

Development of computational methodologies that can efficiently integrate genome-scale
molecular information and address the above mentioned challenges in cancer research is of
foremost importance. A majority of previous studies do not utilise data on somatic mutations,
but instead, they are mainly based on mRNA expression and methylation data. Because of
noisiness of these data, the patient stratification studies for cancer types often do not produce
patient subgroups that agree well with any clinical or survival data6. Therefore, a recent study
proposed the use of somatic mutation data in combination with biological networks as a new
source of information for tumor stratification5. However, the proposed methodology cannot
account for additional data types (e.g., drug data) and cannot be used for identifying novel
driver genes, nor for predicting a personalised therapy. Moreover, previous data integration
methods can only be used for either cancer patient stratification5, driver gene prediction7 or
drug repurposing8.

Here, we present a versatile patient-specific data integration (fusion) methodology capa-
ble of: 1) uncovering patient subgroups (stratification) with prognostic survival outcome, 2)
predicting novel driver genes and 3) repurposing drugs, i.e., predicting new candidate drugs
for targeting mutated gene products in individual patients and that can be used in treat-
ment of identified patient subgroups. To our knowledge, this is the first method that can
address all three challenges simultaneously. Our methodology is based on Non-negative Ma-
trix Tri-Factorization (NMTF) technique, initially proposed for dimensionality reduction and
co-clustering problems in machine learning9. It approximates (factorises) a high-dimensional
data matrix, representing relations between two data types, as a product of three non-negative,
low-dimensional matrices9. The clustering interpretation of low-dimensional matrices and their
previously established relatedness to the k-means clustering has enabled the use of NMTF in
co-clustering problems10,11. Recently, there has been a significant development in the use of
NMTF in data fusion because of its ability to extend to any number of interrelated data
types by simultaneously decomposing their relation matrices. This has provided us with a
valuable framework for fusion (integration) of any number and type of interrelated heteroge-
neous datasets12,13. NMTF has demonstrated a great potential in addressing various biological
problems, such as disease association prediction12, disease gene discovery14, protein-protein in-
teraction prediction15 and gene function prediction16.

We use NMTF to integrate somatic mutation profile (SMP) data of serous ovarian cancer
patients from TCGA4 with molecular networks (MNs) from BioGRID17 and KEGG18, drug-
target interaction (DTI) and drug chemical similarity (DCS) data from DrugBank19 (detailed
in Sec. 2.3). We perform consensus clustering by using NMTF to simultaneously cluster pa-
tients, genes and drugs based on the evidence from all datasets. First, we stratify patients
into three groups that we assess by using clinical data. We show significant difference in sur-
vival outcomes between these groups, as well as a good agreement with other clinical data.
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Second, from clusters of genes, we identify those enriched in known driver mutations; we pos-
tulate genes strongly related to known driver genes in these clusters as potential drivers genes,
i.e., genes responsible for ovarian cancer progression. Finally, we use the matrix completion
property of NMTF to predict new drug-target relations and to identify new drug candidates
that could be used for repurposing and treatment of identified ovarian cancer patient groups.
Furthermore, we evaluate the influence of all combinations of datasets onto the accuracy of
drug-target predictions by performing a 5-fold cross validation. We shown that the highest
accuracy is achieved when all datasets are taken into account, proving the utility of integrating
all considered datasets (detailed in Sec. 3).

2. Methods

2.1. Patient-specific data fusion framework

We consider there different datasets: patients, genes and drugs. Patients and genes are related
to each other by somatic mutation profiles (SMPs), constructed for n1 patients over n2 genes
and encoded in high-dimensional relation matrix, Rn1×n2

12 . Its entries are binary values, with
R12[p][g] = 1 if gene g is found to be mutated in patient p, and zero otherwise. Genes and
drugs are related to each other according to drug-target interactions (DTIs). DTIs between n2
genes and n3 drugs are encoded in relation matrix, Rn2×n3

23 . Its entries are also binary values,
with R23[g][d] = 1, if the product of gene g is a target of drug d and zero otherwise. See Sec.
2.3 and Fig. 1 for details of construction of the relation matrices and for an illustration of
these datasets.

We use NMTF to simultaneously decompose both relation matrices into a product of three
non-negative low-dimensional matrices as follows: R12 ≈ G1H12G

T
2 . and R23 ≈ G2H23G

T
3 .

The low dimensional matrices can be obtained by solving the following optimisation prob-
lem: min

Gi≥0,1≤i≤3
J = min

Gi≥0,1≤i≤3

(
‖ R12 −G1H12G

T
2 ‖2F + ‖ R23 −G2H23G

T
3 ‖2F

)
, where F de-

notes Frobenius norm and J is the objective function. The non-negativity constraints imposed
on Gi matrices for 1 ≤ i ≤ 3 provide easier interpretation of their values in the clustering assign-
ment. Many of the data types are characterised by additional, internal connectivity structure
represented by graphs (networks). In this study, genes are connected by molecular networks
(MNs), while drugs are connected based on the similarity of their chemical structures, i.e., drug
chemical similarity (DCS) network (illustrated in Fig. 1). We incorporate these networks (MN
and DSC) into the above objective function by adding two regularisation terms to constrain
the construction of G2 and G3 matrices. This approach is also known also as Graph-regularized
NMTF (or GNMTF)20. Namely, the aim is to enforce two interacting genes to belong to the
same cluster (similarly with drugs) and a violation of these constrains results in penalties to
our objective function. Hence, the final objective function has the following form:

min
Gi≥0,1≤i≤3

J = min
Gi≥0,1≤i≤3

[
‖ R12 −G1H12G

T
2 ‖2F + ‖ R23 −G2H23G

T
3 ‖2F +

tr(GT
2 L2G2) + tr(GT

3 L3G3)
]

(1)

where, tr denotes the trace of a matrix, and L2 and L3 are graph Laplacians of MN and DCS
networks, respectively.
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Fig. 1. Schematic illustration of datasets used in this study. Three types of objects (nodes) are represented: n1
ovarian cancer patients (in green), n2 genes (in red) and n3 drugs (in blue). Somatic mutation profiles (SMP)
for ovarian cancer patients are represented by patient-gene links denoting assignment of mutated genes (in
red) to each individual patient. These connections are encoded into relation matrix, R12. Genes are connected
by a molecular network (MN) obtained by merging three different interaction data types (see Sec. 2.3). Also,
MN is the union of three types of genes: mutated genes coming from patients’ SMPs (in red), driver genes
(in pink) coming from TCGA database and normal genes (in blue) coming from other databases used for
construction of networks (details in Sec. 2.3). Connections in this network, MN, are represented by Laplacian
matrix, L2. Links between genes (i.e., their protein products, that are drug targets) and drugs are drug-target
interactions (DTIs) and are represented by relation matrix, R23. Links between drugs are represented by drug
chemical similarity (DCS) network (details in Sec. 2.3). Connections in this network, DCS, are represented by
Laplacian matrix, L3.

The key idea of our GNMTF-based data fusion approach is in sharing low-dimensional
matrix G2 whilst simultaneously learning from (i.e., decomposing) relation matrices, R12 and
R23. Such decomposition accounts for collective influence of all data sets (along with molecular
and chemical constraints effectively integrated within the same framework) onto the resulting
clustering of patients, genes and drugs. This approach corresponds to the intermediate data
fusion in which the structure of the data is preserved during the model inference. Such an
approach has been shown to result in the best accuracy among all data fusion approaches12.

Minimisation of the objective function, J , is done by multiplicative update rules used to
compute all low-dimensional matrices; under these multiplicative rules, the objective function
is non-increasing11. The minimisation starts by randomly initialising Gi matrices for 1 ≤ i ≤
3 and then iteratively updating their values until the convergence criterion is reached. In
all our runs, we use Random Acol initialisation strategy21 and the convergence criterion is
reached when |Jn+1−Jn|

|Jn| < 10−5. The multiplicative update rules, their derivation and proof of

convergence can be found in Wang et al.11.

Co-clustering of patients, genes and drugs. Matrices Gn1×k1

1 , Gn2×k2

2 and Gn3×k3

3 from
Equation 1 above are cluster membership indicator matrices for patients, genes and drugs,
respectively; based on their entries, n1 patients are assigned to k1 patient clusters, n2 genes
are assigned to k2 gene clusters and n3 drugs are assigned to k3 drug clusters, respectively.
In particular, following the hard clustering procedure of Brunet et al.22, matrix Gn1×k1

1 , with
rows representing patients and columns representing clusters, is used to place patient p into
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cluster k if G1[p][k] is the largest entry in row p. This assignment procedure results in the
binary connectivity matrix for patients, Cn1×n1

1 , with entry C1[p1][p2] = 1 if patients p1 and
p2 belong to the same cluster and C1[p1][p2] = 0 otherwise. We apply this procedure for all
cluster membership indicator matrices. The number of clusters (also called rank parameters)
for each dataset are chosen to be k1 � n1, k2 � n2 and k3 � n3, which provides dimensionality
reduction of the relation matrices. Matrices Hk1×k2

12 and Hk2×k3

23 in Equation 1 above represent
compressed, low-dimensional versions of R12 and R23, respectively.

An important step in our methodology is estimating rank parameters, which are the num-
bers of clusters of patients, genes and drugs, k1, k2 and k3, respectively. These parameters
need to be known before factorisation is performed. The usual procedure for obtaining these
parameters is by varying these parameters for each run and estimating cluster stability22,23.
We take the values of parameters for which the most stable clustering is achieved. In particu-
lar, multiplicative update rules converge to a different solution in each run, depending on the
random matrix initializations (i.e., initial clustering assignment given by the initial values in
matrices Gi, 1 ≤ i ≤ 3). For example, if a clustering of patients into k1 classes is stable, we
expect small variations in the assignment to clusters from run to run. To measure this, we
perform multiple factorisation runs with the same values of rank parameters. Each time, a
connectivity matrix is computed (e.g., C1 for patients); based on these, an averaged connectiv-
ity matrix (also called the consensus matrix) over all runs is computed, Ĉ1. If the clustering is
stable, then the entries in C1 (also referred to as the cluster association scores) will be either
close to zero, or close to one. Otherwise, the entries will be scattered in the interval [0, 1].
We use the dispersion coefficient, ρk1

(Ĉ1), introduced by Kim et al.23, as a measure of cluster
stability. The values of the dispersion coefficient range in 0 ≤ ρk1

(Ĉ1) ≤ 1, where 1 denotes a
stable clustering. In our study, for each rank parameter, we perform a grid search in intervals
of 1 for 1 ≤ k1 ≤ 5, 5 ≤ k2 ≤ 30 and 5 ≤ k3 ≤ 30, and compute dispersion coefficients, ρk1

(Ĉ1),
ρk2

(Ĉ2) and ρk3
(Ĉ3) for patients, genes and drugs, respectively. We choose the values for k1,

k2 and k3 for which dispersion coefficients are of the highest values.

Matrix completion property. In addition to co-clustering of patients, genes and drugs, we
model the existing and predict new drug-target interactions by using the matrix completion
property of GNMTF. Namely, after obtaining low-dimensional matrices, the reconstructed
drug-target matrix, R̂23 ≈ G2H23G

T
3 , is more complete than the initial matrix, R23, and it

can be used for extracting new, unobserved drug-target relations and therefore, finding new
drug candidates for repurposing.

2.2. Drug repurposing, patient stratification and driver gene prediction

Drug repurposing. We use the reconstructed drug-target relation matrix, R̂23, to extract
new, previously, unobserved drug-gene interactions and to postulate new candidates for drug
repurposing in the treatment of ovarian cancer patients. We apply a combination of row-centric
and column-centric rules to extract new, strongly associated drug-gene pairs13. Namely, a drug-
gene pair, (d, g), is considered to be predicted, if the estimated association score, R̂23[g][d], is
greater than the mean association score of all relations of gene g, as well as greater than the
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mean association score of all relations of drug d.

Patient stratification. We stratify ovarian cancer patients into groups, according to the
consensus matrix, Ĉ1. We use the approach of Brunet et al.22: we use the off-diagonal entries
of Ĉ1 as a measure of patient similarity and apply average linkage hierarchical clustering to
group patients into k1 classes. Results and validations are shown in Sec. 3.1 below.

Cancer driver gene prediction. Similar to the patient consensus matrix, we use the gene
consensus matrix, Ĉ2, to extract gene clusters and identify those that are enriched in mutations
and known driver genes by using the standard model sampling without replacement test (i.e.,
hypergeometric test). In clusters that are enriched in known drivers, we identify genes that are
highly associated with known driver genes based on the clustering association scores from the
gene consensus matrix. We postulate that these genes are new driver genes for ovarian cancer.
Results and validations are presented in Sec. 3.2 below.

2.3. Datasets, pre-processing and matrix construction

We downloaded high-grade serous ovarian cancer somatic mutation data from TCGA data
portal4 on the 2nd of July 2015. We only consider data generated by using Illumina GAIIx
platform, having the largest number of patients. Following the same procedure for data filtering
as in Hofree et al.5, we retain only the patients with more that 10 mutated genes. This
results in n1 = 353 serous ovarian cancer patients with mutations in the total of 11,148 genes.
Mutated genes are mapped onto the Molecular Network (MN) that we obtain by merging three
different biological networks: protein-protein interaction (PPI) and genetic interaction (GI)
network from BioGRID database (version 3.4.126)17, and metabolic interaction (MI) network
from KEGG database18. This results in MN of 236,751 interactions among n2 = 19, 118 genes
(mutated and normal). We represent these interactions by Laplacian matrix, Ln2×n2

2 , computed
as: L2 = D2 − A2, where A2 is the adjacency matrix of MN and D2 is the diagonal degree
matrix of MN (i.e., whose entries on the diagonal are row sums of A2 and all other entries in
D2 are zeros). For each patient, we create an n2- long binary (0, 1) somatic mutation profile
(SMP) vector, where “1” indicates the existence of a mutated gene in the patient and all other
entries are “0”. These mutation profiles for all n1 patients are captured in a binary relation
matrix Rn1×n2

12 consisting of these SMP vectors. Due to the sparsity of matrix R12, we apply
a network propagation technique as the pre-processing step to smooth the patient profiles,
by spreading the influence of each mutation over its neighbours in MN network. We use the
network propagation method proposed by Vanunu et al.24, based on which the new patient-
gene relation matrix is computed iteratively as follows: Rt+1

12 = αRt
12Ā2 +(1−α)R0

12, where Ā2

is the normalised adjacency matrix of MN network computed as Ā2 = A2D
−1
2 , R0

12 = R12 is the
initial patient-gene matrix and α is a tuning parameter that controls the distance of diffusion
through MN network. In all our runs, we set α = 0.6 (as it produced the best results), and we
took the final network-smoothed, patient-gene matrix (after convergence, |Rt+1

12 −Rt
12| < 10−6,

is achieved) as input to GNMTF. This pre-processing step has been shown to lead to much
better and more robust patient stratification results in previous studies5, hence we use it as
well.
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Drug-target interactions (DTIs) are downloaded from DrugBank database (version 4.3)19.
We retrieved n3 = 6, 620 drugs (FDA-approved and experimental) targeting 1,385 genes in MN.
These interactions are captured by DTI binary relation matrix, Rn2×n3

23 . SMILES chemical rep-
resentation of the n3 drugs are also retrieved from DrugBank database. The two-dimensional
chemical similarity between drugs are computed by using Tanimoto similarity coefficient25.
We retain only the top 5% most similar drug pairs, which results in 1,069,393 links in the
drug chemical similarity (DCS) network. We represent these links by Laplacian matrix, Ln3×n3

3

(computed in the same way as for MN network, described above).

2.4. Clinical and biological validation of results

For all patients, we also downloaded clinical follow up data from TCGA database, including
the overall patients’ survival information (days to the last follow-up and vital status), age,
tumor grade, size and tumor position. We used these data to assess the clinical relevance of the
patient clusters that we obtain after data fusion. We used Kaplan-Meier survival curves, as well
as the log-rank p-value, to measure the significance of the difference in survival profiles between
different patient clusters. The log-rank p-value measures the probability of the null hypothesis
that patients in each cluster are drawn from the same underlying survival distribution26. From
TCGA database, we also retrieved a list of 83 known ovarian cancer driver genes, out of which
76 are present in our set of mutated patient genes. We use this set of genes to assess gene
clusters obtained after fusion and to identify clusters enriched in drivers.

3. Results

3.1. Patient stratification

We perform the consensus clustering, as described in Sec. 2.1, with 20 different random ini-
tialisations (initial cluster assignment) of GNMTF and compute the consensus matrices of
patients, genes and drugs. We observe that rank parameters of k1 = 3 (the number of patient
clusters), k2 = 25 (the number of gene clusters) and k3 = 20 (the number of drug clusters),
lead to the most stable clustering (with the largest dispersion coefficients: ρk1=3(Ĉ1) = 0.56,
ρk2=25(Ĉ2) = 0.91 and ρk3=20(Ĉ3) = 0.88).

To assess the prognostic capabilities of our patient-specific data fusion approach on ovarian
cancer patients, we perform clinical validation of the three obtained patient clusters. The
Kaplan-Meier survival curves, shown in Fig.2 (A), reveal the low-survival group (Cluster 2)
with 56% of death cases and the good outcome group (Cluster 1) with 38% of death cases. We
observe that the identified clusters are highly discriminative with the log-rank p-value of 5.3×
10−3. The same number of clusters has been also reported in previous studies done on somatic
mutation and molecular interaction data5, and also in study done only on miRNA expression
data4. Furthermore, the identified clusters display a good agreement with the median age
of patients in clusters, with Cluster 2 having the oldest patients. In addition, Cluster 2 has
the largest number of patients with abnormal growth of tissue (tumor), 78%, as compared to
Cluster 1 with 60% of such patients.

We compare the performance of our method with the state-of-the-art somatic mutation-
based stratification method called Network-based Stratification (NBS)5. NBS takes as input a
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Fig. 2. Kaplan-Meier survival curves for 3 different patient groups produces by GNMTF (A) and NBS (B).
The total number of patients and the number of deceased patients for each cluster are shown in the legend,
the first and the second number in brackets, respectively.

patient-gene post-smoothing relation matrix and a molecular network matrix. We apply it on
the same set of data described in Section 2.3, excluding drug data, which only our framework
can take into account. We test NBS for different numbers of patient clusters (i.e., k ∈ {2, 3, 4, 5})
and compute the Kaplan-Meier survival curves26 for the obtained patient clusters. We compare
the survivability results of NBS with our method with the same number of patient clusters
(Fig. 2 (A,B)). Unlike our method, which can produce clusters with significantly different
survival outcomes (i.e., p-val = 5.3 ×10−3), NBS cannot (p-val ≥ 0.74 for all k ∈ {2, 3, 4, 5}).
Thus, our framework is the only one able to extract personalised knowledge from somatic
mutation profiles.

3.2. Identification of driver genes

We performed biological assessment of the k2 = 25 gene clusters that we obtain from the gene
consensus matrix, Ĉ2. We identify 9 gene clusters that are significantly enriched in mutations
and 5 gene clusters that are significantly enriched in known drivers (p− val ≤ 0.05, see Fig. 3).
Out of these clusters, cluster number 8 has the largest number of driver genes (26) and the
highest enrichment in driver genes (with p− val = 2.06× 10−4). To identify new driver genes,
we further analyse this cluster as follows: first, based on the cluster association scores in the
gene consensus matrix, we extract the mutated genes that are strongly associated with the
known driver genes. In particular, we focus only on genes associated with the known driver
genes with the cluster association score ≥ 0.9 (as explained below). That is, out of 20 restarts
of GNMTF, we extract genes that appear 18 times in cluster 8 with other driver genes. Then,
for each of these genes, we compute the average cluster score based on its associations with
all driver genes. We provide the list of the top 20 genes (out of 809 predicted drivers in total)
that we postulate as new driver genes of ovarian cancer progression and we sort it according
to the average cluster association score, as shown in Table 1. This procedure is motivated by
the observation that out of the 76 known driver genes, 67 of them are strongly related (with
cluster association score ≥ 0.9) among themselves through all gene clusters.

We assess our predicted driver genes against two cancer driver gene databases, COSMIC
database Cancer Gene Census29 and IntOGen30, as well as against a database of putative
cancer driver genes, the Candidate Cancer Gene Database (CCGD)31. Our results show that
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∼ 40% of our 809 predicted driver genes (with scores ≥ 0.9) have either been already proposed
as drivers (in CCGD), or validated by experts (Census, or IntOGen). The list of our 20
top-scoring predicted cancer driver genes is presented in Table 1. Also, we investigated the
literature to assess the relevance of our two top-scoring predictions that are not found in other
databases and found evidence that they are biologically relevant. Our top-scoring cancer driver
gene prediction is ADAM32, which is strongly clustered with driver gene BMPR2 (Table 1).
The association between the two genes is biologically relevant, because both are involved with
transforming growth factors (TGFs). Our prediction of ADAM32 as a cancer driver gene is also
relevant, because ADAM genes are known to be responsible for cancer cell proliferation and
progression32. The second best prediction is REG1P (from the REG family of proteins), which
is strongly clustered with driver gene CLASP2. Our prediction of REG1P as a cancer driver
gene is also relevant, because the REG family plays different roles in proliferation, migration,
and anti-apoptosis through activating different signalling pathways; their dis-regulation is
closely associated with cancer and REG proteins have been proposed as markers for prognosis
of cancers33.

3.3. Drug-target interaction prediction

To demonstrate the predictive power of our data fusion approach and to assess the contribution
of each dataset on the drug-target interaction prediction, we perform a 5-fold cross validation
for each combination of the datasets shown in Fig. 1. In all our experiments, true positives
are correctly predicted DTIs, while false positives are predicted DTIs that are not present in
the initial dataset.

We compute average Area Under the Receiver Operator Characteristic (ROC) and
Precision-Recall (PR) curves (over 20 repetitions) to evaluate the performance of our method-
ology for each combination of datasets included in the integration process. The results are
shown in Fig. 4. The lowest values of average AUC ROC and AUC PR are observed when
only DTI dataset is used. The values increase with the inclusion of other datasets, resulting
in the highest average AUC ROC when all datasets are taken into account. With all datasets
taken into account by GNMTF, we use the reconstructed DTI relation matrix, R̂23, to ex-
tract new drug-target interactions, as described in Sec. 2.2. We assess our prediction accuracy
against two different large drug-target interaction databases, MATADOR28 and CTD27. Out
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Table 1. The list of the top scoring proposed
driver genes (1st column) and their associated
known driver genes (2nd column), with the associ-
ation score (3rd column), and the confirmation of
their presence in CCGD database (4th column).

New driver Known drivers Score DB
ADAM32 BMPR2 1.000 –
REG1P CLASP2 1.000 –
PCDHA2 CHD4 1.000 –
NCR1 BMPR2 1.000 –
USPL1 CLASP2 1.000 –
GDPD3 DDX5 1.000 –
LECT1 CLASP2 1.000 CCGD
IL25 CDK12, CCAR1 0.975 –
BAK1 ATRX, TFDP1, NDRG1 0.967 –
MOGAT2 ATRX, TFDP1, NDRG1 0.967 –
CHAF1A ATRX, TFDP1, NDRG1 0.967 CCGD
PITX2 ATRX, TFDP1, NDRG1 0.967 –
SIN3B ATRX, TFDP1, NDRG1 0.967 –
RPL30 ATRX, TFDP1, NDRG1 0.967 –
GRWD1 ATRX, TFDP1, NDRG1 0.967 –
SNAI1 ATRX, TFDP1, NDRG1 0.967 CCGD
RBMXP4 ATRX, TFDP1, NDRG1 0.967 –
CPNE7 ATRX, TFDP1, NDRG1 0.967 –
HIPK3 ATRX, TFDP1, NDRG1 0.967 CCGD
EPOR ATRX, TFDP1, NDRG1 0.967 CCGD

Table 2. The list of predicted top scoring drug–
target associations (first two columns), the associ-
ation scores (third column), and the confirmation
of their presence in CTD (C) or MATADOR (M)
database (fifth column). All drugs are FDA-approved.

Gene Drug Score Clusters DB
KIT ATP 0.873 1, 2, 3 –
GABRQ Adinazolam 0.808 1 M
GABRQ Fludiazepam 0.808 1 M
GABRQ Cinolazepam 0.809 1 M
GABRQ Clotiazepam 0.809 1 M
HTR2A Dopamine 0.809 1, 3 C, M
GRIN3A Pethidine 0.801 1, 2 –
CACNA2D1 Verapamil 0.761 1, 3 M
PDGFRB ATP 0.724 1, 2 –
KDR ATP 0.724 1, 3 C
HTR1A Mirtazapine 0.720 1, 2 C ,M
GABRA6 Adinazolam 0.688 1 M
GABRA6 Fludiazepam 0.688 1 M
GABRA6 Cinolazepam 0.688 1 M
GABRA6 Clotiazepam 0.688 1 M
GABRA4 Adinazolam 0.687 1, 3 M
GABRA4 Fludiazepam 0.687 1, 3 M
GABRA4 Cinolazepam 0.687 1, 3 M
GABRA4 Clotiazepam 0.687 1, 3 M
CACNA1D Magnesium Sulfate 0.676 1, 2, 3 M

of our 225, 947 predicted DTIs, 37% have already been confirmed in MATADOR, or CTD.
The list of our 20 top scoring predicted DTIs is shown in Table 2, out of which 17 are con-
firmed in CTD, or MATADOR database. Second, we investigated the literature to assess the
relevance of our two top-scoring predicted DTIs that are not found in other databases and
found evidences that they are biologically relevant. The top scoring target gene KIT (C-Kit)
is particularly relevant. It is a receptor tyrosine kinase (e.g., it catalyses ATP/ADP reactions).
It has been shown that unregulated activity of this gene leads to occurrence of tumors and
thus, it has been proposed as a potential drug target in cancer34. Interestingly, we predict the
drug candidate for targeting this gene to be Adenosine triphosphate (or ATP), for which a
precise role in cancer is still under investigation. Increasing ATP intake is known to improve
cancer patient conditions35. The reason could be that ATP is linked to cancer cell metabolism
and either activates cell death mediated by restoration of normal mitochondrial function, or
alterates the cytosolic ATP/ADP ratio, which is postulated to deactivate glycolysis (Warburg
effect) in a cancer cell36. Another drug-target in Table 2 whose predicted drug is not present
in CTD and MATADOR databases is GRIN3A. GRIN3A (NMDAR-l) is a sub-unit of NMDA
receptor (a glutamate-regulated ion channel). NMDA receptor has been proposed as a target
for cancer chemotherapy37. It has been proposed that glutamate antagonist molecules should
be used as potential drug targets37. Interestingly, our predicted drug, Pethidine (also known
as Meperidine), is a glutamate antagonist that is known to bind NMDA receptors38, which
provides evidence that our prediction of Pethidine as a drug for targeting GRIN3A is bio-
logically relevant. However, evidence that Pethidine can bind to GRIN3A in particular has
not yet been established. Furthermore, based on the mutated genes of particular patients, we
propose these newly discovered drugs (see column four in Table 2) for treatment of the three
patient groups described in Sec. 3.1.
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AUC PR Fig. 4. Area under the ROC and PR curves
for GNMTF runs done on the combination
of particular datasets listed on x-axis. The
results are sorted increasingly according to
the AUC ROC values. See Fig. 1 for the ab-
breviated names of the datasets.

4. Conclusions

In this paper, we propose a data fusion framework that can effectively integrate somatic mu-
tation data along with molecular networks and drug chemical data. It is based on GNMTF
method for co-clustering heterogeneous data and it can be even further extended to incorpo-
rate any number and type of data. One important advantage of our framework is that when
applied to a specific cancer, it can simultaneously perform three different tasks: patient strat-
ification into clinically different groups, novel driver gene identification and drug-repurposing
predictions for treating cancer.

We apply the GNMTF-based data fusion framework to ovarian cancer patients and identify
three substantially different groups of patients with different survival outcomes. In addition,
from the obtained gene clusters, we identify a list of genes that we postulate as potential
drivers of ovarian cancer progression due to their strong cluster associations to known ovarian
cancer driver genes. We perform biomedical literature curation for the top scoring predictions,
ADAM32 and REG1P, and show that they are related to cancer cell proliferation and tumor
progression, while 40% of other predictions we validate in other databases. Moreover, our
framework is capable of predicting new drugs that could be used for targeting mutated genes
and thus, for treatment of identified groups of ovarian cancer patients. We provide a list of
predicted drug-target interactions, a good number of which is matching those reported in other
databases. Other, non-validated predictions for driver genes and drug-target interactions could
be true, awaiting experimental validation.

Our analysis also suggests that somatic mutation data is a valuable complement to other
molecular data, whose integration with those data could lead to an improvement in the per-
formance of data fusion methods. Our approach has a potential to enable the derivation of
new hypotheses, improve drug selection and lead to improvement in patient genomics-tailored
therapeutics for cancer.
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