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Glial tumors have been heavily studied and sequenced, leading to scores of findings about altered 

genes. This explosion in knowledge has not been matched with clinical success, but efforts to 

understand the synergies between drivers of glial tumors may alleviate the situation. We present a 

novel molecular classification system that captures the combinatorial nature of relationships 

between alterations in these diseases. We use this classification to mine for enrichment of variants 

of unknown significance, and demonstrate a method for segregating unknown variants with 

functional importance from passengers and SNPs. 

1. Introduction 

Molecular diagnostics are increasing in importance to clinical oncology as the number of 

therapies targeting specific molecular alterations and pathways in cancer grows. These new drugs 

are accompanied by a shift in the tumor classification paradigm away from one based on 

histopathology to one centered on the molecular drivers of cancer. This has resulted in a 

proliferation of studies investigating the roles of various tumor suppressors and oncogenes in 

many types of tumors. The methods by which samples are interrogated have also shifted away 

from single gene hotspot tests to massively parallel, multiple marker integrated platforms
1
. In 

addition to genetic alterations in driver genes, gene expression changes, promoter mutations and 

methylation status have been implicated in cancer progression. This explosion in our ability to 

measure does not always lead to an increase in understanding, as we struggle to understand the 

relationships between the many markers we can now observe.   

The genomic landscape of brain cancer, in particular tumors of glial origin, is a particularly 

difficult area for interpretation, for while large-scale sequencing studies of glioblastoma and 

lower grade astrocytomas have identified multiple targetable oncogenic driver alterations
2
, these 

results have yet to meaningfully impact treatment decisions. Targeted therapies have had limited 

success in these tumor types, and multiple clinical trials have failed to show benefit with targeted 

tyrosine kinase inhibitors
3,4

. Existing molecular classification schemes are either based on gene 

expression
5
, performed exclusively in lower grade gliomas like oligodendrogliomas

6
, or focused 

on the ‘main three’ markers (IDH mutation, TERT promoter mutation and chromosome 1p/19q 

loss)
7
. We present a genomic classification for glial tumors based on comprehensive massively 

Pacific Symposium on Biocomputing 2016

297

mailto:eneumann@foundationmedicine.com


parallel sequencing of over 800 glial cancers of different grades, annotation of the resultant 

variant calls, and subsequent latent class analysis of the detected genetic alteration landscape.  

In our classification, we take care to annotate alterations as either: ‘known or likely’ drivers 

of cancer, or ‘variants of unknown significance’ (VUS), as described in Methods and Materials. 

The motivation for this is to segregate genomic events that play a role in the tumor mechanism 

from innocuous alterations (i.e. SNPs and passenger mutations). While there are notable 

exceptions, in general it is somatic alterations that drive tumors
8
. We filter out suspected germ 

line variant calls using dbSNP
9
, but this database is based on 1000 human genomes, meaning 

that the rarer SNPs will not be accounted for. ‘Passenger’ mutations can also confound the 

alteration landscape. Briefly speaking, passenger mutations are alterations accumulated during 

clonal expansion that do not currently confer any selective advantage onto the tumor
10

. The 

clinical significance of labeling these genomic events is paramount: if the oncologist elects to 

target a passenger mutation, the therapeutic regimen will presumably have no effect. 

Any alteration that cannot be explicitly labeled as driver, passenger, or SNP is considered to 

be a VUS. If we look at the number of variant calls that are considered ‘known and likely’ versus 

the number we consider to be VUSs, we find that the VUSs account for the majority of what we 

detect. Thus we have a scenario in which there are modes of cancer unaccounted for, but this 

signal is mixed heavily with the noise of germ line variants and passenger mutations, making this 

excellent territory for variant prioritization approaches. Existing methods to evaluate the 

significance of unknown alterations in the context of disease range widely in their strategies. 

Sequence conservation based algorithms make the argument that mutations at heavily conserved 

residues in oncogenes and tumor suppressors are more likely to be deleterious
11

. Structural 

biology based methods stratify alterations based on their impact on protein folding energy and 

solubility
12

. 

We propose that a parallel method to assign significance to uncharacterized mutations is to 

align them to existing knowledge. Our classification of glioma samples, which is based on a 

small number of heavily mutated known cancer drivers, is statistically robust and well supported 

by existing literature. We use this classification as a reference point representing the current state 

of knowledge regarding the molecular landscape of glioma and examine how VUSs, which were 

not included in the definition of the molecular classes, distribute themselves along class 

partitions. We argue that genes that show skewed distributions towards a specific class 

participate in the mechanism driving tumors of that class in an as yet previously undescribed 

manner. 

2. Materials and Methods 

2.1  Comprehensive genomic profiling 

All samples were submitted to a CLIA-certified, New York State and CAP-accredited laboratory 

(Foundation Medicine, Cambridge MA) for NGS-based genomic profiling, as previously 

described
13

. Extracted DNA was adaptor-ligated and capture was performed for all coding exons 

of 287 cancer-related and 47 introns of 19 genes frequently rearranged in cancer (Sup Table S1). 
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Captured libraries were sequenced to a median exon coverage depth of >500x, and resultant 

sequences were analyzed for base substitutions, insertions, deletions, copy number alterations 

(focal amplifications and homozygous deletions) and select gene fusions. Natural germline 

variants from the 1000 Genomes Project (dbSNP135)
8
 were removed, and known confirmed 

somatic alterations deposited in the Catalog of Somatic Mutations in Cancer (COSMIC v62)
14

 

were highlighted as biologically significant (i.e. ‘known and likely variants’). All inactivating 

events (i.e. truncations and deletions) in known tumor suppressor genes were also called as 

significant. 

2.2  Data selection and filtering 

Analysis was performed on a combined dataset of 847 glial tumor samples from four separate 

diseases: 76 oligodendrogliomas (BOD), 99 low and mid-grade astrocytomas (LGA), 101 

anaplastic astrocytomas (AA), and 571 brain glioblastomas (GBM). For each gene that is altered 

in the data set, we count how many samples within that set carry an alteration in this gene, not 

taking into account alteration type (e.g. gene amplification, point mutation, etc.). If a sample has 

multiple alterations in a given gene (i.e. an indel and an amplification), it is still only counted 

once. The list of gene counts is then sorted, and all genes not altered in at least six samples are 

discarded in order to keep statistical power high. Because certain sets of genes tend to occur 

together in co-amplified vectors (e.g. CDKN2A and CDKN2B), we added a ‘co-amplification’ 

feature: if two genes occur in a data set, and their genetic co-ordinates are within 10 Mb of one 

another on the same chromosome, a separate variable that indicates their co-occurrence is added 

to the feature list. For instance, if co-mutations in CDKN2A and CDKN2B occur with sufficient 

frequency in a data set, there should be three features: the presence of a CDKN2A alteration only, 

the presence of a CDKN2B alteration only, and the presence of an alteration in both genes. This 

concept can be extended to three and four co-amplified genes. We estimate structure models 

while changing the ‘class number’ parameter r for each r=1,…,R, and then progressively increase 

r until the number of parameters to be estimated in the model exceed the number of samples (i.e. 

system is underdetermined). The full list of features used for clustering is given in Sup Table S2. 

2.3  Latent class analysis 

Latent class analysis was performed with the R package poLCA, version 1.4
15

. For each tumor 

sample i in our set, there are J manifest (observable) variables (genes), each of which can have 

one of two Kj outcomes (altered|not altered). The latent class model approximates the observed 

distribution of the manifest variables with a weighted sum of R cross-classification tables. The 

probability that a sample in class r = 1,…,R produces the kth outcome on the jth variable is 

represented by πjrk, and the weight for a given class r is denoted by pr. Thus, for each manifest 

variable within a class, ∑ 𝜋𝑗𝑟𝑘 = 1,
𝐾𝑗

𝑘=1  and across all classes ∑ 𝑝𝑟 = 1.𝑟  Denoting the observed 

value of the jth manifest variable for sample i having the kth outcome as Yijk (such that if gene j 

in sample i is mutated Yijk = 1, otherwise Yijk = 0), the probability that sample i in class r has any 

given set of mutations J is given by: 
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Across all classes ‘r’, this probability is given by: 
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(2) 

The parameters estimated by poLCA are pr and πjrk. Denoting the total number of samples in the 

set as N, the latent class model is found by maximizing the log-likelihood function (3) with 

respect to pr and πjrk using expectation-maximization: 

ln 𝐿 = ∑ ln ∑ 𝑝𝑟

𝑅

𝑟=1

∏ ∏(𝜋𝑗𝑟𝑘)𝑌𝑖𝑗𝑘
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𝐽
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𝑁
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(3) 

The above equation reaches its maximum values with class partitions that best satisfy the 

conditional independence criterion (i.e. that manifest variables show conditional independence 

within a class). The number of classes in a model is a parameter adjusted by the user, and a 

larger value results in a higher log-likelihood score for the model. poLCA finds local maxima 

starting from initial values of pr and πjrk, thus to ensure the global maximum is found for each 

model we estimate the model 10,000 times with random initial parameter values each time, 

ultimately keeping the estimated model with the best log-likelihood score. To select the most 

probable of the many candidate latent structure models, we use a metric called the Akaike 

Information Criterion
16

, defined as: 

𝐴𝐼𝐶 = 2𝑘 − 2ln 𝐿 (4) 

where k is the number of estimated parameters specified by the model (a product of the number 

of features and the number of classes in the model), and L is the maximized value of the log-

likelihood function we described earlier. Under certain conditions, an alternate information 

metric called the Bayesian Information Criterion
17

 can be used. This is defined as: 

𝐵𝐼𝐶 = −2 ln 𝐿 + 𝑘 ln 𝑛 (5) 

where n is the total number of sample instances being analyzed. Discussed in greater detail 

elsewhere
18

, the BIC can be the appropriate metric for evaluating multiple models when the 

model space is dominated by a few major effects and contains likely nested models, which we 

believe to be the case for our combined dataset. Given a set of candidate models, the most 

appropriate model is the one that minimizes the AIC or BIC. 

2.4  Feature selection approach 

We performed an initial LCA on the dataset using a large number of features. For each feature, 

we calculated the initial entropy of the feature using Shannon’s entropy formula
19

, where p is the 

probability of seeing that feature in any given sample across the data set: 
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𝐻(𝑋) = −𝑝 log2 𝑝 (6) 

This allows us to compare the loss of entropy in each feature across classes as we increase the 

complexity of the models we fit the data to. We use entropy loss as a measure of how well the 

LCA partitions the alteration occurrences. If the probability of seeing a feature within a class is 

px and the probability of a given sample being a member of that class is given as py, then this 

entropy can be calculated across multiple classes using the conditional version of Shannon’s 

formula
20

: 

𝐻(𝑋|𝑌) = 𝑝𝑥|𝑦 log2

𝑝𝑦

𝑝𝑥|𝑦
 (7) 

We calculate the entropy loss for each feature across all models to determine if that feature 

accounts for a significant portion of the entropy drop for the entire system. We then use that 

metric as a basis to set a lower threshold for the number of features to be included in the 

modeling and then performed a ‘higher-resolution’ LCA using this reduced feature set. 

2.5  Association of VUSs with known classes 

After computing the most likely classification for each sample using the high-resolution LCA 

based on a small number of known and likely features, we performed statistical testing of all of 

the alterations detected in the samples assigned to each class. We grouped alterations by gene, 

and separated those annotated as ‘known and likely’ from ones annotated as ‘VUS.’ For each 

feature in each class, we calculated the enrichment within the given class against all other classes 

of ‘known and likely’ alterations, ‘VUS’ alterations, and total alterations using a one-sided 

Fisher’s Exact test. P-values obtained using Fisher’s Exact are adjusted for multiple hypothesis 

testing using the Bonferroni formula
21

: 

𝛼adj = 1 − (1 − 𝛼)𝑛 (8) 

where α is the significance level of the result, and n is the total number of independent tests 

conducted, which in this case is 83 features × 5 tests each = 415 total tests. In the case where a 

gene’s association with two classes simultaneously is tested, the exponent used for Bonferroni 

correction is 1245. 

3. Results 

Investigational LCA of the combined glial tumors set was performed using 83 features with up to 

eight classes being modeled. Analysis of entropic loss per feature during modeling reveals that 

the majority of information loss is accounted for by the 17 most frequently occurring features 

(84.1%, 84.1%, 70.8%, 70.2%, 70.2%, 69.2%, 69.1% for 2-class, 3-class, 4-class, 5-class, 6-

class, 7-class, 8-class models, respectively; Figure 1). LCA was performed with these 17 features 

with the 6-class solution deemed most likely given BIC metrics (Table 1). Class 1 is dominated 

by alterations in CDKN2A/B (190/190 samples; p=1) and EGFR (161/190; p=0.84) (Figure 2). 

Class 2 also features alterations in CDKN2A/B (116/162; p=0.72), but instead of EGFR shows 

alterations in NF1 (92/162; p=0.56). Class 3 showcases alterations in EGFR (64/114; p=0.56) 
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and CDK4/MDM2 (49/114; p=0.43). Class 4 is selective for alterations in IDH1 (137/151; 

p=0.91), TP53 (145/151; p=0.96) and ATRX (140/151; p=0.93). Class 5 is characterized by IDH1 

mutation (89/89; p=1) and alterations in CIC (31/89; p=0.35) and TP53 (38/89; p=0.43). Class 6 

is represented by alterations in TP53 (111/141; p=0.79), RB1 (55/141; p=0.39) and PTEN 

(68/141; p=0.48). The full model is given in Table 2.  

 

Figure 1. Information theoretic analysis of the clustering behavior of the 83 features most frequently altered in the 

glial tumor cohort. The bulk (~70%) of entropy loss achieved by class segregation is concentrated in the top 17 

features. 

Enrichment analysis of all alterations including VUSs for samples within a given class reveals 

notable contributions from PTEN (p=1.2e-8) in Class 1, PTPN11 (p=0.018) in Class 2, and 

NOTCH1 (p=0.018), NOTCH4 (p=0.043), ARID1A (p=5.6e-4), and SMARCA4 (p=0.09) in Class 

4 (Table 3). The full list of enrichment results is listed in Supplemental Table S3. 

 

Classes LL AIC BIC Parameters Relative P (AIC) Relative P (BIC) 

1 -5370.53 10775.07 10855.68 17 0 1.20e-261 

2 -4829.37 9728.731 9894.69 35 3.30e-146 5.74e-53 

3 -4682.99 9471.985 9723.295 53 1.86e-90 9.48e-16 

4 -4602.15 9346.296 9682.957 71 3.65e-63 5.44e-07 

5 -4528.9 9235.796 9657.807 89 3.61e-39 0.16 

6 -4466.37 9146.745 9654.107 107 7.84e-20 1 

7 -4422.78 9095.558 9688.27 125 1.02e-08 3.82e-08 

8 -4386.38 9058.758 9736.821 143 1 1.10e-18 

Table 1. High resolution LCA solutions for the combined glial tumor data set, with class number parameter varying 

between 1 and 8. LL = log likelihood, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion. 

Relative probabilities for the models depend on AIC and BIC, and are calculated using the Akaike weight formula: 

𝑝𝑖 = 𝑒-(AIC𝑖−AIC𝑚𝑖𝑛)/2. 
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Figure 2. Latent model of the combined glial tumor cohort featuring six classes. The glial tumor cohort includes 

clinically confirmed cases of oligodendroglioma, low- and mixed-grade astrocytoma, anaplastic astrocytoma, and 

glioblastoma. 

 

Feature Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

TP53 0.178 0.197 0 0.963 0.433 0.79 

CDKN2A/B 1 0.716 0 0.142 0.106 0 

EGFR 0.848 0.033 0.56 0.019 0.038 0.263 

PTEN 0.44 0.29 0.37 0.028 0.036 0.483 

IDH1 0 0 0.014 0.908 1 0 

ATRX 0.005 0.079 0 0.929 0 0.033 

NF1 0.047 0.559 0.036 0.049 0.062 0.167 

PIK3CA 0.096 0.137 0.109 0.063 0.306 0.114 

RB1 0.007 0.012 0 0.019 0.013 0.388 

PIK3R1 0.069 0.101 0.041 0.044 0.087 0.045 

CDKN2A 0 0.033 0.208 0.028 0 0.163 

CDK4 0.025 0 0 0.051 0.049 0.228 

CDK4/MDM2 0.007 0.012 0.425 0 0 0 
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BRAF 0.015 0.139 0 0.019 0.024 0.033 

MDM4 0.077 0.012 0.03 0 0.026 0.088 

NOTCH1 0.009 0.008 0.017 0.07 0.162 0.015 

CIC 0.005 0 0 0.005 0.345 0.008 

Table 2. Best LCA model of the brain glioblastoma data set according to BIC metrics presented in the form of a 

class-conditional probability table. Each class is a column, and the probability of observing a sample of a given class 

is shown at the top of the column. Each row is a feature used in the model, and each cell value is the probability of 

observing an alteration in that feature in a sample assigned to that class.  

 

Gene Class Known/Likely VUS p-Value Adj. p-Value 

PTEN 1 88 15 2.9e-11 1.2e-8 

PTPN11 2 13 4 4.3e-5 1.8e-2 

ARID2 4/5 6 14 3.1e-5 3.8e-2 

SMARCA4 4/5 11 18 1.3e-5 1.5e-2 

ARID1A 5 9 12 1.4e-6 5.6e-4 

NOTCH1 5 13 12 4.5e-5 1.8e-2 

NOTCH4 5 1 12 1.0e-5 4.3e-2 

Table 3. Enrichment of selected genes in pre-defined molecular sub-classes taking VUSs into account. 

 

Gene Class-Specific Variants of Unknown Significance 

PTEN R15del, D24ins, I28T, P30L, Y46C, R47S, N48K, N48S, H61Q, Y65N, 

V85I, V175M, Y188D, D326Y, D326H 

PTPN11 D61A, F285S, T411M, A461T 

ARID1A A139T, A165_166insA, G278D, P289A, G352R, G712A, P870L, P989L, 

V1082G, K1124N, P1209L, G1222E, G1274R, P1275S, V1834M 

ARID2 G16E, S129C, V138A, R231K, S365L, V450I, A858T, V1040I, A1107V, 

E1249del, P1395S, V1503L, D1703E, N1796K 

SMARCA4 G10E, P16S, P24S, G53E, G206S, P324S, L754F, P913S, Q1104R, 

Q1104R, V1016L, R1157G, G1159R, D1177N, A1186T, R1192H, 

R1203L, E1287K, T1358I, E1512K 

NOTCH1 C344G, F357S, P422S, P447S, C461Y, C467Y, G519S, A958V, R1114H,  

P1287C, C1467Y, R1664K, G1704E, S2030F, A2035_L2048del, G2169E, 

V2249M 

NOTCH4 E33K, G47R, R113K, G216S, S312F, G337D, P631L, G642N, A647G, 

R807H, V1457M, G1510S, G1701E 

Table 4. Class-specific VUSs in genes found to associate significantly with pre-defined classes. 

 

4. Discussion 

Oligodendroglioma (OD), low- and mixed-grade astrocytoma (LGA), anaplastic astrocytoma 

(AA), and brain glioblastoma (GBM) tumors are all thought to originate from glial precursor 

cells, and are difficult to segregate using histopathology
22

. Multiple studies have grouped various 

subsets of these four diseases together for the purposes of molecular profiling
23

. We sequenced 

847 of these tumors on a comprehensive massively parallel sequencing platform capable of 

detecting alterations in several hundred cancer related genes, examined the genetic alteration 

landscape from an information theoretic perspective using unsupervised classification, and found 

the genes that contribute most to classification. After stratifying the dataset into the likely 

molecular classes based on known and likely somatic alterations, we examined the distribution of 
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variants of unknown significance (VUS) within each class. The highest enrichments of VUSs 

within a given class as measured by p-value are considered in more detail. 

4.1  Analysis of alteration landscape 

Recognizing the similarities in histology between each disease type, we felt it was prudent to 

combine the tumor sets into one large superset consisting of 847 total samples. The initial 

analysis was done using 83 features. Analysis of the information content in every model showed 

that the entropic loss is concentrated in the 17 most frequently occurring features, which we 

consider sufficient to classify a large subset of tumors belonging to any of these four disease 

types. These features are alterations in TP53, CDKN2A/B, EGFR, PTEN, IDH1, ATRX, NF1, 

PIK3CA, RB1, PIK3R1, CDKN2A, CDK4, CDK4/MDM2, BRAF, MDM4, NOTCH1, and CIC. 

LCA considering just these 17 features yields a well-delineated six-way mixture model. Class 1 

is driven by disruption to the cell-cycle mechanism with every sample in this class showing a co-

deletion of CDKN2A and CDKN2B, as well as a hyper-activated signal transduction network 

with EGFR alterations being found in most samples in this class. Though not unique to this class, 

PTEN alterations are found in nearly half of all tumors in class 1. Class 2 seems to be related to 

Class 1, with both featuring CDKN2A/B co-deletion, though with NF1 alterations in place of 

EGFR. Interestingly, alterations in these genes between these two classes show a nearly 

completely mutually exclusive relationship, suggesting that the alterations have a similar 

functional effect. Previous subtyping studies detected both of these classes, but were unable to 

segregate them, and did not allude to any mutual exclusivity between EGFR and NF1
4-6

. These 

two classes are significantly associated with poor prognosis, high tumor grade, and positive 

response to aggressive therapy. 

 Classes 4 and 5 are also related, and have also been discovered and confirmed to be 

clinically significant by prior studies. Class 4 features alterations in IDH1, ATRX and TP53, and 

is associated with positive prognosis and lower tumor grade. This class is typically found in 

astrocytoma, though we have seen this profile in samples assigned to both lower (e.g. 

oligodendroglioma) and higher grade (e.g. glioblastoma) histology categories. Class 5 shows 

IDH1 mutation without ATRX alteration. Previous studies suggest that this class should also be 

associated with heterozygous deletion of chromosome arms 1p and 19q; manual inspection of 

sequencing data confirmed this to be the case. Class 5 should be associated with the best 

prognosis according to previous work, and is found primarily in oligodendrogliomas. 

 Class 3, which features alteration of EGFR in conjunction with co-amplification of CDK4 

and MDM2 in a variation of the cell-cycle/signal transduction perturbation theme found in 

classes 1 and 2, and Class 6, which is driven by the combination of TP53 and RB1 alteration 

represent novel classes that have not been detected in previous cohorts, though a prior 

investigation of anaplastic oligodendrogliomas found simultaneous disruption of the RB1 and 

TP53 pathways in 9/20 tumors
24

. 
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4.2  Association of VUSs with known classes 

Learning the classification of glial tumors by known and likely somatic variants leads us to 

comparing the distribution of VUSs in genes across those classifications. Class 1, which is driven 

by the combination of CDKN2A/B deletion and EGFR alteration, shows preference for mutations 

in PTEN, and in particular, VUSs. PTEN alterations are known to de-regulate the PI3K pathway, 

and have been found to synergize with activation of EGFR to promote increased tumor growth
25

. 

The unknown variants we detected in PTEN within class 1 tend to cluster towards the front end 

of the phosphatase tensin-type domain found between residues 14 and 185 in this protein. 

Inspection of the COSMIC databases shows multiple confirmed somatic events around this same 

area, with several direct overlaps between a somatic event from COSMIC and a VUS at the 

residue of interest. 

 Class 2 features a combination between CDKN2A/B co-deletion and NF1 alteration, and 

is enriched for PTPN11 alterations, including four previously undetected VUSs. PTPN11 

encodes a cytoplasmic protein tyrosine phosphatase that promotes the activation of the 

Ras/MAPK pathway, and mutations in this protein lead to it being constitutively active
26

. The 

association of alterations in these genes with alterations in NF1, which encodes a negative 

regulator of the GTPase HRAS, suggests that tumors of this type rely on perturbation of the Ras 

and PI3K pathways for their tumorigenicity, and that targeting proteins in these pathways may be 

a viable treatment paradigm. Comparing the unknown variants we found to the collection of 

known somatic PTPN11 variants from COSMIC reveals that there are confirmed somatic 

variants at D61 and at A461. 

While classes 1 and 2 are variants of the cell-cycle/signal transduction co-perturbation 

mode, class 5 is driven primarily by IDH1 mutation and some mutations in CIC. Previous studies 

claim that this class should be associated with mutation in NOTCH1 and FUBP1, along with 

heterozygous deletion of chromosome arms 1p and 19q. These have all been confirmed in this 

dataset. This class features enrichment of both NOTCH1 and NOTCH4 at a statistically 

significant level. These proteins are transmembrane receptors known for their role in patterning 

during embryogenesis. Alterations in NOTCH genes have been found in a large number of 

cancers, and are thought to contribute to oncogenesis by promoting angiogenesis and modulating 

the EMT
27

. Less frequently discussed is the formation of complexes featuring NOTCH proteins 

and histone de-methylases. Histone modification is known to be essential for transcription of 

NOTCH, and may be related to the fact that alterations in the SWI/SNF proteins ARID1A and 

SMARCA4 are also heavily enriched for in this class. Furthermore, ARID2, another known 

chromatin remodeler associates with classes 4 and 5. The role of the chromatin signaling 

network in this glioma subtype has not been previously described. 

4.3  Extending glial tumor genomics knowledge 

An obvious question regarding this approach is whether the ‘known’ LCA classes we use to 

explore VUS distributions are clinically relevant, or merely statistically significant. Several 

previous studies have discovered these classes independently, and verified their clinical 
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significance. A study of low-grade gliomas in the TCGA data set uncovered both a 

TP53/IDH1/ATRX class (Class 4) as well as a class driven primarily by IDH1 alterations with no 

concomitant ATRX events, with the occasional alteration in CIC (Class 5)
5
. These classes were 

shown to be clinically significant in terms of event-free and overall survival, age at diagnosis, 

primary tumor site, and molecular phenotype (i.e. methylation, gene expression, protein 

expression). Another study of GBM patients in the TCGA data found classes driven by 

CDKN2A/B co-deletion and NF1/EGFR alterations (Classes 1 and 2), though it did not recognize 

the mutual exclusivity between NF1 and EGFR
4
. The researchers found this class to be 

significantly associated with poorer prognosis and an older age at diagnosis. The combination of 

RB1 and TP53 alterations that typify Class 2 has been found in pre-clinical studies to generate 

sarcomas in mesenchymal stem cells, and is generally known to be a transforming combination 

in cell lines
28

. Class 3, which features EGFR alterations in combination with CDK4/MDM2 co-

amplifications, is a novel result that has not been described before in glial tumor literature. Our 

results have added novel associations of tumor suppressor and oncogene alterations with these 

classes. 

 Additionally, we can learn from the distribution of variants across the length of the gene. 

For genes significantly associated with a given class, the pileup of alterations has a conspicuous 

pattern. A superb example is SMARCA4. This SWI/SNF protein is enriched in classes 4 and 5, 

and the specific VUSs associated with these classes are distributed non-randomly. Specifically, 

10 of 20 unknown variants are found in a 200 aa region between AA1100 and AA1300. 

PROSITE
29

 suggests that this area is home to a helicase domain. Further investigation should be 

conducted as to the role of this domain in this protein in IDH1 driven brain tumors, as disrupting 

this mechanism represents a potential avenue to treating these cancers. 
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