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This article presents a reproducible research workflow for amplicon-based microbiome studies in per-
sonalized medicine created using Bioconductor packages and the knitrmarkdown interface. We show
that sometimes a multiplicity of choices and lack of consistent documentation at each stage of the
sequential processing pipeline used for the analysis of microbiome data can lead to spurious results.
We propose its replacement with reproducible and documented analysis using R packages dada2,
knitr, and phyloseq. This workflow implements both key stages of amplicon analysis: the initial
filtering and denoising steps needed to construct taxonomic feature tables from error-containing
sequencing reads (dada2), and the exploratory and inferential analysis of those feature tables and
associated sample metadata (phyloseq). This workflow facilitates reproducible interrogation of the
full set of choices required in microbiome studies. We present several examples in which we leverage
existing packages for analysis in a way that allows easy sharing and modification by others, and
give pointers to articles that depend on this reproducible workflow for the study of longitudinal and
spatial series analyses of the vaginal microbiome in pregnancy and the oral microbiome in humans
with healthy dentition and intra-oral tissues.
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1. Introduction

High-throughput (HT) DNA sequencing is allowing major advances in microbial studies; our
understanding of the presence and abundance of microbial species relies heavily on the ob-
servation of their nucleic acids in a “culture independent” manner.1 At present, the most
common and cost-effective method for characterizing microbes and their communities is am-
plicon sequencing: PCR amplification of a small ( 100–500 bp) fragment of a conserved gene
(phylogenetic marker) for which there are taxonomically-informative reference sequences avail-
able. The standard phylogenetic marker gene for bacteria is the small subunit ribosomal RNA
(16S rRNA) gene,1 for which there are also convenient tools and large reference databases.2–4

16S rRNA amplicon sequencing provides a census of the personalized bacterial communities
present in a sampled individual.

After obtaining the amplicon sequences, a standard series of bioinformatic and statistical
analyses are used to evaluate these data: filtering out low quality sequences and samples, con-
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structing a taxonomic feature table of observations from each sample, incorporating the sample
metadata, transforming and normalizing the feature table, and performing exploratory and
inferential analyses. Here we explore the multiplicity of choices made during this process, show
examples of their consequences, and motivate the need for better and easier reproducibility of
the standard analytic workflow on amplicon dataa.

We focus here on two Bioconductor5 packages — dada26 and phyloseq7,8 — created specif-
ically to analyze amplicon sequencing data within the R environment, and show how they
enable reproducible research in several microbiome studies. We begin by illustrating the need
for reproducible research workflows in microbiome studies with a typical workflow example.

2. A Case study in multiple outcomes: the Enterotypes

A few years ago, Arumugam, M. et al.9 published an article in Nature that concluded that
humans could be grouped into intestinal gut types. In fact, some bioinformatic forensics (pre-
sented in detail in the supplementary material) shows that during the course of the analysis,
the following choices were made.

• A preliminary choice of data transformation from the original counts to proportions was
made, although the authors could have chosen to take logarithms, variance stabilizing trans-
formations10 (here proportions replaced the original counts),
choose between log, rlog, subsample, prop, orig (5)

• Nine points were dropped from the study as they were considered outliers; of course the
authors could have chosen to .. leave out 0, 1, 2 ,..,9, + criteria (100)

• Certain taxa were filtered out as they were considered too rare or unlabeled.
filter taxa ... remove rare taxa, ie threshold at 0.01%, 1%, 2%,...(10)

• A distance was chosen (Jensen-Shannon, JSD) to quantify similarities between samples.
Distances ... 40 choices in vegan/phyloseq (40)

• An ordination method and number of coordinates has to be chosen.
Ordination and axes ... MDS, NMDS, DCA, k=2,3,4,5.. (16)

• A clustering method and a number of clusters
is chosen ... PAM, KNN, hclust ... (16)

• The authors chose an underlying continuous variable, an alternative could have been a linear
or curved latent variable or group of variables. latent variable choices... (4)

According to this rough list, there are more than 200 million possible ways of analyzing these
data b. Thus, there is a combinatorial explosion of the number of possible choices that an
investigator makes. Some choices can impact conclusions drawn from microbiome studies; it
becomes necessary for experimentalists to develop and adopt pipelines documenting choices
used in these analyses with the intention of providing an assessment of the robustness and

aThroughout this article we use regular or texttype font for packages/applications with names that are
capitalized or uncapitalized, respectively. We use a courier style font for R code, including function and class
names. The supplementary material contains Rmd files of the complete R code that enable the reproduction of
all the figures in the article.
b5× 100× 10× 40× 16× 16× 4 = 204800000
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reproducibility of the analyses. In fact, an errata was published to the paper,9 substantially
weakening the original conclusions. Figure 1 shows graphical representations made after the
Jensen-Shannon distance was computed on the data. The authors made an inappropriate sup-
plementary step using the data based clusters as labels in a supervised classification between
group analysis that separated the clusters more than they actually appear in the middle figure.
There is unfortunately no way to use multiple hypothesis testing corrections for this number of
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Fig. 1: On the left we show the analysis as done in9 , in the middle we have done the same
analysis with the Jensen Shannon distance but without the extra (invalid) supervised separation
and on the right we have the minimum spanning tree exhibiting a clear gradient in the data.

possible analyses, thus the only way of ensuring robustness of the conclusions is to repeat the
analyses with many different settings. In the supplementary material we include the output
showing the ordination with 40 different distances. In particular, the clustering is not always
as obvious; different choices of distance such as chisquare or Jaccard give very different results.

As this re-analysis demonstrates, access to reproducible analysis workflows is necessary
for the interpretation of modern microbiome studies. In this example, in just one stage of the
analysis (clustering of samples based on taxonomic features), the reported outcome was one
out of millions of analogous alternatives, many of which differed qualitatively. Other parts
of standard amplicon analysis, such as the construction of OTU tables and the evaluation of
differential abundances, are accompanied by a similar myriad of choices. For this reason it is
crucial that the analysis of amplicon data be made accessible — sharing the data alone is not
enough.

3. A reproducible workflow in R

Here we present a workflow for the analysis of amplicon data within R (Figure 2). This
workflow takes as input the amplicon sequencing reads and associated sample metadata, and
provides as output exploratory and inferential statistical analyses as well as sharable analysis
scripts and data files that fully reproduce those analyses. Here we focus on two particular
packages developed by our group for the analysis of amplicon data within the R environment:
dada2 and phyloseq.
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3.1. Inferring sample sequences and abundances using DADA2

dada2
infer sample
composition

phyloseq
transform,

subsample,
test, track

ggplot2
visualization

deseq2
differential
abundance

testing

vegan
ecological
statisticsR

Rmd
Workflow,
versions,
choices

Rdata
All data,
results,
one file

Sequences and
qualities

Metadata and
additional info

Fig. 2: Diagram of the new reproducible workflow including denoising, data integration and
statistical analyses.

The DNA sequence errors introduced by PCR and sequencing complicate the interpretation
of amplicon data, and present different challenges than the more well known problem of
resequencing. When re-sequencing a diploid organism (like a human being) it is known that
there exist either 1 or 2 variants at every position in the genome. Thus increasing depth
eventually trivializes the problem of making genotype calls by overwhelming the error rate with
data. However, when amplicon sequencing microbial communities the number of variants and
their associated frequencies are unknown, which fundamentally changes the inference problem.
When increasing sampling depth reveals new sequence variants, these might represent rare
errors or rare members of the community. In addition, the PCR amplification step introduces
chimeras and additional errors with a different structure than sequencing errors.

Most current studies use two methods to deal with amplicon errors, reducing their incidence
by filtering out low quality reads, and lumping similar sequences together into Operational
Taxonomic Units (OTUs). However, there are a significant number of choices made during
this process: the type and stringency of quality filtering, the minimum abundance threshold,
the size of the OTUs, the OTU construction method, and more. All of these choices can have
significant downstream consequences for later analysis.11

This has led to serious problems for the reproducibility of amplicon-based studies. The
methods used to filter sequences, construct OTUs and then perform analysis are often per-
formed in separate environments (e.g., shell scripts vs. python vs. R). This makes the creation
of a single coherent record of the analysis from input data to final product difficult and time-
consuming. In practice few studies can be reproduced from the original raw data.

We have addressed this shortcoming by developing the dada2 package6 for R which per-
forms the crucial filtering and sample inference steps that turn a set of raw amplicon sequences
into a feature table of the types observed in each sample (e.g., an OTU table). Because dada2
shares the R environment with downstream analysis methods already present in R, such as
those in the phyloseq package, the publication of reproducible workflows encompassing the
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entirety of the analysis is far easier. One unified R script, and one unified Rdata data object,
can provide a complete record of the published analysis, and allows interrogation of the full
set of choices made in that process.

3.2. Performing exploratory and inferential analysis with phyloseq

Phyloseq allows the user to import a species by sample contingency table matrix (aka, an
OTU Table) and data matrices from metagenomic, metabolomic, and or other −omics type
experiments into the R computing environment. Phyloseq is unique in that it allows the
user to integrate the OTU Table, the phylogenetic tree, the “representative sequence” fasta
file, and the metadata mapping file into a single “phyloseq-class” R object. The microbial
ecologist can then harness all the statistical and graphical tools available in R, including
knitr, ggplot2 to generate reproducible research reports with beautiful graphics, as detailed
in our supplementary .Rmd file and in the case studies below.

Combining this environment with a number of other important R packages (e.g., vegan,
ade4, DESeq2, multtest ...) allows for powerful and specific analyses to be performed on
amplicon-sequenced microbiome data. We share several such examples, along with the data
and code necessary to reproduce them.

4. Examples: Longitudinal data analysis

Tackling the challenges involved in longitudinal patient-dependent data requires methods
specifically tailored for the human body sites studied. For instance, the vaginal community is
the one human body habitat that has been shown to robustly cluster into discrete community
state types (CSTs).12 This feature allows the complex information about community composi-
tion to be simplified by projecting into a small number of CSTs. Combined with longitudinal
sampling information, this simplified projection is then amenable to analysis as a Markov
chain.

In a 2015 study12 we used this Markov chain representation to analyze the dynamics of
the vaginal community during pregnancy. Transition rates were estimated from a set of 652
pairs of samples collected one week apart during the pregnancies of 40 women, producing an
estimation of the dynamics of the vaginal community as illustrated in Figure 3. These results
reproduced previous qualitative and semi-quantitative observations,13 such as the high stability
of Lactobacillus crispatus communities, but also provided a more detailed quantification of the
stability of each CST as well as the connectivity between them.

Markov chain analysis is a powerful way to quantify and visualize dynamics, but it can only
be applied to systems that are representable by a set of discrete states (a property which is
often not trivial to establish as in Section 2). In the context of microbial communities this is a
substantial limitation, as few communities can be so represented. A second concern, especially
when applied to human-associated communities, is how the estimation of the transition rates
should be performed across subjects. If the community dynamics are subject-independent,
then an average over the observed transitions in each subject is appropriate, and this was the
method used in our analysis of pregnant vaginal communities. However, it is possible that
subject-specific factors (eg. host genetics) may influence transition rates, in which case the set
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of states should be expanded to include the subject effect.
Finally, the uncertainties that exist in mapping community states to discrete CSTs can

also have significant consequences for the estimation of transition rates between those states,
as in the case where a rare and unmodeled community state exists intermediate between the
centers of two CSTs and is sometimes assigned to one or the other.

Even in the relatively very simple case of the vaginal community, this set of concerns
cannot be comprehensively addressed within a single manuscript. Thus the need for access
to the analytical workflow. In this study, we used the reproducible R workflow, and Rmd and
Rdata files, to make our analysis easily accessible and modifiable and have deposited the data
and code in a permanent repository (permanent url) maintained by the Stanford Digital
Repository at http://purl.stanford.edu/hg140kw6221.
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Fig. 3: Markov chain modeling of CST states across pregnancy and preterm birth.12 Numbers
indicate the one-week self-transition rate for each state. The high-diversity, low Lactobacillus
class 4 is the least stable and most connected to the other CSTs. A more complete version of
this figure appears in the aforementioned PNAS paper.12

5. Example: Spatial data analysis

Patterns of diversity and community composition across human body-sites have been well
characterized.14 When comparing human-associated microbial communities across different
anatomic sites, skin and gut for instance, dramatic differences in the acquisition, development,
and maintenance of microbial community composition are observed. Few studies have yet
examined the extent to which microbial communities vary across fine scale spatial gradients
on the human body, such as between and across individual tooth surfaces in the oral cavity.
Datasets that have attempted to examine the spatial variation of oral microbial communities
have shown interpersonal variation to be the strongest effect with secondary effects exerted
by tooth position.15,16 We have extended the current exploratory approaches through the use
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of the statistical packages available in R specifically tailored to analyze spatial or longitudinal
data.

In this study, we demonstrate the usability of the phyloseq7 package for applied spatial
analysis of microbial communities in the oral cavity. As a test case, we generated data for this
demonstration, collecting 186 independent samples from the facial (cheek-facing) and lingual
(tongue-facing) surfaces of every tooth (excluding the third molars) of one adult female on
each of two non-consecutive days. We extracted DNA from each sample, amplified the V3-V5
region of the 16S rRNA gene using golay-barcoded primers, and sequenced the amplicons using
the 454-Titanium platform, generating 216,965 sequences with a median sequencing depth of
2,479. We use two methods to examine the spatial variation of oral microbial communities: a
Between Class Analysis and a Principal Components Analysis with respect to Instrumental
Variables.

5.1. Between Class Analysis

When dealing with a priori classes in which we know teeth communities segregate, we want to
highlight differences in a supervised analysis. The segregation of supragingival communities
might arise because teeth are situated along an ecological gradient. As a first examination of
the spatial relationship between the oral communities, after filtering and preprocessing the
data we used ade4 to perform a Between Class Analysis (BCA) in which tooth class was used
as the spatial partition.

Using teeth groupings, we found that 12% of the total variance could be explained by
Tooth-Class with the first component accounting for 56.5% of the explained variance. The
BCA revealed that not only can communities be distinguished from one another based on
tooth class, but that these communities may exist along an ecological gradient. Molar and
Premolar communities appeared to be associated with positive scores along the first BCA axis
while the Central Incisors and Lateral Incisors appeared to be associated with more negative
scores along the first BCA axis, regardless of whether we examine communities in the top
(Maxillary) or bottom (Mandibular) jaws or whether we examined the buccal or the lingual
aspect of teeth. The distribution of teeth along the first and second components suggested
that supragingival plaque varies along a gradient in the mouth. Interestingly, the variance of
community scores along CS1 varied according to tooth class (Figure 4) with Central Incisor
communities appearing to be the most variable community class especially if communities
were sampled from the lingual aspect of the teeth or from the buccal aspect of teeth in the
lower jaw. This is interesting given the relative proximity of these sites to the secretions of the
submandibular/sublingual glands, which may give rise to the observed structure.

5.2. Principal Components with Instrumental Variables

It can be challenging to incorporate covariates such as spatial variation into studies of microbial
communities. Here, we explicitly model the spatial variation of microbial communities in the
human mouth using a Principal Components Analysis with respect to Instrumental Variables
(PCA-IV)17 where a third-order polynomial function of the geographic coordinates was used
as the constraint.
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Fig. 4: Comparison of Buccal and Lingual sides of five different teeth types.
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Fig. 5: A representation of the output from PCA-IV. The left and right panels show scores along
the first and second PCA-IV axes, respectively. Each dot represents a sample, and its position
with respect to the image of the teeth shows the area it was sampled from. Color represents
whether the sample scored high (blue) or low (red) on the first and second PCA-IV axes. The
first PCA-IV axis reveals a complex interaction between tooth aspect, the front vs. the back of
the mouth, and jaw. Communities on the lingual aspect of most anterior teeth share negative
scores along the first coordinate with a more pronounced difference between tooth aspect in the
bottom jaw. The second axis describes a posterior to anterior gradient.

The PCA-IV accounts for 27% of the variance. The first principal coordinate separates
buccal from lingual communities with lingual communities being associated with more positive
scores along Axis 1 compared to buccal communities, especially for communities in the bottom
jaw. Examining multiple individuals should confirm whether this pattern is consistent across
multiple subjects and may reveal the sum of factors that structure the spatial variation of
microbial communities. For now, we speculate that in this subject the relative proximity of
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the the submandibular glands to the upper anterior sites, the lower anterior, and posterior
sites are important factors contributing to variation along Axis 1.

Axis 2, on the other hand, accounts for 23.4% of the total variance and appears to separate
molar from incisor communities with molar communities being associated with positive scores
along Axis 1 and incisors being associated with negative values along Axis 1.

While the data presented here pertain to just a single subject, and therefore our ability to
make population level inferences limited, in this analysis we generated and provided an .Rmd

script that can be used by other expeirmentalists to test hypotheses related to the spatial
structure of host-associated communities in the oral cavity or at other body sites.

6. Relevance to Precision Medicine

The vaginal and oral community examples provided above both have relevant applications
to personalized medicine. In the first example, the state of the vaginal community during
pregnancy has been shown to be related to the likelihood of preterm birth outcomes in some
women, with higher relative abundances of particular taxa such as Gardnerella vaginalis and
Ureaplasma implicated as specific risk factors.12 Furthermore, the duration of time spent in
the high-risk states further stratified preterm risk. This suggests that longitudinal monitoring
of the vaginal community during pregnancy, concomitant with the standard schedule of pre-
natal care, might provide a biomarker for preterm birth risks early in pregnancy allowing for
pre-emptive intervention and education.

In the second example, we show an unpublished example of a spatial analysis of the oral
microbiome which will have broad applicability in the dental clinic. Dentists have long known
that most people experience greater difficulty brushing the lingual aspects of posterior teeth as
compared to the buccal aspects of those same teeth, and that whether an individual is right or
left handed impacts brushing efficacy. Differences in brushing technique may therefore give rise
to differences in microbial community composition in different areas of the mouth, and these
differences may be highly specific to individual patients and may relate to the incidence of
dental disease. One possible application of this type of analysis in the dental clinic would be to
provide patients with customized diagrams of the microbial inhabitants of their oral cavities in
order to help them to better understand the impact of brushing technique on their oral health.
If analyses were conducted at every semi-annual dental exam the relative impact that different
dental interventions have on the spatial structure of communities could be elucidated on a per-
patient basis. By wrapping up this type of metadata with phylogenetic sequence analysis and
depositing the information into public repositories, we increase our ability to make this type
of inference. Analysis of spatial and temporal series may also have relevance to dental disease,
which is patchy. Cavities (which are not generalized) are known to form on discrete, localized
surfaces of dental enamel, and in the healthy individual a single cavity typically takes years to
develop. Our ability to decompose the spatial and temporal components of health-associated
supragingival communities would enable clinicians to develop models that detect deviations
from health, such as incipient caries, which are reversible. These types of models might then
allow clinicians to detect and reverse early carious lesions before the need for costly and
invasive dental restorations arises.
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These examples demonstrate the need for reproducibility in microbiome research and the
relevance of the reproducibility problem to the precision medicine initiative.

7. Difficulties encountered in the production of Reproducible Research

There are many biological and technical choices, which are challenging to standardize across
projects, institutions, and investigators, that make experimental and analytical findings diffi-
cult to replicate. Studies that examine the ecological structure of human-associated microbial
communities are tough to compare when data are generated using different sequencing tech-
nologies (e.g., 454 vs. Illumina), or even when investigators simply sequence different regions
of the 16S rRNA gene. The rapid increase in the number of sequencing technologies makes
it difficult to standardize the highest level technical factors that give rise to irreproducible
data. In contrast, how we make use of data that have already been generated is one of the
easiest ways to increase the reproducibility of experimental findings. The difficulty that any
investigator faces in replicating the steps and choices of another investigator in executing
their data analysis, when provided with the same raw data, is a more subtle, often-overlooked
problem that is easily addressed. When considering this question in the context of precision
medicine it is easy to recognize that a clinician trying to provide an individualized report on,
say, oral health must be able to generate a record exactly as intended by the investigators
who developed the report. To facilitate the use of these analyses in the clinic, reports could be
developed to run with the Shiny Phyloseq8 interface, which places the computational power
of R in the hands of individuals less customized to working with scripts. Experimentalists
will benefit from considering their data analysis pipelines from this point of view. While most
bench scientists use a laboratory notebook to document choices that guide their decisions
at the bench, fewer bench scientists have adopted the tools (e.g., LaTex, RMarkdown, etc.)
widely used in mathematics and statistics to document the analytic choices used during data
analysis. The pipelines presented here provide microbial ecologists with a single platform with
which to analyze 16S rRNA gene amplicon data, providing bench scientists with the ability
to generate scripts that can be executed by other scientists (or eventually by clinicians in the
clinic) and enabling the genesis of figures and findings that are precisely replicable and usable
in a variety of other related contexts. Here we have provided examples of three statistical
analyses using R and in particular the Rmd format, easily available in RStudio.

7.1. Open Data Access Barriers to Reproducibility

The NIH Open Data Access Policy should dramatically increase our ability to reproduce find-
ings from published datasets in addition to allowing researchers to leverage existing findings
in analyses of new experiments. Nonetheless, researchers face several other barriers when try-
ing to access these files. Non-standardized or non-existent mapping files make it difficult to
analyze data that have been deposited in public repositories as multiple short read archives.

We advocate the use of platforms (e.g., Github, Bioconductor, CRAN) used by statisticians
and bioinformaticians in which experimentalists can deposit not just their sequencing data
but also packages containing their complete metadata mapping files, taxonomy files, reference
sequence files, which can all be wrapped into a single phyloseq object within R.
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7.2. Advantages and weaknesses of the R workflow

While rarely achieved in practice, the need for reproducible analysis in amplicon studies has
been recognized and there are several existing approaches. The two most common pieces of
pipeline software – mothur18 and qiime19 – allow analysis workflows to be shared as batch
files or IPython notebooks20 respectively. Also, restricted versions of a number of amplicon
analysis tools are available through cloud based platforms such as Galaxy.21

However, an amplicon analysis workflow in R provides several advantages over these exist-
ing approaches. The most compelling advantage is R’s access to a constellation of state-of-the
art statistical methods. While common statistical tests have been implemented by pipelines
like mothur and QIIME, there is no other platform that has a suite of statistical tools as broad
as that implemented in R. In practice, many studies use the popular amplicon pipelines for the
initial stages of their analysis, and then transition into R for deeper analysis, with the result
being that even when analysis scripts are shared, they only cover part of the full workflow.
Additionally, R markdown, as implemented by the knitr package, allows the construction of
R analysis for which both the underlying code and the full output of that code can be easily
shared.

There are also weaknesses in the workflow we present. One of those weaknesses is that
our current R workflow does not include the optimal storage of raw sequence data. A sec-
ond weakness is in the taxonomic assignment of amplicon sequences or OTUs. While one R
package does exist for this purpose (clstutils), it requires parallel computation in an exter-
nal program (pplacer22), preventing full reproducibility from the R script alone. Taxonomic
assignment fully within R is an area of particular interest for future development.

8. Conclusions

We describe reproducible research in the context of studies of the human microbiome. Bio-
conductor packages, dada2, phyloseq, allow for denoising, handling, filtering, and analyzing
high-throughput phylogenetic sequencing data. The phyloseq package provides extensions for
leveraging analysis from other ecology-related packages, such as spatstat for spatial data
analyses, ade4 for multiway data analyses and lme4 for mixed model analyses. We believe
that this workflow provides a useful way to document choices in the analyses of phylogenetic
sequencing data, its quality control, filtering, processing and its inferential validation.
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