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The blood gene expression signatures are used as biomarkers for immunological and non-
immunological diseases.1 Therefore, it is important to understand the variation in blood gene expres-
sion patterns and the factors (heritable/non-heritable) that underlie this variation. In this paper,
we study the relationship between drug effects on the one hand, and heritable and non-heritable
factors influencing gene expression on the other. Understanding of this relationship can help select
appropriate targets for drugs aimed at reverting disease phenotypes to healthy states. In order to
estimate heritable and non-heritable effects on gene expression, we use Twin-ACE model on a gene
expression dataset MuTHER,2 measured in blood samples from monozygotic and dizygotic twins.
In order to associate gene expression with drug effects, we use CMap3,4 database. We show that,
even though the expressions of most genes are driven by non-heritable factors, drugs are more likely
to influence expression of genes, driven by heritable rather than non-heritable factors. We further
study this finding in the context of a gene regulatory network. We investigate the relationship be-
tween the drug effects on gene expression and propagation of heritable and non-heritable factors
through regulatory networks. We find that the decisive factor in determining whether a gene will be
influenced by a drug is the flow of heritable effects supplied to the gene through regulatory network.

1. Introduction

In this paper, we examine a general question: whether a drug aiming to perturb a disease
phenotype should target genes whose expression is dominated by heritable or non-heritable
factors?

The expression level of a gene is determined by both heritable effects and non-heritable
effects. We estimated those effects for expressions of 3245 genes from MuTHER twin database
(in Figure 1) and found that the expression of most genes are driven by non-heritable effects.5

At first, we would expect that a gene that is significantly impacted by non-heritable effects
would be more likely to be affected by a drug – drugs could take advantage of such gene’s
environmentally driven variability.

Naturally, heritable factors also play an important role in drug response.6–8 In our study,
we find that the strong heritable effects on a gene’s expression are predictive of whether drugs
can influence this gene. A simple experiment in Section 3.2 uses CMap database to show that
genes robust to non-heritable effects – hence, strongly driven by heritable effects – are more
likely to be part of a drug influenced gene expression signature.

The result of this experiment led us to examine the first question in a broader context of
gene regulatory network. Previous studies show that genes can pass the drug influence through
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Fig. 1. The heritability estimation for 3245 genes from MuTHER twin database. Heritability is the ratio
between variance driven by heritable effects and total variance.

the biological network to induce change in a target gene.9,10 We deem such genes source genes,
as they can be seen as sources of drug effect propagation in the network. Hence, we wondered
whether we can predict the flow of drug influence through a regulatory network from source
to target genes.

We say that there exists a regulation flow between a source gene and a target gene if there
is a sequence of strong regulatory relationships leading from the source gene to the target gene.
Naturally, highly variable source gene with a strong flow to target gene will induce variance in
the target gene. We can estimate how much of the heritably or non-heritably driven variance
is propagated from source to target. Consequently, we introduced quantitative measures of
strength of heritable or non-heritable flow between source and target genes.

We call a regulation flow between a source and a target gene drug influence flow if there
exists a drug influencing both genes. Hence we can pose a question: Does a strong heritable
flow between source and a target imply existence of a drug influence flow between these two
genes?

An experiment in Section 3.3 reveals the fact: strong heritable flows are predictive of drug
influence flows. Equally importantly, strong non-heritable flows are not predictive of drug



influence flows. Hence, a drug influence flow leading to particular target gene is best identified
through the regulation flows propagating substantial heritable effects.

Here, we provide a simple example of this relationship in Figure 2. In this example, both
the source gene PI4KB and PIK3R5 have regulation flow to target gene INPP5F. However,
heritable flow strength to INPP5F from PI4KB (red) is higher than heritable flow strength
from PIK3R5, even though they have similar regulation flow strength. Our validation in
CMap shows that there is no drug influencing both PIK3R5 and INPP5F; while the drug
“phthalylsulfathiazole” is known to influence both PI4KB and INPP5F.

phthalylsulfathiazole PI4KB PIK3R5

INPP5F

Fig. 2. An example of choosing the drug influence flow from our results. Yellow colored gene INPP5F is the
target gene that we want to influence. The red regulation flow from PI4KB has regulation flow strength 0.3
and heritable flow strength of 0.1. The green regulation flow from PIK3R5 has regulation flow strength 0.3
and heritable flow strength of 0. The blue nodes is one of the drugs that is known to influence both PI4KB
and INPP5F.

The rest of this paper is organized as follows: we introduce methods to find the drug
influence flows in a specific network and Twin-ACE model for heritable effects estimation in
Section 2. Supportive experiments and results are discussed in Section 3 and 4.

2. Methods

In this section, we discuss the methods that we use to recover the regulatory network and
estimate heritable and non-heritable effects. In Section 2.1, we first introduce the directed
acyclic graph gene regulatory network and the parameter estimation of a given network using
linear model. In the second part, we introduce Twin-ACE model that we are using to estimate
the impact of heritable and non-heritable effects on genes’ expression, and the quantitative
measures of the heritable and non-heritable flow strength in a regulatory network. Twin-ACE
model in combination with regulatory network model can be seen as a mixed model of the
joint data.?

2.1. DAGRN and its estimation

Directed Acyclic Gene Regulatory Network(DAGRN) Our method operates on a
DAGRN, as this representation enables a straightforward way of calculating the regulatory



effects using linear regression of expression. Specifically, DAGRN is a graph of P nodes with
no loops or undirected edges. Each node t in the graph is a random variable xt represents the
measurement of a gene expression value. It has the following conditional probability density:

xt|µt,W, σ2t ∼ N (µt +
∑

s∈pa(t)

ws,txs, σ
2
t ), (1)

where pa(t) is the set of parent nodes that link to node t. W is an adjacency matrix of size
P × P . Each entry ws,t indicates the strength of edge s → t. µt is the local mean. We call σ2t
the residual variance of xt.

Linear model estimation Given a gene expression matrix X of size N × P , where N is
the number of samples and P is the number of genes, we can estimate the parameters µ =

[µ1, . . . , µP ], σ = [σ1, . . . , σP ] and W.
Let us look at a specific gene. We use a vector y to denote the N observed samples for that

gene. We denote regulators’ gene expression matrix as R. This is a matrix of size N ×R. Each
of R columns is an observed expression levels corresponding to a parent node, a regulator. We
can write the joint distribution for all the samples as:

p(y|µ,w, σ) =

N∏
i=1

N (µ+ riw, σ
2), (2)

and rk denotes kth row of matrix R. µ is the local mean for y, σ2 is the residual variance. We
can derive the maximum likelihood estimation (MLE) update for parameters in (2) as :

µMLE =
1

N

N∑
i=1

yi (3)

σMLE =
1

N
||ỹ −Rw||22 (4)

wMLE = argmin
w

||ỹ −Rw||22. (5)

We write ỹ = y−µMLE1N for convenience. The optimization problem (5) is a linear regression
problem.

Stimulation-Response Matrix After acquiring the regulation weights for the network, we
need to calculate the total regulation influence from any source node to any target node.
Therefore, we introduce the Stimulation-Response matrix. To differentiate the notation from
µt, which is the local mean of a gene expression xt, we define αt , E[xt] as the global mean of
xt. Suppose the drug treatment changes mean of the source gene xs by ∆αs, we want to know
the response change ∆αt in the target gene. For convenience, we will call ∆αs stimulation
change and ∆αt response change.

As our model is a Linear-Gaussian model, the stimulation change and response change are
also linear:11 ∆αt = Ss,t∆αs. We call S Stimulation-Response matrix. It is a P × P matrix,
where entry (s, t) indicates the response change ∆αt in the target gene t given unit stimulation
change (∆αs = 1) in the source gene s. We can use Algorithm 1 to calculate the Stimulation-
Response matrix. The computational complexity for this method is O(P 2V ), V is the total
edge number.



input : W : adjacency matrix, P : total node number
output: S : stimulation-response matrix
initialize S← 0P×P ;
for x← 1 to P do

Sx,x ← 1;
for y ← nodes has directed edges link from x do

for j ← 1 to P do
Sj,y ← Sj,y + Sj,x ∗Wx,y;

end

end

end

Algorithm 1: The algorithm for calculating Stimulation-Response matrix

We call the value in entry (s,t) of S as the regulation flow strength of the regulation
flow s → t. We only consider a regulation flows between source gene s and target gene t for
which S(s, t) > T , where T is a certain threshold.

2.2. Twin-ACE model and heritable/non-heritable effect estimation

We are using the Twin-ACE model to estimate the heritable and non-heritable effects on the
phenotypes. The standard ACE model for twin studies is based on the assumption that identi-
cal twins share their genes while fraternal twins share approximately half of their polymorphic
gene sequences. ACE study design assumes presence of both monozygotic and dizygotic twins.
In order to model the relatedness of the gene expression measurements in twins, we utilize
the standard ACE model.12 The main assumption underlying the ACE models is that the
covariance of the gene expression in a twin pair can be decomposed into three contributions:
1) Additive genetic component 2) Common environmental component, and 3) twin-specific
Environmental component.

The additive genetic component is the only component that is dependent on whether
the twins are identical (monozygotic, MZ) or fraternal (dizygotic, DZ). Identical twins share
same genetic material and hence differences in their gene expressions are attributable to en-
vironmental factors. In contrast, fraternal twins, on average, share only half of their genetic
sequences and hence differences in their gene expressions can be attributed to heritable or
non-heritable factors. This observation motivates parametrization of phenotypic covariance

in terms of additive components AMZ =

[
1 1

1 1

]
and ADZ =

[
1 1

2
1
2 1

]
reflecting the expectation of

higher covariance among mono-zygotic twins to the extent the gene expression is heritable. In
terms of notation, to indicate zygosity of a twin pair t1 and t2 we will use zyg(t1, t2), naturally
zyg(t1, t2) ∈ {MZ,DZ}.

In addition to additive genetic effects, we also model potential environment effects. We
denote them as C and E. These effects are assumed to be independent of twins’ genomes.
Furthermore, the common environmental effects are assumed to be affecting both of the twins



in a family, and hence off-diagonal covariance terms are 1. The twin-specific environmental
effects are assumed to have an independent effect on each of the twins, so the off-diagonal

terms are 0. Hence, we have C =

[
1 1

1 1

]
and E =

[
1 0

0 1

]
.

Estimation of ACE parameters In order to use the relatedness of the gene expression
measurements in twins to estimate the heritable and non-heritable effects, we use Twin-ACE
model. Suppose we have F families and each family has two twins. For a given twin pair (t1, t2)

we will use zyg(t1, t2) to indicate whether the twin pair is monozygotic (MZ) or dizygotic (DZ).
Similarly, we have the gene expression measurement y for N = 2F twins. The joint distribution
for all samples is:

p(y|µ, a, c, e) =
∏

(t1,t2)

N

([
µ

µ

]
,Σzyg(t1,t2)(a, c, e)

)
, (6)

where

Σzyg(t1,t2)(a, c, e) = a2Azyg(t1,t2) + c2C + e2E.

We call a, c, e ACE parameters for gene expression vector y. We will abbreviate covariances
ΣMZ,ΣDZ while acknowledging their dependence on parameters a, c, e.

In this model, µ is the population mean of the y. To estimate the parameters a, c, e, we
need to solve the follow optimization:

(a, c, e)MLE = argmax
a,c,e

[
−1

2
(y − µ)TΣ−1(y − µ)− 1

2
log |Σ|

]

Σ =


Σzyg(t1,t2) 02×2 02×2 . . . 02×2

02×2 Σzyg(t3,t4) 02×2 . . . 02×2
02×2 02×2 Σzyg(t5,t6) . . . 02×2

...
...

...
. . .

...
02×2 02×2 02×2 . . . Σzyg(t2F−1,t2F )

 ,

This optimization problem can be solved by Newton’s method.13 We define the heritable effects
on a gene as a2, and the non-heritable effects on a gene as c2 + e2.

Heritable/non-heritable flow strength The total variance propagated through a reg-
ulation flow can be decomposed into heritable flow and non-heritable flow. We define the
heritable flow strength of a regulation flow s→ t as: G(s, t) = a2s × S(s, t). G(s, t) indicates
how much of heritably driven variance is propagated by the regulation flow from source gene s
to target gene t. Similarly, we define non-heritable flow strength E(s, t) = (c2s + e2s)×S(s, t)

as the amount of non-heritably driven variance propagated by the regulation flow.
Note that the total variance propagated by regulation flow is G(s, t) + E(s, t) = (a2 +

e2 + c2)× S(s, t). As we standardized all the gene expressions in all our experiments, we have
a2 + e2 + c2 = 1, so G(s, t) + E(s, t) = S(s, t). S(s, t) is different for each regulation flow, so we
cannot directly compute E(s, t) from G(s, t).



3. Experiment and Result

In this section, we performed two experiments. An overview of the data source and experiment
information is shown in Figure 3. The pre-processing of the data is discussed at first. The
following experiment “Drug target preference” is a significance test for the overlap between
genes influenced by drugs and genes driven by strong heritable effects. We found there are
more drugs preferring genes driven by strong heritable effects than non-heritable effects.

In the second experiment “Drug influence flows identification”, we treat the problem of
predicting drug influence flows as a classification problem using heritable, non-heritable and
regulation flow strength as the classifier features. Our result shows that heritable flow strength
is the best feature for drug influence flow prediction.

MuTHER (twin gene expression) KEGG (regulatory network)CMap (drug-gene relation)

Heritable/non-heritable effects Regulation flows in the networkDrug influence genes

Drug target preference Drug influence flows prediction

Twin-ACE DAGRN

Fig. 3. A process flow chart of the relationship between data and experiments. Yellow nodes are the dataset
we used. Green nodes are the information we extracted from the dataset. White nodes are the experiment we
conducted.

3.1. Data pre-process

CMap database3,4 is used to extract effective gene-drug relationships. The CMap database
maintains a rank matrix for gene’s differential expression under influence of 6100 drugs. For
each drug d, if gene x’s expression fold change is in the 99th percentile, we say that gene x is
influenced by drug d.

Furthermore, in a regulation flow s → t, if both gene s and t are influenced by a drug d,
we deem the flow s→ t a drug d’s influence flow.

Our twin gene expression data is acquired from MuTHER2 database. The data was mea-
sured on blood samples from 276 monozygotic and 442 dizygotic twins. All the gene expression
data is centered and standardized. Hence, the expression vector of each gene has mean zero and
unit variance. Heritable and non-heritable effects for each gene are estimated using Twin-ACE
model.



We combined a joint gene regulatory network (GRN) from 257 human signal pathways in
KEGG pathway14,15 database. We selected the sub-network from GRN that contains genes
from MuTHER and converted it into a DAGRN. We sorted the nodes based on their children
count. We then removed edges conflicting with this order, that is to say edges pointing from
lower ranked nodes to higher ranked nodes under the order. The transformed DAGRN from
KEGG pathway contains 28600 directed edges and 3245 genes.

3.2. Drug target preference

We test the significance of the overlap between genes influenced by drugs and genes driven
by strong heritable effects. 6100 drug instances from CMap database were used for the test.
We calculate the heritability of each gene using the ACE parameters as h = a2

a2+c2+e2 . Hence,
heritability is a value between 0 and 1 indicates how much the percentage of heritable effect
in total variance of the gene. The genes with heritability over 0.5 are deemed heritable genes;
genes with heritability under 0.2 are deemed non-heritable genes. There are 120 heritable genes
and 2199 non-heritable genes. We performed a hypergeometric significance test. There are total
U = 3249 genes, M = 120 of them are heritable. For each drug with N = 32 (top 1%) genes
influenced, where K of them are heritable genes, we calculate the p-value as the probability
of having K or more heritable genes in randomly chosen N samples from total U genes. If p-
value is smaller than a certain threshold, we deem the overlap between the genes influenced by
the drug and heritable genes significant. We call this kind of drugs “heritable-gene-targeting
drugs”. We also performed the same significance test to identify “non-heritable-gene-targeting
drugs”.

The result is shown in Figure 4. When we select p-value threshold as 0.001, there are
4 heritable-gene-targeting drugs and 1 non-heritable-gene-targeting drug. The names of the
drugs and the constitution of the genes influenced by the drugs are shown in Figure 5.

Figure 4 shows dramatic difference in counts of heritable-gene-targeting drugs and non-
heritable-gene-targeting drugs. Hence, current drugs are more likely to target a gene driven
by strong heritable effects rather than strong non-heritable effects.

3.3. Drug influence flows prediction

We estimated the regulatory network built from DAGRN using the twin gene expression
data from MuTHER database. Stimulate-Response matrix is calculated for 3245 genes in the
regulatory network. We selected the threshold T = 0.3 to be the threshold for regulation flows
and extracted 233 regulation flows. There are 212 different target genes and 164 different
source genes. From the CMap, we found 77 regulation flows are true drug influence flows.

To validate our assumption that the regulation flow with high heritable flow strength is
more likely to be a drug effective flow, three features are compared here as a classifier of drug
influence flow:

• 1. Heritable flow strength of the regulation flow: G(s, t).
• 2. Non-heritable flow strength of the regulation flow: E(s, t).
• 3. Regulation flow strength of the regulation flow: S(s, t).
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Fig. 4. The blue and green lines indicate the counts of drugs that have significant overlap with heritable or
non-heritable genes when selecting different p-value thresholds.

For each feature, we selected a list of value thresholds from minimum to maximum of
that feature value. If a known drug influence flow has feature value above the threshold, it
is counted as a true-positive. The true-positive rate (TPR) is the ratio between true-positive
count and total number of drug influence flows. If a regulation flow above the threshold is
not a drug influence flow, it is counted as a false-positive. The false-positive rate (FPR) is
the ratio between false-positive count and total number of regulation flows that are not drug
influence flows. The TPRs and FPRs across all the thresholds construct receiver operating
characteristic (ROC) curve. We use area-under-curve (AUC) as the performance metric. A
higher AUC indicates the feature is better for predicting correct drug influence flows. The
ROC curves for three features are plotted in Figure 6. It is obvious from the result that
using the feature heritable flow strength (AUC = 0.63) is much better than non-heritable
flow strength (AUC = 0.38) and regulation flow strength (AUC = 0.44) for predicting drug
influence flows.

We also listed the drug influence flows ranked by heritable and non-heritable flow strength
in Table 1 and 2.
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Table 1. Drug influence flows ranked by heritable flow strength (top 10)

Target Source G(s,t) E(s,t) drug CMap name
ATG12 FOXO3 0.43 0.33 deferoxamine,famotidine,Prestwick-860,azacitidine,bupivacaine

ARPC1B ACTG1 0.34 0.24 mesoridazine
INADL CLDN15 0.30 0.29 piroxicam
ARPC4 ACTG1 0.28 0.20 benzylpenicillin,zardaverine
ARPC3 ACTG1 0.25 0.18 phenazopyridine
DGUOK GUK1 0.24 0.29 benperidol
BCL2L11 DDIT3 0.20 0.21 ChicagoSkyBlue6B

CD22 PTPN6 0.19 0.26 haloperidol,6-bromoindirubin-3‘-oxime
TUBB TUBA1C 0.18 0.65 PF-00539758-00
TK1 DUT 0.18 0.63 tanespimycin

4. Discussion

In this paper, we answered the very first question in our paper: whether a drug aiming to
perturb a disease phenotype should target genes whose expression is dominated by heritable
or non-heritable factors?

Even though the variance in expression of most genes in the blood sample are driven by
non-heritable effects, our first experiment showed that drugs prefer to influence genes driven
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Table 2. Drug influence flows ranked by non-heritable flow strength (top 10)

Target Source G(s,t) E(s,t) drug CMap name
SUCLA2 SDHD 0.09 0.75 epirizole

ANAPC10 MAD2L1 0.04 0.67 nomifensine
TUBB TUBA1C 0.18 0.65 PF-00539758-00
BTG3 PABPC1 0.03 0.64 deptropine,phenoxybenzamine,oxprenolol
TK1 DUT 0.18 0.63 tanespimycin

ENOPH1 APIP 0.10 0.62 arcaine
INPP5E PLCB2 0.12 0.60 furosemide

PFAS GART 0.13 0.55 S-propranolol
MAP3K4 GADD45B 0.03 0.52 trichostatinA

IVD HADHA 0.12 0.51 alfuzosin,lomefloxacin,isometheptene,sulfaquinoxaline

by strong heritable effects rather than non-heritable effects. We then extended this observation
to the in the background of regulatory network, where we found the regulation flow with high
heritable flow strength is more likely to be a drug influence flow than flows with high non-
heritable strength. The answer to the question is clear from our experiment: a drug aiming to



perturb a disease phenotype should target genes whose expression is dominated by heritable
rather than non-heritable factors.

In both experiments, we identified the drugs targeting genes driven by strong heritable or
non-heritable effects. These observations and discoveries can help us design drugs targeting
more specific and precise regulation flows in the regulatory network to influence the final
target gene’s expression.

There are plenty of extensions for the current method. We can remove the DAGRN restric-
tion and construct a model the general gene regulatory network with loops and undirected
edges, as this is the most common gene regulation pathway. Another possible application is to
use the Stimulation-Response matrix for any specific study in gene expression control problem
with more constrained goals and resource limitations.
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