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Protein homology search provides basis for functional profiling in metagenomic annotation. Pro-
file HMM-based methods classify reads into annotated protein domain families and can achieve
better sensitivity for remote protein homology search than pairwise sequence alignment. However,
their sensitivity deteriorates with the decrease of read length. As a result, a large number of short
reads cannot be classified into their native domain families. In this work, we introduce MetaDo-
main, a protein domain classification tool designed for short reads generated by next-generation
sequencing technologies. MetaDomain uses relaxed position-specific score thresholds to align more
reads to a profile HMM while using the distribution of alignment positions as an additional con-
straint to control false positive matches. In this work MetaDomain is applied to the transcriptomic
data of a bacterial genome and a soil metagenomic data set. The experimental results show that
it can achieve better sensitivity than the state-of-the-art profile HMM alignment tool in identi-
fying encoded domains from short sequences. The source codes of MetaDomain are available at
http://sourceforge.net/projects/metadomain/.
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1. Introduction

With the advent of next-generation sequencing and culture-independent methods, an enor-
mous amount of metagenomic data have been sequenced from microbial communities from
different habitats. In order to understand the phylogenetic complexity and biological functions
of microbial communities, as well as their interactions with the host, automatic annotation
tools such as CAMERA,! MG-RAST,? and MEGAN? are being used for annotating metage-
nomic data sets. As an important component of these metagenomic annotation tools, protein
homology search provides basis for identifying putative genes and assigning those genes to an-
notated functional categories (e.g. protein domain families). There are two major methods for
protein homology search. The first method is based on pairwise sequence alignment. Putative
genes can be identified by comparing metagenomic reads against annotated protein databases
using BLASTX.# Although BLAST is one of the most efficient protein homology search tools,
probabilistic model-based methods have better sensitivity for remote protein homology recog-
nition. In particular, using profile hidden Markov models (HMMSs) to represent a protein family
greatly improves homology search sensitivity between highly diverged sequences.’ Thus it is
desirable to conduct protein domain classification using profile HMM-based tools such as HM-
MER.6 In conjunction with a fast-growing protein domain family database Pfam,” HMMER
is able to classify sequences into different domain families with high accuracy. In addition,
the latest implementation of profile HMM-based domain classification tool HMMER. 3.0 has
achieved comparable speed to BLAST, making it suitable for large-scale protein compositional
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analysis. For the convenience of discussion, we use HMMER to refer to HMMER 3.0 hereafter
unless otherwise specified.

Low sensitivity of HMMER on classifying short reads. Because of the high sensitiv-
ity of remote homology recognition, HMMER has been successfully applied to genome-wide
domain analysis. However, its sensitivity is significantly limited by the short reads of metage-
nomic data sets and poorly conserved domains. In order to investigate how read length and
domain identity affect the sensitivity of HMMER, we randomly sampled 200 peptides with
lengths of 12, 20, and 28 amino acids from the seed sequences of each of the 2,558 Pfam
domains, which contain the word “Bacteria” in their descriptions. The peptides were aligned
with the domain families using HMMER. We used the E-value cutoff 1000 in order to boost
the sensitivity. For each domain, the read classification sensitivity of HMMER is measured as
the ratio of the number of aligned reads to the total number of sampled reads. We sort all
data points by domain identity in ascending order and plot them in Figure 1. For domains
with the same identity, their average sensitivity is reported.

Figure 1 shows that the sensitivity of HMMER deteriorates with the decrease of the query
sequence length and domain identity. The sensitivity is decreased from 90% to 65-70% when
the lengths of reads change from 28 residues (i.e., 84 bp for corresponding DNA reads) to 20
residues (i.e., 60 bp for DNA reads) for domains with identity around 40%. Although next-
generation sequencing technologies are producing longer reads and assembly tools may be
available to assemble short reads into longer contigs, there is still a need for a protein domain
analysis tool for short reads. First, many finished or on-going metagenomic sequencing projects
contain reads with lengths from 35 to around 400 bp depending on the chosen sequencing
technologies. In addition, peptide sequences encoded in individual metagenomic sequence reads
may share only small overlaps with existing domain families. Thus, a sizable portion of many
available data still contains short reads. Second, the sheer amount of data and the complexity
of many metagenomic data sets pose a great challenge for assembly tools.® A large portion of
short reads cannot be correctly assembled into longer contigs. Third, many domain families



exhibit low average sequence identity, which poses a challenge for short and medium-sized
reads. Figure 2 shows the histogram of pairwise sequence identity for domains related to
bacteria. Of 2558 domains, there are about 43% domains with average identity no greater
than 0.3. For these domains, the sensitivity of HMMER is between 0.7 and 0.8 for reads of
length 84 bp, between 0.4 and 0.6 for reads of length 60 bp, and smaller than 0.1 for reads of
length 36 bp. As a result, although a large number of reads are sequenced from genes, which
are highly compact in microbial genomes, only a small percentage of the short reads can be
classified into their native domains using existing tools.

In this work, we introduce MetaDomain, a protein domain classification tool designed for
short reads in metagenomic data sets. MetaDomain provides a complementary protein analysis
tool to HMMER on assigning short reads into their native families.

2. Related Work

Profile HMM-based protein homology search is widely used for mining microbial genomes.
For example, Ellrott et al.? investigated the distribution of protein families in the available
human gut genomic and metagenomic data. As the data set contains assembled contigs, using
HMMER is expected to achieve high sensitivity. Schliiter et al.!® used HMMER to understand
the genetic diversity and composition of a plasmid metagenome from a wastewater treatment
plant. The reads have an average length of 104 bp, which is also adequate for HMMER to
achieve high sensitivity.

Besides providing a basis for functional profiling, profile HMM-based homology search
was also used for phylogenetic complexity analysis in metagenomic data. The phylogenetic
algorithm CARMA uses all Pfam domain and protein families as phylogenetic markers to
identify the source organisms of environmental DNA fragments as short as 80 bp. As we show
in Figure 1, profile HMM-based tools have sensitivity of at least 0.9 in classifying reads of
80 bp into domains with average sequence identity above 40%. However, for poorly-conserved
domains, a significant number of reads might be missed. A similar but faster tool Treephyler!?
conducted community profiling in metagenomics and metatranscriptomics based on Pfam
domain assignments. Treephyler was applied to a data set with average read length of 200 bp.
It is unclear how shorter reads affect its performance.

Our previous work designed a tool HMM-FRAME,'? which can identify and correct frame-
shift errors in pyrosequencing reads during protein domain classification using profile HMM-
based alignment. However, it was not specifically designed to handle short reads.

Finally, we note that the method used in MetaDomain shares a similar rationale to the re-
cent work by Weng et al.'* Weng et al. reported that taxonomic binning tools for metagenomes
discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. Thus, they
re-analyzed the discarded reads using less stringent cut-offs. In order to control the false pos-
itive matches introduced by the relaxed cut-offs, they used the evolutionary conservation of
adjacency between neighboring genes as an additional criterion.

3. Method

HMMER uses E-values as the discrimination threshold to determine the membership of a
query sequence. However, short reads may only generate low alignment scores and thus in-
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significant E-values. In particular, the conservation across the entire length of a domain family
can be highly variable, posing a great challenge for classifying reads sequenced from poorly
conserved sub-regions. In order to increase the sensitivity of aligning remotely-related short
reads, we propose position-specific score cutoffs, by which poorly conserved regions allow
more relaxed discrimination thresholds than well-conserved regions. However, the low thresh-
olds can easily incur random matches. In order to control the false positive rate, we examine
the position distribution of read alignments. The position distribution of read alignments on
a truly encoded domain is expected to be more uniform than a domain that incurs random
read alignments.!>!6 Figure 3 shows the schematic representations of three types of distribu-
tions of read alignments along a domain. The alignments in (A) and (B) are more likely to be
random. Thus the domains may not be encoded in the data set. The alignment distribution in
(C) exhibits a much more uniform distribution, providing strong evidence for the existence of
the underlying domain in the data set. Thus, by using relaxed position-specific score cutoffs
and inspecting the distribution of alignments, we expect to classify more short reads into the
correct domain families while not falsely reporting domains that are not characterized in the
data.

3.1. Pipeline of MetaDomain

The input to MetaDomain includes sequence reads and a list of protein domains. The output
is a list of domains encoded in the underlying data set and the number of aligned reads.
Figure 4 shows a schematic representation of the pipeline of MetaDomain.

MetaDomain consists of three main stages: short read alignment, filtering, and classifi-
cation. In the alignment stage, we use the Viterbi algorithm® to search for the best local
alignment between a query sequence and a profile HMM-represented domain family. In the
filtering stage, we first apply a position-specific score threshold to eliminate insignificant align-
ments. Then we remove stacked alignments with the same alignment positions inside a poorly
conserved region. In the final stage, we use the number of aligned reads and the distribution
of alignment positions to determine whether a domain is encoded.



3.2. The Viterb: algorithm

The Viterbi algorithm aligns a query sequence to a profile HMM by searching for the most
probable state path in the model. Unlike HMMER, MetaDomain directly aligns a DNA se-
quence to a profile HMM. To do so, we implicitly align translated peptides under different
reading frames with a profile HMM. Let 7 be a state path in a profile HMM M and let = be a
query DNA sequence. The Viterbi algorithm searches for the most probable path 7* such that
™ = argmax,(z, 7). The output of the Viterbi algorithm includes the optimal alignment and
its score. As Viterbi is a standard algorithm designed for HMMs, we refer readers to Durbin
et al.’ for a detailed illustration of the dynamic programming equations for finding 7*. The
major difference between our implementation and the standard Viterbi algorithm includes :
1) our implementation accepts a DNA rather than a peptide sequence as input; 2) a local
alignment can start and end with any state without incurring insertion or deletion penalties.

3.3. Alignment Filtering

MetaDomain employs two filtering mechanisms to increase its sensitivity in aligning short
reads while maintaining a low false positive rate: position-specific thresholds (PSTs) and
trimming.

3.3.1. Position specific threshold

PST allows different alignment thresholds for well conserved and poorly conserved regions.
Let the length of a query DNA sequence be L (in bp). Denote the profile HMM as M. Let
M; ; be a sub-model formed by all consecutive states from the ith match state M; to the jth
match state AM;. The upper bound of the alignment score against M; ; is the maximum score
that can be generated by aligning any input sequence of length j — i+ 1 with M; ;. Let a;;
denote the transition probability from state M; to state M;. Let e;(a) denote the probability
of state M; emitting amino acid a. Then the upper bound U; ; for sub-model M; ; is calculated
as follows:

J
Uij = Hak,k+1 x max(ex(a))
k=i
where a; ;41 is set to 1 because j is the ending state of the sub-model.
We define PST for the submodel M ; as:

PSTZ'J' = ’)/Ui,j

where the coefficient v is a user-specified parameter in the range of [0,1]. It can be flexibly
adjusted to control the trade-off between sensitivity and false positive rate of MetaDomain.
The default value is 0.6, which is used in our experiments.

3.3.2. Alignment trimming

Alignment with scores larger than their corresponding PSTs will pass the first filtering stage.
As each domain has various conservation along the entire length of the model, well-conserved



sub-regions have high PSTs while poorly-conserved sub-regions yield low PSTs. Thus, random
sequences tend to be aligned to poorly-conserved regions by MetaDomain, incurring a high
FP rate. Our empirical experiments show that dozens of reads that are not sequenced from
the underlying domain can be aligned to the same position in a poorly-conserved subregion.
In order to minimize the effects of noise, we discard stacked alignments that have the same
alignment positions.

3.4. Protein domain classification

In this stage we extract two features from the collected read alignments for each domain: the
number of aligned reads and the domain coverage. The domain coverage is the fraction of
positions covered by at least one read alignment in a domain. MetaDomain then applies a
simple decision tree to classify all the target domains into two classes: encoded domains and
non-encoded domains. If both features of a domain are equal to or bigger than their corre-
sponding thresholds, this domain will be classified as encoded. Otherwise it is not encoded in
the sample. By default, the cutoff for domain coverage is 30%. Ideally, the cutoff for the num-
ber of aligned read should be determined based on the properties of data such as sequencing
depth. If users do not specify this value, we use 20 by default.

4. Experimental Results

In order to evaluate the performance of MetaDomain on real data generated by next-generation
sequencing technologies, we applied MetaDomain to protein domain analysis in two data sets.
The first one is the transcriptome generated using RNA-seq for Burkholderia cenocepacia.
As both the reference genome and its domain annotations are available, we can quantify the
sensitivity and false positive (FP) rate of MetaDomain. The second one is metagenome data
sequenced from soil. We applied MetaDomain to identify domains encoded in the underlying
data. In addition, we compared HMMER and MetaDomain in both applications.

4.1. Identifying transcribed protein domains in transcriptome

In this experiment, we conducted transcribed domain analysis in the transcriptome from one
strain of B. cenocepacia named AU1054.17 By using Illumina RNA-seq, the authors generated
multiple samples for AU1054 in two growth media. We used one replicate of cDNA sample of
AU1054 in the growth medium cystic fibrosis. In total, 3,361,008 reads of a length of 41 bp
were downloaded from the website provided by the authors. We evaluated the performance of
read classification and domain identification of MetaDomain and HMMER.

4.1.1. Performance of read classification

The performance of read classification is quantified using both read classification sensitivity
and FP (false positive) rate. In this experiment, the read classification performance is com-
puted on reads that can be mapped to annotated domains. Below we sketch the main steps to
obtain mapped reads for a domain using the reference genome and the domain annotations.
First, we downloaded the genome of AU1054 and the annotated genes and domains from the
IMG website.'® There are 2,181 annotated Pfam domains. Second, the reads were mapped to



the reference genome using Bowtie!? with two mismatches allowed. Third, we compared the
positions of read mapping and annotated domains. For a domain, all reads that fall into it are
defined as “mapped” reads. Denote the set of mapped reads as M. All other (unmapped) reads
constitute set U. For a domain classification tool, let the set of aligned reads for a domain be
A. Thus, the sensitivity and FP rate of read classification for a domain are 404 and 474
respectively. Sensitivity of 100% indicates that all mapped reads can be aligned. A zero FP
rate indicates that only mapped reads can be aligned to a domain.

Of the 2,181 annotated families, we evaluated the performance of HMMER and MetaDo-
main on 1406 families which have at least one mapped read. Of the 1406 tested domains,
HMMER could not align any read to 1150 domains, resulting in zero sensitivity and FP rate.
For the rest 256 domains, all aligned reads by HMMER are non-mappable reads, resulting in
zero sensitivity and a positive FP rate. The comparison between HMMER and MetaDomain
is summarized using a bubble chart in Figure 5. The biggest bubble indicates that HMMER
has zero sensitivity and zero F'P rate for 1150 domains. This experiment shows that it is highly
difficult for HMMER to correctly align reads as short as 41 bp. There are two possible reasons
for the low sensitivity of HMMER on short reads. First, the parameter training in E-value
calculation of HMMER is based on much longer reads (100 amino acids). Thus, the small
alignment scores generated by the short reads yield large E-values and cannot pass the E-
value threshold. Second, the small alignment scores of short reads may not pass the filtration
stage of HMMER.
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Fig. 5. Read classification sensitivity and FP rate of HMMER and MetaDomain. The size of each bubble
represents the number of data points (i.e., domains) with the same sensitivity and FP rate.

4.1.2. Identifying transcribed domains in the transcriptome

Figure 5 only shows the read classification performance. MetaDomain uses both aligned read
number and domain coverage as thresholds for domain identification. We expect that the
additional constraint will reduce the false positive rate in domain identification. Because of
the low read classification sensitivity, we speculate that HMMER will have low sensitivity in
identifying transcribed domains.



Positive and negative test sets In order to quantify the performance of domain iden-
tification, we need to build positive and negative test sets, which include transcribed and
non-transcribed domains based on mapped reads. There is no commonly accepted criterion to
define transcribed genes using the number of mapped reads. Various expression scores such
as an average coverage depth across the entire length of each gene®® and reads per kilobase
of exon model per million mapped reads (RPKM) are used to quantify transcriptional level.
In addition, the cutoffs of defining highly transcribed, lowly transcribed, or non-transcribed
genes are variable in different applications.?! In this work, we define transcribed domains based
on the rationale that a truly transcribed domain should be mapped by a number of reads at
different positions. Correspondingly, we use the following criteria to determine whether a do-
main inside a gene is transcribed: 1) at least N reads are mapped to a domain; 2) at least
30% of positions in a domain are mapped by reads. A domain is labeled “non-transcribed” if
the number of mapped read is zero. For domains that fall between the criteria for transcribed
and non-transcribed domains, they are labeled “unknown” and are excluded from the test
sets. Table 1 shows the size change of the positive and negative test sets over the cutoff N.
Intuitively, bigger N creates an easier case for domain classification than smaller N.

Table 1. Number of transcribed and non-transcribed domains
using different cutoffs (N) for the number of mapped reads

[N | transcribed [ unknown | none-transcribed |
10 318 1317 546
15 262 1373 546
20 226 1409 546
25 195 1440 546
30 169 1466 546

Domain analysis using MetaDomain and HMMER We align all reads to the tran-
scribed and non-transcribed domains using MetaDomain and HMMER. The “unknown” do-
mains are removed due to their ambiguity. For HMMER, we first translated the short reads into
peptide sequences using 6-frame translations. We then aligned the domains with the translated
sequences using 1000 as the E-value threshold, which is chosen to maximize the sensitivity. For
MetaDomain we directly aligned the short reads with the domains. The pipeline in Figure 4
was used to output a list of transcribed domains for MetaDomain. Let DT and D~ be the
number of transcribed and non-transcribed domains identified using the read mapping results
in Section 4.1.2. Let M+ and M~ be the predicted number of transcribed and non-transcribed
domains by MetaDomain or HMMER. The sensitivity and FP rate of domain classification
tools are defined using the following equations:

e e . _ D+OM+
Sensitivity = =}
-AMY+
FP rate = 200

The values of D and M are affected by several options. First, Dt and D~ can change
over the cutoff N as shown in Table 1. Second, we used both the domain coverage and the
number of aligned reads to determine whether a domain is encoded or transcribed. In this
experiment, the cutoff for domain coverage is 30%, which we found reasonable across different



experiments. Thus, M and M~ mainly change over the required number of aligned reads
to a domain. For simplicity, we denote the cutoff as 7. Increasing 7 implies a more stringent
constraint for defining transcribed domains, and thus might result in lower sensitivity and a
smaller FP rate. Decreasing 7 is likely to increase the sensitivity while incurring a higher FP
rate. In order to compare the performance of MetaDomain and HMMER, under different 7,
we plotted the ROC curves by changing 7 from 1 to N for N=10, 20, and 30 in Figure 6.
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Fig. 6. ROC curves of HMMER and MetaDomain

Figure 6 shows that HMMER is highly specific (FP rate < 1.3%). However, as we specu-
lated, its sensitivity is low, with the highest sensitivity being only 0.135. HMMER misses a
large portion of short reads that can be mapped to protein domains even when we use a very
relaxed E-value cutoff. When both tools incur an FP rate of 0.02, the sensitivity of MetaDo-
main is 0.53 vs. 0.13 for HMMER. When N decreases from 30 to 10, the size of the positive
test set DT becomes larger and the sensitivity of both HMMER and MetaDomain decreases.
Note that the sensitivity and FP rate of HMMER keep the same for many different thresholds
(i.e., 7), resulting in compact ROC curves. Overall, the ROC curves show that MetaDomain
can achieve higher sensitivity while keeping a similar FP rate as HMMER for domain classifi-
cation in this experiment. In addition, Figure 6 provides guidance on determining appropriate
7 for MetaDomain in order to achieve desired sensitivity and FP rate.

On average, it took MetaDomain 280 seconds to align 752,156 reads with one domain on
a 2.2GHz dual-core AMD Opteron machine. There are 2181 domains in this experiment.

4.2. Protein domain analysis in a soil metagenomic data set

In the first experiment, we demonstrated the accuracy of MetaDomain in classifying short
RNA-seq reads into their native domain families. In this section, we present the utility of
MetaDomain in identifying encoded protein domains in a complicated metagenomic data set,
which is sequenced from the microbes dwelling in the soil from a long term cultivated corn
site at lowa using [llumina HiSeq platform ?. There are 520,346,510 sequence reads of various
lengths, ranging from 31 bp to 114 bp. The average length of the reads is ~ 73 bp. Figure 7

2Sequenced by James Tiedje Lab at Michigan State University. Unpublished yet.



shows the distribution of the read lengths in this data set. The sheer amount of data and
the complexity of this data set pose a great challenge for read assembly programs. Thus, we
directly apply MetaDomain and HMMER to unassembled reads.

40 50

60 70 80 90 100 110
Read length (bp)

Fig. 7. Read length distribution in the soil data set.

We first used HMMER to align all the reads against the 2558 Pfam domains that contain
the word “Bacteria” in their descriptions. Using E-value 1000, HMMER classified 34,602,784
reads into 2558 Pfam domains, accounting for 6.65% of all reads in the data set. The classifiable
reads have an average length of ~ 80 bp. A large number of reads shorter than 60 bp were not
classified. By conducting a complementary domain analysis on short reads using MetaDomain,
we expect to classify more reads to their native families. As many domains have been aligned
with a large number of reads by HMMER, it is highly likely that they are encoded by the
bacterial species in the soil data set. We thus excluded them from further screening. There are
80 domains with less than 20 reads aligned or with a smaller domain coverage than 30%. The
left panel of Figure 9 shows an example of such domain. The small number of aligned reads
and their biased distribution do not support the representation of this domain in this data set.
We thus applied MetaDomain to the 80 domains and investigated whether they are encoded.
On average, it took MetaDomain about 31 CPU minutes to align 11,194,176 sequences that
were not classified by HMMER and are shorter than 60 bp against one domain family.

Figure 8 presents the number of aligned reads and the domain coverage output by HMMER
and MetaDomain. Note that MetaDomain was only applied to reads that were not classifiable
by HMMER. Thus, the total number of reads that can be classified into each domain should
be the sum of the output of HMMER and MetaDomain. This figure shows that significantly
more reads can be classified into the corresponding domains. We need to specify thresholds
for domain coverage and the number of aligned reads in order to define an encoded domain.
Similar to previous experiments, the domain coverage cutoff is 30%. According to Figure 6,
the sensitivity and FP rate of MetaDomain are 0.34 and 0.004 when 7 is 20. We thus choose 20
as the cutoff for the number of aligned reads. Out of the 80 Pfam domains, 24 have less than
20 reads aligned or a domain coverage no greater than 30%. So these 24 domains are not likely
to be encoded in this data set. For the other 56 domains, their average domain coverage by
MetaDomain alone is 97.25%. The number of aligned reads by MetaDomain is 169.52 versus
15.27 by HMMER. This provides strong evidence that these protein domains are actually
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encoded. The average read length aligned by MetaDomain is 38 bp. As an example, Figure 9
shows the distribution of aligned reads by HMMER and MetaDomain for the domain PF09703.
In summary, by using MetaDomain, we are able to identify 56 more domains encoded in this
data set. 130,930 (0.025%) more reads are classified into these domain families.

Among these 56 protein domains, 21 have unknown functions. 6 domains are CRISPR-
associated domains. These kinds of domains are found in the genomes of approximately 40%
of bacteria and 90% of archaea. More detailed analysis is needed to understand whether the
functions of these domains are important to the specific habitat.

5. Conclusion and future work

In this work, we introduce MetaDomain, a protein domain classification tool for short reads
produced by next-generation sequencing technologies. It provides a complementary domain
classification tool to HMMER on classifying short reads into domain families with low sequence
identity. Our experimental results show that it can achieve a better tradeoff between sensitivity
and FP rate than HMMER in classifying short sequences. Its current version is based on
a faithful implementation of Viterbi and is slow when applied to thousands of millions of
reads and the whole Pfam database. We plan to improve its efficiency by using filtration
strategies such as ungapped alignment and parallel programming. In addition, we plan to
improve the method of designing position-specific score thresholds in order to achieve a better
discrimination power.
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