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Drug responses vary greatly among individuals due to human genetic variations, which is known as
pharmacogenomics (PGx). Much of the PGx knowledge has been embedded in biomedical literature
and there is a growing interest to develop text mining approaches to extract such knowledge. In this
paper, we present a study to rank candidate gene-drug relations using Latent Dirichlet Allocation
(LDA) model. Our approach consists of three steps: 1) recognize gene and drug entities in MEDLINE
abstracts; 2) extract candidate gene-drug pairs based on different levels of co-occurrence, including
abstract level, sentence level, and phrase level; and 3) rank candidate gene-drug pairs using multiple
different methods including term frequency, Chi-square test, Mutual Information (MI), a reported
Kullback-Leibler (KL) distance based on topics derived from LDA (LDA-KL), and a newly defined
probabilistic KL distance based on LDA (LDA-PKL). We systematically evaluated these methods by
using a gold standard data set of gene-drug relations derived from PharmGKB. Our results showed
that the proposed LDA-PKL method achieved better Mean Average Precision (MAP) than any
other methods, suggesting its promising uses for ranking and detecting PGx relations.
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1. Introduction

There exists striking variability in individual responses to drug therapy as exemplified by
severe adverse drug reactions which have been ranked as among the commonest causes of



death in hospitalized patients.1,2 Pharmacogenomic (PGx) research is to impact this problem
by linking the inherited differences to variable drug responses. However, much of our current
understanding in pharmacogenomics has been dispersed across numerous journals. Hence, it
is extremely important, as well as, immediately needed, to extract important facts across
publications into a comprehensive knowledge base. The Pharmacogenomics Knowledge Base
(PharmGKB),3 sponsored by National Institutes of Health (NIH), is such a database annotated
manually by a team of curators. Compared to the vast amount of relations implicitly exist in
published scientific literatures, the number of relations annotated in the PharmGKB is still
limited. Thus, there is a great interest in developing automated methods to accurately detect
PGx relations, such as gene-drug relations from biomedical literature.

In this paper, we present a study on detecting and ranking gene-drug relations in MED-
LINE abstracts by using LDA model. Starting with MEDLINE abstracts, we first recog-
nized gene and drug entities using existing Natural Language Processing (NLP) tools such
as MetaMap. Then we extracted candidate gene-drug pairs based on different levels of co-
occurrence, including abstract level (text from both titles and abstracts), sentence level, and
phrase level. In order to find the most related gene-drug relations, we finally ranked can-
didate gene-drug pairs using different methods including three baseline methods: frequency,
Chi-square test, and Mutual Information (MI), and two LDA-based methods: a previously
reported Kullback-Leibler (KL) distance based on topics derived from LDA LDA-KL, and a
newly defined probabilistic KL distance based on LDA LDA-PKL. The evaluation using a
manually annotated data set from PharmGKB indicated that our LDA-PKL method outper-
formed others. To our best knowledge, this is the first attempt that applied LDA models to
rank gene-drug relations for building PGx knowledge bases from biomedical literature.

2. Background

Different methods have been proposed to detect pharmacogenomic entity relations from MED-
LINE abstracts, including co-occurrence based, rule based and machine learning based meth-
ods.4 The co-occurrence method is a commonly used method in literature mining, building
on the assumption that two entities co-occurring in the scope of the same abstract, single
sentence or single phrase,5 are likely to be related. On the other hand, the rule based methods
extract relations using predefined or automatically derived patterns. Machine learning based
methods train a classifier on a set of annotated relations to classify the candidate relations.
Since entities co-occurring in a specific scope of text do not always define a relation, the sim-
ple co-occurrence method would generate false positives, which makes it difficult to validate
the correct relations from the large numbers of candidates to integrate them into knowledge
bases. Thus, other methods such as syntactic rule based methods (rule based methods us-
ing syntactic patterns) and machine leaning methods were proposed to further analyze the
co-occurred relations to reduce the false positives. The syntactic rule based methods assume
that the entities co-occurring in certain syntactic patterns (such as subj and obj relations) are
more likely to be related.

A number of systems have been developed to extract relations among gene, drug, and
diseases. Most of them, such as XplorMed, iHOP and CoPub Mapper, tried to extract relations



between gene, drug and disease from abstracts of biomedical articles.6–9 Jenssen et al.9 used
a co-occurrence based method to build a gene-gene relationship network by extracting all
the gene-gene pairs co-occurring in the same MEDLINE abstract. The relations were then
weighted by the number of times the two genes co-occurred in the same abstract. Their
method achieved a precision of 60% and recall of 50%. Pharmspresso10 and Textpresso11

investigated methods to extract relationships from the full text articles, rather than abstracts
or sentences. Tari et al.12 applied a rule based method using loose patterns defined by a
wildcard operator (“ ”) to describe syntactic relations between two entities. Recent rule-based
methods, such as RelEx13 and OpenDMAP14 used dependency parse trees to detect protein-
protein interactions. Coulet et al.15 presented their research on detecting PGx relations using
dependency graphs generated by the Stanford Parser.16 Through manual evaluation of the
randomly selected 220 raw relations, they reported precisions within the range of 70-87.7%.
These automatically detected relations were normalized into a knowledge base to guide the
annotation of PharmGKB.

There are also studies that have focused on detecting gene-drug relations, which is an
important category of pharmacogenomic relations. For example, Chang et al.17 used a machine
learning method called Maximum Entropy to classify the gene-drug relations detected by a
co-occurrence based method into five categories defined in PharmGKB. Garten et al.18 created
a gene-drug network from the sentence level co-occurrence over full text using Pharmspresso.
Then, a logistic regression classifier was trained using these automatically extracted gene-drug
relations and a group of manually curated relations. The evaluation result showed that the
classifier trained from automatically detected relations was as good as, and sometimes even
better than, the classifier trained from manually curated knowledge bases.

Semantic is another type of useful information to analyze co-occurred entities. The seman-
tic meanings implicitly existed in literatures can be automatically uncovered using probabilis-
tic models. Latent Dirichlet Allocation (LDA)19 is a widely used model to identify semantic
topics from large document collections. Wang et al.20 described a method that used a vari-
ation of LDA model, named Bio-LDA model, to detect entity relationships from MEDLINE
abstracts. They reported that the LDA models could detect the relationships between two
bio-terms even if they did not co-occur in the same text.

In this study, we applied LDA model to rank candidate gene-drug relations. Instead of
directly applying LDA to relation detection, we used it as a ranking method to prioritize
candidate gene-drug relations derived from co-occurrence methods based on different levels
of scope of text. Ranking is an effective way to help researchers to focus on the most related
relations from large numbers of candidates mixed with false positives. We compared the LDA-
based ranking methods with traditional ranking algorithms such as frequency, Chi-Square and
Mutual Information, and demonstrated its usability for ranking PGx relations.

3. Methods

In this study, 249,181 MEDLINE abstracts listed in the gene2pubmed file from NCBI (National
Center of Biotechnology Information) were used as the study corpus. Our approach consists of
three steps: 1) recognize gene and drug entities in MEDLINE abstracts using natural language



processing (NLP) tools; 2) extract candidate gene-drug pairs based on different levels of co-
occurrence, including abstract level, sentence level, and phrase level; and 3) rank candidate
gene-drug pairs using five different methods including frequency, Chi-square test, MI, LDA-
KL, and LDA-PKL. These five ranking methods were then systematically evaluated using the
Mean Average Precision (MAP) on a manually annotated data set derived from PharmGKB.
Figure 1 shows an overview of the study design.
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Fig. 1. An overview of study design.

3.1. Data set and gene/drug recognition

In this study, we started with MEDLINE articles listed in the gene2pubmed file from NCBI,
which ensures that each article in our corpus mentions at least one gene. Articles that mention
many genes are often about high-throughput technologies; therefore they were removed from
our study, resulting in a corpus containing 249,181 MEDLINE articles.

For each article in the corpus, its title and abstract were downloaded and processed by
two NLP tools: the MetaMap program21 and a gene lookup program based on Biothesaurus.22

Instead of running MetaMap by ourselves, we downloaded the corpus of “2011 MetaMapped
Medline Baseline Results”, which is a MEDLINE corpus processed by MetaMap by National
Library Medicine (NLM). MetaMap outputs were used to identify drug entities - CUIs (Con-
cept Unique Identifiers from UMLS23) from the MetaMap output with semantic types of phsu
(Pharmacologic Substance) and antb (Antibiotic) were identified as drugs. One issue with
this approach was that very general drug terms such as “drug” and “medicines” were also la-
beled as drugs. Therefore we manually reviewed top 100 frequent drugs terms from MetaMap
outputs and manually removed general drug CUIs (total 15 CUIs).

To recognize genes in abstracts, we developed a gene lookup program using lexicons from
Biothesaurus. To ensure the high performance of gene name recognition, we only annotated
gene names that were listed in gene2pubmed and were recognized by the lookup program. If
a gene name within an article was identified by the lookup program, but it was not annotated
for that article according to gene2pubmed, we would ignore that gene name. An example of
two processed sentences is shown in Table 1. For sentence 1, the gene entity “abcb1” as well



as its alternative names: “mdr1” and “glycoprotein” were mapped to the same Entrez ID
“5243”. But the ambiguous one, “impact” in sentence 2, was not considered since it could
not be matched by Biothesaurus. Using sentence level co-occurrence, the candidate relation
(5243, C0012265) is detected from sentence 1.

Table 1. Example for pre-processed data.

Sentences from MEDLINE abstract 17652833:
1. Effect of ABCB1 (MDR1) 3435C >T and 2677G >A,T polymorphisms and P-glycoprotein inhibitors on
salivary digoxin secretion in congestive heart failure patients.
2. Evaluation of the impact . . .

1. effect/noun of/prep <GENE><NAME>abcb1</NAME><CUI>5243</CUI><ST>bioth</ST>
</GENE> <GENE><NAME>mdr1</NAME><CUI>C0376622,5243</CUI><ST>gngm,bioth</ST>
</GENE> 3435c/noun t/noun and/conj 2677g/noun a-t/noun polymorphisms/noun and/conj p/noun
<GENE><NAME>glycoprotein</NAME><CUI>5243</CUI><ST>bioth</ST></GENE> inhibitors
/noun on/prep salivary/adj <DRUG><NAME>digoxin</NAME><CUI>C0012265</CUI><ST>carb
,phsu ,strd</ST></DRUG> secretion/noun in/prep congestive-heart-failure patients/noun ./punc
2. evaluation/noun of/prep the/det <GENE><NAME>impact</NAME><CUI>C1825598</CUI><ST>
gngm</ST></GENE>

In order to evaluate the ranking of gene-drug relations using existing annotations from
PharmGKB, we further filtered extracted gene and drug entities to those that appeared in
PharmGKB. For genes, PharmGKB and our gene lookup program both used Entrez Gene
IDs; so it was straightforward to limit extracted genes to those in PharmGKB. However, it
is more challenging to map drug entities – PharmGKB uses its own IDs for drug entities and
there is no direct mapping between UMLS CUIs and PharmGKB Drug IDs. We employed
KnowledgeMap,24 a general UMLS concept extraction system, to bridge the gap between
UMLS drug CUIs from MetaMap and ParmGKB drug IDs. Each drug term in PharmGKB
was processed by KnowledgeMap and its corresponding UMLS CUIs were identified. There
were a few issues associated with the automated mapping method. First, not all drug terms
in PharmGKB were mapped to UMLS CUIs by KnowledgeMap - among the 3,004 drug en-
tities in the PharmGKB database, 2,474 of them were mapped to CUIs. Second, multiple
PharmGKB drug terms might be mapped to one UMLS CUI, because of different levels of
granularity between PharmGKB and UMLS drug names. For example, three PharmGKB
drug terms “PA164712641 : Corticosteroids and mydriatics in combination “, “PA164712644:
Corticosteroids, Combinations With Antiseptics”, and “PA164712645 : Corticosteroids, Der-
matological Preparations”, were mapped to one UMLS CUI “C0001617 Corticosteroid”. As
the focus of this study was the ranking methods instead of entity recognition, we removed
un-mapped drug terms in PharmGKB and only kept mapped UMLS CUIs in the final list of
drug entities for our evaluation. After this, a total of 9,700 distinct gene entities and 1,115
distinct drug entities were recognized from the corpus and used for our evaluation.



3.2. Detecting candidate gene-drug relation pairs

If a gene and a drug entity occur in the same scope of text, we define them as a candidate
gene-drug pair. In this study, three different levels of scope were investigated: 1) abstract level,
where a gene and a drug occur within the same abstract (including title); 2) sentence level,
where a gene and a drug occur within the same sentence of an article (sentence boundary was
determined by MetaMap program); 3) phrase level, where a gene and a drug occur within the
same phrase. A phrase was defined as a fragment between any two punctuations, within one
sentence.5

3.3. Ranking candidate gene-drug relations

Five different ranking methods were used to rank candidate gene-drug pairs derived from
different levels of co-occurrence patterns. Three of them were baseline methods: frequency
(FREQ), Chi-square test, and Mutual Information (MI). Two of them were LDA-based meth-
ods: LDA-KL (a previously reported measure) and LDA-PKL (a newly defined measure in
this study). Details of each ranking algorithm were listed below.

(1) FREQ - the frequency based method simply ranked all the relations according to the
number of times that a gene and a drug entity co-occurred in the same scope of text.

(2) The Chi-square test score and MI score for a gene-drug relation (wg, wd) were calculated
as shown in equation 1 and equation 2, respectively.

χ
2 =

N(O11O22 −O12O21)2

(O11 +O12)(O11 +O21)(O12 +O22)(O21 +O22)
(1)

MI(wg, wd) = log
D(wg, wd)

D(wg)D(wd)
. (2)

Where O11 is the number of abstracts wg and wd co-occurred; O12 is the number of
abstracts only wg appeared; O21 is the number of abstracts only wd appeared; O22 is the
number of abstracts neither wg or wd appeared. D(wg, wd) denotes the number of abstracts
containing this relation, and D(wg) denotes all the number of abstracts talking about wg.

(3) LDA-KL, shown in equation 4, is a score defined using Kullback-Leibler (KL) distance over
all the topics derived from the LDA model, which was originally used to detect complex
“bio-terms” relations from literature.20 The relations with a lower LDA-KL score are more
likely to be related.

KL(wg, wd) =
T�

i=1

p(wg|ti)log(
p(wg|ti)
p(wd|ti)

) (3)

LDAKL(wg, wd) = KL(wg, wd) +KL(wd, wg). (4)

(4) LDA-PKL - a new distance measure by combining the KL distance over different topics
and the posterior probabilities of topics over MEDLINE abstracts, which is shown in
equation 6. Where p(wg|tj) is the probability that gene wg appeared in topic j; T is the
total number of topics automatically determined by the LDA model (T = 100 in this



study); p(tj |di) is the posterior probability of topic j to MEDLINE abstract i; D is the set
of MEDLINE abstracts containing relation (wg, wd).

PD(wg, wd) =
D�

i=1

p(wg|di)p(wd|di)

=
D�

i=1

[(
T�

j=1

p(wg|tj)p(tj |di))× (
T�

j=1

p(wd|tj)p(tj |di))] (5)

LDAPKL(wg, wd) =
PD(wg, wd)

LDAKL(wg, wd)
. (6)

In order to rank the relations using LDA latent topics, we run the LDA model with a fixed
topic number of 100 on the data set containing 249,181 MEDLINE abstracts using the c-
version of LDA by Blei et al.19 The data set was pre-processed before running. The gene
entity and drug entity were mapped to Entrez ID and drug CUI using BioThesaurus and
MetaMap, respectively. A list of 570 English stop wordsa was removed from the vocabulary.
To further reduce noise, we removed 160,560 words whose frequency were less than three. The
final data set contains 162,590 words.

3.4. Evaluation

To evaluate the performance of multiple ranking methods, we created a gold standard of gene-
drug relations by leveraging annotations from PharmGKB. We downloaded PharmGKB files
on 6/20/11 from the official website of PharmGKB. There were 11,607 gene-drug relations,
associated with 3,283 MEDLINE articles. The overlap between our corpus (249,191) and
PharmGKB corpus (3,283) were 898 MEDLINE articles. These 898 MEDLINE articles were
associated with 1,530 gene-drug relations, according to PharmGKB.

If all the gene and drug entities were recognized correctly by our approach, candidate gene-
drug relations detected at the abstract level co-occurrence should be able to cover all 1,530-
candidate relations from 898 MEDLINE articles (i.e., a recall of 100%). However, there will
always be errors in gene and drug entity recognition. Moreover, gene-drug relations annotated
in PharmGKB were from review of full text articles; while we used only abstracts. As the
purpose of this study was to evaluate relation ranking algorithms instead of entity recognition
methods, we limited our evaluation data set to articles where gene/drug entities reported by
PharmGKB were correctly identified by our programs. Therefore, if a PharmGKB gene-drug
relation from one article contained entities (either gene or drug) that were not recognized by
MetaMap and Biothesaurus from that article, we removed the relation from our evaluation.
This resulted in 831 gold standard gene-drug relations from 722 MEDLINE abstracts, which
served as the final evaluation data set for this study.

The candidate relations detected from the 722 MEDLINE abstracts using different co-
occurrence levels were evaluated using the 831 gold standard relations. Precision and recall
for detecting candidate gene-drug relations were calculated using following formulas:

aThe stop word list is available at ftp://ftp.cs.cornell.edu/pub/smart/english.stop



Precision =
Number of relations validated by 831 gold standard relations

Number of detected relations
(7)

Recall =
Number of relations validated by 831 gold standard relations

Number of gold standard relations(831)
. (8)

To evaluate the ranking result of different algorithms, we reported the Mean Average
Precision (MAP)25 as well as the precision-recall curve. The MAP score is commonly used as
the standard evaluation method for ranked results from information retrieval tasks. Equation
9 shows the equation for MAP where Q is the query set, which is 1 in our case, Rjk is the set
of ranked relations until you get K true relations, and {r1, . . . , rmj} is the set of true relation
in Rjk.

MAP (Q) =
1

|Q|

Q�

j=1

1

mj

mj�

k=1

Precision(Rjk). (9)

4. Result

4.1. Detecting gene-drug relations

Using different levels of co-occurrence methods, the number of gene-drug relations detected
from entire corpus and from the 722 gold standard MEDLINE abstracts were (79,885, 1,707),
(43,309, 1,006), and (30,960, 692) for abstract level, sentence level and phrase level, respec-
tively. Table 2 shows the performance of co-occurrence methods at different levels (abstract,
sentence, phrase) evaluated on the 831 gold standard relations.

Table 2. Precision and recall for detected gene-drug relations using different levels of co-occurrence.

Method # of extracted relations # of extracted and
correct relations

# of relations in
gold standard

Precision Recall

Abstract 1,707 831 831 48.6% 100%
Sentence 1,006 589 831 58.5% 70.8%
Clause 692 447 831 64.5% 53.7%

Since the 831 gold standard relations only included the PharmGKB gene-drug relations
between gene entity and drug entity that could be recognized using MetaMap and Biothesaurus
from 722 abstracts, the abstract level co-occurrence yielded a precision of 48.6% and recall of
100%. And as expected, lower recall but higher precision was observed when we strengthen
the constraint on the context level. For instance, the most strict method at the phrase level
achieved a higher precision (64.5%) at the cost of lower recall (53.7%).

4.2. Ranking relations

Figure 2 shows the MAP score and precision-recall curve for all the ranking algorithms over
different levels of co-occurrence (Fig.2a and Fig.2b for abstract level, Fig.2c and Fig.2d for



sentence level, Fig.2e and Fig.2f for phrase level). Among all three levels of co-occurrence based
methods, our proposed LDA-PKL ranking method outperformed all others in terms of MAP
score after the curves became steady. Similar results were also observed on the precision-recall
curves.
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Fig. 2.b: Precision-Recall curve for Abstract level
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Fig. 2.d: Precision-Recall curve for Sentence level
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Fig. 2.e: MAP score for Phrase level
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5. Discussion

We conducted a study on ranking candidate gene-drug relations that were extracted from
MEDLINE abstracts based on simple co-occurrence methods using LDAmodel. Different levels
of co-occurrence were used to extract candidate gene-drug relations from 249,181 MEDLINE
abstracts. These candidate relations derived from literature were evaluated using a gold stan-
dard set of gene-drug relations derived from manually curated PharmGKB knowledge base.
We reported the precision and recall for gene-drug relation detection at different co-occurrence
levels: 48.6% and 100% for abstracts, 58.5% and 70.8% for sentences, and 64.5% and 53.7%
for phrases. These results were lower than previously reported results on co-occurrence based
relation detection methods for general biomedical terms by Ding et al.5 where they had 57.1%
and 100% for abstracts, 63.8% and 84.9% for sentences, and 74.3% and 62.1% for phrases,
respectively. This indicated gene/drug entities and their relations were more difficult to ex-
tract than general biomedical terms. We analyzed the errors and found that some gene-drug
relations were missed because 1) they were not recognized by the gene and drug entity recog-
nition programs; or 2) there were no mapping between UMLS drug CUIs and PharmGKB
drug entity IDs using the KnowledgeMap.

Five different ranking methods were used to prioritize the candidate gene-drug relations
detected using different levels of co-occurrence. The MAP score of proposed LDA-PKL method
outperformed other methods over all the position “K” after curves became steady, which sug-
gests that the semantic topics derived from LDA model could improve the ranking of gene-drug
relations. The proposed LDA-PKL method outperformed the LDA-KL method, which only
considered the KL distance over all topics, by further weighting the KL distance using the
posterior probabilities of topics over MEDLINE abstracts. The Chi-square method also out-
performed LDA-KL method on abstract level and part of phrase level. When considering the
statistical information from the entire corpus, the Chi-square and MI methods outperformed
the FREQ method that simply ranks relations by their co-occurrence frequency. The advan-
tage of LDA-PKL on abstract level and sentence level is better than the phrase level, since
the semantic topics used in ranking were derived from the abstract level using LDA model.

Although the proposed LDA-PKL algorithm outperformed other methods on MAP score
after the curves became steady, in some cases from precision-recall curves, the Chi-square and
MI outperformed LDA-PKL on precision. This suggested that the semantic topics derived
from LDA model also introduced some noise when inferring relationships between entities (In
LDA model, the PGx entities could co-occur in all topics with a probability, even if they do
not co-occur in any abstract).

There are limitations in this initial study. First, better Named Entity Recognition (NER)
tools are needed for identifying gene/drug entities. We analyzed the errors and found that
some gene-drug relations were missed because the gene and drug entities were not recognized
correctly. Although this research is not focused on NER, better gene/drug entity recognition
would help detect more relations. Second, we used a fixed number of topics 100 for topic
decomposition of the LDA model. It would be interesting to further analyze the performance
of LDA-PKL under different numbers of topics.

The ranking algorithm proposed in this paper, LDA-PKL, could help researchers to focus



on the most likely related gene-drug relations from large numbers of candidates mixed with
false positives. Since LDA-PKL is not specific to gene-drug relations, our method could be
extended to other types of relations between PGx entities. Our future work includes: devel-
oping more effective NER methods to accurately recognize more gene/drug entities, applying
this method to mining other relations among PGx entities, and further evaluating the false
positives to discover new relations that are not currently in knowledge databases.

6. Conclusion

In this paper, we presented our research on ranking gene-drug relations extracted from biomed-
ical literature using LDA model. Our proposed method, LDA-PKL, outperformed other exist-
ing ranking methods including Chi-square, MI, and a previously reported LDA-KL method,
at all co-occurrence levels, suggesting that appropriate uses of the semantic topics derived
from LDA model could help analyze candidate relations that co-occur in a piece of text.
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