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Genome Wide Association (GWA) studies resulted in discovery of genetic variants underlying sev-
eral complex diseases including Chron’s disease and age-related macular degeneration (AMD). Still
geneticists find that in majority of studies the size of the effect even if it is significant tends to be
very small. There are several factors contributing to this problem such as rare variants, complex
relationships among SNPs (epistatic effect), and heterogeneity of the phenotype. In this work we
focus on addressing phenotypic heterogeneity. We introduce the problem of identifying, from GWAS
data, separate genotypic markers from overlapping mixtures of clinically indistinguishable pheno-
types. We propose a generative model for this scenario and derive an expectation-maximization
(EM) procedure to fit the model to data, as well as a novel screening procedure designed to identify
skew specific to certain phenotypic regimes. We present results on several simulated datasets as well
as preliminary findings in applying the model to type 2 diabetes dataset.
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1. Introduction

With the current revolution in genome sequencing technologies many of the challenges in ac-
quisition of genomic data and discovery of genomic variants have been overcome, supplanted
by the challenge of understanding and assigning functions to the discovered variants. Genome
Wide Association Studies (GWAS) have shown promise for discovery of disease-related vari-
ants, where usually large cohorts are used to find correlations between genomic variants (typi-
cally Single Nucleotide Polymorphisms, or SNPs) and disease risk or prognosis. Despite many
successes, in majority of studies the size of the effect tends to be very small. Obtaining larger
cohorts, which is rather costly, does not necessarily yield much better results. There are several
factors contributing to this problem such as rare variants, complex relationships among SNPs
(epistasis), and heterogeneity of the phenotype. While current efforts are targeted at collect-
ing rare variant data and there is rich literature in modeling epistatic effect,1,2 heterogeneity
of the phenotype is often overlooked. Misclassification of disease phenotypes, especially when
multiple distinct phenotypes are classified as a single disease, where each phenotype could
potentially be modulated by different genetic factors, is prominent in cancers and spectrum
disorders, such as Autism Spectrum Disorder (ASD).3 In the presence of such misclassifica-
tion, strong genotypic effect in a small homogeneous sub-population will appear as very small
or even negligible in the whole population. Analyzing richer, continuous phenotypes such as
age of onset, as opposed to a binary variable (disease, no disease) may help with discovery of
those more homogeneous phenotypic subgroups.
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A similar situation exists in diabetes: while Types 1 and 2 typically affect children and
adults respectively, Maturity-Onset Diabetes of the Young (MODY) is a separate genetic
disease that affects patients between 30 and 50 years old. Young MODY patients are often
misdiagnosed as having Type 1 diabetes, if a patient is older and obese – as Type 2, and
gestational if the patient is pregnant.4 If we view the age of onset of various types of di-
abetes together, we observe a mixture, forming distinct but overlapping groups, caused by
different genetic (and environmental) conditions. In this paper we develop methodology for
simultaneous sub-phenotyping and phenotype-genotype association of such mixtures.

Simultaneous study of quantitative phenotypes and their underlying genotypes also form
the basis for identification of expression quantitative trait loci (eQTLs5,6). The recent paper of
Kim and Xing7 models the correlation among multiple genes in a Quantitative Trait Network,
and identifies SNPs that affect the expression of multiple genes that are tightly connected
within the network. Other research8 stratifies the patient population into groups based on
ethnic heritage with assumption that identical phenotypes may be caused by different SNPs
in different populations. Our work addresses the case where the phenotype is composed of a set
of clinically indistinguishable, but distinct continuous traits, as in spectrum disorders. Both
works, ours and,8 draw additional power by subdividing the population, however our model
takes into account information contained in a continuous phenotypic variable and determines
genetic variants simultaneously with data partitioning. There have been a few major works
that deal with data partitioning according to a phenotypic variable.9–11 These works perform
data stratification (akin a screening step proposed in our paper), mostly deal with discrete
traits and do not propose a generative model of the data.

In this work we assume that there are multiple genetic diseases, each caused by a single
variant, where each disease corresponds to a Gaussian-distributed quantitative phenotype
(e.g., age of onset of the disease), with an unknown mean and variance. The diseases cannot be
sub-divided, as they are clinically indistinguishable, hence the phenotype of all patients can be
modeled as a mixture of Gaussians. We jointly model the cohesiveness of the sub-phenotypes
(likelihood of the Gaussians explaining the phenotypes) and associations (SNPs explaining
the sub-phenotypes). We optimize our model using expectation-maximization, and present
the results of applying our model to simulated data and to the analysis of Gene-Environment
Association Studies (GENEVA) genome-wide association scans for type 2 diabetes.12

2. Methods

To address the problem of identifying causal variants from phenotype mixtures we developed
an algorithm SNPMix. The algorithm consists of three sub-parts: (1) The screening procedure,
where we identify a small set of SNPs that are distributed abnormally in a sub-range of the
continuous phenotype; (2) an Expectation Maximization procedure that identifies the sub-
phenotypic groups, and the SNPs responsible for these, simultaneously; (3) model selection,
that identifies a parsimonious subset of the screened SNPs and corresponding sub-phenotypes.

2.1. SNP Screening

Genome Wide Association studies typically genotype millions of SNPs. Only a handful of
these are assumed to be associated with the disease of interest. Most approaches that look at



multiple SNPs simultaneously screen the SNPs in order to identify the subset that is most
likely to be associated with the disease for further in-depth analysis. Normally, a statistical
test such as χ2 or Fisher’s Exact test is used to find SNPs that have significant deviations
in observed allele frequencies between the patient and control populations. In our setting our
aim is to identify SNPs that have unlikely frequencies in sub-populations with respect to the
control. We thus modify the usual screening procedure: we stratify the population in the case
cohort according to their phenotypic value in increasing order and test subsets (halfs, thirds,
quarters, etc., halting at eighths) of the stratified population against the control. This way
we are able to coarsely capture the modes of our hypothesized Gaussian distributions in one
or several of those subsets. We retain the lowest of the p-values from tests made across all
subsets ( 1 + 2 + 3 + 4 + . . .+ 8 = 36 tests) for each SNP. We assume that we have N patients
and S SNPs. The pseudocode for this algorithm is presented in Table 1.

Table 1: SNP screening procedure

INPUT: list of SNPs to be screened in N × S matrix:
N – patients, S – snps

test level threshold α

z - phenotype variable
OUTPUT: M SNPs – a small subset of the original SNPs

(1) Sort people according to z in ascending order
(2) For each SNP

(a) calculate the frequencies of 0’s, 1’s, 2’s in the control sample
(b) for each contiguous (as sorted by phenotype) half, third, fourth, fifth, sixth, seventh

and eighth of the patients in the case sample

i. calculate the frequencies in this portion of the case data
ii. perform a χ2 test against the control

(c) record the minimum p-value over all splits

(3) Rank SNPs according to their p-values

We perform a rough correction based on the Benjamini-Hochberg FDR13 for the number
of SNPs being tested. It is an approximation, since we do not correct for the 36 dependent
tests per SNP. The goal of the screening is merely to obtain a superset of the responsible
SNPs, and in practice, models fit to real data will include the top K most significant p-values
rather than thresholding at a particular significance level.

2.2. SNPMix Model

Given the candidate set of screened SNPs, the core of the SNPMix algorithm simultaneously
identifies the sub-phenotypic groups and the SNPs responsible for each group by modelling
the phenotype and SNPs jointly. We assume that we have M SNPs remaining after the screen-
ing procedure, and a continuous phenotype z that follows a mixture-of-Gaussians distribution



where each component represents a sub-phenotypic group. For each individual, a given SNP is
encoded as a number j ∈ {0, 1, 2}, where j is the count of minor alleles: 0 indicates that the given
genomic locus is homozygous major, 1 is heterozygous, and 2 is homozygous minor. Thus SNP
information is represented as an N ×M table, each entry being 0,1 or 2. Each SNP is modeled
as a multinomial distribution. Since we do not know which sub-phenotypic component each
patient belongs to, we introduce a latent variable c responsible for the sub-phenotypic class
assignment which has as many states as there are components (K). The graphical represen-
tation of the model in Figure 1 captures our notion of conditional independence: information
about the class de-couples the two, making phenotype and SNP frequencies dependent only
on the class and independent of each other. The SNPs that are not corresponding to any
sub-phenotypic groups are independent of the phenotype. To summarize, we have N patients,
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Fig. 1: Graphical model representation. z – phenotype, s – SNP, c – sub-phenotypic class
assignment. Our generative model is different from the natural direction of causality, where
SNPs cause disease (s→ z, in our notation). What we capture instead is that heterogeneity in
the data (sub-phenotypic indicator c) confounds the notion of the dependence of phenotype
on genotype. Given this information, we can disambiguate the dependence.

M SNPs, J SNP values (J = {j : j ∈ {0, 1, 2}}). The phenotype variable z is represented by
sets of mean and standard deviation {(µk, σk)} parameters, where k ∈ [1 . . .K]. We can then
write our two conditional distributions as follows:

p(sni |c = k) =

J∏
j=1

pijk
δj,sn

i , i ∈ [1, S]

p(zn|c = k) = N (µk, σ
2
k)

sni indicates the value of SNP i ∈ [1 . . .M ] for person n ∈ [1 . . . N ], δj,sni is an indicator
function which takes the value of 1, if sni = j and is 0 otherwise and {(µk, σk)} are parameters
for each of the K mixture components.

Then the joint probability can be written as

p(~s, ~z, c = kn) =

K∏
k=1

αkN (µk, σ
2
k)

S∏
i=1

J∏
j=1

pijk
δj,sn

i

δk,kn

(1)

where αk is a mixture proportion of the kth component, kn is the class of the person n and
δk,kn is an indicator function which is 1 if k = kn, S ∈ [K . . .M ] is the current number of SNPs



in the model, generalizing to the case where each group can have more than one associated
SNP. Let Θ = {{pijk}, ~α, ~µ, ~σ}. All of the Θ parameters are estimated as indicated below.

2.3. Optimization and Model Selection

We optimize the parameters of the latent variable model developed in the previous section
using an expectation-maximization (EM) algorithm by fixing a posterior Q = p(c|~s, z; Θold) in
the E step and optimizing the expected complete log likelihood under Q:

EQ[`(Θ)] = −
N∑
n=1

K∑
k=1

rnk

(
log σk +

(zn − µk)2
2σ2k

)
+

N∑
n=1

K∑
k=1

rnk

logαk +

S∑
s=1

J∑
j=1

δj,sni log pijk

 (2)

where rnk is the responsibility (i.e. p(c = k|~sn, zn; Θold)) assigned to person n by component
k, i.e. the model’s estimate of the probability that patient n is from the component k. Note
that the expectation now looks very similar to the standard mixture of Gaussians model,14

where the means and the variances of the Gaussian components depend on the multinomial
distributions of the SNPs through the responsibilities.

To obtain the M-step update equations, we differentiate Equation 2 and solve for the
parameters which jointly maximize the likelihood given the current estimate of the responsi-
bilities. The updates for µk, σk and αk are the standard mixture of Gaussians updates, with
pijk being updated as follows:

pt+1
ijk =

∑
n:sni =j

rtnk∑
m r

t
mk

pt+1
ij,k 6=i =

∑
k 6=i
∑

n:s
(m)
i =j r

t
nk∑

k 6=i
∑

m r
t
mk

The second equation corresponds to the probability of each SNP’s out-of-component dis-
tribution, which is the same for all of the components that the SNP is not associated with.

Because the screening procedure results in a selection of a large set of SNPs a subset
of which is likely to be responsible for the sub-phenotypic components, we need to perform
model selection to eliminate the false positives. In this work, we select K ≤ M SNPs that
represent sub-phenotypic groups, one per group. We use the greedy model selection procedure
described below to select the SNPs, though extensions where many SNPs represent a single
component and other model selection techniques, e.g. BIC, are possible. The SNPs that have
been selected but are not modeled as associated with the phenotype (indicated by a set of
independent SNPs M ′ = M − K on Figure 1) result in an additive component to our log
likelihood:

N∑
n=1

M ′∑
i=K+1

log

(
2

sni

)
+ sni log γi + (2− sni ) log(1− γi) (3)

where γi and 1 - γi here correspond to the usual Hardy-Weinberg p and q values15 and can be
estimated once, in closed form, prior to running EM.

The set of informative SNPs in the model will contain those most relevant to the phenotype,
however much of it can be explained by genetic factors. The false positive SNPs found through
screening should not explain more than a small proportion of the data. We thus propose a
greedy procedure which iteratively removes the SNP that explains the least amount of data.
The iterative procedure starts by fitting a component to all of M screened SNPs, and runs
the EM algorithm once to obtain the joint model corresponding to the screening result. We



remove the SNP where the corresponding component explains the lowest fraction of the data,
and iterate with the smaller number of SNPs. The procedure stops when all of the components
explain more than a preset threshold, depending on the expected number of components.

3. Results

We will first illustrate our approach on a simulation study and then report our findings on
the type 2 diabetes dataset. In all of the experiments below we set α = 0.05 and the minimum
explained threshold to max(1/(K ′ + 2), .1), where K ′ is the expected number of components
(e.g., if the number of components is expected to be 3, the minimum explained threshold is
.2, i.e. each component has to explain at least 20% of the data to be accepted).

3.1. Simulation

To simulate our data, given N = 1000 individuals, M = 100, 000 SNPs and K Gaussian sub-
phenotypes we

(1) Sample q - the frequency of the minor allele in the population following the empirical distribution
observed by the HapMap population as discussed in16

(2) Generate two N×M SNP tables for cases (patients) and controls (healthy population) according
to Hardy-Weinberg (HW) principle15

(3) Generate mixture proportions uniformly U(a,b) on the interval [.1, .8] (we will use U(.1,.8))

(4) Sample individuals from the mixture to belong to K Gaussians

(5) Sample K SNPs from M to be responsible for each of the K components

(6) For each of the K components

(a) Generate phenotype z from kth Gaussian with random mean sampled from U(0,K+1) and
variance from U(1,2)

(b) Sample kth SNP values from the empirical multinomial of the control population: with prob-
ability .9 inside the Gaussian and with probability .1 – outside.

We refer in the following discussion to “true positives” as those simulated SNPs that are
indeed mixture-modulated in the simulated ground truth and are discovered as such by the
iterative model selection procedure, and “false positives” as those SNPs assigned a mixture
component despite not being generated as such in the simulation.

3.1.1. Robustness of the model screening procedure

We first tested the ability of the screening procedure to capture simulated SNPs by generat-
ing data from our model for K = 2. One would expect to capture subphenotype-modulating
SNPs in groups that are not too small and do not have very high overlap. Indeed, the screen-
ing procedure contains a sorting step where high overlap between components would imply
dilution of the signal for each of the corresponding SNPs. The results are shown in Figure
2. The screening process is able to perfectly recover mixture-dependent simulated SNPs for
components with up to half the size of the case cohort with up to 30% overlap. Furthermore,
with a slight loss in accuracy we can recover SNPs with up to 70% overlap.

We have then tested the effect of the potentially inaccurate screening procedure on the
results of the SNPMix by considering simulated data with 3 to 7 components (N = 1000,M =



Fig. 2: Heatmap indicating whether we are able to recover true (simulated) SNPs given the
size and the overlap of the components

100, 000 as before), running 10 trials for each scenario. Figure 3 shows True Positive (TP) rates
for SNPMix, on the default set of screened SNPs (those that pass the Benjamini-Hochberg
threshold at the time of screening) shown on the left, and a set that includes all of the true
positive SNPs in addition to the SNPs found through Screening step whether or not the true
SNPs were found by screening procedure (on the right), i.e. if a true SNP was not present in
the set of SNPs after screening it was imputed before SNPMix was run. As demonstrated in
Figure 3a SNPMix+Screening achieves on average a 40-50% TP rate on the SNPs originally
obtained through screening procedure, which compares well with K/100, 000 < 10−5 baseline
prediction accuracy. It appears that the reduced TP rate is due to the inaccuracy of the
screening procedure: when all of the true positive SNPs are made available to the model, the
TP rate increases to 80-100%, as is illustrated in Figure 3b.
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Fig. 3: True Positive rate for K=3..7 for the Screen+SNPMix procedure



Figure 4 shows the reduction of false positive rate after running SNPMix, on the same
set of simulation data as described above. Comparing Figures 4a and 4b we see that in cases
where not all true positives are available, the SNPMix performs slightly worse in reducing
FP rate, trying to account for variation in the phenotype with some of the better fitting false
positives. To the contrary, in the case where all true positives are available after the Screening
step, we observe a 100% reduction in FP rate in most cases.
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Fig. 4: Reduction in false positive rate for K=3..7

3.1.2. Robustness of the model selection procedure

Finally, we have attempted to quantify the effectiveness of our model selection procedure.
Figure 5 demonstrates how the number of true (TP) and false (FP) positives (represented by
red and blue lines on the graph) vary on the simulated data with K=3 SNPs (assuming all
true positives are available) as a function of the size of the component (the x-axis on Figure 5
shows the proportion of the minimum number of the patients that have to be in the component
for the component to be valid to the total number of patients). If any of the three, in this case,
component sizes fall below the allowed threshold of the number of patients per component (as
depicted on the x-axis), the component and the corresponding SNP are no longer considered
as valid and are added to the pool of SNPs that are not associated with the phenotype.

Figure 5 represents the tradeoff between the number of false and true positives. When the
threshold is very stringent, e.g. we require each component in the model to explain at least
33% of the data (for K = 3 this means that it is not very likely that all three components will
pass the threshold), there are no false positives, but we are not capturing all true positives
either. Whereas if we set the threshold too low, the number of false positives might not justify
the certainty in retaining the true positives. Fortunately, there is a range (between .15 and
.2 for K = 3) where the number of false positives is relatively low while all true positives are
captured. Such analysis can be performed for varying K to estimate a proper threshold for
our model selection procedure prior to running the SNPMix on the real world data.

So far we have not dealt with the case where there is no genotypic variant in our data that
could explain the phenotype. This case is illustrated on the Type 2 diabetes dataset.
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Fig. 5: Average number of SNPs in the model after running a SNPMix procedure for varying
minimum-explained thresholds (K = 3). Error bars represent 1 std deviation.

3.2. GENEVA Type 2 diabetes data

We applied our methods to the Gene Environment Association Studies Initiative (GENEVA)b

Diabetes.12 The study contains extensive phenotype and genotype data for 6,000 patient
and control individuals. Both phenotype and genotype data was obtained from the dbGAP
database.17 Here we study the 2, 502 male subjects (members of the Health Professionals
Follow-up Study, HPFS), genotyped by the Affymetrix 6.0 array, including 1, 161 diabetes pa-
tients and 1, 341 controls. By observing the distributions of the various quantitative phenotypes
in the study, we chose to model the patient age (at the time of the study) as our quantitative
phenotype, as it appeared to be multimodal (Figure 6 hints at the presence of at least two
mixture components, supported by fitting a mixture of two Gaussians). For younger patients
the age of participation in the study is indicative of the age at diagnosis. Unfortunately, the
information on the age at the onset of the disease was not available in this data.
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Fig. 6: Age distribution of patients in the GENEVA HPFS type 2 diabetes study

bhttp://www.genevastudy.org/



We first applied the screening procedure and selected the top 25 SNPs. In these 25 SNPs
we found 2 regions of linkage disequilibrium (high correlation between SNPs in close proximity
on the genome). We chose a single representative SNP for each region, resulting in 20 SNPs
total. Figure 7(a) shows the responsibilities after applying the SNPMix procedure, setting the
minimum explained threshold at 10% (the approximate size of the younger sub-group). The
analysis revealed that the smaller subgroup of younger patients is explained by a single SNP,
while a significantly larger number of SNPs are used to explain the larger component. This
may be due to a complex relationship among SNPs jointly explaining the larger component
(epistasis), not modeled by our method, or to a lack of genetic basis for the larger component. It
is also possible that the larger component consists of a very large number of distinct Gaussian
distributions. To eliminate the latter possibility, we ran 100 randomized trials of our algorithm,
and found that for most individuals in the middle age group the maximum over all trials of the
maximum responsibility learned by any of the components is low. At the same time, the model
has much higher certainty about the SNPs corresponding to the younger (and older) cohorts, as
is illustrated on Figure 7(c). To model a large sub-component with no significant genetic basis
we added a “free” Gaussian, that is not explained by any genotype, with mixture proportion
based on the fraction of patients for whom the average over 100 randomized trials of the
maximum responsibility was below 50% (0.76). We then ran our SNPMix procedure allowing
for components that explain at least 10% of the phenotype. The iterative SNPMix procedure
converged on 3 Gaussians as can be seen in Figure 7(b), with 2 Gaussians corresponding to
SNPs (dbSNP ids rs2002520 and rs4465650), as well as the free Gaussian.

Analyzing the SNPs we found that the minor allele of SNP rs2002520 is rare: in the 934
HapMap individuals genotyped at this position in HapMap, the frequency of the G allele
was 0.05, and not a single homozygous minor individual was observed. The allele frequencies,
however, were significantly different in the younger sub-group (130 patients), with an allele
frequency of 0.09, and 4 individuals carrying the homozygous minor allele. This SNP is located
in a region that is annotated as an enhancer by ENCODE based on CHiP-seq of Histone mark.
Proximity to a DNase hypersensitivity site indicates a possible regulatory role of the region.
The locus is annotated as a human body-mass index QTL by the Rat Genome Database,
linked to obesity. Obesity is a common risk factor for type 2 diabetes, so our analysis possibly
uncovered a SNP that affects an early onset of diabetes due to this additional risk. None of
the genes in immediate proximity of the SNP are linked to diabetes, thus additional analysis
is necessary to confirm the role of this variant in the disease.

rs4465650 associated with the older group is harder to justify. It could be a protective SNP
that delays the onset of type 2 diabetes in people who have a certain variant of the SNP even
if they are predisposed to the disease. However, since we do not have the information on the
onset of the disease, we cannot know that these people have not had undetected diabetes for
a while. To test whether this SNP is simply related to longevity, we would need to perform
and hypothesis test on the controls with matching age distribution, which was unfortunately
not available at the time the experiments were performed.



(a)

(b) (c)

Fig. 7: SNPMix result of modeling age phenotypic variable in the GENEVA type 2 diabetes
study starting from 20 independent pre-screened SNPs. (a) Y-axis indicates SNP name corre-
sponding to each component with total responsibility in parenthesis, X-axis indicates patients
sorted by age; (b) SNPMix including a phenotype-only (free) component; (c) maximum (in
black), mean (in red) and standard deviation (in blue) responsibility for each patient over a
100 runs of SNPMix.

4. Discussion and Conclusion

In this study we consider a novel problem setup, where several clinically indistinguishable phe-
notypes are assumed to have different underlying associated genotypic variants. This problem
is especially inherent in what is known as spectrum disorders, where the case cohort is com-
prised of several different sub-diseases, that are not easy to identify clinically. The signal for
each of the sub-diseases is too weak to be revealed in the full cohort of patients. We believe
that it is precisely this reason that led to very weak signal in many known GWA studies.
Frustrated with the current state of standard GWAS performance, clinicians are becoming in-
creasingly interested in more complex machine learning approaches, where fewer assumptions
are made. Our probabilistic model and the associated expectation-maximization algorithm
can recover dependencies on synthetic data where the causal relationships are known. We
also present preliminary results on applying the method to a case control study of type 2
diabetes patients. Though the public dataset we used was somewhat simplistic (one could
almost read a plausible separation of the Gaussian modes from the graph), it is the simul-
taneous consideration of phenotype and genetic variants that help us to identify the more
accurate borders of the sub-groupings. In the field where there are almost no golden stan-
dards of sub-phenotyping, these kind of experiments serve as an indication that the method is
doing something reasonable with the data. Further work is needed both to extend our model
and to improve model-selection and screening procedures.

Our assumption of a single SNP being associated with each mixture component, while



simplifying fitting and model selection, may poorly reflect the reality of complex diseases.
The model can be altered to allow a single SNP to flexibly account for perturbations in
more than one mixture component, as well as for the assignment of multiple SNPs to a
single component, but such a many-to-many relationship greatly expands the space of possible
models, and overfitting becomes an increasingly prominent worry. Future work should explore
strategies for making principled choices about which dependences to retain, with care taken
to appropriately regularize the parameters of richer, more flexible models.

Having narrowed our search space through pre-screening, the discrete choice of which SNPs
to model as associated spans the space of all possible subsets of pre-screened SNPs, making
exhaustive search prohibitive for even a moderate number of SNPs. Of several techniques we
explored, including greedy and beam-search variants of model-pruning using standard model
comparison criteria (e.g. the Bayes information criterion), none were entirely satisfactory. The
pruning strategy we adopted was among the simplest, yet produced results that offered a
parsimonious explanation of the data. Nevertheless, more work is needed on determining the
most appropriate model selection criteria and optimization procedures to take full advantage
of the class of complex genotype-mixed phenotype models studied in this work.
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