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A major goal of cancer sequencing projects is to identify genetic alterations that determine clinical
phenotypes, such as survival time or drug response. Somatic mutations in cancer are typically very
diverse, and are found in different sets of genes in different patients. This mutational heterogeneity
complicates the discovery of associations between individual mutations and a clinical phenotype.
This mutational heterogeneity is explained in part by the fact that driver mutations, the somatic
mutations that drive cancer development, target genes in cellular pathways, and only a subset of
pathway genes is mutated in a given patient. Thus, pathway-based analysis of associations between
mutations and phenotype are warranted. Here, we introduce an algorithm to find groups of genes,
or pathways, whose mutational status is associated to a clinical phenotype without prior definition
of the pathways. Rather, we find subnetworks of genes in an gene interaction network with the
property that the mutational status of the genes in the subnetwork are significantly associated with
a clinical phenotype. This new algorithm is built upon HotNet, an algorithm that finds groups
of mutated genes using a heat diffusion model and a two-stage statistical test. We focus here on
discovery of statistically significant correlations between mutated subnetworks and patient survival
data. A similar approach can be used for correlations with other types of clinical data, through use
of an appropriate statistical test. We apply our method to simulated data as well as to mutation
and survival data from ovarian cancer samples from The Cancer Genome Atlas. In the TCGA data,
we discover nine subnetworks containing genes whose mutational status is correlated with survival.
Genes in four of these subnetworks overlap known pathways, including the focal adhesion and cell
adhesion pathways, while other subnetworks are novel.

1. Introduction

A major goal of cancer sequencing projects such as The Cancer Genome Atlas is to identify
genetic and epigenetic alterations that determine clinical phenotypes, such as survival time
or drug response. There are a number of reports of genes whose mutational status is associ-
ated with survival such as KRAS mutations,1 EGFR amplifications,2 and PTEN mutations.3

Despite the rapid increase in catalogs of somatic mutations in cancer genomes,4,5 progress in
determining which mutations, or mutations in which genes, determine clinical phenotypes re-
mains slow. The difficulty is due in part to the extensive mutational heterogeneity exhibited by
cancer genomes, where the somatic mutations or mutated genes vary widely across patients.
This mutational heterogeneity is a consequence of two features of the somatic mutation pro-
cess in cancer. First, the somatic mutations in each cancer genome are a mixture of functional
driver mutations responsible for cancer, and random passenger mutations that accumulate
during tumor progression but are inconsequential for cancer. Second, driver mutations target
not just single genes, but also groups of genes in signaling or regulatory pathways.6,7 Thus,
different patients may have different subsets of driver mutations in key pathways, and thus
driver mutations are distributed over a large number of genomic locations in many different



genes. A natural approach for finding clinically relevant mutations is first to determine driver
mutations, and then to test each of these for clinical association. However, the problem of dis-
tinguishing driver from passenger mutations is itself a challenge. Many cancer genome studies
attempt to predict driver mutations (or mutated genes) by finding those with a statistical sig-
nificant frequency of occurrence in a large cohort of patients. But the power of this approach
is reduced by mutational heterogeneity. Moreover, it may be mutations within a pathway, and
not a single gene, that determine a clinical phenotype in a heterogeneous cohort of cancer
patients.

A more powerful approach to test associations between mutation and phenotype is to test
these associations at the pathway level, rather than at the level of single mutation or single
genes. Ideally, one would perform such a test using collection of all relevant biological path-
ways. No such comprehensive collection currently exists, although databases such as KEGG8

, Reactome,9,10 and others are important efforts in this direction. An alternative source of
information is genome-scale interaction networks that record (binary) interactions between
proteins. Examples of such data sources for human are STRING11 and HPRD.12 Interac-
tion networks have proven to be a useful source of information for analyzing genomic data,
particularly gene expression data. Chuang et al.13 introduced a method to find subnetworks
of interaction networks whose gene expression predicts progression to metastasis in breast
cancer. This work extends an earlier approach to find differentially expressed subnetworks
introduced in Ideker et al.14 and extended in Dittrich et al.15 and in Beisser et al.16 Also,
Vaske et al.17 present a method to infer patient-specific genetic activities. The latter method
relies on curated pathway interactions among genes and predict the degree of alteration of
pathway’s activities in the patient using probabilistic inference. More recently, methods to
discovery mutated subnetworks have been introduced.18,19

Here we introduce an approach to find subnetworks of genes in an interaction network
with the property that mutations in the genes in the subnetwork are correlated with a clinical
parameter. Specifically, for the clinical parameter of survival time, we identify subnetworks
such that the survival time of patients with mutations in the subnetwork is significantly
different from patients with no mutation in the subnetwork. To the best of our knowledge
this is the first approach to find subnetworks whose mutations are correlated with survival.
Previous methods13–16 utilized gene expression data and incorporate a variety of different
scoring methods to identify subnetworks/modules and to compute their statistical significance.
We accomplish this goal by extending the HotNet algorithm previously introduced by some of
us.18 Our algorithm represents association scores for individual genes as sources of “heat” on
the vertices (genes) of the interaction network, and uses a heat-diffusion model to propagate
heat to surrounding vertices. We extract “significantly hot” subnetworks with a statistical
test that rigorously bounds the false discovery rate (FDR) on the derived subnetworks. We
apply our method to finding mutated subnetworks correlated with survival in simulated data
and ovarian cancer data from The Cancer Genome Atlas. In the TCGA data, we discover
nine subnetworks containing genes whose mutational status is correlated with survival. Genes
in four of these subnetworks overlap known pathways, including the focal adhesion and cell
adhesion pathways, while other subnetworks are novel.



2. Methods

2.1. Generalized HotNet

Our new method∗ builds on the HotNet algorithm.18 A schematic of our method is given
in Figure 1. Suppose we are given a gene/protein interaction network G = (V,E) where the
vertices represent genes and each edge represents a (binary) interaction between pair of genes,
or their corresponding proteins. We are also given a score σg for each gene g. Our goal is
to find subnetworks of G whose combined scores are statistically significant. There are two
challenges that must be addressed. First, it is not feasible to evaluate all possible subnetworks:
the large number of subnetworks of a reasonable size (e.g. containing at least 5 genes) implies
that testing each incurs large computational burden, and more importantly would require a
severe multiple hypotheses testing correction. Second, the topology of the interaction network
means that the individual subnetworks cannot be treated as independent hypotheses. We
first describe how our method addresses the topology of the network and then describe the
statistical methodology.
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Fig. 1. Generalization of HotNet for clinical data.

The subnetworks of interest are deter-
mined both by the scores of their genes, and
the interactions between the genes. However,
human interaction networks are fairly irreg-
ular, and typically include “hub genes” with
very high degree. Thus, it is important to ac-
count for the topology of the interaction net-
work when evaluating subnetworks. For ex-
ample, consider the following two scenarios.
In the first scenario, two genes with high score
are connected by a single vertex of degree 2
in the network. In the second scenario, the
two genes with high score are connected by
a vertex of very high degree. Because there
are many such paths through the high degree
vertex, it is more likely to see genes with high
score connected through a high degree node (the second scenario) than a low degree one (the
first scenario). This situation generalizes to more complicated scenarios where neighbors of
neighboring vertices may have widely varying degrees. To formalize the intuition behind these
scenarios, the HotNet algorithm considers the score of a gene as a quantity of “heat” placed
on the gene, and allow heat to diffuse over the edges. Heat placed on a vertex of low degree
will diffuse slowly through the graph and thus the neighbors of the vertex will remain hot for
long periods of time. In contrast, heat placed on a vertex of high degree will diffuse quickly
to the neighbors and none of these vertices will be hot.

HotNet uses a heat diffusion process and a statistical test to derive “significantly hot”

∗An implementation of Generalized HotNet is available as a separate tool at:
http://cs.brown.edu/~braphael/software.html



subnetworks. Significant subnetworks are thus determined by both the score of the genes in
the subnetwork and the local topology of the subnetwork. HotNet consists of several steps.
First, we use a heat diffusion process to derive a measure of influence between two genes in
the interaction network. This measure depends only on the topology of the network. Next,
the scores of genes are used to enhance the influence measure, defining the heat exchanged
between any two pair of genes. Then, we remove cold edges (i.e., edges with low exchange
of heat), dividing the network into subnetworks. Finally, we apply a two-stage statistical test
to rigorously bound the false discovery rate (FDR) of the identified subnetworks. We briefly
describe each of these steps. Additional details and analyses of the FDR bound are in Vandin
et al.18

Let A be the adjacency matrix of the interaction network G. That is, let A(i, j) = 1 if genes
gi, gj are connected by an edge in G, and let A(i, j) = 0 otherwise. Let D be a diagonal matrix
with D(i, j) = 0 if i 6= j, and D(i, i) = deg(i), where deg(i) is the degree of gi in the graph
(i.e., the number of genes that interact with gi in the network). The matrix L = −A + D is
called the Laplacian matrix of G and the matrix Ht = e−Lt is the heat kernel of the graph20,21

for a real number t ≥ 0. Here eX denotes the matrix exponential: eX =
∑∞

k=0
1
k!X

k. The entry
Ht(i, j) represents the heat found on gene i when a unit of heat is placed on gene j and allowed
to diffuse for time t. Note that a different diffusion model based on the equilibrium value of
a diffusion with loss22 was employed in the original HotNet algorithm.18 Fix a value t > 0,
and let heat diffuse on the interaction network for time t. We define an influence measure
i(u, v) between pairs of genes u and v in the interaction network as i(u, v) = Ht(v, u). Thus,
the influence i(u, v) of gene u on gene v is the heat observed on v after a length of time t when
there is only a unit source of heat on node u at time 0. Since this measure is asymmetric
(i.e., for a general diffusion kernel i(u, v) 6= i(v, u)), we define a symmetrized influence as
ĩ(u, v) = min{i(u, v), i(v, u)}. The influence is thus defined only by the topology of the network
and the value of the parameter t, and is defined for all pairs of genes based on the heat
observed on the vertices.

HotNet uses the score for each gene to enhance the influence measure and then breaks the
graph into connected components based on this influence measure. In particular, let σ(g) be the
score for gene g. Then for each pair (u, v) of genes we define a weight w(u, v) = max{σ(u), σ(v)}×
ĩ(u, v). Next, given a parameter δ, HotNet removes all the edges (u, v) with w(u, v) < δ. HotNet
returns as output the connected components identified after the removal of the edges.

HotNet returns a list of subnetworks, each containing at least s genes, and employs a two-
stage statistical test to assess the statistical significance of the returned list of subnetworks.
The first stage of the test computes a p-value for the number of subnetworks with at least
s genes that are returned, for different values of s, under a suitable null hypothesis (see
Section 2.2.3 for the description of the null hypothesis used for the results presented in this
work). Since the statistic is the number of subnetworks with at least s genes, and the possible
values of s (and thus the number of tested hypotheses) is bounded by the number of genes
with a score, the number of hypothesis is bounded by a quantity that is much smaller than
the number of possible subnetworks of the interaction network. We can thus determine an s

such that the number of connected components of size ≥ s is significant, with a particular



p-value. This p-value measures the significance of the number of subnetworks of a minimum
size s, but does not say which, if any, of the individual subnetworks is significant. The second
stage of the test estimates the false discovery rate (FDR) for the subnetworks in the list. (See
Ref. 18 for further details of the statistical test.) In summary, HotNet returns: (i) a list of
subnetworks, each with at least s genes; (ii) a p-value for the observed number of subnetworks;
(iii) an estimated FDR for the list.

2.2. Adaptation to Clinical Data

There are three major steps in adapting the HotNet algorithm to applications in clinical
data analysis: (i) selection of scoring function σ(g) for individual genes; (ii) selection of the
parameters t and δ; (iii) determination of the null hypothesis distribution.

2.2.1. Gene Scores

The input to HotNet is a score σ(g) for each gene g. In order to find associations between
mutations in subnetworks and clinical phenotypes, we derive a score for each gene g from the
p-value of a statistical test that measures the association between the mutational status of
g and a clinical parameter of interest. The particular statistical test depends on the clinical
parameter. For example, if the clinical parameter is categorical, (e.g., classes for “response
to treatment”) the χ2 test for independence can be used. For survival analysis we use the
logrank23 test to assess the significance of the difference between the survival curve of the set
M(g) of patients where g is mutated and the survival curve of the set M(g) of patients with
no mutations in g.

For a gene g, we define the score σ(g) = −2 loge pg, where pg is the p-value of the statistical
test. Note that with this choice of score, when t = 0 the heat on a subnetwork S = {g1, . . . , g|S|}
is equal to −2

∑
i loge pgi . This sum correspond to the statistic of Fisher’s Method for combining

p-values for (independent) statistical tests24 . When t > 0, the total heat on a subnetwork S

will depend on the topology of S and the topology of the entire network. For example, if S
does not contain any high degree node (e.g., it is a linear path) or if it is a dense subgraph
(e.g., a clique), the heat on S will be close to the case t = 0, and thus to the statistic of Fisher’s
Method. However, when vertices in S are connected to many other vertices outside S (e.g. a
linear path going through an high degree vertex), the heat on S will diffuse to many other
vertices, and result in a reduction in the combined p-value of the genes in S. Note that the gene
scores are not a function of the null hypothesis employed by HotNet to assess the significance
of the discovered subnetworks, but depends on the nature of the clinical data analyzed.

2.2.2. Selection of parameters t and δ

As described in Section 2.1, the execution of HotNet depends on the choice of parameters: t,
the length of time that heat diffuses, and δ, the threshold for removing cold edges; i.e. edges
of weight less than δ. In this way HotNet divides the network into subnetworks.

The parameter t controls the distance at which the score of a gene will diffuse in the net-
work. If t = 0 there is no diffusion, while for t = +∞, the heat distribution reaches equilibrium
where all genes have the same heat. Using simulations we studied how the influence i(u, v)



changes as the distance between u and v increases for different values of t (data not shown). We
fixed t = 0.1 since with this choice nodes at different distances receives distinguished amounts
of heat with the diffusion process.

We use the following procedure to choose δ. We generate 100 datasets with the distribution
of the null hypothesis (see Section 2.2.3), and consider how the number of connected compo-
nents of size at least s varies as a function of δ for small values of s (i.e., s = 3, 4, 5). Note
that since we are considering datasets from the null distribution, the subnetworks observed
should not be significant. We make a conservative choice, by choosing a first δ that gives the
largest (average) number of subnetworks of size at least s. In our experiments we fix s = 5,
but comparable values of δ are obtained for s = 3, 4. Since increasing the value δ corresponds
to a more conservative test, we also consider values δ′ ≥ δ. In particular, we consider values
δ′ = 1.1δ, 1.2δ, . . . , 2.0δ. Note that if we consider δ1, δ2 with δ1 < δ2, the subnetworks of size at
least s found with δ2 will all be part of the subnetworks of size at least s found with δ1. Thus,
increasing δ limits the output to subnetworks with larger enhanced influence.

2.2.3. The Null Hypothesis Distribution

The accuracy of HotNet depends on the appropriate choice of the null hypothesis distribution.
Once this distribution is determined, we generate a large number of instances (1000 in our
experiments) to estimate the p-values of the various events.

For survival data we use the following two null hypothesis:

(1) HP
0 : the mutation matrix is fixed and the survival data is permuted across the patients.

That is, let ci be the survival associated to patient i in the observed data, with i ∈
{1, . . . ,m}. In a dataset generated under the HP

0 null hypothesis the survival data for
patient i is cπ(i), where π(i) is a permutation chosen uniformly at random among all
permutations over the set {1, . . . ,m}.

(2) HM
0 : for each gene g, the set of patients in which g is mutated is chosen uniformly at

random and independently of other mutations, preserving the frequency of mutation of
the genes. That is, if g is mutated in fg patients, in a dataset generated under the HM

0 null
hypothesis g is mutated in a set of fg patients chosen uniformly at random, independently
of other mutations. (The survival data are not explicitly randomized, since randomizing
mutations will already account for randomization of the survival data.)

The main difference between the two models is that HM
0 removes correlations between

occurrences of mutations in the genes, which are preserved in HP
0 . Thus, HM

0 removes possible
correlations between scores of genes in the network (since genes with correlated mutations
have correlated scores). Note that the parameter δ depends on the particular null hypothesis
chosen, since it is based on the distribution of the number of subnetworks of size at least s
under the null hypothesis.

3. Results

We tested our algorithm on both simulated data and ovarian cancer data from The Cancer
Genome Atlas (TCGA). For simulated data, we considered the patients as divided into two



classes, thus looking for groups of genes with different mutation status in the two classes. For
cancer data we considered a test statistic for survival. Thus, we aim to find groups of genes
whose mutation status was associated with patient survival.

3.1. Simulated data

We first assessed our method using simulated data. We simulated whole exome sequencing
data coming from two classes C1, C2 containing 150 patients each. For example, C1 is a class
of patients that respond to a particular treatment, while C2 is a class of patients that do not
respond to the treatment. We assumed that a mutated subnetwork is only one possible cause
of a patient being in class C1. Thus, we planted non-random mutations into a subnetwork S

consisting of the 4 genes JAG1, NOTCH1, MAML1, and CDK8 into 20% of the patients in
C1. In particular, for a subset P consisting of 20% of the patients of C1 we mutated one of the
genes in S. For all other patients and all other genes we generated mutations according to a
background mutation rate of 1.7× 10−6, consistent with recent studies on cancer.25 Note that
the patients in P also contain random mutations (in all genes but the ones in S), and that
the 4 genes in S were mutated at random in all patients but P .

For each gene g, we built a 2 × 2 contingency table in which the row variable is the
mutation status (i.e., mutated or not) of g and the column variable is the class (i.e., C1 or
C2) of a patient. We used a χ2 test for the 2× 2 contingency table to obtain the p-value of a
gene. None of the four genes turned out to be significant after correction for multi-hypothesis
testing. We then used the scores defined in Section 2.2.1 as input for the generalized version
of HotNet. The only significant subnetwork reported by our algorithm corresponds to the
set of 4 genes JAG1, NOTCH1, MAML1, CDK8 (p ≤ 0.01, FDR ≤ 0.05). This shows that
our algorithm identifies a subnetwork associated with clinical data when none of the genes
in the subnetwork were identified as significant when considered individually, and when the
subnetwork is non-randomly mutated in only 20% of the patients of one class.

3.2. Ovarian TCGA data

We next considered mutation data from ovarian cancer patients from The Cancer Genome
Atlas. For each of these patients, we marked a gene as mutated if a somatic point mutation
(or small indel) was present (as measured by exome resequencing) or if a focal copy number
aberration (CNA) was present (as measured by array copy number data). Thus, the somatic
mutation data was reduced to an m×n binary mutation matrix measuring the mutation status
of m = 316 patients for n = 17301 genes. Genes not mutated in any patient were removed.
Moreover, we removed CNAs for which the sign of the aberration was not the same in at least
90% of the patients with the aberration. This data was the same used in the HotNet analysis
of TCGA ovarian publication.25 The clinical data we used is preliminary data for 266 of these
316 patients, and thus we restricted our attention to these 266 patients. We considered the
overall survival (in months) that measures the time from the patient’s first surgery to their last
followup or death in months, and vital status values (LIVING or DECEASED) that describe
if the data is censored or not. For the HP

0 null hypothesis, the overall survival and vital status
were treated as combined survival unit.



For each gene g, we considered the set M(g) of patients in which g is mutated and the
set M(g) of patients in which it is not mutated. We compared the Kaplan-Meier survival
curve obtained for patients in M(g) with the survival curve for patients in M(g). (We used
the R package survival to compute the survival curves.) For each gene, we used the logrank
statistical test to test the hypothesis that there is no difference between the two survival
curves. In particular, we used the survdiff function of survival package in R to compute
the p-value for each gene. To focus on genes having a non negligible effect on the set of patients
analyzed, we removed genes that were mutated in fewer than five patients. For each p-value
we derived a score as described in Section 2.2.1. We also removed outliers: five genes (C2orf65,
DOK1, DQX1, LOXL3, and SEMA4F) with p-value less than 10−10. The remaining scores
constitute the input to HotNet. Using the procedure of Section 2.2.2 we computed a threshold
δ for null hypothesis HP

0 and a threshold δ for null hypothesis HM
0 . In both cases we obtained

the threshold δ = 0.11. We then ran our algorithm for thresholds δ′ = 1.0δ, 1.1δ, 1.2δ, . . . , 2.0δ.
The best results were obtained using the threshold δ′ = 0.22, and are reported below.

Using this approach HotNet identifies 12 candidate subnetworks containing at least 10

genes: the p-value for observing 12 subnetworks containing at least 10 genes is ≤ 0.05 under
HP

0 and < 0.008 under HM
0 , and the FDR for the set of 12 subnetworks is ≤ 0.57 under HP

0 and
≤ 0.43 under HM

0 . The FDR is a conservative estimate of the ratio of false positives among all
subnetworks reported by our algorithm, and implies that approximately 5 of the subnetworks
reported by HotNet are significant. Since we included CNAs in our analysis, our results may
contain potential artifacts resulting from functionally related genes that are both neighbors
on the interaction network and close enough on the genome that they are affected by the
same CNA. To reduce such artifacts, we applied two heuristics. First, we removed candidate
subnetworks returned by HotNet that contain 3 or more genes in the same focal CNA in more
than 1% of the patients. Second, for subnetworks with 2 genes g1, g2 in the same focal CNA in
more than 1% of the patients, we removed the genes that are not found in the subnetwork when
alterations in either g1 or g2 are removed. Of the 12 subnetworks identified by HotNet, 9 remain
after these CNA filtering heuristics. To gain additional support for individual subnetworks and
to focus attention on subnetworks with known biological function, we computed the overlap
between the genes in candidate subnetworks and known pathways from the KEGG database.8

For subnetworks that are enriched for at least one KEGG pathway, the best enrichments are
reported in Table 1. Those 4 subnetworks are reported in Figs. 2–5. We note that none of the
genes in those 4 subnetworks would be flagged as significant using a log rank test on single
genes (with FDR ≤ 0.2).

All the subnetworks in Table 1 are enriched for at least one pathway reported in Crijns
et al.26 as containing more genes whose expression is correlated with overall survival than
expected by chance. One of the subnetworks we found significantly overlaps genes in the focal
adhesion pathway, that have been shown to be associated with survival. In particular, increased
expression of the focal adhesion kinase (FAK) has been associated with shorter survival27,28 in
ovarian cancer, and the overexpression of ADAM9 has been correlated with brain metastasis in
non-small cell lung cancer.29 Moreover the depletion of MAP1S, part of another subnetwork S2
we identify, has been associated with reduced survival.30 To investigate the impact on survival



Table 1. Significant subnetworks identified by our method and significantly overlapping KEGG pathways. For
each subnetwork, the genes in the subnetwork, the most significant KEGG pathways given by hypergeometric
enrichment and the corresponding p-values are shown.

subnetwork genes pathway enrichment p-val
S1 ADAM9 ITGAV ITGA6 Regulation of actin cytoskeleton 1.1× 10−9

ITGA3 ITGB5 LIMK1 FGFR2 Hypertrophic cardiomyopathy (HCM) 2.0× 10−5

DLST UMPS PAK4 GATAD2A Arrhythmogenic right ventricular
cardiomyopathy (ARVC) 1.2× 10−5

Dilated cardiomyopathy 2.0× 10−5

Focal adhesion 2.2× 10−5

S2 POLR2I POLR2H POLR2K RNA polymerase 3.1× 10−8

HELZ MAP1S SMYD3 Pyrimidine metabolism 5.2× 10−6

LRPPRC NFKBIB POLR2B Purine metabolism 3.6× 10−5

S3 MTF1 PVR ATP5J2 Lysosome 2.3× 10−4

CD96 AP1G1 AP1M1 SHPRH Cell adhesion molecules (CAMs) 4.8× 10−2

LDLR PIGR LPP SCRIB GAK
AP1M2 PVRL3 PVRL2 LAMP1

S4 RAB8B OPTN RAB3IP TUBB Calcium signaling pathway 7.4× 10−4

RYR1 BIRC6 RYR2 CACNA1C Cardiac muscle contraction 3.0× 10−3

RABIF GDI2 TUBA4A RAB8A
HOMER3 CACNA1S RIMS2
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Fig. 2. Subnetwork S1 identified by HotNet, significantly overlapping the focal adhesion pathway. (a) In-
teractions among genes as reported in HPRD. Genes are colored by their effect on the survival of patients:
gene g is green if the median survival of patients where g is mutated exceeded that of patients where g is not
mutated; gene g is red otherwise. The median survival is determined by the Kaplan-Meier estimator of the
R function survfit. Numbers are the gene scores (−2 loge pg). (b) Survival curves for: patients P (G) with
mutations only in green genes (green curve), patients P (R) with mutations only in red genes (red curve), and
patients P (U) with mutations in neither red nor green genes (gray curve).

of mutations in the subnetworks identified by our algorithm we compared the survival of
patients not having mutations in a particular subnetwork, with the survival of patients having
a mutation in the subnetwork. Let M(g) be the set of patients in which a gene g is mutated,
and let M(g) be the set of patients in which g is not mutated. For a subnetwork S, let S(G)

be the set of genes in S for which the the mean survival of the patients in M(g) is larger
than the mean survival of the patients in M(g). Let S(R) be the subset of S for which the
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Fig. 3. Subnetwork S2 identified by HotNet, significantly overlapping the RNA polymerase pathway. (a)
Interactions among genes as reported in HPRD. Genes are colored as in Figure 2 (b) Survival curves for:
patients P (G) with mutations only in green genes (green curve), patients P (R) with mutations only in red
genes (red curve), and patients P (U) with mutations in neither red nor green genes (gray curve).
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Fig. 4. Subnetwork S3 identified by HotNet, significantly overlapping the cell adhesion molecules pathway.
(a) Interactions among genes as reported in HPRD. Genes are colored as in Figure 2 (b) Survival curves for:
patients P (G) with mutations only in green genes (green curve), patients P (R) with mutations only in red
genes (red curve), and patients P (U) with mutations in neither red nor green genes (gray curve).

opposite holds. For each of the four subnetworks identified by our algorithm, we considered
(i) patients P (R) with mutations in genes in S(R) but not in genes in S(G); and (ii) patients
P (G) with mutations in genes in S(G) but not in genes in S(R). We also considered the set
P (U) of patients not having mutations in the subnetwork S. We then compared the survival
curves of P (R) and P (U), and the survival curves of P (G) and P (U). The survival curves are
reported in Figs 2–5, and the p-values (from logrank) for the tests are reported in Table 2.
(In Table 2, A vs B denotes the comparison of survival for patients in A and of survival for
patients in B.) For three of the subnetworks we found that at least one of the two tests has
p-value < 6× 10−3, and for the forth subnetwork both p-values are ≈ 0.06. This demonstrates
that our method identifies subnetworks whose mutations are associated with survival.

We also used our method separating the analysis for genes with high survival and low
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Fig. 5. Subnetwork S4 identified by HotNet, significantly overlapping the calcium signaling pathway. (a)
Interactions among genes as reported in HPRD. Genes are colored as in Figure 2 (b) Survival curves for:
patients P (G) with mutations only in green genes (green curve), patients P (R) with mutations only in red
genes (red curve), and patients P (U) with mutations in neither red nor green genes (gray curve).

Table 2. p-values from logrank test for the subnet-
works of Table 1 enriched in KEGG pathways.

Subnetwork S P (R) vs. P (U) P (G) vs. P (U)
S1 4.9× 10−6 1.5× 10−2

S2 4.3× 10−3 2.7× 10−1

S3 5.5× 10−2 5.9× 10−2

S4 5.8× 10−3 1.9× 10−1

survival phenotypes. In particular, we defined a gene to have high survival if the median
survival of the patients with a mutation in the gene was higher than the median survival
of the patients without mutation in the gene. Otherwise, we defined the gene to have low
survival. We then ran HotNet twice: once considering only genes with high survival, and then
only genes with low survival, applying the same filtering steps described above. For the high
survival genes, our method identified 7 subnetworks of at least 10 genes (p-value ≤ 0.01, FDR
≤ 0.51 under HM

0 , and p-value ≤ 0.3, FDR ≤ 0.8 under HP
0 ). Only 3 of those subnetworks

remains after the CNA filtering heuristics, and they are not enriched for known pathways.
For the low survival genes, our method identifies 5 subnetworks of at least 10 genes (p-value
≤ 0.05, FDR ≤ 0.63 under HM

0 , and p-value ≤ 0.37, FDR ≤ 0.82 under HP
0 ). Only 1 of those

subnetworks remains after the CNA filtering heuristics, and it is not enriched for known
pathways.

4. Discussion

We described an extension of our HotNet algorithm to finding subnetworks of genes whose
mutational status is associated with a phenotype of interest. We applied our algorithm to
ovarian cancer patients from The Cancer Genome Atlas and find 9 subnetworks associated
with survival, 4 of which significantly overlap well-known pathways. Although we presented
results using either a χ2 test or logrank test, the extensions to HotNet described here apply to



any gene score, thus allowing for a variety of statistical tests to be used for testing associations
to clinical phenotypes.
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