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Drug-drug interactions (DDIs) can occur when two drugs interact with the same gene product. Most
available information about gene-drug relationships is contained within the scientific literature, but
is dispersed over a large number of publications, with thousands of new publications added each
month. In this setting, automated text mining is an attractive solution for identifying gene-drug
relationships and aggregating them to predict novel DDIs. In previous work, we have shown that
gene-drug interactions can be extracted from Medline abstracts with high fidelity - we extract not
only the genes and drugs, but also the type of relationship expressed in individual sentences (e.g.
metabolize, inhibit, activate and many others). We normalize these relationships and map them to
a standardized ontology. In this work, we hypothesize that we can combine these normalized gene-
drug relationships, drawn from a very broad and diverse literature, to infer DDIs. Using a training
set of established DDIs, we have trained a random forest classifier to score potential DDIs based
on the features of the normalized assertions extracted from the literature that relate two drugs to
a gene product. The classifier recognizes the combinations of relationships, drugs and genes that
are most associated with the gold standard DDIs, correctly identifying 79.8% of assertions relating
interacting drug pairs and 78.9% of assertions relating noninteracting drug pairs. Most significantly,
because our text processing method captures the semantics of individual gene-drug relationships,
we can construct mechanistic pharmacological explanations for the newly-proposed DDIs. We show
how our classifier can be used to explain known DDIs and to uncover new DDIs that have not yet
been reported.

1. Introduction

Americans are living longer than ever before, and with that increased age comes a greater
reliance on pharmaceuticals. For example, recent estimates by the Kaiser Family Foundation
indicate that the average 70-year-old American fills over 30 prescriptions per year.1 The chance
of an adverse drug reaction increases exponentially as each new drug is added to an individual’s
regime. Because clinical trials for new drugs do not typically test for drug-drug interactions
(DDI) directly, serious DDIs are often not discovered until a drug is already on the market.
In addition, a patient who is unaware that a symptom he experiences is due to a DDI may
attribute it to other factors. Many DDIs, therefore, probably go unreported.

Biologically, many DDIs are the result of conflicting or synergistic interactions between a
pair of drugs and similar genes or molecular pathways within the human body.2,3 Therefore,



what we observe as drug-drug interactions often take the form of drug-gene-drug interactions.
Unfortunately, while lists of known DDIs are widely available and commonly-used in clinical
practice, drug-gene interactions are not as widely known. In addition, genes and drugs can
interact in a variety of ways, and it is unclear which interaction types are most predictive of a
drug’s tendency to interact with other drugs. Furthermore, no complete databases exist that
concisely describe the exact mechanisms by which drugs and genes interact; most of these
interactions are only described in papers buried deep within the scientific literature.

In this environment, text mining presents a solution to the problem of uncovering novel
DDIs.4–6 Our work extends a growing body of research that has sought to classify DDIs and
better understand gene-drug relationships using text mining; for example, Tari et al7 developed
a method that combined text mining and automated reasoning to extract novel DDIs. Other
authors have built text-based networks of biological entities and used reasoning techniques to
uncover new biologically-relevant relationships among them.8,9 Previous work from our own
group10,11 has established methods for using a syntactical parser to identify and characterize
drug-gene relationships. The end result was a semantic network of drug-gene relationships
in which the edges consisted of several hundred interaction types and subject/object context
terms normalized to concepts in an ontology. All of these approaches have sought to infer
novel relationships among biological entities by combining known facts expressed in scientific
text.

Our current work extends this line of research by using our semantic network - in particular,
paths through the network that connect pairs of drugs - to infer the types of drug-gene
relationships that can predict drug-drug interactions. An advantage of our method is the
fact that it makes almost no a priori assumptions about the nature of these relationships,
instead using a machine learning algorithm (a random forest) to identify the kinds of gene-drug
relationships that best predict DDIs. Besides learning which textual features are most relevant
for predicting DDIs, the method can also be used to predict novel DDIs and to “explain” these
predictions through suggested mechanisms of interaction; this explanatory process is a built-in
component of the algorithm. In this paper, we describe the main features of our algorithm,
show how it can be used to predict possible mechanisms of interaction for a known DDI, and
describe how it can be used in the future to predict novel DDIs.

2. Methods

2.1. Extracting Drug-Gene Interactions

This project builds on an earlier method for text mining Medline to extract drug-gene inter-
actions.11 Briefly, that method works as follows:

(1) Create two lexicons of terms, one for gene names and one for drug names. We used two
custom lexicons. The first consisted of a set of 731 known pharmacodynamic and pharma-
cokinetic genes identified by the PharmGKB database curators.12 The second consisted
of 2,910 unique drug and drug-class names, also from PharmGKB. The gene lexicon also
included all common synonyms for each gene; we required the drug name to be in its



generic form (rather than a brand name) to be included.a

(2) Obtain a corpus of Medline article abstracts. The Helix Group at Stanford University
maintains a corpus of all Medline abstracts published before 2009. The corpus contained
about 17.5 million abstracts and 88 million sentences.

(3) Retrieve all sentences in Medline that mention both a drug and a gene of interest. (For the
purposes of this project, the drug and gene entities of interest will be known as seeds.) We
accomplished this using the two aforementioned lexicons and running 100 search processes
in parallel on Stanford’s BioX2 cluster.13

(4) Represent sentences as dependency graphs using the Stanford Parser.14,15 The dependency
graphs are rooted, oriented, and labeled graphs, where the nodes are words and the edges
are dependency relations between words. If two seeds were not located in the same sentence
clause, that sentence was removed from consideration. In addition, if a graph contained
more than one clause and there was a clause that did not contain either seed, that clause
was removed from consideration. A sample dependency graph for one Medline sentence of
interest is shown in Figure 1.

Fig. 1. Dependency graph for the sentence “Pepstatin A also blocked the acetaminophen-induced degradation
of the CYP3A4 in a transfected HepG2 cell line” (PMID: 15078344). The red arrows show the path through
the graph that connects the seeds Pepstatin A (a drug) and CYP3A4 (a gene). Because this path contains a
verb - in this case, “blocked” - this is a sentence of interest.

(5) Identify and normalize composite entities. A seed does not usually occur in isolation in a
sentence, but as part of a larger composite entity that includes the surrounding context.
For example, a gene name like CYP3A4 will usually occur as part of a larger entity,
such as CYP3A4 degradation or CYP3A4 elimination. We used a previously-established
algorithm10 to identify the context terms surrounding each seed and normalize them. The
normalization process involved mapping context terms with similar semantics but different
syntax, such as degradation of CYP3A4 and CYP3A4 degradation, to the same concept
(Elimination) using a previously-constructed ontology.11

(6) Extract relations between composite entities. Relations describe the nature of the interac-
tion between the two entities in a given sentence. They take the form R(a, b), where a and
b represent the locations of the two entities in the dependency graph, and R is a node that
connects a and b and indicates the nature of their relationship. For a sentence to progress
past this stage of the analysis, the relation connecting the gene and drug entities must

aNote that throughout this analysis, we use the term “gene” interchangeably with “gene product” or “protein”;
it is actually the protein product of a gene that interacts with a drug.



(a)

(b)

Fig. 2. A single drug-gene edge in the semantic network. A composite entity consists of a drug or gene and
its surrounding [normalized] context terms. (a) The general form of an edge. (b) A specific example.

have been a verb (e.g. associated) or a nominalized verb (e.g. association).
(7) Normalize relations. The extracted relations, like the context terms surrounding each

seed, were normalized. During normalization, the raw relations were mapped onto a much
smaller set of normalized relationships taken from the ontology. For example, the verbs
associated and related both map to the ontological entity isAssociatedWith. In addition,
less-common terms like augment were mapped to more common synonyms, like increase.

The overall goal of the normalization process for both composite entities and relations was
to collapse statements with the same semantic meaning but different word choice or syntax
to the same basic relationship, reducing the number of features that needed to be considered
later when building the DDI classifier. When tested on a smaller set of drug-gene relationships
extracted from Medline, our ontology was able to properly normalize approximately 80% of
all relation types mentioned in the literature. Nonetheless, by including only those sentences
where the relation could be normalized, we necessarily excluded some true facts about drug-
gene relationships from our network. It is important to note that only sentences for which
the relation could not be normalized were thrown out; sentences for which the context terms
could not be normalized were still included - the context was simply normalized to Thing, as
described further in Section 3.1.

2.2. Semantic Network

When applied to the entire Medline corpus, the relation extraction and normalization process
yielded 76, 784 different normalized gene-drug relationships of the form shown in Figure 2. We
eliminated all relationships in which the verb could not be normalized (i.e. was not one of
the relations contained in the ontology), which left us with 53, 208 relationships b. We then
put all relations in active voice, collapsing passive/active pairs of normalized verbs such as
isMetabolizedBy and metabolizes into a single feature. This left 49, 021 normalized relations.
However, many of these normalized relations were duplicates of each other because a given
drug-gene relationship could be reported in similar ways many different times throughout the
biomedical literature. We chose to eliminate duplicate paths of this nature. After collapsing
the duplicate edges, we were left with 24, 155 unique edges, which we used to construct a

bExamples of relations that could not be normalized included protects, mimicked, oxidize, encode, and seen.
We are in the process of expanding our ontology to include some of these less common relations.



Fig. 3. A subset of the semantic network (selected to enhance visual clarity), including only the 43 most
pharmacogenomically-important genes from PharmGKB and 600 drugs that were known to interact with at
least one other drug. The green nodes represent drugs and the pink nodes genes. The context terms and
relations are not shown in this picture, but are present on every edge, as shown in Figure 2. Multiple edges
between the same gene-drug pair in this figure represent different textual relationships found between that
gene and drug in the literature.

semantic network, a subset of which is shown in Figure 3. Each edge in the semantic network
had the form shown in Figure 2, but is simplified in Figure 3 for clarity.

2.3. Feature Extraction

The feature extraction phase of this project relied on one central assumption: that the shortest
textual path linking two drugs in the network represented the simplest explanatory mechanism
of their interaction (if any such mechanism existed). The set of relevant features then consisted
of all the genes, relations, and context terms found on the shortest path. To find the shortest
path between any two drugs D1 and D2, we performed a breadth-first search for D2, starting
at D1. Breadth-first search is guaranteed to yield the optimal (shortest) path between two
points on a graph.16 The shortest possible path between any two drugs in the network has
the form shown in Figure 4. For the purposes of building our training set, we considered only
drug pairs that had one or more shortest paths of the form in Figure 4; if the shortest path
was longer than this, the drug pair was not included in the training set. We made this decision
because we wanted to explore only those drug pairs for which the mechanistic explanation
provided by the shortest path could be interpreted easily.

By assigning each feature a numeric index, we could easily convert the lists of normalized
terms found on the shortest paths into a matrix of numbers, with each row corresponding to
a single path and the columns corresponding to the number of occurrences of each feature on
the path. If multiple shortest paths were found, we included a separate row in our training
matrix for each unique path.



Fig. 4. The minimum-length path between two drugs in the network. It is two edges long. The colors and
symbols in this figure are identical to those in Figure 2: green squares represent drugs, and the pink circle
represents a gene. The yellow rectangles represent relations, and the blue circles and squares represent context
terms for genes and drugs, respectively.

2.4. Classification

The next step was to train a supervised machine learning classifier to recognize interacting
drug pairs based on the textual features of their connecting paths. We randomly sampled
5000 drug pairs from a list of known interacting pairs provided by DrugBank,17 then selected
5000 additional drug pairs randomly from the drug lexicon, ensuring that none of them were on
DrugBank’s list of interactionsc. For each of the 5000 pairs in our positive and negative training
sets, we found all of the paths between the two drugs in the pair that took the form shown in
Figure 4 and recorded the features observed along the paths. Each path between an interacting
drug pair became a positive training example, and each path between a noninteracting drug
pair became a negative training example.

We used a random forest,18 specifically the implementation found in the R library
randomForest, to perform the final classification for all of the drug pairs in our training
set. The random forest is an ensemble method in which many uncorrelated decision trees
“vote” to classify data points; it outperformed both logistic regression and a support-vector
machine classifier used in the early stages of this project. Each tree in the random forest uses
only a subset of the features for classification, which ensures that votes from different trees
are uncorrelated. We found that the overall classification error stabilized when approximately
200 trees were included in the forest.

2.5. Performance Evaluation

The standard metric of performance for the random forest is the out-of-bag (OOB) estimate of
the error, which is similar to leave-one-out cross-validation.18 Each tree in the random forest
is constructed using only about 2/3 of the available training data; the rest of the data points
are referred to as the “out of bag” data for that tree. Thus it is possible to build the entire
forest, then reclassify each training example using only those trees for which it was OOB. The
generally-accepted rule is to use a voting cutoff of 50% to classify a training point as positive;
this means that for the random forest to assign the label “interacting” to a path, 50% or more
of the trees in the forest had to classify that path as interacting. We used the standard OOB
estimate of the error to evaluate the random forest’s performance on our training data.

One interesting feature of the random forest is that it provides a natural measure of its
classification certainty for each training example - namely, the fraction of trees that voted
“interact” for that example. By ranking the paths for a particular drug pair based on the
number of “yes” votes each received from the random forest, we can determine which path(s)

cDrugBank obtains its list of drug interactions from a variety of sources, including the Physician’s Desk
Reference, e-Therapeutics, MedicinesComplete, Epocrates RX, and Drugs.com (which in turn uses Cerner
Multum).



Fig. 5. The 50 most important features to the random forest classifier, ordered according to a permutation
metric;18 the numeric values of importance are not as informative as the relative sizes of the bars.

represent the most likely mechanism(s) of interaction for that pair.

3. Results

3.1. Feature Extraction

A total of 1806 entities were represented in our network: 1061 drugs, 532 genes, 172 con-
text terms, and 41 relations. There were 172, 271 negative training examples (paths between
5000 noninteracting drug pairs) and 182, 534 positive training examples (paths between 5000 in-
teracting drug pairs) in our training set, all of which had the form shown in Figure 4.

The random forest uses a permutation method to provide an estimate of which tex-
tual features were most important to the classification process; the 50 most important fea-
tures are shown in Figure 5. Among the most important features are the genes ABCB1,
IL28B, TNF, CYP3A4, EGF, CAMP, and CYP2D6, the context terms Synthesis, Expression,
DrugDose, GeneOrGeneProductActivity, DrugTreatment, DrugMetabolism, GeneProductActi-
vation, GeneInhibitor, Repression, and DrugEffect, and the relations metabolizes, isAssociat-
edWith, inhibits, suppresses, increases, regulates, and induces.

Three context terms on this list appear strange at first glance: Drug, Gene, and Thing.
Context is normalized to the term Drug or Gene if the drug/gene seed is itself the subject or
object of the verb or nominalized verb in the sentence, as in the example sentence CYP2C9
metabolizes warfarin. In this sentence, the gene CYP2C9 would be normalized to “CYP2C9
Gene” and the drug warfarin would be normalized to “warfarin Drug”. Context is normalized
to the term Thing if the real context is some property of the drug or gene that cannot be oth-
erwise normalized. For example, in one sentence, the authors used the term “polymorphism”
incorrectly as a modifier of a drug name, referring to “polymorphisms in (drug name) drug



dose. . . ”. Because the drug context in that sentence was polymorphisms but the seed was a
drug name and not a gene name, polymorphisms was not found in the ontology among the
acceptable context terms for the drug and the context was normalized to Thing. One can
therefore think of Thing as a marker for cases where normalization of a context term was
not possible (using the current version of the ontology), but normalization of the relation
proceeded normally.

Table 1. The final contingency table for the random forest classi-
fier.

Random Forest Classification
True Class 0 1 Class-wide Error

No Interaction 135,842 36,429 0.211
Interaction 36,915 145,619 0.202

3.2. Classification and Performance Evaluation

The final contingency table for the random forest classifier is shown in Table 2. The random
forest correctly assigned 281, 461 out of 354, 805 training paths (79.3%; 135, 842 non-interacting
and 145, 619 interacting paths) to the correct class. It said 36, 429 paths represented interactions
when the drug pair involved did not appear on the list from DrugBank (false positives), and
claimed that 36, 915 paths did not represent interactions when in fact the drug pair did appear
on the list from DrugBank (false negatives).

We can get a sense of the significance of this result by considering what would happen if
we simply flipped a coin to assign the label “interacting” or “noninteracting” to each path.
Roughly 50% of the paths in our training set corresponded to interacting drug pairs, and the
other 50% to noninteracting drug pairs. Therefore, if we assigned the labels “interacting” and
“noninteracting” entirely at random, we would expect to correctly classify about 50% of paths
(with the false positive error rate approximately equal to the false negative error rate). Our
method thus represents an improvement in accuracy of nearly 30% over simple guessing.

3.3. Predicting Mechanisms of Interaction

In addition to classifying interacting and noninteracting drug pairs with nearly 80% accuracy,
our method provides valuable insight into the possible mechanisms by which drugs interact. By
choosing a path from one drug to the other through a particular gene, we obtain one potential
mechanism for how the two drugs could interact. For example, Figure 6 shows a selection
of the highest-ranking paths for a known interacting drug pair: verapamil and atorvastatin.
Table 2 shows the Medline sentences corresponding to the edges that comprise these paths.
All of these paths received at least 90% “yes” votes from the random forest.

Most of the edges connecting verapamil and ABCB1 in Figure 6 seem to indicate that
verapamil inhibits the activity of ABCB1. The edges connecting atorvastatin and ABCB1 in-
dicate that atorvastatin upregulates the production of P-glycoprotein, the protein product of
ABCB1. The two drugs’ effects on ABCB1 therefore interfere with each other. Following an-



Fig. 6. A selection of the highest-ranking paths between verapamil and atorvastatin. The total number of
connecting paths between verapamil and atorvastatin in the network was 293. All of the paths shown here
received more than 90% “interact” votes from the random forest.

other path, this time through the gene CYP3A4, we see that CYP3A4 induces the breakdown
of verapamil into its metabolites, specifically by N-dealkylation and N-demethylation of the
drug. Since CYP3A4 is a major metabolizing enzyme for atorvastatin, we might expect that
coadministration of the two drugs could lead to heightened levels of one or both of them in the
body, leading to toxicity. These represent two different possible mechanisms of interaction.

4. Discussion

4.1. Predicting Interactions and Mechanisms

These suggested mechanisms are useful because they provide summaries of what the scientific
community knows about pharmacogenomically-mediated interactions between drug pairs of
interest. The drug-gene relationships that form the basis of these mechanisms are all existing
knowledge; however, our method provides a novel way to connect disparate facts from across
the biomedical literature to provide mechanistic explanations of drug-drug interactions.19 In
the case of drug pairs that are already known to interact, using this approach provides a list
of potential mechanisms of interaction, which may help us uncover new mechanisms that are
not yet part of common medical knowledge. By looking at known interacting drug pairs with
similar mechanisms of interaction, we can also begin to predict what the phenotypic effects of
our newly-predicted interactions might be.

Once the random forest has been trained on a set of known interacting drug pairs, it can
be used to predict whether any other drug pair will interact. In particular, it can be applied
to a novel test set that does not include drugs from the original training set. Provided a drug
pair is connected by at least one path of the form shown in Figure 4 in the semantic network,



Table 2. The raw sentences from Medline abstracts that correspond to the edges shown in Figure 6. Each path
between verapamil and atorvastatin consists of two edges (i.e. two sentences).

PMID Normalized Relation Sentence

Relationships involving f2 (thrombin)

2611956 verapamil Thing inhibits
Gene f2

Ilexonin A and verapamil markedly inhibited the thrombin induced Ca2+ influx.

12921859 atorvastatin DrugEfficacy
prevents Gene f2

In addition, thrombin induced NF-kappaB translocation and membrane translocation of RhoA
in smooth muscle cells which were both prevented by pre-treatment of the cells by atorvastatin.

12921859 atorvastatin Drug
decreases Gene f2

How atorvastatin could limit the pro-inflammatory response to thrombin was studied in cultured
rat aortic smooth muscle cells.

15792677 atorvastatin Drug
decreases Thing f2

Atorvastatin reduces thrombin generation after percutaneous coronary intervention independent
of soluble tissue factor.

Relationships involving ABCB1 (P-glycoprotein, MDR1)

16996216 atorvastatin Drug causes
Synthesis ABCB1

Atorvastatin at 10 and 20 microM up-regulated ABCB1 expression resulting in a significant
1.4-fold increase of the protein levels.

16996216 atorvastatin Drug
increases Thing ABCB1

Treatment of HepG2 cells with 20 microM atorvastatin caused a 60% reduction on mRNA ex-
pression (p<0.05) and a 41% decrease in ABCB1-mediated efflux of Rhodamine123 (p<0.01) by
flow cytometry.

9607955 verapamil DrugTreatment
induces
GeneOrGeneProductActivity
ABCB1

Previous drug exposure of the cells showed that verapamil, celiprolol, and vinblastine induced
the P-gp expression, while metkephamid (MKA) decreased the P-gp expression level as compared
to the control.

9636053 verapamil DrugActivity
demonstrates Thing ABCB1

P-gp proteoliposomes from P. pastoris showed a strong verapamil- and valinomycin-stimulated
ATPase activity, with characteristics (KM, Vmax) similar to those measured in mammalian cells.

9535788 verapamil Drug inhibits
Gene ABCB1

In addition, the DNA-damaging agent was found to enhance in a dose-dependent manner cellular
efflux of the P-gp substrate rhodamine 123, which was inhibited by the P-gp inhibitor verapamil,
thus providing evidence that exposure to MMS led to increased P-gp-related drug transport in
rat liver cells.

7769842 verapamil Drug inhibits
GeneOrGeneProductActivity
ABCB1

When P-gp function was assessed by Rhodamine 123 (Rh123) efflux kinetics, we found that only
KG1a and KG1 cells, which have an early (immature) CD34+ CD33- CD38- phenotype, and
to a lesser extent TF1, with an intermediate (CD34+ CD33+ CD38+) phenotype, displayed
significant P-gp activity which could be inhibited by both verapamil and SDZ PSC 833.

16457995 verapamil DrugAbsorption
inhibits Gene ABCB1

While cyclosporine and verapamil significantly increased the absorption of methylprednisolone
and vinblastine through potent inhibition of intestinal P-gp, tacrolimus failed to achieve this.

17936633 verapamil Drug regulates
GeneOrGeneProductActivity
ABCB1

The results displayed that only compound 3c was P-gp inhibitor as Elacridar, while compound
3a and reference compounds Cyclosporin A and Verapamil modulated P-gp activity saturating
the efflux pump as substrates.

16260035 verapamil Drug suppresses
Gene ABCB1

Depsipeptide-resistant KU812 cells expressed P-glycoprotein (P-gp) and their resistance was
abolished by co-treatment with verapamil.

15257901 verapamil DrugDose
isAssociatedWith
Repression ABCB1

DL-PPMP and verapamil were found to inhibit MDR1 gene expression in KBV(200) cells at
the mRNA level, and complete inhibition occurred after a 48-hour DL-PPMP treatment at 25
micromol/L.

15257901 verapamil Drug inhibits
Expression ABCB1

The inhibition of GCS and mdr1 gene expressions is positively correlated with the concentra-
tions of DL-PPMP and verapamil, which can reverse MDR by inhibiting synthesis of GCS and
mdr1 gene, indicating the positive correlation between the expression of GCS gene and MDR in
KBV(200) cells.

7749215 verapamil DrugTreatment
decreases Expression
ABCB1

The level of mdr1 mRNAs is decreased in the presence of verapamil (with a maximum effect
obtained at the 24th hour), which suggests that the mechanism of action of verapamil is tran-
scriptional and/or post-transcriptional.

Relationships involving VEGFA

14615256 verapamil Drug decreases
Synthesis VEGFA

Verapamil (100 microM) decreased IL-6 and VEGF production (P¡0.03 and P¡0.005, respectively)
in central keloid fibroblasts cultures at 72 h.

16701707 atorvastatin Drug induces
Gene VEGFA

We observed that atorvastatin significantly stimulated VEGF release in a dose-dependent man-
ner.

17389519 atorvastatin Drug
isAssociatedWith
Repression VEGFA

Atorvastatin effectively inhibited laser-induced CNV in mice and was associated with downreg-
ulation of CCL2/MCP-1 and VEGF and reduced macrophage infiltration into the RPE/choroid.

12084593 atorvastatin Drug
decreases Expression
VEGFA

Atorvastatin therapy reduced VEGF plasma levels in CAD patients (from 31.1 +/- 6.1 to 19.0
+/- 3.6 pg/ml; p ¡ 0.05).

Relationships involving CYP3A4

15001968 verapamil DrugEfficacy
isAssociatedWith
Expression CYP3A4

Values for the maximum rate of metabolism (V(max)) of verapamil N-dealkylation (formation of
D-617) and N-demethylation (formation of norverapamil) activities correlated with the CYP3A4
protein content in both organs.

11907487 CYP3A4 Gene induces
DrugMetabolite verapamil

Consistent with expression data, formation of verapamil metabolites catalyzed by CYP3A4 and
CYP2C was shown.

11005703 CYP3A4 Enzyme metabolizes
Drug atorvastatin

Atorvastatin, cerivastatin, lovastatin and simvastatin are predominantly metabolised by the
CYP3A4 isozyme.

11061579 CYP3A4 Gene metabolizes
Drug atorvastatin

Atorvastatin is metabolized solely by CYP3A4, and pravastatin metabolism is not well defined.

Relationships involving CYP3A

16513446 verapamil Drug inhibits
GeneOrGeneProductActivity
CYP3A

Verapamil inhibited CYP3A activity, with a maximum effect occurring within 10 days.

16013069 verapamil DrugMetabolism
inhibits Repression CYP3A

The above data suggested that the metabolism of verapamil and the formation of norverapamil
was inhibited by naringin possibly by inhibition of CYP3A in rabbits.

14744949 verapamil DrugIsoform
inhibits Gene CYP3A

The present study showed that verapamil enantiomers and their major metabolites [norverapamil
and N-desalkylverapamil (D617)] inhibited CYP3A in a time- and concentration-dependent man-
ner by using pooled human liver microsomes and the cDNA-expressed CYP3A4 (+b5).

12433810 atorvastatin Drug
increases Expression
CYP3A

Treatment of 2- to 3-day-old human hepatocyte cultures with 3 x 10(-5) M lovastatin, simvastatin,
fluvastatin, or atorvastatin for 24 h increased the amounts of CYP2B6 and CYP3A mRNA by
an average of 3.8- to 9.2-fold and 24- to 36-fold, respectively.

16258024 CYP3A Gene metabolizes
Drug atorvastatin

Atorvastatin (ATV) is primarily metabolized by CYP3A in the liver to form two active hydroxy
metabolites.



the random forest can vote on each connecting path and rank it based on the probability that
it represents a mechanism of interaction. This provides us with a powerful tool for predicting
mechanisms of interaction that are not yet known. In the future, we hope to use the trained
random forest to predict the most likely mechanisms of interaction between drug pairs that
are often prescribed together but whose interaction status is not yet known.

4.2. Study Limitations

There are several limitations to the present approach that we hope to address in subsequent
iterations of this work. One major limitation is that we only searched Medline for 731 known
pharmacodynamic and pharmacokinetic genes, many of which were liver cytochromes and
other enzymes known for their involvement in drug metabolismd. While interactions involving
these drugs are interesting, most are already known, and we also tend to miss more specific
interactions, such as drug pairs that share the same pharmacologic target. In the future, we
plan to expand our data set to encompass a much wider variety of genes - there are 26, 216 genes
in the full lexicon from PharmGKB - but the increase in computational time required to search
for 26, 216 × 2, 910 = 76, 288, 560 drug-gene pairs is substantial.

On a similar note, because we included only pharmacokinetic and pharmacodynamic genes
in our analysis, we were unable to capture physical or chemical interactions that were not
the result of two drugs interacting directly with the same gene. Examples of such missed
interactions might include a drug that increases the pH of the stomach, reducing absorption
of another drug, or two drugs that have similar, relatively nonspecific phenotypic effects (such
as reducing inflammatory responses throughout the body). We also miss interactions in which
two drugs interact with components of the same metabolic pathway but not the same gene,
or those in which one drug interacts with a transcription factor that controls the activity of
an enzyme responsible for metabolizing another drug. All of these are valid interactions that
could be captured if we expanded the semantic network to include gene-gene interactions, as
well as interactions of both drugs and genes with certain disease states and phenotypes, all of
which we plan to do in the future.

A final limitation of our model is its inability to resolve anaphoras. An example of an
anaphora is a two-sentence combination like CYP2C9 is a gene. It metabolizes warfarin. Our
model would not pick up the relationship between CYP2C9 and warfarin because the two
entities are found in separate sentences. As we refine this work, we would like to find ways
to resolve anaphoras, perhaps by considering pairs of entities that are mentioned in the same
abstract, not just the same sentence.

5. Conclusion

We have described a method for predicting and explaining drug-drug interactions based on
automated extraction of relevant pharmacogenomic facts from the biomedical literature. The
method classifies known drug-drug interactions with nearly 80% accuracy using only textual

dReaders interested in drug interactions mediated by this class of genes are encouraged to visit
http://medicine.iupui.edu/clinpharm/ddis/, a valuable source of information on DDIs mediated by liver cy-
tochromes.



features from descriptions of drug-gene relationships, and provides reasonable mechanistic ex-
planations for its classification decisions. Its success opens many doors to the future use of sim-
ilar techniques in text mining, perhaps to predict gene-gene interactions, uncover interactions
of drugs and genes with diseases, and generate testable hypotheses about the relationships
between drugs, genes, and phenotypes.
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