
 

ON THE COMPLEMENTARITY OF THE CONSENSUS-BASED DISORDER 

PREDICTION 

ZHENLING PENG AND LUKASZ KURGAN 

Electrical and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada 

Emails: zhenling@ualberta.ca, lkurgan@ece.ualberta.ca 

Intrinsic disorder in proteins plays important roles in transcriptional regulation, translation, 

and cellular signal transduction. The experimental annotation of the disorder lags behind 

the rapidly accumulating number of known protein chains, which motivates the 

development of computational predictors of disorder. Some of these methods address 

predictions of certain types/flavors of the disorder and recent years show that consensus-

based predictors provide a viable way to improve predictive performance. However, the 

selection of the base predictors in a given consensus is usually performed in an ad-hock 

manner, based on their availability and with a premise that more is better. We perform 

first-of-its-kind investigation that analyzes complementarity among a dozen recent 

predictors to identify characteristics of (future) predictors that would lead to further 

consensus-based improvements in the predictive quality. The complementarity of a given 

set of three base predictors is expressed by the differences in their predictions when 

compared with each other and with their majority vote consensus. We propose a 

regression-based model that quantifies/predicts quality of the majority-vote consensus of a 

given triplet of predictors based on their individual predictive performance and their 

complementarity measured at the residue and the disorder segment levels. Our model 

shows that improved performance is associated with higher (lower) similarity between the 

three base predictors at the residue (segment) level and to their consensus prediction at the 

segment (residue) level. We also show that better consensuses utilize higher quality base 

methods. We use our model to predict the best-performing consensus on an independent 

test dataset and our empirical evaluation shows that this consensus outperforms individual 

methods and other consensus-based predictors based on the area under the ROC curve 

measure. Our study provides insights that could lead to the development of a new 

generation of the consensus-based disorder predictors. 

1.  Introduction 

The intrinsically disordered proteins (IDPs) are characterized by the lack of stable tertiary 

structure when their isolated chains are under physiological conditions in vitro.
1
 IDPs include 

random coil-like regions, partially folded or molten/pre-molten globule-like domains with poorly 

packed side chains, and dynamic structural ensembles.
2,3

 They implement important functional 

roles in transcriptional regulation, translation, and cellular signal transduction,
4
 and they are 

relatively common.
5
 The prevalence of disorder was implicated in various human diseases and 

they were suggested as important targets for drug discovery.
6,7

 The above motivates research 

towards improved understanding of the principles and mechanisms of IDPs. Some studies show 

that IDPs are characterized by relatively unique sequence signatures. For example, they often have 



  

a low content of bulky hydrophobic amino acids and a high proportion of polar and charged 

residues, a low content of predicted secondary structure, low complexity, and unique evolutionary 

and solvent accessibility profiles.
8-13

 This implies that the disorder is predictable from the 

sequence. Therefore, a number of computational predictors were developed over the past decade. 

These efforts intensified after the disorder prediction was introduced into the biannual CASP 

experiments in 2002.
14-16

 The disorder predictors are categorized into four types:
17

 

1. propensity-based methods based on relative propensity of amino acids to form 

disorder/ordered regions: GlobPlot,
18

  FoldIndex,
19

  IUPred,
20

 and Ucon;
21

 

2. machine learning-based predictors: DISOPRED2,
22

 DISpro,
23 

RONN,
24

 ProfBval,
25,26

 PONDR 

predictors,
9,14,27-30

 PreDisorder,
23,32

 NORSnet,
21

 DisEMBL,
18

 and Spritz;
31

  

3. consensus-based methods that combine predictions from multiple base predictors: 

metaPrDOS,
33

 GS-MetaServer,
34

 MD,
35

 PONDR-FIT,
36

 and MFDp;
17

 

4. structural models-based approaches that make use of predicted tertiary structure models: 

PrDOS
 37

 and DISOCLUST.
38

 

The results from a recent comparative review
 39

 and the CASP8 competition,
16

 demonstrate 

that the consensus-based methods, such as the GS-MetaServer,
34

 MD,
35

 and MFDp,
17

 generally 

outperform other methods. This is perhaps due to the fact that certain disorder predictors target 

specific flavors/types of the disorder and thus they are suitable to form a well-performing 

consensus.
35

 One of the desired characteristics of the consensus-based methods is that the base 

predictors that are being combined should be complementary to each other.
17,35,40

 However, the 

existing methods select the base predictors in an ad hock manner: based on their availability, 

differences in the architecture of the base methods and/or their targeted type of the disorder, and 

utilizing a premise that inclusion of a larger number of base predictors is beneficial.
17,34-36

 We 

perform a first-of-its-kind empirical investigation into the complementarity among disorder 

predictors. For a given triplet of methods, we measure complementarity based on the differences 

in their predictions, by comparing them with each other and to their majority vote consensus 

(MVC). We build a regression-based model that predicts the quality of the MVC using the 

information concerning complementarity measured at the residue- and segment-level and the 

predictive performance of the base methods. We empirically demonstrate that a proper selection of 

the base methods leads to the improvements in the disorder predictions, when compared with the 

current single and consensus-based disorder predictors. 

2.  Methods 

2.1.  Considered disorder predictors 

We consider 17 disorder predictors, which are accessible to the end user via web server or a 

standalone program, including 16 that were discussed in a recent review 
39

 and DRIPPRED. Since 

our study requires that a given predictor outputs real-value disorder propensity, we could not 

include the predictors that only produce the binary outputs, namely GlobPlot,
18 

FoldIndex,
19

 

DisEMBL,
18

 and Spritz.
31

 Furthermore, the IUPred method is used in both of its modes, one for 

the prediction of short disordered segments, named IUPredS, and the other for long segments, 

named IUPredL. Consequently, the 14 disorder predictors are considered; see Table 1. 



  

Table 1. Summary of disorder predictors included in this study. Methods are sorted by the year of 
publication. Acronyms in column “Type”: propensity-based (PB), machine learning-based (MLB), 
consensus-based (CB), and structural models-based (SB); in column “Algorithm”: support vector 
machine (SVM), neural network (NN), scoring function (SF) and self-organizing map (SOM). 

Prediction method   

Name Published Type Algorithm 
URL  

MFDp 2010 CB SVM http://biomine-ws.ece.ualberta.ca/MFDp.html 

PONDR-FIT 2010 CB NN http://www.disprot.org/pondr-fit.php 

MD 2009 CB NN https://rostlab.org/owiki/index.php/Metadisorder 

DISOCLUST 2008 SB SF http://www.reading.ac.uk/bioinf/DISOclust/ 

NORSnet 2007 MLB NN https://rostlab.org/owiki/index.php/Norsnet 

Ucon  2007 PB SF https://rostlab.org/owiki/index.php/UCON 

ProfBval  2006 MLB NN https://rostlab.org/owiki/index.php/Profbval 

VSL2B 2006 MLB SVM http://www.dabi.temple.edu/disprot/Predictors.html 

DISpro 2005 MLB NN http://scratch.proteomics.ics.uci.edu/ 

IUPred 2005 PB SF http://iupred.enzim.hu/ 

RONN 2005 MLB NN http://www.strubi.ox.ac.uk/RONN 

DISOPRED2 2004 MLB SVM http://bioinf.cs.ucl.ac.uk/disopred/ 

DRIPPRED 2004 PB SOM http://www.sbc.su.se/~maccallr/disorder/ 

 

Figure 1. Overview of the prediction model. BPi and MVC denote the i
th

 base predictor and the 

majority vote consensus, respectively. Sections 2.4 and 2.5 provide detailed explanations.  

2.2.  Datasets 

We utilize a recently-built MxD dataset that was developed by Mizianty et al.,
17

 and we further 

improve the disorder annotation using the SL dataset-based procedure.
41

 The protein chains were 

originally collected from the Protein Data Bank (PDB)
42

 and the release 4.9 of the DisProt 

database
43

. The resulting MxD_SL dataset includes 494 out of 514 proteins from the MxD; the 

remaining 20 chains could not be predicted by the MD and DISpro methods. The SL dataset-based 

procedure combines the disorder annotations from the DisProt with the disorder/order annotations 

based on the corresponding structural domains in PDB. Consequently, the DisProt derived chains 

include the DisProt’s annotation of disorder, while the remaining residues that were not annotated 

in this database are annotated using the PDB domains. This means that some of these residues are 

left without any annotation (if they cannot be found in PDB); we did not use them to perform 

design and evaluations. However, we use all annotated residues, even if they are in the partially 
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annotated chains. The MxD_SL dataset includes 196,434 residues, where 51,733 are without 

annotation. Similarly as in CASP8, we discard the native disordered segments with 3 or fewer 

consecutive disordered residues.
16

 The MxD_SL dataset is randomly partitioned into equal-size 

training dataset (TRD) and test dataset (TED), which have 23,406 and 23,074 disordered residues, 

respectively. Importantly, chains in MxD_SL are characterized by pair-wise sequence identity 

below 25%,
17

 which means that TRD and TED are independent at the 25% similarity level. The 

datasets can be downloaded from http://biomine.ece.ualberta.ca/MVCdisorder/MVCdisorder.htm. 

2.3.  Overview of the prediction model 

We investigate complementarity between disorder predictors based on a majority vote consensus 

(MVC). We combine three base predictors to model the relation between the complementarity in 

their predictions, which is measured using an approach described in section 2.4, and the predictive 

quality of the resulting MVC using linear regression on the TRD. Next, we apply regression to 

predict the best combination of methods on the TED, and we compare this consensus with the 

existing solutions (see Figure 1). We do not use cross-validation or another sampling since we do 

not perform parameterizations that could lead to overfitting. Furthermore, we have sufficient 

amount of data in the training dataset, and training and test datasets are independent. 

2.4.  Inputs for the prediction model 

We assess the complementarity of the base predictors at the residue and disordered segment levels, 

i.e. we study the complementarity between the individual predicted propensities and between the 

binary predictions that form segments of predicted consecutive disordered residues: 

1. The area under the ROC curve (AUC)
 26

 is usually used to examine the predicted residue-level 

propensities. For a pair of predictions, we quantify their residue-level complementarity by 

computing two AUC values between them, i.e., the first AUC when one prediction is assumed 

to be the true outcome and the other to be the prediction, and another AUC when the second 

prediction is assumed to be the true outcome. Consequently, higher AUC values indicate 

lower complementarity. Given three base methods, we compute the average of the six 

corresponding AUC values, and we call this input AUCavg6. We also quantify complementarity 

between the three base predictions and their MVC. We calculate the average of the three AUC 

values when using the consensus as the true outcome, and we refer to this input as AUCavg3.  

2. The segment overlap (SOV)
45

 measures the amount of overlap between the disordered 

segments.
39

 Given three base methods, we compute average of the six SOV values (SOVavg6), 

i.e., two SOV values for each pair of methods when one prediction is assumed to be the true 

outcome and the other to be the prediction, and when second prediction is assumed to be the 

true outcome. Similarly as for the AUC, we also compute the average SOV between the base 

predictions and their MVC (SOVavg3). Higher SOV values correspond to predictions with 

more overlapping disordered segments, i.e., weaker complementarity at the segment-level. 

The performance of the individual base methods is also likely to have impact on the predictive 

quality of their consensus. We quantify their performance based on the average of three AUC 

values (AUCavgBM), where predictions from each method are compared against the native disorder. 



  

We group these inputs into four sets: INALL (with all 5 inputs), INSOV (SOVavg6 and SOVavg3), 

INAUC (AUCavg6 and AUCavg3), and INBM (AUCavgBM), to investigate whether combining the 3 input 

types (segment-, residue-, and base method-based) provides a better model when compared with 

the use of the individual input types. The calculation of the AUCavgBM involves the native 

annotations and we use AUCavgBM values calculated on TRD to perform predictions on the TED. 

2.5.  Majority vote and linear regression 

We normalize the propensities generated by the 14 considered methods so that they use the same 

threshold = 0.5 to binarize their predictions. Specifically, for a given method that uses threshold p, 

we linearly map the probability within the range [0, p) and [p, 1] to [0, 0.5) and [0.5, 1], 

respectively. We next build the MVC for every combination of three methods. Since MD,
35

 

MFDp,
17

 and PONDR-FIT
36

 are already consensuses, they are not utilized as the base methods. 

Consequently, using the remaining 11 methods we generate (11×10×9)/6 = 165 combinations. The 

predictions from the base methods are combined using majority vote; as shown in Table 2.  

Following Figure 1, we build a linear regression-based model on TRD to express the relation 

between the AUC of the MVC and the complementarity and quality of the three base predictors, 

which is quantified using INALL feature set. The model outputs real values that predict the AUC of 

a given MVC. The regression coefficients demonstrate the relation between each of the inputs and 

the predictive quality (expressed with AUC), and can be used to investigate how the residue- and 

segment-level complementarity among the base methods affects the performance of the consensus.  
 

Table 2. Implementation of MVC with 3 base predictors BPi where i=1,2,3. The outputs 
include the propensity calculated from normalized propensities p(BPi) generated by BPi, 
and binary prediction, where D and O are disordered and ordered residues, respectively.  

BP1 binary  O D O O D D O D 

BP2 binary O O D O D O D D 

BP3 binary O O O D O D D D 

binary O D 
MVC probability ( ){ }i

i
BPp

3,2,1
min
=

 ( ){ }i
i

BPp
3,2,1

max
=

 

2.6.  Evaluation criteria 

We compare AUC values predicted by the linear regression with AUCs of the MVC using Pearson 

Correlation Coefficient (PCC), Mean Absolute Error (MAE), and Mean Squared Error (MSE). 

We use the regression to predict the top performing MVC on the TED. The quality of disorder 

predictions using this MVC, two runner-up predicted MVCs, and existing disorder predictors is 

evaluated using Matthews Correlation Coefficient (MCC), Sw, AUC, and SOV. The first 3 criteria, 

which were used in CASP,
15,16

 assess the per-residue predictions; SOV evaluates prediction of 

disordered segments.
39

 The binary per-residue predictions are assessed with MCC and Sw: 

( ) ( ) ( ) ( )FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

+⋅+⋅+⋅+

⋅−⋅
=  



  

orderdisorderdisorderorder

disorderorderorderdisorder

w
NwNw
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S

⋅+⋅

⋅−⋅+⋅−⋅
=  

where TP is true positive (number of correctly predicted disordered residues), FP denotes false 

positive (number of ordered residues predicted as disordered), TN denotes true negative (number 

of correctly predicted ordered residues), FN stands for false negative (number of disordered 

residues predicted as ordered), Wdisorder (Norder) and Worder (Ndisorder) are the percentages (numbers) 

of the ordered and the disordered residues, respectively. The Sw and MCC values range between -1 

and 1; they are equal to zero when all residues are predicted as ordered or disordered and their 

higher values indicate better predictions. 

The quality of the predicted per-residue propensities is assessed with the ROC curve. For each 

value of propensities p achieved by a given method (between 0 and 1), the residues with 

propensities ≥ p are set as disordered, and all other residues are set as ordered. Next, the TP-rate = 

TP / (TP + FN) and the FP-rate = FP / (FP + TN) are calculated and we use the area under the 

resulting ROC curve (AUC) to quantify the predictive quality.  

The segment-level evaluation is based on the SOV,
39,45

 which quantifies the overlap between 

the segments formed by the binary per-residue predictions and the native disorder segments. We 

compute the SOV values only for the chains with the complete native disorder annotation. 

 
Table 3. The coefficients of the linear regression models that predict AUC of the majority-vote 
consensuses which are based on the 5 input features (INALL), the 2 SOV-based inputs (INSOV), the 
2 AUC-based inputs (INAUC), and the average AUC of the base methods (INBM) 

Model SOVavg3 SOVavg6 AUCavg3 AUCavg6 AUCavgBM Constant 

INALL 0.013 -0.023 -0.089 0.024 0.109 0.823 

INSOV 0.055 -0.037    0.835 

INAUC   -0.051 0.070  0.837 

INBM     0.039 0.820 

3.  Results 

3.1.  Modeling the complementarity in disorder prediction 

We generate linear regression-based model on the training dataset (TRD), using the inputs defined 

in section 2.4 and following Figure 1. We compare the models based on all 5 inputs (INALL) with 

the models based on the INSOV, INAUC, and INBM features; see Table 3. We observe that signs of 

the coefficients are consistent between different input sets, i.e., the SOVavg3, AUCavg6, and 

AUCavgBM are positively correlated with the AUC of the MVCs while SOVavg6 and AUCavg3 are 

negatively correlated. The model reveals that the improved performance of a MVC is associated 

with: (1) higher quality of the base methods (positive coefficient for AUCavgBM); (2) lower 

complementarity/higher similarity between the base predictors (positive coefficients for AUCavg6) 

and their higher complementarity/lower similarity to the consensus prediction (negative coefficient 

for AUCavg3) at the residue level; and (3) their lower complementarity/higher similarity to the 

consensus prediction (positive coefficient for SOVavg3) and higher complementarity/lower 

similarity between them (negative coefficient for SOVavg6) at the segment level.  



  

Table 4. Comparison of the predictive quality of the regression models that utilize 5 input features 
(INALL), the 2 SOV-based inputs (INSOV), the 2 AUC-based inputs (INAUC), and the average AUC 
of the base methods (INBM), and the random model on the training and the independent test sets. 

Evaluation on training dataset Evaluation on test dataset Model 

MAE MSE PCC MAE MSE PCC 

INALL 0.007 0.105 0.813 0.007 0.112 0.785 

INSOV 0.011 0.167 0.381 0.009 0.144 0.444 

INAUC 0.010 0.158 0.476 0.008 0.133 0.571 

INBM 0.009 0.145 0.597 0.008 0.125 0.640 

random 0.019 0.290 0.008 0.018 0.282 0.009 
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Figure 2. Relation between the number of evaluated consensuses that are sorted by their predicted 
AUC on TED (x-axis), and MSE and MAE (y-axis) which are based on the predictions from the 
regression that utilizes 5 inputs (INALL) generated using TRD and tested on TED. 

Next, we evaluate each regressions model (based on the INALL, INSOV, INAUC, and INBM 

features) and compare them with a model that generates AUC values in the actual range of these 

values in the TRD at random. The random prediction is repeated 100 times and we report the 

average results; we use that as a baseline to examine the performance of our regression models.  

The predictive quality is measured by MAE, MSE, and PCC, on both TRD and the independent 

test dataset (TED); see Table 4. The four regression models outperform the random predictor by a 

wide margin. The model that utilizes the five inputs (INALL) improves over the other regressions 

that use a subset of inputs, which demonstrates that all inputs contribute to the predictions. The 

INALL-based model obtains the lowest MAE (0.007 on TRD and TED), lowest MSE (0.105 on 

TRD and 0.112 on TED) and the highest PCC (0.81 and 0.78 on TRD and TED, respectively). 

Moreover, the quality of the regression predictions is better for the consensuses with higher 

predicted AUCs and it progressively gets worse for the lower predicted AUCs; see Figure 2. The 

MAE and MSE are at about 0.005 and 0.02, respectively for the top 10 predicted consensuses, 

which indicates that our predictions are quite accurate when predicting the top-performing 

consensuses. The model successfully predicts the top-performing consensus, which consists of 

DISOCLUT, DISpro, and VSL2B, on the TED; the predicted and actual AUCs for this consensus 

are 0.871 and 0.872, respectively. To compare, the worst performing consensus with DRIPPRED, 



  

NORSnet, and ProfBval, which obtains the AUC = 0.809, is predicted to obtain AUC = 0.819. The 

relatively high predictive quality of our regression model suggests that the observations made 

based on this model should be accurate. 

For the top predicted MVC, the SOVavg3 and SOVavg6 values are 3.7% and 10.7% smaller than 

the average values of SOVavg3 (0.521) and SOVavg6 (0.546), respectively, which are calculated over 

all 165 MVCs; The AUCavg3, AUCavg6, and AUCavgBM values are 8.4%, 18.2%, and  28.3% higher 

than the corresponding averages (0.582, 0.510, and 0.59), respectively. The feature values were 

normalized to make these calculations, i.e., the original feature x was normalized as (x-a)/(b-a), 

where a and b are the minimum and maximum value of x on TRD, respectively; if (for TED) x<a, 

we set x=a; if x>b, we set x=b. The above differences indicate that the corresponding three base 

predictors have high predictive quality (high AUCavgBM), above average complementarity at the 

segment level (low SOVavg), and below average complementarity at the residue level (high 

AUCavg). This shows that complementarity between base predictors affects performance of their 

majority vote consensus. The 2
nd

 and 3
rd

 top predicted MVCs have all feature values above the 

corresponding averages, with their AUCavgBM values higher by wide, 39% and 41%, margins, 

respectively. This indicates that the high quality of these MVCs stems mostly from the good 

predictive performance of their base methods. 

We also investigate whether the quality of a given MVC depends on the types of its base 

predictors (see Table 1). The top predicted MVC includes structural models-based and two 

different machine learning-based predictors, one that utilizes neural networks (NNs) and another 

that uses Support Vector Machines (SVMs). The 2
nd

 top predicted MVC includes three different 

machine learning-based predictors, two of which use SVMs and one based on NN. The 3
rd

 top 

predicted consensus uses one propensity-based method and two machine learning-based predictors. 

Our analysis suggests that use of diverse types of base predictors may have an effect on the 

complementarity and may lead to an improved consensus. 

3.2.  Evaluation of consensus-based and individual disorder predictors 

We evaluate disorder predictions, which were generated by the 14 considered predictors and using 

the top 3 MVCs predicted by the linear regression (MVCs with the highest predicted AUCs), on 

the independent test dataset (TED), see Table 5. MD
35 

and MFDp
17

 are based on a consensus 

approach; however, both of these methods utilize complex, non-linear predictors to combine the 

outputs of base classifiers with additional inputs, including multiple alignment, predicted 

flexibility, secondary structure, solvent accessibility, etc. Since such complex consensuses were 

shown to outperform the simple MVC,
35

 Table 5 includes results of the MVCs which use the same 

base methods as in MD and MFDp to allow for a fair comparison to the MVCs that were predicted 

with the regression. The MD-based MVC includes NORSnet, ProfBval, Ucon, and DISOPRED2, 

while the MFDp-based MVC incorporates DISOPRED2, IUPredL, IUPredS, and DISOCLUST. In 

both cases the consensus has 4 methods, and thus we resolve the ties by using the prediction from 

the DISOPRED2 that has the highest AUC on the TRD. We also rebuilt the MFDp method by 

substituting the original base predictors with the methods included in the top MVC predicted by 

the regression, i.e., DISOCLUST, DISpro, and VSL2B. The other consensus method is PONDR-



  

FIT,
36

 which uses a relatively simple approach to combine the predictions from six base methods 

and does not use additional inputs. Thus, we decided to directly compare with this method, 

without building the MVC. We note that our 3
rd

 best predicted MVC corresponds to the 

combination of three methods (DISOPRED2, IUPredL, and VSL2B) that obtain the highest AUC 

and MCC values on TRD.  

 
Table 5. Predictive quality, measured with MCC, Sw, and AUC on TED for the 14 considered 
disorder predictors and the top 3 majority-vote consensuses (MVCs) predicted by the linear 
regression. The consensus-based predictors include MFDp, MD, PONDR-FIT, and the MVCs 
based on our top 3 predictions and using the base methods from MFDp and MD. The consensus-
based and the single predictors are sorted by their AUC in the descending order, respectively. The 
SOV is calculated based on 176 proteins in TED that are fully annotated. 

Type  Predictor  MCC  Sw SOV  AUC 

MFDp rebuild using the top predicted base methods 0.637 0.636 0.620 0.8895 
MFDp 0.633 0.625 0.638 0.8875  
MD 0.625 0.596 0.478 0.8784  
top predicted MVC (DISOCLUST, DISpro, VSL2B) 0.613 0.602 0.609 0.8716  
3

rd
 predicted MVC (DISOPRED2, IUPredL, VSL2B) 0.634 0.604 0.558 0.8633  

2
nd

 predicted MVC (DISOPRED2, DISpro, VSL2B) 0.629 0.568 0.524 0.8607  
MVC using 4 base methods from MFDp 0.627 0.600 0.544 0.8606  
MVC using 4 base methods from MD 0.618 0.582 0.462 0.8569 

Consensus 

predictors 

PONDR-FIT 0.592 0.556 0.590 0.8549  
DISOPRED2 0.608 0.570 0.514 0.8574  
VSL2B 0.557 0.576 0.644 0.8568  
DISOCLUST 0.504 0.533 0.608 0.8497  
DISpro 0.458 0.304 0.361 0.8391  
IUPredL 0.575 0.514 0.341 0.8390  
IUPredS 0.544 0.472 0.511 0.8314  
RONN 0.524 0.517 0.517 0.8190  
NORSnet 0.569 0.496 0.184 0.8146  
DRIPPRED 0.480 0.470 0.500 0.7874  
Ucon 0.423 0.405 0.297 0.7844  

Single 

predictors 

ProfBval 0.273 0.279 0.527 0.7353  

 

Table 5 shows that MFDp and MD have the highest AUC, but this is since they use the 

complex consensuses. The MVCs built using their base predictors have AUC equal 0.86 and 0.85, 

respectively, which is lower than the AUCs of the top three regression predicted MCVs. Among 

these three predictions, the highest AUC = 0.87 is obtained by our top prediction. Moreover, the 

rebuilt MFDp that uses the base methods from the top prediction slightly improves over the 

original MFDp in spite of the fact that it uses fewer base methods (3 vs. 4). Importantly, the top 

three predicted MCVs improve over all other methods, including the simple consensus-based 

PONDR-FIT and the 11 modern disorder predictors. The AUC is higher by 1.5% when comparing 

the top predicted MVC and the best result from among these 12 methods. Similarly, the MCC and 

Sw values are higher and they equal 0.61 and 0.6 for the top prediction generated by the regression. 



  

However, the top 3 predicted ensembles are outperformed by VSL2B in the disordered segment 

prediction measured with SOV; this is consistent with prior work that shows that segment 

predictions from VSL2B outperform other methods, including consensus approaches.
39

 At the 

same time, our top prediction improves over VSL2B by 5.5% in MCC, 2% in Sw, and 1.5% in 

AUC. Moreover, the segment predictions from our top predicted consensus are competitive or 

better than the predictions from the remaining 11 methods, MD, and the MVCs based on the base 

predictors from the MD and from the MFDp; this is likely since our consensus includes VSL2B.  

The top three predicted MVCs are better than their base methods by a relatively wide margin. 

Table 5 shows that the top predicted ensemble improves the MCC, Sw, and AUC by at least 5.6%, 

2.7%, and 1.5%, respectively, when compared to the best base method. The 3
rd

 best predicted 

ensemble is better by 2.7% in MCC, 2.8% in Sw, and 0.6% in AUC. 

Overall, our analysis shows that the top MVC predicted using linear regression outperforms or 

is at least competitive when compared with the existing single and consensus-based predictors. 
 

Native ------------------*--------------*-----------------------------*--DDDDDDDDDDDDD-------*--------DDDDDDDDD 

Top1 DDDDD-------------*---DDDDD------*-----------------------------*---DDDDDDDDDDDDDDDD---*-DDDDDDDDDDDDDDDD 

VSL2B DDDDD-------DDDDD-*---DDDDD------*-----------------------------*---DDDDDDDDDDDDDDDDDD-*----------DDDDDDD 

DISOCL  DDDDDDDDDDD-------*-DDDDDDDDDDDD-*-D----DDDDDDDDDDDDDDDDDDDDDD-*-DDDDDDDDDDDDDDDDDD---*-DDDDDDDDDDDDDDDD 

DISpro  DD----------------*--------------*-----------------------------*----------------------*-DDDDDDDDDDDDDDDD 

MVCMD  ------------------*--------------*-----------------------------*---------DDDDDD-------*----------------- 

MVCMFDp DDDD---D----------*--------------*-----------------------------*---------DDDDDD-------*---------DDDDDDDD 

PONDRF DDDDDDDDDDDDDDDD--*--------------*-----------------------------*----DDDDD-------------*---------DDDDDDDD 

  

Figure 3. Comparison of the predictions for the Glutamyl-Q tRNA(Asp) synthetase protein (PDB 
id: 1NZJA) based on the top MVC predicted by the regression (Top1 line), its base methods 
DISOCLUST (DISOCL line), DISpro, and VSL2B, the MVC using the base methods from MD 
(MVCMD line) and from MFDp (MVCMFDp line), and PONDR-FIT (PONDRF line). ‘D’ and ‘–’ 
denote the disordered and ordered residues, respectively, and ‘*’ stands for a segment of ordered 
residues. The first line shows the native annotation. 

3.3.  Case study 

We use the Glutamyl-Q tRNA(Asp) synthetase protein (PDB id: 1NZJA) from the TED that has 

two relatively short disordered segments, including one at the C-terminus and one inner-chain 

segment, as a case study to compare disorder predictions. We compare predictions from the top 

MVC predicted by the regression, its three base methods: DISOCLUST, DISpro, and VSL2B, and 

based on the three most relevant other consensuses: the MVCs using the base methods from MD 

and from MFDp, and PONDR-FIT; see Figure 3. Majority of the predictors, except for the DISpro 

and the MVC using the base methods from MD, find both native disordered segments; however, 

most of the methods find additional segments towards and at the N-terminus. Our top MVC 

reduces the over-prediction of the disorder when compared with two of its base methods, VSL2B 

and DISOCLUST, and finds one native segments that was missed by the third base method 

DISpro. The MVC using the base methods from MFDp under-predicts the disorder, especially the 

inner segment, and still produces disorder predictions at the N-terminus. PONDR-FIT also under-

predicts the inner-chain segment and generates a relatively long disordered segment at the N-

terminus. Although the predictions in this case study should not be assumed typical, we conclude 

that they demonstrate that the proper selection of the base methods can result in improvements. 



  

4.  Conclusion 

Our study provides insights that could help in development of a new generation of consensus-

based disorder predictors. We use linear regression to model relation between certain aspects that 

quantify complementarity between the base methods and the predictive quality of the resulting 

majority-vote based consensus. Our modeling reveals that the complementarity has to be evaluated 

at the residue and the disordered segment levels, i.e., models that ignore one of these aspects are 

shown to provide inferior results. The model shows that improved predictive performance is 

associated with inclusion of accurate base predictors that are similar to each other at the residue 

level and which complement each other at the segment level, and which complement the 

consensus at the residue level. We also observe that use of different types of base predictors to 

implement the consensus seems to be beneficial. We empirically demonstrate the top majority-

based consensuses predicted by our model on an independent test dataset outperform existing 

predictors, including consensus-based methods, which suggests that our observations have 

practical value. 
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