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Synthetic genetic interactions reveal buffering mechanisms in the cell against genetic perturbations.
These interactions have been widely used by researchers to predict functional similarity of gene
pairs. In this paper, we perform a comprehensive evaluation of various methods for predicting co-
pathway membership of genes based on their neighborhood similarity in the genetic network. We
clearly delineate the scope of these methods and use it to motivate a rigorous statistical framework
for quantifying the contribution of each pathway to the functional similarity of gene pairs. We then
use our model to infer interdependencies among KEGG pathways. The resulting KEGG crosstalk
map yields significant insights into the high-level organization of the genetic network and is used
to explain the effective scope of genetic interactions for predicting co-pathway membership of gene
pairs. A direct byproduct of this effort is that we are able to identify subsets of genes in each pathway
that act as ‘ports’ for interaction across pathways.
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1. Introduction

Systematic deletion of genes in Saccharomyces cerevisiae (yeast) reveals that only about 18%
of its nearly 6000 genes are essential for cell growth on rich glucose media.1 This observation
suggests a strong underlying compensatory mechanism in the cell against genetic perturba-
tions. Gene duplications and the existence of parallel (or alternative) pathways are well-known
buffering mechanisms in the cell that are responsible for its robustness.2–4 Gene duplications
have been studied extensively. However, it is now believed that distributed compensatory
mechanisms, such as parallel pathways, contribute the most towards cell robustness.2,5 The
underlying structure of these parallel pathways is determined by genetic interactions among
genes having dependent, but not identical functions.6,7 This is the rationale behind synthetic
genetic interactions, in which double-mutant phenotypes significantly deviate from the ex-
pected (or typical) phenotype for gene pairs.

High-throughput technologies based on diploid synthetic lethal analysis by microarrays
(dSLAM)8,9 and/or synthetic genetic arrays (SGA) and its variants,10–13 provide us with large
datasets of genetic interactions in Saccharomyces cerevisiae. These interactions may be broadly
classified into two main groups – negative (or aggravating/ synergistic) interactions, which
describe double mutants that exhibit a more severe phenotype than expected; and positive
(or alleviating/ epistatic) interactions, in which double mutants exhibit a less severe phenotype
than expected. Synthetic lethal (SL) interactions correspond to a specific subset of negative
interactions, in which the double-mutant is fatal while the individual mutations are vital.
Analyzing these rapidly growing datasets of genetic interactions in order to understand the
functional machinery of the cell is a challenging task. Three main models have been proposed



for the higher order organization of genetic interactions – the between-pathway model among
redundant functions, the within-pathway model among genes with additive effect, and the
indirect effects model .14 These models have been used both to predict functional similarity of
gene pairs, implicitly, and to shed light on the higher level organization of pathways.

The rationale behind function prediction methods is that gene pairs that share “many”
neighbors are more likely to be functionally similar. This thesis has been used to construct a
complementary network, orthogonal to the initial genetic network, in which edges code func-
tional similarity of gene pairs. Tong et al.11 use hierarchical clustering based on the similarity
of genetic interaction patterns and show that sets of genes within the same pathway tend to
cluster together. Schuldiner et al.12 also use genetic interaction patterns, which they refer to
as phenotypic signatures, on an E-MAP dataset that consists of both quantitative alleviating
and aggravating interactions in early secretory pathway (ESP). They confirm that pairs of
genes with intermediate levels of correlated phenotypic signatures have a higher probability
of negatively interacting using aggravating links, while highly correlated pairs typically show
no aggravating interactions, and in many cases, they are connected using alleviating interac-
tions. Costanzo et al.13 construct a complementary weighted network, called the ‘functional
map’ of the cell, in which every edge weight encodes the strength of the Pearson correlation
among interacting partners of gene pairs. After applying a force-directed layout on the con-
structed functional map, they find that genes participating in same pathway tend to be in
close proximity to each other. Ye et al.15 construct a complementary network based on the
statistical significance of shared neighbors, called the congruence network. They show that
there is a strong correlation between GO annotations and the congruence score of gene pairs.
Another class of studies uses models of genetic interactions to identify the high-level organi-
zation of pathways, and provides insight into interactions among them. These methods either
use a bottom-up approach, for e.g., Segre et al.16 and Bandyopadhyay et al.,17 to group genes
into functional modules and then analyze functional enrichment of modules, or a top-down
technique, for e.g., Zhang et al.,18 to infer interactions among known pathways directly.

In spite of these research efforts, there remain significant unresolved questions: How accu-
rate are genetic interactions in predicting different functional pathways? What is the scope of
these predictions (in terms of functions)? What is the specific structure around each pathway
that allows us to capture the relationships among its member genes? In order to answer these
questions, we start with a comprehensive evaluation of existing methods for predicting func-
tional similarity of gene pairs. We demonstrate that, surprisingly, all of the methods considered
have limited scope of effectiveness. To study this shortcoming in terms of the specific struc-
ture around each pathway, we developed a novel statistical framework (along with efficient
associated algorithms) to quantify the contribution of various pathways to the functional sim-
ilarity of each gene pair. We use this framework to construct the neighborhood overlap graph
(NOG) for each pair of pathways and assess their functional dependence. These dependencies
result in the KEGG crosstalk map, which not only explains the performance limitations of
genetic interactions in predicting functional similarity of genes, but also uncovers the high-
level organization of the cellular machinery. An important consequence of our method is that
it enables us to identify individual genes within pathways that act as ‘ports’ of interaction



across pathways. These genes can further be used to interpret the effective scope of functional
similarity prediction methods.

2. Methods

2.1. Notations

Aggravating genetic interaction network, or genetic interaction network (GIN), is a genetic
map of the cell, represented as a graph G = (V,E). Vertices V in the graph correspond to
genes and edges encode aggravating interaction among gene pairs. A GIN of size n = |V | can
be represented by its adjacency matrix, A, which is an n × n matrix. The (i, j)th element in
this matrix is 1 if gene vi interacts with vj and 0 otherwise. We denote the set of genes having
aggravating interaction with a specific gene, vi ∈ V , as N(vi). Given the set of core genes, that
are annotated with at least one KEGG annotation, aggravating interactions are classified as
internal, where both genes reside in the core set, crossing, in which one end of interaction is
in the core set and the other is not, and external, in which both ends of the interaction reside
outside of the core set.

Each KEGG pathway is represented as a subgraph of the GIN, represented by PA =
(VA, EA), in which the set VA consists of all genes in the pathway, and edge set EA consists
of all interactions incident on these genes. For each pathway pair < PA, PB >, we define the
neighborhood overlap graph (NOG), represented by HA→B, as the graph defined over same
vertices as VA, with edges encoding the significance of common neighbors of gene pairs in PA

with respect to PB. An interaction port is defined as a functionally coherent subset of genes
in pathway PA that have a (statistically) significant number of shared neighbors in PB, which
can be equivalently defined as a dense subgraph of HA→B.

We rely on standard statistical definitions – the binomial coefficient, C(r, s) = r!
s!(r−s)! ,

is the number of groups of s items selected from a population of r items when order does
not matter. Hypergeometric distribution, represented by HG(k|N, s, t), is the probability of
having k successes in a sequence of s random draws without replacement, from a size N ,
where t items are classified as successes, and N − t items are classified as failures. The tail
of hypergeometric distribution, denoted by HGT (k|N, s, t), is the probability that a random
variable X ∼ HG(k|N, s, t) is greater than or equal to k.

2.2. Performance of local methods for predicting functional similarity of
gene pairs

Functional similarity prediction of gene pairs is assessed by their co-pathway membership, as
determined by the KEGG pathways. Each of the methods considered generates a symmetric
matrix that codes predictions for co-pathway membership of genes. In order to evaluate these
methods, we rank gene pairs based on the computed similarity matrix and use the minimum
HyperGeometric (mHG)19 score to evaluate each ranked-list. This method has been previously
used to evaluate the enriched GO terms in a ranked list of genes.20 Here, we extend this method
to assess the significance of top-ranked gene pairs, as opposed to genes, that correctly predict
co-pathway membership of genes with respect to a given pathway.



Given a ranked list of gene pairs and a cut-off value that partitions this list into top-ranked
(target set) and low-ranked (background set) gene pairs, we are interested in evaluating relative
density of functionally similar gene pairs in the target set versus background set. Denote the
total number of gene-pairs by N = C(n, 2), total number of gene-pairs in a given pathway PA

by NA, and the size of target set as l. Also, let the random variable X denote the number of
gene pairs in the target set that participate in PA. X has hypergeometric distribution and its
p-value can computed as follows:

P − value(X = k) = Prob(k ≤ X) = HGT (k|N,NA, l)

=
min(NA,l)∑

x=k

C(l, x)C(N − l, NA − x)
C(N,NA)

(1)

Without any prior information about the optimal cutoff, we need to automatically find l by
finding the partition that minimizes the p-value. We encode the co-membership of gene-pairs
in PA using a binary vector λ = λ1, λ2, ...λN ∈ {0, 1}N , having NA ones and N −NA zeros. Here
λi is 1 if both of the genes in the ith ranked gene pair are members of pathway PA, and 0
otherwise. The minimum HyperGeometric (mHG) score is then defined as:

mHG(λ) = min1≤l≤NHGT (bl(λ);N,NA, l), (2)

where bl(λ) =
∑l

i=1 λi. After correcting mHG scores for multiple comparison using the Bon-
ferroni method, −log(mHG) is used to quantify the performance of different methods in re-
capturing the co-pathway membership of different KEGG pathways.

2.3. Constructing the neighborhood overlap graph (NOG)

The neighborhood overlap graph (NOG) of a pathway PA with respect to pathway PB is
an unweighted, undirected graph defined over the same vertices as PA. In this graph, there
is an edge between vertices vi and vj if their shared neighborhood, with respect to PB, is
statistically significant. Denote the degree of nodes vi and vj by Di and Dj, respectively.
Furthermore, denote the number of neighbors of nodes vi and vj, and their common neighbors
that reside in a pathway PB of size nB nodes, using dB

i , dB
j , and kB

ij , respectively. Figure 1
illustrates these parameters in a sample case.

Let the random variable X denote the number of common neighbors of vi and vj that
reside in PB, if we were choosing their neighbors from PB at random. Let the random variable
Yi denote the number of node vi’s neighbors that reside in PB if we were randomly selecting Di

neighbors of vi from KEGG core genes (Yj is defined similarly). It can be shown that Yi and
Yj are independent and that all three variables follow the hypergeometric distribution. The
significance of the neighborhood structure of vi and vj with respect to PB, called the modified
congruence score (MCS), is defined as Prob(Yi = di, Yj = dj , k

B
ij ≤ X|n, nB, Di, Dj), which can

be computed using Bayes rule as follows:



Fig. 1. A sample neighborhood configuration for vi and vj . Here n = 15, Di = 6, Dj = 6, nB = 6, dB
i =

3, dB
j = 4, and kB

ij = 2

MCSB(i, j) = Prob(Yi = di, Yj = dj , k
B
ij ≤ X|n, nB, Di, Dj)

= Prob(kB
ij ≤ X|nB, Yi = di, Yj = dj) ∗ Prob(Yi = di, Yj = dj |n, nB, Di, Dj)

= HGT (kB
ij ≤ X|nB, Yi = di, Yj = dj)

∗ HG(Yi = di|n, nB, Di) ∗HG(Yj = dj |n, nB, Dj). (3)

For any given vertex pair < vi, vj >∈ VH ∗ VH , there will be an edge in EH if their MCS
is less than or equal to a predefined threshold. Algorithm 2.1 computes the neighborhood
overlap graph of a given pathway pair < PA, PB > and threshold level α. It may be noted here
that under null model of random neighbor selection for gene pairs in VA, the NOG follows
the Erdos-Renyi random graph model with parameters |VA| and α, ER(|VA|, α). We use this
property later to assess the density significance of each subgraph in NOG, as explained in the
Section 2.4.

Algorithm 2.1.

Input: PA = (VA, EA): Source pathway, PB = (VB, EB): Destination pathway, n: Network size
(|V |), α: Significance threshold

Output: H = (VH , EH): Neighborhood overlap graph
1: Initialization: nB = |VB|, VH = VA, EH = {}
2: for each vertex pair < vi, vj >∈ VA ∗ VA do
3: Di = |N(vi)|, Dj = |N(vj)|
4: dB

i = |N(vi) ∩ VB|, dB
j = |N(vj) ∩ VB|

5: kB
ij = |N(vi) ∩N(vj) ∩ VB|

6: MCSB(i, j) = HGT (kB
ij |nB, d

B
i , d

B
j ) ∗HG(dB

i |n, nB, Di) ∗HG(dB
j |n, nB, Di).

7: if MCSB(i, j) ≤ α) then
8: EH = EH∪ < i, j >

9: end if
10: end for
11: return H



2.4. Identifying interaction ports and inferring cross-pathway
dependencies

If we decompose the neighborhood of gene pair (vi, vj) ∈ PA with respect to different pathways,
we can identify specific pathways (say PB) that contribute the most to the functional similarity
of genes vi and vj, as predicted by local neighborhood similarity methods. In this case, we say
that gene pair (vi, vj) depends on PB. Similarly, we can identify a functionally coherent subset
of genes in PA that depends on PB. This subset of genes in PA is referred to as an interaction
port between PA and PB. As defined in Section 2.3, the neighborhood overlap graph (NOG)
represents the significance of the common neighbors of each gene pair < vi, vj >∈ PA with
respect to pathway PB. This suggests that interaction ports can equivalently be defined in
terms of dense subgraphs in the NOG.

In order to find interaction port(s), we use the concept of graph cores.21 The k-core of
a given graph G is its maximal subgraph (not necessarily connected) such that every vertex
is connected to at least k other vertices in the subgraph. We use iterative peeling to find
a cohesive subset of vertices in NOG and record connected components at each core. As
mentioned in Section 2.3, the Erdos-Renyi (ER) random graph provides a good null model for
comparison with NOG. Using this random graph model, we process connected components of
each core separately based on their density and size, as proposed by Koyuturk et al.,22 and
assign p-values to each one of them. During this iterative process, we can find multiple ports
and as we go to the inner cores, we find more refined ports with higher densities, but possibly
fewer vertices (specialization of ports). We infer that pathway PA depends on pathway PB if
its most significant interaction port has a smaller p-value than a predefined threshold.

3. Results

3.1. Datasets

3.1.1. Genetic interaction network

We obtain the genome-scale quantitative genetic interactions from a recent SGA experiment
in budding yeast, Saccharomyces cerevisiae.13 This dataset consists of 1712 query genes –
1378 null alleles of non-essential genes and 334 hypomorphic or conditional alleles of essential
genes (214 temperature-sensitive and 120 DAmP alleles), crossed over 3885 array strains,
which spans a total of 5.4 million gene pairs that cover different biological processes. The
aggravating genetic interaction network is constructed from the SGA dataset after applying
the lenient cutoff.13 Different hypomorphic alleles of each essential gene are merged together
and represented by a single node, such that each node represents a unique gene in the SGA
experiment. The final network consists of 363078 aggravating interactions among 4417 genes.

3.1.2. Functional annotations

We downloaded KEGG23 annotations for budding yeast from the KEGG FTP site on January
4th, 2011. This catalogue organizes genes in the epistatic map into 97 different pathways,
ranging from metabolic pathways to genetic information processing pathways. In order to
filter out pathways that are too general or too specific, we eliminate pathways with more



than 100 genes (Metabolic pathways and Biosynthesis of secondary metabolites, which are
members of the Global Map) or less than 5 genes (15 pathways). The final dataset consists of
80 pathways, covering 1026 genes in the genetic interaction network.

3.1.3. Availability

All datasets and scripts used in this study can be downloaded from http://www.cs.purdue.

edu/homes/mohammas/PSB.

3.2. Similarity of genetic neighborhood as a predictor of functional
similarity

We evaluate three commonly used methods for predicting co-pathway membership of genes
– sum of length-2 paths (or the number of shared neighbors), congruence score,15 and the
Pearson correlation of interaction profiles of gene pairs. After computing mHG score for each
of these methods, we apply significance threshold α = 0.01 to identify the enriched pathways.
Each pathway is considered enriched, if it is enriched in at least one of the tested methods.
Figure 2 illustrates the performance of these methods in identifying co-pathway membership
of genes in different KEGG pathways. Enriched pathways are sorted based on the overall
performance of all three methods, and are labelled accordingly.

As depicted in the figure, there are only 42 pathways among 80 (∼ 50%) that are enriched.
Further analysis of these enriched pathways indicates that most KEGG pathways that are
involved in genetic information processing are highly enriched, while the bulk of the path-
ways that are not enriched are annotated as metabolic pathways. Among enriched pathways,
ribosome had zero mHG score to machine precision (in spite of normalization before plotting
log scores), which indicates high coverage of its member gene pairs among top ranked scores.
One aspect of analysis that is not reflected in the figure is the coverage of each method at the
point that minimizes mHG score, as well as the rank that caused the mHG to minimize. A
detailed analysis of different methods indicates that congruence score and Pearson correlation
methods have better precision with lower recall. This can be observed from the fact that the
cut that minimizes mHG for these methods usually resides in top 1% of scores, while the same
cut for number of shared neighbors method has better coverage of member genes, at the cost
of reduced precision.

This observation suggests a specific structure around enriched pathways that boosts their
similarity scores and allows us to recapture their co-pathway membership. In order to see how
much of this signal comes from other KEGG pathways, we prune all crossing and external
interactions in the genetic interaction network and recompute the enrichment scores only using
KEGG core genes. Figure 3 illustrates the performance of local methods on the vertex induced
subgraph of GIN using KEGG core genes. Most enriched pathways remain highly enriched
even if we only use the internal interactions among KEGG pathways to compute functional
similarity scores. This internal signal can be interpreted using the between-pathway model of
genetic interactions and suggests a bi-cliquish structure around enriched pathways.
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Fig. 2. Performance of local neighborhood methods in predicting co-pathway membership of gene pairs in
different KEGG pathways. Enriched pathways are sorted based on their overall enrichment as computed by
different methods, and are labelled appropriately (rest of pathways are used for spacing among enriched
pathways).

3.3. Constructing KEGG crosstalk map

We used the induced subgraph of genetic interaction network defined by internal interactions
to decompose the neighborhood of each pathway and to construct the interaction map among
KEGG pathways. Figure 4 shows the density of the constructed map as a function of thresh-
olding dependency scores. The final density drop in the plot is related to p-values that were
normalized, since they were zero (to the machine precision). As can be seen from the figure,
less than 3% of pathway pairs depend on each other. There is also a significant density drop to
1.5% as we start increasing the threshold. We extract all interactions after this specific thresh-
old and construct the KEGG crosstalk map. Figure 5 includes approximately 50% of captured
dependencies among all non-isolated pathways. Isolated nodes (pathways) that do not have
any dependencies are eliminated from the figure. Referring to Figure 3, we observe that most
isolated pathways in KEGG crosstalk map have not been enriched using functional predic-
tion methods either. This suggests a high correlation between the specific structure around
pathways, which is manifested as pathway dependencies, and the performance of functional
similarity methods in predicting co-pathway membership of their genes. Figure 6 illustrates
an example port of interaction between protein processing in ER and proteasome pathways.
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Fig. 3. Performance of local neighborhood methods in predicting co-pathway membership of gene pairs in
different KEGG pathways, after pruning the crossing and external interactions.

Port genes are colored in red and are overlaid on the diagram of protein processing in ER
(pathway diagram is adopted from KEGG).

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

Raw pathway dependencies

D
e
n
si

ty
 (

%
)

Fig. 4. Density of KEGG crosstalk map as a function of thresholding.



Fig. 5. Computed KEGG crosstalk map.

Fig. 6. Protein processing in ER, port genes interacting with proteasome pathway are colored in red (pathway
diagram is adopted from KEGG website).

4. Discussion

Figure 5 illustrates a strong internal buffering mechanism in N-Glycan biosynthesis, cell cycle,
protein processing in endoplasmic reticulum and spliceosome pathways, which can be inter-
preted using the within-pathway model of genetic interactions.This buffering against genetic
perturbations, preserved through evolution, hints at the important role of these pathways in
maintaining the functional stability of the cell. Referring to Figure 3, we see that all of these



pathways are highly enriched, thus the internal redundancy of these pathways is a significant
source of support for the functional similarity of their member genes.

Further analysis of the dependency map suggests that dependencies among functionally
related pathways cluster them into coherent modules. The ribosome pathway resides at the
heart of the map, having dependencies with both pre- and post-translational pathways. The
former machinery can protect the cell against defective RNA constructed during transcription,
through RNA degradation, and mis-spliced pre-mRNA constructed through Spliceosome. The
latter mechanism regulates the concentration of specific proteins and degrades misfolded pro-
teins by tagging them using ubiquitin mediated proteolysis and targets them for unfolding in
proteasomes. This machinery is also known to be essential for many other cellular processes,
including the cell cycle, the regulation of gene expression, and responses to oxidative stress.
Perturbation of the oxidative phosphorylation pathway can also endanger cell integrity, since
RNA molecules are known to be particularly vulnerable to oxidative stress.24 The varied de-
pendency of ribosome on a number of different pathways can explain its exceptionally high
enrichment score, as measured with mHG and shown in Figures 2 and 3.

Most of the synthesized proteins in ribosome can fold themselves spontaneously into their
active conformation. However, some of them need further post-translational modification, such
as glycosylation, to aid their folding. The endoplasmic reticulum (ER) serves as the gateway
for modification of newly synthesised proteins with the help of lumenal chaperones. Terminally
mis-folded proteins are degraded through the proteasome using a process called ER-associated
degradation (ERAD). The high-level organization of the protein processing in ER is shown
in Figure 6, with genes identified as the interaction port marked in red. It can be observed
that the ERAD sub-function is faithfully recovered as the interaction port between protein
processing in ER and the proteasome pathway. These functional dependencies can be also
observed in the highly significant triangular dependencies between protein processing in ER,
proteasome, and N-glycan biosynthesis in Figure 5.

Another observation relates to the densely connected module of DNA repair, clustered
in bottom right part of the map. This module consists of the DNA replication pathway,
together with both single strand repair pathways; including the base excision repair, mismatch
repair, and nucleotide excision repair pathways; and double-strand repair pathways, namely
the non-homologous end-joining and the homologous recombination pathways. The Purine
and Pyrimidine metabolic pathways, both of which help in metabolising nucleotide, are also
parts of this module. Referring back to the result of functional similarity prediction methods,
we note that all of these pathways are highly enriched.

In this study, we demonstrated that synthetic genetic interactions provide powerful means
for predicting functional similarity of gene pairs. However, their scope of effectiveness is lim-
ited to a specific subset of pathways. This subset includes most pathways involved in genetic
information processing and cellular processes, while missing many of the metabolic pathways.
To further study the specific structure around these pathways that boosts their functional
similarity, we decomposed the neighborhood around each pathway and identified the depen-
dencies among them, inferred from the observed topological patterns. We discovered that the
strength of these dependencies, manifested as the significance of the interaction ports between



pathways, is highly correlated with the performance of functional prediction methods, and can
be used to interpret their effective scope. In addition, observed dependencies reflect our pre-
vious understanding of higher level organization of pathways, which suggests that the KEGG
crosstalk map by itself can be used to uncover the cellular machinery.
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