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We address the problem of Phylogenetic Placement, in whietobjective is to insert short molecular se-
guences (called query sequences) into an existing phyédigegnee and alignment on full-length sequences
for the same gene. Phylogenetic placement has the potémjmbvide information beyond pure “species
identification” (i.e., the association of metagenomic etulexisting species), because it can also give in-
formation about the evolutionary relationships betweers¢hquery sequences and to known species. Ap-
proaches for phylogenetic placement have been developedpbrate in two steps: first, an alignment is esti-
mated for each query sequence to the alignment of the fadjtlesequences, and then that alignment is used to
find the optimal location in the phylogenetic tree for theueequence. Recent methods of this type include
HMMALIGN+EPA, HMMALIGN+pplacer, and PaPaRa+EPA. We repon a study evaluating phylogenetic
placement methods on biological and simulated data. Thiysthows that these methods have extremely
good accuracy and computational tractability under céonkt where the input contains a highly accurate
alignment and tree for the full-length sequences, and thefsiill-length sequences is sufficiently small
and not too evolutionarily diverse; however, we also shaat tinder other conditions accuracy declines and
the computational requirements for memory and time exceedpable limits. We present SEPP, a general
“boosting” technique to improve the accuracy and/or spdgghglogenetic placement techniques. The key
algorithmic aspect of this booster is a dataset decompagiichnique in SATE, a method that utilizes an iter-
ative divide-and-conquer technique to co-estimate aligmsand trees on large molecular sequence datasets.
We show that SATé-boosting improves HMMALIGN+pplacegaghg short sequences more accurately when
the set of input sequences has a large evolutionary diametdgsroduces placements of comparable accuracy
in a fraction of the time for easier cases. SEPP software lamddtasets used in this study are all available
for free atht t p: / / ww. cs. ut exas. edu/ user s/ phyl o/ sof t war e/ sepp/ subni ssi on.
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1. Introduction

Metagenomic datasets contain thousands to millions ot seguences, many from different species
and for different genes. Determining the species presehtma metagenomic dataset and their rel-
ative abundances are two of the main objectives in metageraomalysis. However, these problems
do not address other issues, such as the discovery of neves@ew the inference of evolution-
ary relationships between the species in the sample. Uhdeagsumption that all short reads are
from the same gene and that a tree and alignment for a largéeruoh full-length sequences for
that gene are available, each short read can be placed irftglaggnetic tree, thereby enabling
species identification for these reads, the inference diideoary relationships between the reads,
and potentially also the identification of reads coming fronknown species. This is called the
“phylogenetic placement” problem, formally stated asdofé:

Phylogenetic Placement Problem.

¢ Input: thebackbonetree T and alignmentd on setS of full-length sequences, and query



sequence.
o Output: treel” containings obtained by adding as a leaf tar'.

Several methods have been developed for this problem usenigliowing two steps:

e Step 1: insert into alignmentA to produce thextended alignment’
e Step 2: add into 7' using A’, optimizing some criterion

Methods for the first step include HMMALIGNand the recently introduced PaPdRaethod.
Methods for the second step include ERAd pplacef,which seek to optimize maximum likelihood
(pplacer also provides a Bayesian approach). Methods fgloganetic placement can therefore
be described by how they handle each step. Three such métidhadde PaPaRa+EPAHMMA-
LIGN+EPA? and HMMALIGN+pplacer! EPA and pplacer are comparably fast and have almost
identical placement accuracy, but have somewhat diffenemhory usage and algorithmic featufes;
hence the differences between HMMALIGN+EPA and HMMALIGNstacer do not impact the
placement accuracy, and have a minor impact on running tirdeveemory usage. The techniques
for computing the extended alignment, PaPaRa and HMMALI&X very different. HMMALIGN
computes a HMM to represent the full-length alignment, drehtaligns each query sequence to
that HMM. In contrast, PaPaRa uses RAXML to estimate araestmte vectors for each branch in
the tree, aligns the query sequence to every ancestralvsietiar, selects the alignment that had the
best score and uses it to extend alignmémd includes. PaPaRa is slower than HMMALIGRbut
placements of query sequences based upon PaPaRa extagdetkals can be more accurate than
placements based upon HMMALIGN extended alignments.

We introduceSEPR a new basic algorithmic strategy for boosting the perfaroesof methods
for Phylogenetic Placement. We use a dataset decompositibim SATé-2 to decompose the set
of full-length sequences into disjoint sets based uponrtphatitree and alignment, so that each set
contains a small number of closely related sequences. Wectimapute the extended alignment for
each query sequence and the placement of the query sequetociée input tree by running HM-
MALIGN and pplacer on the subsets instead of on the full tBepending upon the decomposition
sizes, this approach can result in much faster and more aecplacements, as we will show. The
parameters of the divide-and-conquer technique thus ahewuser to trade-off running time and
accuracy.

We report on a study comparing SEPP to HMMALIGN+pplacer aagdRa+pplacer on a col-
lection of simulated datasets (with 500-taxon backbonestind alignments) and one large bio-
logical dataset with a curated alignment of its 13,822 leigth sequences. Our study shows that
SEPP is more accurate than PaPaRa+pplacer and HMMALIGId¢ppWwhen the full-length se-
guence dataset are evolutionary distant, and yields placenof comparable accuracy but much
more efficiently when the sequences are more closely related

We finish by defining some terms we will use throughout thisgpap

o Reference alignment: We use the true alignment for the sitedldatasets and the curated
alignment for the biological dataset.

o Reference tree: For the simulated datasets, we use thentinde() tree with all zero-event
branches collapsed. For the biological dataset, we useAl®IR® bootstrap tree computed
on the curated alignment, with all branches having less ##% bootstrap support con-



tracted. For a given set of full-length sequences and oneygexjuence, we restrict the
reference tree on the full set of sequences to the subsetder to define the reference
topology for that subset.

e Query sequence: the sequences that are not part of themedeatgnment, and which will
be inserted into the reference tree.

e Backbone tree and alignment: this is the tree and alignmenh® setS of full-length se-
quences, provided as input (along with the query sequenaels¢ phylogenetic placement
problem.

o Extended alignment: The alignment sru {s} produced by inserting into the backbone
alignment onsS.

Note: The terms “reference alignment” and “reference tare”used differently in other papers,
where these refer to the input alignment and the ML tree edéchon that alignment. Because our
study evaluates accuracy with respect to the true tree (krfiomthe simulated data) or to the curated
tree (for the biological dataset), we reserve the term fegfee tree” for these objects, instead of for
trees estimated on estimated alignments.

2. SEPP: SATe-Enabled Phylogenetic Placement

SEPP is a meta-method that works with existing methods ®two steps of phylogenetic place-
ment (computing the extended alignment, and placing queyences into a backbone tree). SEPP
utilizes the dataset decomposition technique in SATéethod that co-estimates sequence align-
ments and phylogenies. This technique takes as input &'teg®l a target siz&’, and it partitions
the leaf set off" into smaller subsets, as follows. SATé-2 removes a cahtdge (an edge that
splits the taxon set into two approximately equally sizelosets) from the input tree, thus dividing
the tree into two subtrees, and repeats the process until®diset has at mogt leaves (taxa).
Thus, the taxa within any single subset are close togethhinvthe tree and densely sampled within
that subset.

The input to SEPP consists of

o the backbone tre& and alignment4 for the full-length sequences and a set of query se-
quences,

e positive integers andp, with p > q,

¢ a technique for aligning the query sequence to a multipleeece alignment of full-length
sequences, and

¢ a technique for inserting the query sequence into a backtveaggiven the extended align-
ment that includes the query sequence.

The output of SEPP is the placement of each query sequercthmbackbone tree. In this study
we explore SEPP where we use HMMALIGN to produce extendeghalents and pplacer to insert
guery sequences into backbone trees.

We now show how SEPP uses the parameteasdp to compute the extended alignment and
placement of a set of query sequences into the tree. For Keeafasimplicity of exposition, we
describe this for a single query sequence.

o We use the SATé-2 dataset decomposition strategy to diki&eet of taxa in the treginto



disjoint subsets of size at mgstThese subsets are called the “taxon-insertion-subsets.”

o We further divide each taxon-insertion subset into smaligrsets of size. These subsets
are the “alignment—subsets”. Thus, each alignment-subsesubset of exactly one taxon-
insertion-subset.

¢ We compute the HMM profile using HMMER for each of the alignmasubsets, and we find
the alignment-subset that the query sequeritas the best match to. We use HMMALIGN
to produce an alignment afto the backbone alignment on the alignment-subset, and then
use that alignment to produce the extended alignmert tofs}.

¢ We find the taxon-insertion-subset that contains the sedealignment-subset, and we use
pplacer to locate the query sequerdato the subtree of the backbone tree induced by the
taxon-insertion-subset. Finally, we use the location @ the subtree to inset into the
backbone tree on the entire set of taxa.

Thus, the two parametetsandp control the behavior of SEPP. We letange from 10 to 250 for
the simulated datasets and from 10 to 2500 for the biologiatset. We let range from 10 to 500
for the simulated datasets and from 100 to 13,822 for thebiohl dataset.

3. Study Design

We evaluate phylogenetic placement methods on both erapaial simulated datasets. We include
HMMALIGN+pplacer and PaPaRa+pplacer as representatifesimently available methods for
phylogenetic placement. We also include SEPP used with HMMEA to produce extended align-
ments and pplacer to place the query sequences.

We studied performance of these phylogenetic placementhadst on 61 sequence
datasets (available dttt p://wwv. cs. ut exas. edu/ user s/ phyl o/ sof t war e/ sepp/
subm ssi on). We included 20 simulated 1000-taxon datasets that hawkvex with substitu-
tions and indels from each of three different model condgigM2, M3, and M4), each with the
“medium” gap length distribution (see Liu et afor these data). The three model conditions are
chosen such that one dataset is hard, one is moderate, amleasy. Because these are simulated
datasets, the true alignment and true tree are known fordastelsets.

We also used a large bacterial dataset, 16S.B.ALL, with2F¥ 16S rRNA sequences, originally
taken from the Gutell Comparative Ribosomonal Website ($RWNd also studied by Liu et al.
This dataset has a curated alignment based upon confirmexdsey (and higher-order) structures,
which are highly reliable. We use a ML bootstrap tree as thiated tree for this dataset, retaining
only those branches with bootstrap support above 73%us, the 16S.B.ALL dataset has a curated
tree and alignment as well.

Each dataset was randomly divided into two subsets of eqeal with one subsets) used
to define the backbone alignment and tree, and the other ts(i®sesed to produce the query
sequences. These query sequences are created by takitringshst normally-distributed lengths
(from two distributions, described below), and with thetspasitions chosen uniformly at random.

Two categories of reads are generated for each sequen@&M2tiVI3, and M4 datasets: “long”
reads, with a mean length of 250 and a standard deviation ,car&D “short” reads, with a mean
length of 100 and a standard deviation of 20. A total of 10rragtary sequences are generated
for each sequence, with half long and half short. Since tdesasets each include 500 reference



and 500 non-reference sequences, this process yields B6A@Gad 2500 long reads per dataset. In
summary, each M2, M3, and M4 dataset has a reference tredignohant with 500 taxa and a total
of 5000 fragmentary sequences, of which half are “short”lzadflare “long”.

For the 16S.B.ALL biological dataset, we create two catiegoof reads, with length distribu-
tions identical to those of simulated datasets. This datas®ains 27,643 taxa, of which we use
13,822 sequences for the backbone tree, leaving us witt2138quences for creating fragmen-
tary reads. For each of these 13,821 sequences, we genenatégmentary sequence, randomly
choosing between the long and short distributions. Thughfe dataset the backbone tree and align-
ment has 13,822 taxa, and there are 13,821 fragmentaryrszsegie

The sequences ifi are used to create two backbone alignments and trees, awgolFor sets
S that are produced by simulating sequence evolution, we the/gue alignment and the true tree.
We restrict each of these (which have 1000 taxa) to the sulfss20 full-length sequences, and
then run RAXML on the resultant tree/alignment pair in orttepptimize the branch lengths and
GTR+Gamma parameters. This produces the first alignmeatftackbone. The second backbone
alignment/tree pair is produced by running SATé on the satlblength sequences.

For the 16S.B.ALL dataset, we run RAXML on the curated alignirto produce a binary tree.
We then restrict the tree to the subset of 13,822 sequenceéximize the branch lengths and
GTR+Gamma parameters on the tree using RAXML. This prodihesfirst backbone alignment/tree
pair. We use SATE on the subset of 13,822 full-length secgeto produce the second.

We used SATEé to produce these estimated alignment/tree ppecause SATé produces more
accurate alignments and trees than any two-phase methedg\ah alignment is first estimated and
then a tree computed on that alignment) for these data¥etsused SATe-2, the new algorithm de-
sign for SATE; this produces an alignment and an ML tree eratiygnment estimated using RAXML.
For the 16S.B.ALL dataset, we used Fast¥re@hin SATé-2 in each iteration, and finished with
RAXML in order to produce optimized GTR+Gamma parametertherfinal tree.

We classify each query sequence for its likely difficulty imyfpgenetic placement as follows.
We use HMMER to produce a HMM profile for the reference aligntmand then to classify the
guery sequences with respect to the HMM profile. The fragargneads are classified as easy to
align (“easy”) if the obtained E-value is less tham®, and as “hard” otherwise. Among the hard
reads, there are some reads for which HMMER does not reppfEaralue due to default filtering
settings of HMMER. We classify such reads as “very hard” se&aearlier phylogenetic placement
studies, the hard fragments are excludédwever, our study does not automatically eliminate hard
fragments. Many very hard reads are able to be placed by Siee&use the reads will receive E-
values with respect to the smaller alignment subsets. Ttiegefail to be placed at all by SEPP
are removed from the experimental study; this process rem@vrom all the simulated datasets
together and 5 from the biological dataset. Thus, resuitsdch simulated model condition are for
99997-100000 retained query sequences (20 replicas, adtB@00 query sequences) and 13,819-
13,821 retained query sequences for the two 16S.B.ALL dtgas

Table 1 shows various statistics for the true or curatedalgnt of the datasets included in our
study. The p-distance is the fraction of sites within anratignt in which two sequences are different
and “% gaps” is the percentage of gaps within the alignmemt. dmpirical statistics show that the
datasets vary substantially in terms of evolutionary disés, with datasets from model M2 having



Dataset Type Size Num generated Avg Max % gap

backbone query seqs p-dist p-dist
M2 sim 500 5000 0.68 0.76 67
M3 sim 500 5000 0.66 0.74 53
M4 sim 500 5000 0.50 0.60 51
16S.B.ALL emp 13,822 13,821 0.21 0.52 74

Table 1: Dataset statistics: We present statistics forriee alignments for the simulated datasets
(M2, M3, M4) and statistics for the curated alignment on tlwdgical dataset, 16S.B.ALL. How-
ever, a small number of query sequences is deleted from sbthe ns.

the largest evolutionary distances and 16S.B.ALL havirgstimallest.

Measurements. We measure placement accuracy (averaged over all the gegugisces), running
time, and peak memory usage, for each method on each d&tastte simulated datasets we report
averages for these measurements over the 20 replicateshmerdel condition.

Placement accuracyAll our phylogenetic placement methods use pplacer to jposéach query
sequence into the backbone tree, and we use the most likedgmplent computed by pplacer (mul-
tiple possible placements for each read, along with thdiiked of each placement, are provided
by pplacer.) We then compare the tree that is created to theeree tree, and compute the number
of missing branches. This number in isolation is hard torpre, for at least two reasons. In the
case where SATé alignment/tree is the input, the backb@eeitself contains error. The error of
the initial backbone tree is a lower bound on the tree err@r glacement of reads (in fact it is a
rather liberal lower bound, as the optimal placement ofrfragts can still have errors higher than
the initial tree). In the case where true or curated aligrtiiree is the input, the initial tree has no
error, but we can still establish useful lower bounds of tke error. This can be done by using the
reference alignment of query sequences to be the backbigmenaint as input to the pplacer. The
resulting placement of query sequences is the best we chsticzdly hope for.

To account for the lower bounds described above, we alsoedafid report the “delta error”
for each technique, as follows. For each regulaced on the SATé backbone tree, we report the
difference between the number of missing branches of thialibackbone tree and the number of
missing branches after placementofVhen the backbone tree is the reference (true or curatsa) tr
we report the difference between the number of missing Iiesof the tree produced by placement
of s according to the reference alignment©ofo S and the number of missing branches of the
tree after placement of In all cases, the number of missing branches in each treefiised with
respect to the reference tree for the taxa in the given tiees,Tthe number of missing branches in
the backbone trees is defined by the reference tree on thteafdtackbone taxa, and the number
of missing branches in the tree produced by placing the gseguence into the backbone tree is
defined by the reference tree on the$et{s}.

Note that in the case where the backbone tree is the refeteseethe number of missing
branches is equal to the node distance between the corgampént of reads and actual place-
ments, the error used in the literatdré However, this edge distance is not as meaningful as the
number of missing branches with respect to either the treei@ted tree, since estimated trees will
generally have error.



Computational aspectsiVe report the running times and peak memory usage, each redaspa-
rately for the computation of extended alignments and phece of query sequences. These reported
values are for placement of all query sequences in each settdmemory requirements of PaPaRa
and pplacer, 16S.B.ALL experiments are run on a Linux maehiith 16 cores and 256GB of main
memory. The results for simulated datasets are obtainecheteaogeneous condor cluster.

4. Results
Algorithm design experiments.

0.5¢
045" 4 _ 2500/2500
0.4f 1.2t
~1000/1000 @ ~vm+pp
- 0:35¢ 1| -2500/2500
s & ~1000/1000
8 0.3 ~500/500 % ~500/500
5 0.25) ~ 1001100 208 . 100/100
5 ~250/1000 5 —250/1000
5 ~50/1000
g 0.2f YWoer 1 10/
= © R + 10/all
T § | 1001000 perepp- €
: ~50/1000 04
0.1 . PPR+pp
L —HMM+pp 1 0.2r
0.05 ®  10/all
0 L L L L L | 0 L L L L L L L |
0 10 20 30 40 50 60 0 5 10 15 20 25 30 35 40
Time (hours) Time (hours)
(a) 16S.B.ALL, Curated backbone (b) 16S.B.ALL, SATE backbone
6 .
e _PPR+pp LT[
51 ~10/50 ~50/50
1.65¢
~10/100
B4 100/500
2 2 16- ~10/250  ©
8 . HMM+pp S —50/100
S3 <
i S 1.55f
o ~250/250 I
© S
oz - 100/100. 10719 5 el ~50/250
< sefBgm0 - 61500
1 1.45
~50/500
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 14 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 8 10 12 14 16
Time (minutes) Time (minutes)
(c) M2, SATe backbone (d) M2, SATé backbone - most accurate settings

Fig. 1: Scatter plot of delta error (x) versus time (y) verswamory (circle diameters). The symbol
“xly” refers to SEPP(X,y). The default setting is 50/50 fo leind 1000/1000 for 16S.B.ALL; these
points are bold-faced. Note that the default setting for BEHar from optimal, with other settings
providing better accuracy (and in some cases also bettedspe



Figure 1 shows results where we vary the two algorithmicpatarse andp, with peak mem-
ory usage indicated by the size of the circle. Note that @¢stnga to 50 (and sometimes to 10)
and increasing tends to improve the placement accuracy, but at a running tiost. Also, bigger
improvements in accuracy are obtained by decreasititan by increasing. However, for most
conditions, there is a wide range of parameter settings iclwthe differences in placement error
are quite small (often less than half an edge), and withig ¢bilection there can be substantial
differences in running time.

To set the default parameters, we sought a setting that wadasonably well with respect to
both running time and placement accuracy. Settirgp = 1000 for the 16S.B.ALL datasets and
= p = 50 for the simulated datasets produced good results. Be#segs correspond to setting the
subset sizes to about 10% of the number of taxa in the backbe@eNote, however, that settiag
=p =50 is by no means optimal for the M2 model condition (fourestbettings, have less error and
complete faster). Similarly, setting=p = 1000 is the fastest for the 16S.B.ALL datasets, but more
accurate results can be obtained with other settings @iglow 1000) for a running time cost.
Comparisons using the default setting for SEPP.

We present results for PaPaRa+pplacer, HMMALIGN+ppleaeed, the default setting for SEPP
where we set = p to approximately 10% of the number of taxa in the backbone tféis yields
parameters 50/50 for the simulated datasets (backborehese 500 taxa) and 1000/1000 for the
16S.B.ALL dataset (backbone trees have 13,822 taxa).

Results on simulated datasefBhe simulated datasets have backbone trees with 500 sexpuand
fairly high rates of evolution, with M2 having the highesteand M4 having the lowest rate (Table
1). Placement error rates were impacted by the model, sthibatissing branch rate for all methods
is higher on model M2 than on model M3, and higher on model M# tbhn model M4 (Table 2).
Not surprisingly, absolute error rates are lower with the talignment and tree than with the SATé
alignment and tree. These trends also held for PaPaRa arfel SEP

All reads Hard reads Very hard reads
bio. M2 M3 M4 bio. M2 M3 M4 | bio. M2 M3 M4
SATEé Backbone
count | 13819 99998 99999 99999104 79510 58924 398921 63613 40495 844
HMM | 1.1 3.4 1.4 0.3 24 42 2.3 0.7 39 52 3.2 15
PPR | 0.6 5.4 3.6 0.4 0.8 5.8 4.4 1.0 |09 6.2 4.9 15
SEPP | 1.0 1.7 1.0 0.4 24 20 1.4 0.8 3.8 24 1.8 1.0
True or Curated Backbone
count | 13818 99997 99999 99999104 79511 58924 398921 63614 40495 844
HMM | 0.0 3.2 1.2 0.0 05 4.0 2.0 0.2 22 50 2.9 0.9
PPR | 0.0 6.2 3.8 0.2 0.1 6.7 4.7 05 (00 71 5.2 0.9
SEPP | 0.4 1.4 0.7 0.1 1.1 17 1.1 0.4 15 20 1.4 0.5

Table 2: Mean delta-error for different categories of queeguences. We show the mean delta-
error for each method on each model condition, as a functitimedevel of difficulty for the query
sequence, as estimated by HMMER. Count refers to the nunilogreoy sequences processed and
placed, HMM refers to HMMALIGN+pplacer, PPR refers to PaBapplacer, and SEPP refers to
SEPP run in default mode.
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Fig. 2: Results on simulated datasets for model M2. We shawing time (top), peak memory
usage (middle), and average number of additional missiagdbres per query sequence (bottom).
Results for the SATé backbone alignment and tree are orethehd results for the true backbone
alignment and tree are on the right. The SATé backbone t@eelB.1% missing branch rate and
the backbone tree based upon the true alignment has 0.098nqisranch rate. The number of
additional missing branches shown (bottom) is the incrérabave that amount.

Figure 2 and Table 2 show results for PaPaRa+pplacer, HMNEA#tpplacer, and SEPP(50,50)
(i.e., SEPP ran with the default setting on this modekof p = 50). Note that SEPP(50,50)
has the lowest delta-error of the three methods by far, i@t by HMMALIGN+pplacer, and
then by PaPaRa+pplacer. Furthermore, the differencesunrgtastial. The methods are clearly
also distinguished by running time and peak memory usageMAMGN-+pplacer is the fastest,
SEPP(50,50) is somewhat slower, and PaPaRa uses much mereBibth PaPaRa+pplacer and
HMMALIGN+pplacer use more memory than our method.

Results for M3 (see Table 2) are quite similar to M2, with HMM&N+pplacer was much more
accurate than PaPaRa+pplacer and SEPP(50/50) producecouorrate placements than HMMA-
LIGN+pplacer. However, the gap between SEPP(50,50) and AMKEN+pplacer was reduced to
only half an edge. On M4 (see Table 2), however, the relagviopmance between SEPP(50,50) and
HMMALIGN+pplacer depended on the backbone tree. For theé&alignment/tree, SEPP(50,50)
was more accurate but slightly slower than HMMALIGN+ppla¢®r the true alignment/tree, HM-
MALIGN+pplacer was somewhat more accurate and took less.tiHowever, the difference in
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Fig. 3: Results on 16S.B.ALL. We show running time (top), bb@emory usage (middle), and

average number of additional missing branches per queyeseg (bottom). Results for the SATé
backbone alignment and tree are on the left, and resulthéctrated backbone alignment and
tree are on the right. The SATé missing branch rate is 7.@4%,the missing branch rate for the
backbone tree defined by the true alignment is 1.835%. Thdauof additional missing branches
shown (bottom) is the increment above that amount.

placement accuracy between SEPP(50,50) and HMMALIGN-ggplavas extremely small - less
than one-ninth of an edge for both backbones.
16S.B.ALL. The datasets based upon 16S.B.ALL presented a differedt dirchallenge. Each
dataset had 13,821 query sequences and a backbone tree3y@#2 sequences. Thus, backbone
trees were much larger, but the backbone trees and aligsmedtgcted lower rates of evolution.

Figure 3 shows results for both backbones, in which we ranPSEI0,1000) (i.e., the default
setting). Note that PaPaRa+pplacer provides a small ingonewt in placement accuracy (slightly
more than half an edge) in comparison to the other methodwekder, PaPaRa+pplacer is enor-
mously computationally intensive, using 40 hours to aralfi'ese data, much longer than either
other method. Also, HMMALIGN+pplacer and PaPaRa+ppla@tehvery large peak memory us-
age, near 60GB on both backbone trees. Thus, PaPaRa+pglaoetputationally extremely inten-
sive, but both HMMALIGN+pplacer and PaPaRa+pplacer havg legge peak memory usage.

A comparison of SEPP(1000,1000) to HMMALIGN+pplacer shateat both have extremely
good placement accuracy, with delta-error approximataly edge for both methods on the SATé



backbone tree and well under half an edge on the curated baekkee. HMMALIGN+pplacer pro-
duces more accurate placements than our method for theeduratkbone and SEPP(1000,1000)
produces more accurate placements for the SATé backbahé¢hd differences between the two
methods are small in both cases (less than a third of an eflge)methods are, however, distin-
guished by their computational requirements, as HMMALIGQIdacer is much slower (at least 4
times as much time) and uses dramatically more memory (6@G#Bmpared to about 2GB).
Comparing methods on query sequences of different levdiffiotilty.

Table 2 compares methods in terms of their placement accama@ function of the level of
difficulty in placing the query sequence, as predicted by HER/(see the discussion in Section
3). Note that error increases as the reads become more WjfistHMMER predicts. We see that
SEPP run in default mode performs very well in general (azoesl earlier) in comparison to
HMMALIGN+pplacer and PaPaRa+pplacer, but has a partiutdarong advantage on the hard and
very hard reads. Interestingly, PaPaRa+pplacer does whk and very hard reads for 16S.B.ALL
but not on simulated datasets.

5. Discussion

The methods we evaluated for phylogenetic placement—Rafafacer, HMMALIGN+pplacer,
and SEPP methods—often produce placements that are ektaoerate, increasing the topological
error over the input backbone tree by at most an edge (oftashr@ss than an edge) on average.
Furthermore, while these methods do sometimes have diffesein placement accuracy that go
beyond an edge, these differences are sometimes still emaligh to be relatively unimportant,
compared to the computational cost required to obtain tipeared placement accuracy.

However, we did observe conditions in which the differeniogslacement accuracy were quite
large, suggesting that increased effort in placing quegueeces correctly was merited. For exam-
ple, we see big differences in placement accuracy on model®4Rlting in several edges improve-
ment produced by SEPP(50,50) over HMMALIGN+pplacer. Thedittons under which accuracy
differences are substantial are characterized by largeitewoary distances between some pairs of
full-length sequences. We conjecture that in such conditithe HMMs produced by HMMER on
the full set of taxa may not be sufficient to produce highlyusate alignments for the query se-
guences, and will result in degraded placement accuragytddhnique we introduce here avoids
this problem by using HMMER to produce HMMs only on smallegd diverse, subsets of the taxa.
As a result, the HMMs may produce more accurate alignmerntsetquery sequences, and result in
improved phylogenetic placement.

We note also the interesting differences between HMMALI@NHacer and PaPaRa+pplacer.
The only dataset on which PaPaRa+pplacer produces moreasequacements than HMMA-
LIGN+pplacer is 16S.B.ALL, while PaPaRa+pplacer has sarislly less accurate placements for
the faster evolving datasets. We conjecture that the rdasdms difference is that 16S.B.ALL has a
low evolutionary diameter, while the simulated dataseteharger evolutionary diameters, and the
estimation of transition state matrices on each edge maykanhighly accurate when the backbone
tree has a low evolutionary diameter.

Furthermore, these methods differ dramatically with resp® running time, with Pa-
PaRa+pplacer much more computationally intensive than HMNEN+pplacer and default SEPP,
thus suggesting that PaPaRa+pplacer is unlikely to be lusdargescale metagenomic analyses.



The comparison between HMMALIGN+pplacer and SEPP is momeptex, because SEPP is
parameterized by the two algorithmic parametesadp. Here we see that some very simple settings
for these parameters € p, both set to about 10% of the number of taxa in the backborg tre
produces very fast results with generally very good acgi@ming close to the accuracy obtained
by the best methods (or improving on them), but in a fractibthe time. Other settings for the
parameters can improve the placement accuracy but reqeiéeg running time and memory usage.

It is also helpful to put the running time results in contédéw sequencing technologies have
enabled gathering millions of short reads from microbiahoaunities, and a question of great prac-
tical importance is whether analyzing a million reads isfieke in a reasonable time frame. Since
the placement problem treats reads independently, thengitime of tools developed for the place-
ment problem increases linearly with the number of read$a@h most tools have pre-processing
steps, the cost of which is constant with regards to the nuoflyeads). Therefore by a simple inter-
polation one can estimate how long it would take to place @mileads given our reported results
for 13,000 reads. If we were to place 1 milion reads on a tresbofit 13,000 reference sequences,
PaPaRa+pplacer would take about 133 days and HMMALIGN-gaplabout 30 days. SEPP on
the other hand would take just about 6 days, which should &sliee for many applications. SEPP
therefore can enable the analysis of very large data set¢tatively short time frames.

6. Conclusions and Future Work

The method we have presented, SEPP, is a general technidumofsting the accuracy and/or speed
of a phylogenetic placement method. In this study, we exaldts performance when coupled with
HMMALIGN and pplacer, and showed improvements in placenacuracy and/or running time.
Given the plans to analyze millions of reads, the speedhaisSEPP provides could be essential to
providing scalability for phylogenetic placement methddsproved accuracy, furthermore, might
be obtained by coupling SEPP with PaPaRa for those caseg Wieebackbone tree and alignment
has a small enough evolutionary diameter to produce higldyrate extended alignments.
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