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We address the problem of Phylogenetic Placement, in which the objective is to insert short molecular se-
quences (called query sequences) into an existing phylogenetic tree and alignment on full-length sequences
for the same gene. Phylogenetic placement has the potentialto provide information beyond pure “species
identification” (i.e., the association of metagenomic reads to existing species), because it can also give in-
formation about the evolutionary relationships between these query sequences and to known species. Ap-
proaches for phylogenetic placement have been developed that operate in two steps: first, an alignment is esti-
mated for each query sequence to the alignment of the full-length sequences, and then that alignment is used to
find the optimal location in the phylogenetic tree for the query sequence. Recent methods of this type include
HMMALIGN+EPA, HMMALIGN+pplacer, and PaPaRa+EPA. We report on a study evaluating phylogenetic
placement methods on biological and simulated data. This study shows that these methods have extremely
good accuracy and computational tractability under conditions where the input contains a highly accurate
alignment and tree for the full-length sequences, and the set of full-length sequences is sufficiently small
and not too evolutionarily diverse; however, we also show that under other conditions accuracy declines and
the computational requirements for memory and time exceed acceptable limits. We present SEPP, a general
“boosting” technique to improve the accuracy and/or speed of phylogenetic placement techniques. The key
algorithmic aspect of this booster is a dataset decomposition technique in SATé, a method that utilizes an iter-
ative divide-and-conquer technique to co-estimate alignments and trees on large molecular sequence datasets.
We show that SATé-boosting improves HMMALIGN+pplacer, placing short sequences more accurately when
the set of input sequences has a large evolutionary diameterand produces placements of comparable accuracy
in a fraction of the time for easier cases. SEPP software and the datasets used in this study are all available
for free athttp://www.cs.utexas.edu/users/phylo/software/sepp/submission.
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1. Introduction

Metagenomic datasets contain thousands to millions of short sequences, many from different species
and for different genes. Determining the species present within a metagenomic dataset and their rel-
ative abundances are two of the main objectives in metagenomic analysis. However, these problems
do not address other issues, such as the discovery of new species and the inference of evolution-
ary relationships between the species in the sample. Under the assumption that all short reads are
from the same gene and that a tree and alignment for a large number of full-length sequences for
that gene are available, each short read can be placed into a phylogenetic tree, thereby enabling
species identification for these reads, the inference of evolutionary relationships between the reads,
and potentially also the identification of reads coming fromunknown species. This is called the
“phylogenetic placement” problem, formally stated as follows:
Phylogenetic Placement Problem.

• Input: thebackbonetreeT and alignmentA on setS of full-length sequences, and query



sequences.
• Output: treeT ′ containings obtained by addings as a leaf toT .

Several methods have been developed for this problem using the following two steps:

• Step 1: inserts into alignmentA to produce theextended alignmentA′

• Step 2: adds into T usingA′, optimizing some criterion

Methods for the first step include HMMALIGN1 and the recently introduced PaPaRa2 method.
Methods for the second step include EPA3 and pplacer,4 which seek to optimize maximum likelihood
(pplacer also provides a Bayesian approach). Methods for phylogenetic placement can therefore
be described by how they handle each step. Three such methodsinclude PaPaRa+EPA,2 HMMA-
LIGN+EPA,3 and HMMALIGN+pplacer.4 EPA and pplacer are comparably fast and have almost
identical placement accuracy, but have somewhat differentmemory usage and algorithmic features;4

hence the differences between HMMALIGN+EPA and HMMALIGN+pplacer do not impact the
placement accuracy, and have a minor impact on running time and memory usage. The techniques
for computing the extended alignment, PaPaRa and HMMALIGN,are very different. HMMALIGN
computes a HMM to represent the full-length alignment, and then aligns each query sequence to
that HMM. In contrast, PaPaRa uses RAxML to estimate ancestral state vectors for each branch in
the tree, aligns the query sequence to every ancestral statevector, selects the alignment that had the
best score and uses it to extend alignmentA to includes. PaPaRa is slower than HMMALIGN,2 but
placements of query sequences based upon PaPaRa extended alignments can be more accurate than
placements based upon HMMALIGN extended alignments.

We introduceSEPP, a new basic algorithmic strategy for boosting the performance of methods
for Phylogenetic Placement. We use a dataset decompositionwithin SATé-25 to decompose the set
of full-length sequences into disjoint sets based upon the input tree and alignment, so that each set
contains a small number of closely related sequences. We then compute the extended alignment for
each query sequence and the placement of the query sequencesinto the input tree by running HM-
MALIGN and pplacer on the subsets instead of on the full tree.Depending upon the decomposition
sizes, this approach can result in much faster and more accurate placements, as we will show. The
parameters of the divide-and-conquer technique thus allowthe user to trade-off running time and
accuracy.

We report on a study comparing SEPP to HMMALIGN+pplacer and PaPaRa+pplacer on a col-
lection of simulated datasets (with 500-taxon backbone trees and alignments) and one large bio-
logical dataset with a curated alignment of its 13,822 full-length sequences. Our study shows that
SEPP is more accurate than PaPaRa+pplacer and HMMALIGN+pplacer when the full-length se-
quence dataset are evolutionary distant, and yields placements of comparable accuracy but much
more efficiently when the sequences are more closely related.

We finish by defining some terms we will use throughout this paper.

• Reference alignment: We use the true alignment for the simulated datasets and the curated
alignment for the biological dataset.

• Reference tree: For the simulated datasets, we use the true (model) tree with all zero-event
branches collapsed. For the biological dataset, we use the RAxML 6 bootstrap tree computed
on the curated alignment, with all branches having less than75% bootstrap support con-



tracted. For a given set of full-length sequences and one query sequence, we restrict the
reference tree on the full set of sequences to the subset, in order to define the reference
topology for that subset.

• Query sequence: the sequences that are not part of the reference alignment, and which will
be inserted into the reference tree.

• Backbone tree and alignment: this is the tree and alignment on the setS of full-length se-
quences, provided as input (along with the query sequences)to the phylogenetic placement
problem.

• Extended alignment: The alignment onS ∪ {s} produced by insertings into the backbone
alignment onS.

Note: The terms “reference alignment” and “reference tree”are used differently in other papers,2–4

where these refer to the input alignment and the ML tree estimated on that alignment. Because our
study evaluates accuracy with respect to the true tree (known for the simulated data) or to the curated
tree (for the biological dataset), we reserve the term “reference tree” for these objects, instead of for
trees estimated on estimated alignments.

2. SEPP: SAT́e-Enabled Phylogenetic Placement

SEPP is a meta-method that works with existing methods for the two steps of phylogenetic place-
ment (computing the extended alignment, and placing query sequences into a backbone tree). SEPP
utilizes the dataset decomposition technique in SATé-2, amethod that co-estimates sequence align-
ments and phylogenies. This technique takes as input a treeT and a target sizeK, and it partitions
the leaf set ofT into smaller subsets, as follows. SATé-2 removes a centroid edge (an edge that
splits the taxon set into two approximately equally sized subsets) from the input tree, thus dividing
the tree into two subtrees, and repeats the process until each subset has at mostK leaves (taxa).
Thus, the taxa within any single subset are close together within the tree and densely sampled within
that subset.

The input to SEPP consists of

• the backbone treeT and alignmentA for the full-length sequences and a set of query se-
quences,

• positive integersa andp, with p ≥ a,
• a technique for aligning the query sequence to a multiple sequence alignment of full-length

sequences, and
• a technique for inserting the query sequence into a backbonetree, given the extended align-

ment that includes the query sequence.

The output of SEPP is the placement of each query sequence into the backbone tree. In this study
we explore SEPP where we use HMMALIGN to produce extended alignments and pplacer to insert
query sequences into backbone trees.

We now show how SEPP uses the parametersa andp to compute the extended alignment and
placement of a set of query sequences into the tree. For the sake of simplicity of exposition, we
describe this for a single query sequence.

• We use the SATé-2 dataset decomposition strategy to dividethe set of taxa in the treeT into



disjoint subsets of size at mostp. These subsets are called the “taxon-insertion-subsets.”
• We further divide each taxon-insertion subset into smallersubsets of sizea. These subsets

are the “alignment–subsets”. Thus, each alignment-subsetis a subset of exactly one taxon-
insertion-subset.

• We compute the HMM profile using HMMER for each of the alignment-subsets, and we find
the alignment-subset that the query sequences has the best match to. We use HMMALIGN
to produce an alignment ofs to the backbone alignment on the alignment-subset, and then
use that alignment to produce the extended alignment forS ∪ {s}.

• We find the taxon-insertion-subset that contains the selected alignment-subset, and we use
pplacer to locate the query sequences into the subtree of the backbone tree induced by the
taxon-insertion-subset. Finally, we use the location ofs in the subtree to inserts into the
backbone tree on the entire set of taxa.

Thus, the two parametersa andp control the behavior of SEPP. We leta range from 10 to 250 for
the simulated datasets and from 10 to 2500 for the biologicaldataset. We letp range from 10 to 500
for the simulated datasets and from 100 to 13,822 for the biological dataset.

3. Study Design

We evaluate phylogenetic placement methods on both empirical and simulated datasets. We include
HMMALIGN+pplacer and PaPaRa+pplacer as representatives of currently available methods for
phylogenetic placement. We also include SEPP used with HMMALIGN to produce extended align-
ments and pplacer to place the query sequences.

We studied performance of these phylogenetic placement methods on 61 sequence
datasets (available athttp://www.cs.utexas.edu/users/phylo/software/sepp/
submission). We included 20 simulated 1000-taxon datasets that have evolved with substitu-
tions and indels from each of three different model conditions (M2, M3, and M4), each with the
“medium” gap length distribution (see Liu et al.7 for these data). The three model conditions are
chosen such that one dataset is hard, one is moderate, and oneis easy. Because these are simulated
datasets, the true alignment and true tree are known for eachdatasets.

We also used a large bacterial dataset, 16S.B.ALL, with 27,643 16S rRNA sequences, originally
taken from the Gutell Comparative Ribosomonal Website (CRW),8 and also studied by Liu et al.5

This dataset has a curated alignment based upon confirmed secondary (and higher-order) structures,
which are highly reliable. We use a ML bootstrap tree as the curated tree for this dataset, retaining
only those branches with bootstrap support above 75%.5 Thus, the 16S.B.ALL dataset has a curated
tree and alignment as well.

Each dataset was randomly divided into two subsets of equal size, with one subset (S) used
to define the backbone alignment and tree, and the other subset (R) used to produce the query
sequences. These query sequences are created by taking substrings of normally-distributed lengths
(from two distributions, described below), and with the start positions chosen uniformly at random.

Two categories of reads are generated for each sequence in the M2, M3, and M4 datasets: “long”
reads, with a mean length of 250 and a standard deviation of 60, and “short” reads, with a mean
length of 100 and a standard deviation of 20. A total of 10 fragmentary sequences are generated
for each sequence, with half long and half short. Since thesedatasets each include 500 reference



and 500 non-reference sequences, this process yields 2500 short and 2500 long reads per dataset. In
summary, each M2, M3, and M4 dataset has a reference tree and alignment with 500 taxa and a total
of 5000 fragmentary sequences, of which half are “short” andhalf are “long”.

For the 16S.B.ALL biological dataset, we create two categories of reads, with length distribu-
tions identical to those of simulated datasets. This dataset contains 27,643 taxa, of which we use
13,822 sequences for the backbone tree, leaving us with 13,821 sequences for creating fragmen-
tary reads. For each of these 13,821 sequences, we generatedone fragmentary sequence, randomly
choosing between the long and short distributions. Thus, for this dataset the backbone tree and align-
ment has 13,822 taxa, and there are 13,821 fragmentary sequences.

The sequences inS are used to create two backbone alignments and trees, as follows. For sets
S that are produced by simulating sequence evolution, we havethe true alignment and the true tree.
We restrict each of these (which have 1000 taxa) to the subsetof 500 full-length sequences, and
then run RAxML on the resultant tree/alignment pair in orderto optimize the branch lengths and
GTR+Gamma parameters. This produces the first alignment/tree backbone. The second backbone
alignment/tree pair is produced by running SATé on the set of full-length sequences.

For the 16S.B.ALL dataset, we run RAxML on the curated alignment to produce a binary tree.
We then restrict the tree to the subset of 13,822 sequences, and optimize the branch lengths and
GTR+Gamma parameters on the tree using RAxML. This producesthe first backbone alignment/tree
pair. We use SATé on the subset of 13,822 full-length sequences to produce the second.

We used SATé to produce these estimated alignment/tree pairs because SATé produces more
accurate alignments and trees than any two-phase method (where an alignment is first estimated and
then a tree computed on that alignment) for these datasets.5 We used SATé-2, the new algorithm de-
sign for SATé; this produces an alignment and an ML tree on the alignment estimated using RAxML.
For the 16S.B.ALL dataset, we used FastTree9 within SATé-2 in each iteration, and finished with
RAxML in order to produce optimized GTR+Gamma parameters onthe final tree.

We classify each query sequence for its likely difficulty in phylogenetic placement as follows.
We use HMMER to produce a HMM profile for the reference alignment, and then to classify the
query sequences with respect to the HMM profile. The fragmentary reads are classified as easy to
align (“easy”) if the obtained E-value is less than10

−5, and as “hard” otherwise. Among the hard
reads, there are some reads for which HMMER does not report any E-value due to default filtering
settings of HMMER. We classify such reads as “very hard” reads. In earlier phylogenetic placement
studies, the hard fragments are excluded;4 however, our study does not automatically eliminate hard
fragments. Many very hard reads are able to be placed by SEPP,because the reads will receive E-
values with respect to the smaller alignment subsets. Thosethat fail to be placed at all by SEPP
are removed from the experimental study; this process removes 9 from all the simulated datasets
together and 5 from the biological dataset. Thus, results for each simulated model condition are for
99997-100000 retained query sequences (20 replicas, each with 5000 query sequences) and 13,819-
13,821 retained query sequences for the two 16S.B.ALL datasets.

Table 1 shows various statistics for the true or curated alignment of the datasets included in our
study. The p-distance is the fraction of sites within an alignment in which two sequences are different
and “% gaps” is the percentage of gaps within the alignment. The empirical statistics show that the
datasets vary substantially in terms of evolutionary distances, with datasets from model M2 having



Dataset Type Size Num generated Avg Max % gap
backbone query seqs p-dist p-dist

M2 sim 500 5000 0.68 0.76 67
M3 sim 500 5000 0.66 0.74 53
M4 sim 500 5000 0.50 0.60 51

16S.B.ALL emp 13,822 13,821 0.21 0.52 74

Table 1: Dataset statistics: We present statistics for the true alignments for the simulated datasets
(M2, M3, M4) and statistics for the curated alignment on the biological dataset, 16S.B.ALL. How-
ever, a small number of query sequences is deleted from some of the runs.

the largest evolutionary distances and 16S.B.ALL having the smallest.
Measurements. We measure placement accuracy (averaged over all the query sequences), running
time, and peak memory usage, for each method on each dataset.For the simulated datasets we report
averages for these measurements over the 20 replicates in each model condition.
Placement accuracy:All our phylogenetic placement methods use pplacer to position each query
sequence into the backbone tree, and we use the most likely placement computed by pplacer (mul-
tiple possible placements for each read, along with the likelihood of each placement, are provided
by pplacer.) We then compare the tree that is created to the reference tree, and compute the number
of missing branches. This number in isolation is hard to interpret, for at least two reasons. In the
case where SATé alignment/tree is the input, the backbone tree itself contains error. The error of
the initial backbone tree is a lower bound on the tree error after placement of reads (in fact it is a
rather liberal lower bound, as the optimal placement of fragments can still have errors higher than
the initial tree). In the case where true or curated alignment/tree is the input, the initial tree has no
error, but we can still establish useful lower bounds of the tree error. This can be done by using the
reference alignment of query sequences to be the backbone alignment as input to the pplacer. The
resulting placement of query sequences is the best we can realistically hope for.

To account for the lower bounds described above, we also define and report the “delta error”
for each technique, as follows. For each reads placed on the SATé backbone tree, we report the
difference between the number of missing branches of the initial backbone tree and the number of
missing branches after placement ofs. When the backbone tree is the reference (true or curated) tree,
we report the difference between the number of missing branches of the tree produced by placement
of s according to the reference alignment ofs to S and the number of missing branches of the
tree after placement ofs. In all cases, the number of missing branches in each tree is defined with
respect to the reference tree for the taxa in the given tree. Thus, the number of missing branches in
the backbone trees is defined by the reference tree on the setS of backbone taxa, and the number
of missing branches in the tree produced by placing the querysequence into the backbone tree is
defined by the reference tree on the setS ∪ {s}.

Note that in the case where the backbone tree is the referencetree, the number of missing
branches is equal to the node distance between the correct placement of reads and actual place-
ments, the error used in the literature.2–4 However, this edge distance is not as meaningful as the
number of missing branches with respect to either the true orcurated tree, since estimated trees will
generally have error.



Computational aspects:We report the running times and peak memory usage, each measured sepa-
rately for the computation of extended alignments and placement of query sequences. These reported
values are for placement of all query sequences in each set. Due to memory requirements of PaPaRa
and pplacer, 16S.B.ALL experiments are run on a Linux machine with 16 cores and 256GB of main
memory. The results for simulated datasets are obtained on aheterogeneous condor cluster.

4. Results

Algorithm design experiments.
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Fig. 1: Scatter plot of delta error (x) versus time (y) versusmemory (circle diameters). The symbol
“x/y” refers to SEPP(x,y). The default setting is 50/50 for M2 and 1000/1000 for 16S.B.ALL; these
points are bold-faced. Note that the default setting for SEPP is far from optimal, with other settings
providing better accuracy (and in some cases also better speed).



Figure 1 shows results where we vary the two algorithmic parametersa andp, with peak mem-
ory usage indicated by the size of the circle. Note that decreasinga to 50 (and sometimes to 10)
and increasingp tends to improve the placement accuracy, but at a running time cost. Also, bigger
improvements in accuracy are obtained by decreasinga than by increasingp. However, for most
conditions, there is a wide range of parameter settings in which the differences in placement error
are quite small (often less than half an edge), and within this collection there can be substantial
differences in running time.

To set the default parameters, we sought a setting that worked reasonably well with respect to
both running time and placement accuracy. Settinga = p = 1000 for the 16S.B.ALL datasets anda

= p = 50 for the simulated datasets produced good results. Thesesettings correspond to setting the
subset sizes to about 10% of the number of taxa in the backbonetree. Note, however, that settinga

= p = 50 is by no means optimal for the M2 model condition (four other settings, have less error and
complete faster). Similarly, settinga = p = 1000 is the fastest for the 16S.B.ALL datasets, but more
accurate results can be obtained with other settings (witha below 1000) for a running time cost.
Comparisons using the default setting for SEPP.

We present results for PaPaRa+pplacer, HMMALIGN+pplacer,and the default setting for SEPP
where we seta = p to approximately 10% of the number of taxa in the backbone tree. This yields
parameters 50/50 for the simulated datasets (backbone trees have 500 taxa) and 1000/1000 for the
16S.B.ALL dataset (backbone trees have 13,822 taxa).
Results on simulated datasets.The simulated datasets have backbone trees with 500 sequences and
fairly high rates of evolution, with M2 having the highest rate and M4 having the lowest rate (Table
1). Placement error rates were impacted by the model, so thatthe missing branch rate for all methods
is higher on model M2 than on model M3, and higher on model M3 than on model M4 (Table 2).
Not surprisingly, absolute error rates are lower with the true alignment and tree than with the SATé
alignment and tree. These trends also held for PaPaRa and SEPP.

All reads Hard reads Very hard reads
bio. M2 M3 M4 bio. M2 M3 M4 bio. M2 M3 M4

SATé Backbone
count 13819 99998 99999 99999104 79510 58924 3989 21 63613 40495 844
HMM 1.1 3.4 1.4 0.3 2.4 4.2 2.3 0.7 3.9 5.2 3.2 1.5
PPR 0.6 5.4 3.6 0.4 0.8 5.8 4.4 1.0 0.9 6.2 4.9 1.5
SEPP 1.0 1.7 1.0 0.4 2.4 2.0 1.4 0.8 3.8 2.4 1.8 1.0

True or Curated Backbone
count 13818 99997 99999 99999104 79511 58924 3989 21 63614 40495 844
HMM 0.0 3.2 1.2 0.0 0.5 4.0 2.0 0.2 2.2 5.0 2.9 0.9
PPR 0.0 6.2 3.8 0.2 0.1 6.7 4.7 0.5 0.0 7.1 5.2 0.9
SEPP 0.4 1.4 0.7 0.1 1.1 1.7 1.1 0.4 1.5 2.0 1.4 0.5

Table 2: Mean delta-error for different categories of querysequences. We show the mean delta-
error for each method on each model condition, as a function of the level of difficulty for the query
sequence, as estimated by HMMER. Count refers to the number of query sequences processed and
placed, HMM refers to HMMALIGN+pplacer, PPR refers to PaPaRa+pplacer, and SEPP refers to
SEPP run in default mode.
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Fig. 2: Results on simulated datasets for model M2. We show running time (top), peak memory
usage (middle), and average number of additional missing branches per query sequence (bottom).
Results for the SATé backbone alignment and tree are on the left, and results for the true backbone
alignment and tree are on the right. The SATé backbone tree has 12.1% missing branch rate and
the backbone tree based upon the true alignment has 0.09% missing branch rate. The number of
additional missing branches shown (bottom) is the increment above that amount.

Figure 2 and Table 2 show results for PaPaRa+pplacer, HMMALIGN+pplacer, and SEPP(50,50)
(i.e., SEPP ran with the default setting on this model ofa = p = 50). Note that SEPP(50,50)
has the lowest delta-error of the three methods by far, followed by HMMALIGN+pplacer, and
then by PaPaRa+pplacer. Furthermore, the differences are substantial. The methods are clearly
also distinguished by running time and peak memory usage. HMMALIGN+pplacer is the fastest,
SEPP(50,50) is somewhat slower, and PaPaRa uses much more time. Both PaPaRa+pplacer and
HMMALIGN+pplacer use more memory than our method.

Results for M3 (see Table 2) are quite similar to M2, with HMMALIGN+pplacer was much more
accurate than PaPaRa+pplacer and SEPP(50/50) produced more accurate placements than HMMA-
LIGN+pplacer. However, the gap between SEPP(50,50) and HMMALIGN+pplacer was reduced to
only half an edge. On M4 (see Table 2), however, the relative performance between SEPP(50,50) and
HMMALIGN+pplacer depended on the backbone tree. For the SATé alignment/tree, SEPP(50,50)
was more accurate but slightly slower than HMMALIGN+pplacer. For the true alignment/tree, HM-
MALIGN+pplacer was somewhat more accurate and took less time. However, the difference in
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Fig. 3: Results on 16S.B.ALL. We show running time (top), peak memory usage (middle), and
average number of additional missing branches per query sequence (bottom). Results for the SATé
backbone alignment and tree are on the left, and results for the curated backbone alignment and
tree are on the right. The SATé missing branch rate is 7.64%,and the missing branch rate for the
backbone tree defined by the true alignment is 1.835%. The number of additional missing branches
shown (bottom) is the increment above that amount.

placement accuracy between SEPP(50,50) and HMMALIGN+pplacer was extremely small - less
than one-ninth of an edge for both backbones.
16S.B.ALL. The datasets based upon 16S.B.ALL presented a different kind of challenge. Each
dataset had 13,821 query sequences and a backbone tree with 13,822 sequences. Thus, backbone
trees were much larger, but the backbone trees and alignments reflected lower rates of evolution.

Figure 3 shows results for both backbones, in which we ran SEPP(1000,1000) (i.e., the default
setting). Note that PaPaRa+pplacer provides a small improvement in placement accuracy (slightly
more than half an edge) in comparison to the other methods. However, PaPaRa+pplacer is enor-
mously computationally intensive, using 40 hours to analyze these data, much longer than either
other method. Also, HMMALIGN+pplacer and PaPaRa+pplacer have very large peak memory us-
age, near 60GB on both backbone trees. Thus, PaPaRa+pplaceris computationally extremely inten-
sive, but both HMMALIGN+pplacer and PaPaRa+pplacer have very large peak memory usage.

A comparison of SEPP(1000,1000) to HMMALIGN+pplacer showsthat both have extremely
good placement accuracy, with delta-error approximately one edge for both methods on the SATé



backbone tree and well under half an edge on the curated backbone tree. HMMALIGN+pplacer pro-
duces more accurate placements than our method for the curated backbone and SEPP(1000,1000)
produces more accurate placements for the SATé backbone, but the differences between the two
methods are small in both cases (less than a third of an edge).The methods are, however, distin-
guished by their computational requirements, as HMMALIGN+pplacer is much slower (at least 4
times as much time) and uses dramatically more memory (60GB as compared to about 2GB).
Comparing methods on query sequences of different levels ofdifficulty.

Table 2 compares methods in terms of their placement accuracy as a function of the level of
difficulty in placing the query sequence, as predicted by HMMER (see the discussion in Section
3). Note that error increases as the reads become more difficult, as HMMER predicts. We see that
SEPP run in default mode performs very well in general (as observed earlier) in comparison to
HMMALIGN+pplacer and PaPaRa+pplacer, but has a particularly strong advantage on the hard and
very hard reads. Interestingly, PaPaRa+pplacer does well on hard and very hard reads for 16S.B.ALL
but not on simulated datasets.

5. Discussion

The methods we evaluated for phylogenetic placement–PaPaRa+pplacer, HMMALIGN+pplacer,
and SEPP methods–often produce placements that are extremely accurate, increasing the topological
error over the input backbone tree by at most an edge (often much less than an edge) on average.
Furthermore, while these methods do sometimes have differences in placement accuracy that go
beyond an edge, these differences are sometimes still smallenough to be relatively unimportant,
compared to the computational cost required to obtain the improved placement accuracy.

However, we did observe conditions in which the differencesin placement accuracy were quite
large, suggesting that increased effort in placing query sequences correctly was merited. For exam-
ple, we see big differences in placement accuracy on model M2, resulting in several edges improve-
ment produced by SEPP(50,50) over HMMALIGN+pplacer. The conditions under which accuracy
differences are substantial are characterized by large evolutionary distances between some pairs of
full-length sequences. We conjecture that in such conditions, the HMMs produced by HMMER on
the full set of taxa may not be sufficient to produce highly accurate alignments for the query se-
quences, and will result in degraded placement accuracy. The technique we introduce here avoids
this problem by using HMMER to produce HMMs only on smaller, less diverse, subsets of the taxa.
As a result, the HMMs may produce more accurate alignments tothe query sequences, and result in
improved phylogenetic placement.

We note also the interesting differences between HMMALIGN+pplacer and PaPaRa+pplacer.
The only dataset on which PaPaRa+pplacer produces more accurate placements than HMMA-
LIGN+pplacer is 16S.B.ALL, while PaPaRa+pplacer has substantially less accurate placements for
the faster evolving datasets. We conjecture that the reasonfor this difference is that 16S.B.ALL has a
low evolutionary diameter, while the simulated datasets have larger evolutionary diameters, and the
estimation of transition state matrices on each edge may only be highly accurate when the backbone
tree has a low evolutionary diameter.

Furthermore, these methods differ dramatically with respect to running time, with Pa-
PaRa+pplacer much more computationally intensive than HMMALIGN+pplacer and default SEPP,
thus suggesting that PaPaRa+pplacer is unlikely to be useful in largescale metagenomic analyses.



The comparison between HMMALIGN+pplacer and SEPP is more complex, because SEPP is
parameterized by the two algorithmic parametersa andp. Here we see that some very simple settings
for these parameters (a = p, both set to about 10% of the number of taxa in the backbone tree)
produces very fast results with generally very good accuracy, coming close to the accuracy obtained
by the best methods (or improving on them), but in a fraction of the time. Other settings for the
parameters can improve the placement accuracy but require greater running time and memory usage.

It is also helpful to put the running time results in context.New sequencing technologies have
enabled gathering millions of short reads from microbial communities, and a question of great prac-
tical importance is whether analyzing a million reads is feasible in a reasonable time frame. Since
the placement problem treats reads independently, the running time of tools developed for the place-
ment problem increases linearly with the number of reads (infact most tools have pre-processing
steps, the cost of which is constant with regards to the number of reads). Therefore by a simple inter-
polation one can estimate how long it would take to place a milion reads given our reported results
for 13,000 reads. If we were to place 1 milion reads on a tree ofabout 13,000 reference sequences,
PaPaRa+pplacer would take about 133 days and HMMALIGN+pplacer about 30 days. SEPP on
the other hand would take just about 6 days, which should be feasible for many applications. SEPP
therefore can enable the analysis of very large data sets in relatively short time frames.

6. Conclusions and Future Work

The method we have presented, SEPP, is a general technique for boosting the accuracy and/or speed
of a phylogenetic placement method. In this study, we explored its performance when coupled with
HMMALIGN and pplacer, and showed improvements in placementaccuracy and/or running time.
Given the plans to analyze millions of reads, the speed-ups that SEPP provides could be essential to
providing scalability for phylogenetic placement methods. Improved accuracy, furthermore, might
be obtained by coupling SEPP with PaPaRa for those cases where the backbone tree and alignment
has a small enough evolutionary diameter to produce highly accurate extended alignments.
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