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We present a detailed description of a new Bioconductor package, phyloseq, for integrated data and
analysis of taxonomically-clustered phylogenetic sequencing data in conjunction with related data
types. The phyloseq package integrates abundance data, phylogenetic information and covariates so
that exploratory transformations, plots, and confirmatory testing and diagnostic plots can be carried
out seamlessly. The package is built following the S4 object-oriented framework of the R language
so that once the data have been input the user can easily transform, plot and analyze the data. We
present some examples that highlight the methods and the ease with which we can leverage existing
packages.
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1. Introduction

High-throughput (HT) DNA sequencing1 is allowing major advances in microbial ecology stud-
ies,2 where our understanding of the presence and abundance of microbial species relies heavily
on the observation of their nucleic acids in a “culture independent” manner.3 Typically this is
achieved by PCR amplification of a small ( 100–500 bp) fragment of a conserved gene (phylo-
genetic marker) for which there are taxonomically-informative reference sequences available.
The most commonly-used phylogenetic marker gene is the small subunit ribosomal RNA (16S
rRNA) gene,3 for which there are also convenient tools4 and large reference databases.5–7

The first step in interpreting this phylogenetic sequencing data is usually to define a
species-equivalent operational taxonomic unit (OTU). Species clustering methods are a sepa-
rate area of research8,9 beyond the scope of this article, but there are several packages/pipelines
currently available to perform processing of raw HT phylogenetic sequencing data such that
sequences are both clustered and the clusters are classified taxonomically. These include QI-
IME,10 mothur ,11 the RDP pipeline6 and PANGEA.12 a In some cases these applications are
also able to perform downstream analyses, but the options are limited. While there may be
some anecdotal advantages to having a downstream ecological analysis coupled with the ap-
plication that defined the OTUs, we expect that they are outweighed by the advantages of a
separate set of flexible, open-source analyses that can be applied consistently across experi-
ments, independent of the choice of OTU clustering method. There are already several ecology

aThroughout this article we use regular or italics font for packages/applications with names that are capitalized
or uncapitalized, respectively. We further use a courier style font for R code, including function and class
names.



and phylogenetic packages available in R, including the adephylo,13 vegan,14 ade4 ,15 picante,16

ape,17 phangorn,18 phylobase,19 and OTUbase20 packages, and these can already take advan-
tage of many of the powerful statistical and graphics tools available in R.21 However, at present
a user must devise their own methods for parsing the output of their favorite OTU clustering
application, and, as a consequence, there is also no standard within Bioconductor22 (or R
generally) for storing or sharing the suite of related data objects that describe a phylogenetic
sequencing project.

To address these issues, we have created a new package for Bioconductor, called phyloseq,
that provides a related set of S4 classes23 that internally manage the handling tasks asso-
ciated with organizing, linking, and storing phylogenetic sequencing data. The user is able
to store all their relevant data types in a single phyloseq object. This approach has several
advantages. First, it is easier to return to a previously-analyzed dataset, because the data is
organized by design. Secondly, this data structure and accompanied methods make it is easier
to share/compare data from separate experiments, as well as apply a consistent set of analysis
methods to multiple experiments. For development, new method extensions can be created
that recognize exactly the data types that are present in a particular phyloseq class. To in-
stantiate an object of the appropriate phyloseq class, the user calls the initialization method
(phyloseq(...)) with available core data types as input. Alternatively, the phyloseq package
contains data input methods for each of the four main OTU clustering applications described
above, allowing the user to import their data and check its compatibility in one function call.

The phyloseq package also allows the modification and subsetting of phyloseq objects, such
that the component data types remain compatible at every step (e.g. contain exactly the same
samples and taxa) and component data is easily accessed. Furthermore, the phyloseq package
contains convenient wrapper methods for executing common analysis pipelines and creating
useful graphics. Also provided are parallelized methods (using Rmpi24) for calculating the
UniFrac25 and weighted-UniFrac26 distances — common methods for calculating the relative
dissimilarities of the microbial communities of different samples. Parallelization of these two
methods is especially important because they are computationally intensive calculations for
experiments with a large number of diverse samples. If alternatively a user wants to off-load
the UniFrac calculation to the UniFrac server,27 phyloseq provides an export method that
creates the required environment and NEXUS files directly from the abundance table and
phylogenetic tree, respectively. Finally, we expect that the S4 data structure and core object
handling methods in the phyloseq package will facilitate development of novel methods and
classes for phylogenetic sequencing analysis.

A related Bioconductor package, OTUbase,20 currently allows for importing output from
the mothur pipeline and retaining metadata associated with the raw HT sequencing, for ex-
ample the read labels and sequence quality of individual reads. The phyloseq package provides
some useful importing methods to support users that have already imported mothur datasets
using OTUbase.



2. Class Structure

The class structure in the phyloseq package follows the inheritance diagram shown in Fig. 1.
The phyloseq package contains multiple inherited classes with incremental complexity so that
methods can be extended to handle exactly the data types that are present in a particu-
lar object. Currently, phyloseq uses 4 core data classes. They are the taxonomic abundance
table (otuTable), a table of sample data (sampleMap), a table of taxonomic descriptors
(taxonomyTable), and a phylogenetic tree (phylo) which is directly borrowed from the phy-
lobase and ape packages. The otuTable class can be considered the central data type, as
it directly represents the number and type of sequences observed in each sample. otuTable
extends the numeric matrix class in the R base, and has a few additonal feature slots. The
most important of these feature slots is the speciesAreRows slot, which holds a single logical
that indicates whether the table is oriented with taxa as rows (as in the genefilter package
in Bioconductor22) or with taxa as columns (as in vegan and picante packages). In phyloseq
methods, as well as its extensions of methods in other packages, the speciesAreRows value
is checked to ensure proper orientation of the otuTable. A phyloseq user is only required to
specify the otuTable orientation during initialization, following which all handling is internal.

The sampleMap class directly inherits R’s data.frame class, and thus effectively stores
both categorical and numerical data about each sample. The orientation of a data.frame in
this context requires that samples/trials are rows, and variables are columns (consistent with
vegan and other packages). The taxonomyTable class directly inherits the matrix class, and is
oriented such that rows are taxa (e.g. species) and columns are taxonomic ranks (e.g. phylum).

We use the term“higher-order classes” for those that contain two or more of the previously-
described core data classes. We assume that phyloseq users will be interested in analyses that
utilize their abundance counts derived from the phylogenetic sequencing data, and so all
higher-order classes contain an otuTable slot. There are a number of common methods that
require either an otuTable and sampleMap combination, or an otuTable and phylogenetic
tree (the phylo or phylo4 class) combination. These methods can operate on instances of
the otuSam or otuTree classes, respectively, or their subclasses. Because of the inheritance
structure of phyloseq classes, a method often only needs to be defined for a single class to work
properly for all other relevant classes as well.

3. Input and initialization

An important feature of the phyloseq package is methods for input of phylogenetic sequenc-
ing data from common taxonomic clustering pipelines. These methods take file pathnames as
input, read and parse those files, and return an object of the appropriate class. Initialization
of higher-order objects can be achieved manually from core data objects using the initializa-
tion method (phyloseq(...)). An instance of a higher-order class has its component objects
trimmed during initialization, such that the taxa and sample dimensions contain only their
intersecting set of sample and taxa indices, respectively. This ensures compatibility between
component data objects at instantiation of the higher-order object, as well as at subsequent
subsetting operations because the initialization methods are used by the subsetting methods
internally.
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Fig. 1: Classes and inheritance in the phyloseq package. Core data classes are shown with grey
fill and rounded corners. The class name and its slots are shown with red- or blue-shaded text,
respectively. Inheritance is indicated graphically by arrows. Lines without arrows indicate that
a higher-order object contains a slot with the associated class as one of its components.

The following line of code creates a otuSamTaxTree object from files created by the QIIME
pipeline, a type of input method that is not previously available in R packages despite QIIME’s
popularity.

> otufilename = "../data/ex1_otutable.txt"

> mapfilename = "../data/ex1_samplemap.txt"

> trefilename = "../data/ex1_tree.tre"

> ex1 <- readQiime(otufilename, mapfilename, trefilename)

4. Graphical summary using default plot methods

The phyloseq package contains extensions for the default plot methods tailored to the data
types present in each phyloseq class. For example, otuSamTax objects can be plotted as a series
of stacked bars that represent the relative abundance of phylum-level groups in the combined
community, as well as the relative abundance of individual taxa within each phylum (Fig. 2).



> taxaplot(ex1)

F
ir

m
ic

ut
es

B
ac

te
ro

id
et

es

P
ro

te
ob

ac
te

ria

un
as

si
gn

ed

V
er

ru
co

m
ic

ro
bi

a

A
ct

in
ob

ac
te

ria

E
ur

ya
rc

ha
eo

ta

fr
ac

tio
na

l a
bu

nd
an

ce

0.0

0.1

0.2

0.3

0.4

Total sites = 30
Total bar groups = 14
Most abun. 0.999 groups shown.

Observed Richness = 9389
Chao1 = 12633 +/− 172
ACE = 12346 +/− 57
Observed Richness = 9389
Shannon Index = 5.92
Simpson Index = 0.99
Total reads (individuals) = 1141385
Total singletons = 2612
Total doubletons = 1050

otuID_1087

Fig. 2: Example of a default plot method for summarizing an object of class otuSam-

Tax. Each phyloseq class has a specialized plot method for summarizing its data. In this case,
relative abundance is shown quantitatively in a stacked barplot by phylum. Different taxa within
a stack are differentiated by an alternating series of grayscale. The OTU identifier of taxa com-
prising a large enough fraction of the total community, 5% in this case, is labeled on the corre-
sponding bar segment. Several diversity/richness indices are also shown.

5. Subsetting and filtering

In this particular example, we know that there were two separate Roche-454 sequencing trials
included in the QIIME output, but the first sequencing trial (“Run 1”) was of poor quality and
should be removed from the dataset. We remove all of the Run 1 samples from ex1 through a
simple one-line combination of accessor and replacement methods for the sampleMap slot. On
the right-hand side of the assignment operator (<-) we subset the sampleMap, and then assign
it to the sampleMap slot of ex1 on the left-hand side. This assignment replaces the original



sampleMap in ex1, and also re-trims the other components of ex1 (e.g. the otuTable) such
that only Run 2 samples remain.

> ex1 <- subset_samples(ex1, SeqRun == "R2")

An alternative approach would be to define a character vector with the sample names of
Run 2, and then use the assignment operator: sample.names(ex1)<-. Similarly, we can use
species.names()<- assignment to create a new otuSamTaxTree object in which all but the
relatively abundant taxa have been trimmed, through a method borrowed from the genefilter
package in Bioconductor .22 In this case, we arbitrarily create a filter function that returns
TRUE only for the most abundant 30 taxa from a sample, and then apply it to each sample
in the otuTable of ex1, with the added parameter that a species must be TRUE in at least
four samples (be among the most abundant 30 taxa in four or more samples). Like genefilter,
the output of genefilterSample() is a logical vector with the same length as the number of
taxa presently in ex1.

> fun1 <- filterfunSample(topk(30))

> wh1 <- genefilterSample(ex1, fun1, A = 4)

The taxa names are then accessed and subsetted based on the value in wh1, and this trimmed
vector of taxa names (a total of 52 in this case) is assigned back to our phyloseq object, causing
phyloseq’s internal methods to trim the component objects in ex1 to just these taxa. Using a
similar approach, we also remove those samples that now contain unacceptably small (< 100,
for instance) total numbers of individuals (total reads in this case).

> species.names(ex1) <- species.names(ex1)[wh1]

> sample.names(ex1) <- sample.names(ex1)[sampleSums(ex1) > 100]

6. UniFrac distances

UniFrac is a useful metric to summarize the difference between pairs of ecological communi-
ties, and can be used to create a distance matrix for samples in an experiment. An unweighted
UniFrac distance matrix only considers the presence/absence of taxa, while weighted UniFrac
accounts for the relative abundance of taxa as well as their phylogenetic distance. Presently,
only one non-parallelized implementation of the unweighted UniFrac distance is available in
R packages (picante::unifrac). In the phyloseq package we provide optionally-parallelized
methods for calculating both UniFrac and weighted-UniFrac, as well a few key UniFrac vari-
ants, all of which return a sample-wise distance matrix from any phyloseq object that contains
both a phylogenetic tree and an otuTable (otuTree and its subclasses).

Here is an example of the weighted UniFrac calculation using a dataset provided in the
picante package. We first build an otuTree class object using the phyloseq() constructor,
then use the wUniFrac() method to calculate and return the weighted UniFrac distance for



all sample pair combinations.

> data(phylocom)

> tree <- phylocom$phylo

> OTU <- phylocom$sample

> ex3 <- phyloseq(otuTable(OTU, speciesAreRows = FALSE), tree)

> wUniFrac(ex3)

Extending our previous microbiome example, we now calculate the weighted-UniFrac dis-
tance matrix for ex1, then perform multi-dimensional scaling on the distance matrix and
generate an annotated plot. This can be achieved with the wrapper function wunifracMDS,
which also takes advantage of the enhanced plotting facilities provided by the ggplot2 pack-
age28 (Fig. 3).
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Fig. 3: NMDS ordination graphic generated by wunifracMDS. The NMDS coordinates
are generated by metaMDS(), with the weighted-UniFrac distance matrix as argument, and 2-
dimensions specified by default. A separate analysis was done using adonis(), which also did not
find a compelling association between the weighted UniFrac distances and the gender (p = 0.29)
or diet (p = 0.9) of subjects in the study.

7. Robust multiple-table methods

The NMDS of weighted-UniFrac distances did not reveal any clustering of gut microbiome
samples according to a subject’s diet type or gender. However, it may be that these differences



are subtly confined to a subset of species that is not easily detectable with a community-wide
summary statistic, like UniFrac. This effect is compounded by the observation that abundance
counts as output from high-throughput phylogenetic sequencing have high variabilities,29 lead-
ing to a need for robust methods30 that can reveal subtle features of the data.

Many decompositions of inertia31 — such as constrained correspondence analysis (cca()),
analysis of diversity (adonis()), redundancy analysis (rda()) — use sums of squares. The
simplest transformations take the ranked abundances and replace the values by their order
statistic. Here we show an example in which we further threshold the ranks so that all the
low-abundance taxa at noise-level (where presence/absence of a taxa is as much due to chance
as biology) are given the same value.

We can apply this rank threshold transformation to our original data using a special
enclosure form of the threshrank() function in phyloseq, and taking the threshold to be 500,
for instance. We use a custom method for abundance table transformation in the phyloseq
package (transformsamplecounts) that applies one or more transformation functions, in
order, to each sample of the otuTable of the first argument. Although it operates only on the
otuTable component, transformsamplecounts returns an object with the same class and
components as its input.

> ex4 <- transformsamplecounts(ex4, threshrankfun(500))

In Fig. 4 we provide the results of a redundancy analysis on the ranked-thresholded abun-
dance table, as well as a constrained correspondence analysis on the original abundance table.
These plots were produced using the calcplot() convenience wrapper that — in addition
to producing effective graphics with ggplot2 — also provides the opportunity for further
graphics manipulation using multiple layers and a mutable graphics description.28 As antici-
pated, these two methods both appear to effectively cluster the samples by diet and gender,
as specified. In addition, these ordination methods indicate which taxa best account for the
clustering, which is highly valuable during exploratory analysis.

When analyzing a data abundance table with complementary covariates we use general-
izations of PCA and Correspondence Analysis that attempt to account for the explanatory
variables in the description of the overall variability. Redundancy Analysis (RDA) is a version
of PCA with regards to instrumental variables31 that tries to predict the multivariate ranked
data by the covariates gender and diet. The left side of Fig. 4 shows the graphical output from
such an analysis with a biplot representing both the explanatory factors, diet and gender, as
well as the OTU distributions as dots. The OTUs actually have a structure formation along
the axes of a grid; this is due to the ranking and thresholding of the data. We have magni-
fied this in the left part of Fig. 5 to illustrate the graphical capabilities available through the
combination of phyloseq with ggplot2.

On the right of Fig. 4 a different type of analysis was used directly on the abundance data,
where we performed a constrained correspondence analysis (CCA)32 and projected the output
onto the first two constrained coordinates. We have also plotted the covariate groupings and
the species. We can see in the magnification of the species plot on the right of Fig. 5 that the
grid is replaced by the rhombus of extreme points. These are the OTUs with small abundances



which are more strongly weighted in CCA, thus becoming the boundary of the projection
region.
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Fig. 4: Redundancy analysis and Constrained Correspondence Analysis. (Left) Re-
dundancy analysis applied to a thresholded, ranked-transformed abundance table that had been
trimmed such that only the phyla accounting for the top 99% of taxa are included. (Right)
Original trimmed abundance table (no transformation nor threshold) subjected to Constrained
Correspondence Analysis (CCA), constrained on a subject’s diet and gender.
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Fig. 5: Enlarged RDA and CCA plots emphasizing the taxa (species) coordinates.
Graphics were produced with calcplotrda() or calcplotcca() convenience wrappers in phy-
loseq, which utilize analysis and graphics tools from the vegan and ggplot2 packages, respectively.
Only the phyla accounting for the top 99% of taxa are included.



8. Functional genes and non-standard phylogenetic markers

Environmental datasets also utilize novel markers or functional genes for which there is not
a large curated database for comparison, nor clustering pipelines carefully tuned to define
species-level taxonomic clusters. However, it is common and useful for researchers to calculate
a phylogenetic tree from the sequence data, and the source sample from which the individual
sequences were derived is generally known. For this situation phyloseq contains a method,
tipglom(), that takes as input a phylogenetic tree and sequence-source hash table, and returns
a higher-order object, including an otuTable. The tipglom() method uses a default greedy
clustering based on a branch-length distance threshold — or an alternative user-provided
tree-based method — to agglomerate closely related sequences as one taxa. Each merging step
is carried out by a user-accessible method called mergespecies(), which ensures consistency
between tree and species abundance tables during each merge. In Fig. 6 we provide an example
of an unprocessed tree calculated from more than 400 sequences of the same functional gene,
derived from multiple environmental samples. We also show the same tree after processing
by the tipglom function (species branch-length cutoff of 0.1), and plotted using a phyloseq
method for displaying otuTree objects. In addition to consolidating similar sequences for
legibility, this new tree reveals information about particular taxa that appear in multiple
samples, as well as portions of the tree that originate from only one sample type.
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9. Conclusions

We describe a new Bioconductor package, phyloseq, for handling, filtering, and analysing high-
throughput phylogenetic sequencing data after it has been processed in a sequence clustering
pipeline. The phyloseq package provides extensions for leveraging analysis from other ecology-
related packages, such as adephylo, vegan, picante, as well as other packages that we have
found useful for data of this type. phyloseq also provides useful wrappers for key analysis
pipelines that should help to streamline statistical analysis of data from phylogenetic se-
quencing projects. We hope that this package provides a useful class structure, methods, and
methods extensions that will streamline the input of phylogenetic sequencing data, its QC/QA
processing and trimming, and especially its analysis and graphical representation by this and
other Bioconductor/R packages.
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