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The evolution of intrinsically disordered proteins has been studied primarily by focusing on
evolutionary changes at an individual position such as substitution and conservation, but the evo-
lutionary association between disordered residues has not been comprehensively investigated. Here,
we analyze the distribution of residue-residue coevolution for disordered proteins. We reveal that the
degree of coevolved residues significantly decreases in disordered regions regardless of the sequence
propensity, and the degree distribution of coevolved and conserved residues exclusively differs in each
functional category. Consequently, the coevolution information can be useful for predicting intrinsic
disorder and understanding biological functions of a disordered region from the sequence.

1. Introduction

Intrinsically disordered proteins represent proteins that do not have a well-structured fold and
undergo dynamic conformational changes. As disordered proteins perform important and com-
plex biological functions such as signaling, regulation, and post-translational modification,1,2

understanding disordered proteins becomes increasingly important. However, our knowledge
on the evolution of disordered proteins and its relationship with functions have been limited.

Because of the absence of well-defined structures, sequence-based analysis plays a crucial
role in predicting disordered proteins and the biological functions.3 Initially, a low sequence
complexity has been indicated as a feature of highly disordered proteins.4 A study that ana-
lyzed sequence alignments of disordered proteins has indicated that disordered proteins have
different evolutionary patterns of substitutions from ordered proteins.5 Moreover, a model-
based study has revealed that the likelihood of evolutionary mutations and the conservative
substitutions for disordered proteins are different from those for ordered proteins.6 Further-
more, an in silico mutagenesis study has compared the conservation of secondary structures
such as helices and strands and intrinsic disorders.7 Although the in silico study is based on
order-biased evolutionary models,8 it has shown that long intrinsic disorders are not easily
maintained and requires a specific effort for the disorder conservation while the secondary
structures are tolerant to random mutations. Therefore, the evolution of disordered proteins
exhibits large differences in sequence complexity, amino acid composition, substitution, and
conservation.

While the distribution of amino acids at an individual residue has been extensively stud-
ied, the evolutionary association between distinct residues, called herein coevolution, has not
been explored sufficiently. Coevolution is useful information that complements conservation
information, because it reveals inter-relationship between variable residues and differentiate
the associated residues from other independently evolved residues. A number of studies have
shown that coevolution information is related with structural and functional knowledge.9–14



However, the coevolution of disordered protein has not been comprehensively investigated.
Although a recent study have indicated that the degree of coevolution in disordered proteins
is low because of the rapid evolution rate,14 the relationship between the coevolution signal
and functionality of disordered proteins has not been investigated. The use of coevolution in-
formation for disordered proteins can be useful, because conservation information only shows
a limited performance in associating the evolutionary information with the functions of disor-
dered proteins. Particularly, according to a recent study where intrinsic disorders are classified
with the evolutionary conservation of disorder and sequence, a majority of canonical intrin-
sic disorders belong to the “flexible disorder” category where the disorder is evolutionarily
conserved but the sequences are not.15 Consequently, the functions frequently occurred with
disordered regions are not differentiated solely by the sequence conservation information, and
an additional information compensating the sequence conservation is required to understand
the functions.

In this study, we investigate the distribution of coevolved residues in disordered proteins
experimentally determined. When comparing to non-disordered regions, disordered regions
show a low degree of coevolved residues. Additionally, we investigate the relationship be-
tween coevolution and biological functions of evolutionary conserved disorders in combination
with conservation information, and reveal that each functional category has a unique degree
distribution of coevolved and conserved residues.

2. Materials and methods

2.1. Data set

Disordered proteins are collected from DisProt v5.7,16 a manually curated database with
experimentally determined structural disorders. To prevent amino acid sequence bias, the
disordered proteins are clustered by running CD-HIT17 with the maximum sequence identity
threshold of <60%, and only the representative proteins are taken. Next, the proteins with
less than ten homolog sequences in the multiple sequence alignments, and the residues with
less than five sequences aligned at the positions are excluded for a reliable estimation of
evolutionary information. Consequently, 519 disordered proteins with 57,261 disordered and
163,470 non-disordered residues are considered.

For comparison, ordered protein set consisting of 83 protein with 17,451 residues is used.
The proteins have well-determined structures and exclusively represent distinct protein fami-
lies. The proteins are originally organized and used for evaluating the performance of correlated
mutation algorithms that estimating coevolution.11,18,19

2.2. Multiple sequence alignment construction

For each disordered or ordered protein, the multiple sequence alignment is automatically
constructed with the homolog sequences. Homolog sequences are collected by running PSI-
BLAST20 with the options “-e 0.001 -h 0.001 -j 3” against the NCBI NR database clustered
with <90% sequence identity, and then the hits with <50% alignment coverage are omitted
by running the script program, alignhits.pl in the HHsearch package,21 with the options “-
e 0.01 -cov 50.”. Subsequently, the multiple sequence alignment is constructed by running



MUSCLE22 on the remaining hits with the fastest option “-stable -quiet -maxiters 1 -diags
-sv -distance1 kbit20 3.”

2.3. Coevolution estimation

A coevolution score between two residues is estimated with MIp measurement.19 The MIp
score is derived from the mutual information score defined as

MI(i, j) =
∑
x

∑
y

P (xi, yj) log

(
P (xi, yj)

P (xi)P (yj)

)
P (xi) =
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∑
x

P (xi, yj),

where P (xi, yj) is the joint probability of amino acid x being at position i and amino acid y

being at position j. The MIp score is calculated by removing the background noise from the
original mutual information score as follows,

MIp(i, j) = MI(i, j) − MI(i, ·)MI(·, j)
MI(·, ·)

,

where MI(i, ·) and MI(·, j) is the mutual information score at position i and position j av-
eraged over all other positions, respectively, and MI(·, ·) is the MI value averaged over all
pairs of positions. To prevent an erroneous measurement and achieve an accurate estimation
of coevolution signal, we incorporate the pseudocount and marginal probability constraint
based on sequence profile. To address the sequence redundancy of multiple sequence align-
ment, the sequence weight and the effective number of sequences are calculated using the
position-based sequence weight23 and the exponential of negative entropy averaged over all
columns,24 respectively. The above procedure is available via web a.

The estimated MIp scores are standardized into Z-scores, and the residue pairs whose
MIp Z-scores exceed 4.0 are chosen as coevolved residue pairs. Finally, coevolved residues are
defined as the residues comprising coevolved residue pairs.

2.4. Sequence conservation estimation

Sequence conservation is estimated as Shannon’s entropy with the reverse sign.25 For example,
a conservation score at position i is defined as

C(xi) =
∑
x

P (xi) log (P (xi)) ,

where P (xi) is the probability of amino acid x being at position i. Similar to the coevolution
estimation, the same methods for estimating the sequence weight and the effective number of
sequences are also used in the conservation score estimation.

The entropy-based conservation scores are standardized into Z-scores, and the residues
whose Z-score exceed 0.8 are chosen as conserved residues.

ahttp://binfolab12.kaist.ac.kr/cmat/



2.5. Disorder conservation estimation

The degree of conservation of structural disorder is estimated by the ratio of predicted disor-
dered residues among the residues aligned at the position as following the previous study.15

For each sequence in multiple sequence alignment, the intrinsic disorders are predicted by
running DisEMBL.26 If a residue is experimentally determined as a disordered residue, and
more than 40% of the aligned sequence positions are predicted as disordered residues, the
residue is defined as a conserved disordered residue.

2.6. Functional categories

To investigate the relationship between the evolutionary information and biological functions
of disordered regions, we incorporate the functional categories annotated in DisProt. There ex-
ist three kinds of categories, called structural functional type, functional class, and functional
subclass, respectively.2,27–29 The structural functional type represents a structural transition
upon performing the function, and the functional class and subclass represent biological func-
tions at different levels of details. As the disorder functions are not categorized exclusively, a
disordered region can belong to multiple functional classes and subclasses, and subsequently
affect their statistics simultaneously. At functional subclass level, we only consider the func-
tional subclasses assigned at more than 1,000 distinct residues.

3. Results

3.1. Distribution of coevolved residues for disordered proteins

We found that the fraction of coevolved residues differs in disordered regions. The fraction
of coevolved residues for disordered proteins is 36.02%, similar to that for ordered proteins,
37.12%. However, separating disorder and non-disordered regions in disordered proteins, the
fraction of coevolved residues differs as 24.92% and 36.19%, respectively. That is, the degree of
coevolved residues significantly drops in disordered regions. As the disordered proteins have
different sequence lengths, we also examined the the degree of coevolution with respect to
the degree of disorder. Figure 1 shows the frequencies of the different ratios of disordered
and coevolved residues for disordered proteins. As the proteins have more disordered residues,
the average fractions of coevolved residues decrease. Thus, the degree of coevolution for the
disordered proteins is negatively correlated with the degree of intrinsic disorder.

Since the coevolution scores are estimated from multiple sequence alignments, the sequence
diversity and the sequence complexity may influence the different degree of coevolution sig-
nals between disordered and ordered proteins, and the alignment quality also can. To check
the effect of sequence diversity, we first examined the fraction of coevolved residues against
disordered and non-disordered residues with the number of aligned sequences and another se-
quence diversity measure, the effective number of aligned sequences defined as the exponential
of negative entropy averaged over all columns of aligned sequences.24 As shown in Figure 2A,
the fraction of coevolved residues for disordered residues is less than that for non-disordered
residues. To take account of sequence redundancy, the degrees of coevolution of the disordered
and non-disordered residues are compared after binning them according to the effective num-



ber of sequences. As shown in Figure 2B, the disordered residues show smaller fractions of
coevolved residues, indicating that disordered residues have a lower degree of coevolution sig-
nal than non-disordered residues regardless of the diversity of the homolog sequences. Second,
we examined the fraction of coevolved residues against disordered and non-disordered residues
with various range of sequence complexities as shown in Figure 2C. It has been known that
disordered regions exhibit a low sequence complexity, so the different population of coevolved
residues may be a result of different sequence complexity. The sequence complexity is calcu-
lated by Shannon’s entropy measure with a 45-aa window as following the previous study.4 At
every range of sequence complexity, disordered residues have a smaller fraction of coevolved
residues than non-disordered residues. Third, we examined the fraction of coevolved residues
against disordered and non-disordered residues with various range of sequence conservation
score as shown in Figure 2D. As the alignment quality is usually estimated in comparison with
structural alignment, the alignment quality for disordered region is hard to estimate. Instead,
sequence conservation is used as an indirect measure of alignment quality, because aligned
position with high sequence conservation are more likely accurate. The fraction of coevolved
residues for disordered residues is consistently less than that for non-disordered residues at
every range of sequence conservation score. Consequently, the low degree of coevolution sig-
nals in disordered regions can be though as a feature of intrinsic disorder not the bias from
sequence pool and alignment error.

We also investigated the degree of coevolved residues regarding to the evolutionary classi-
fication of intrinsic disorder introduced by a recent study.15 According to the study, intrinsic
disorder can be classified into three different groups, such as constrained, flexible, and non-
conserved disorders. The constrained disorder consists of residues whose disorders and amino
acids are evolutionarily conserved, the flexible disorder consists of residues whose disorders
are evolutionarily conserved but amino acids are not, and the non-conserved disorder consists
of residues whose disorders are not evolutionarily conserved. The two conserved disorders, the
constrained and flexible, show the relevant association with biological functions of intrinsic
disorder, while the non-conserved disorder does not show a common functional feature. When

Fig. 1. Densities of disordered proteins with different ratios of disordered and coevolved residues. The inten-
sity represents the frequency of disordered proteins with the ratios of disordered and coevolved residues.



we classified disordered residues according to the the disorder and sequence conservations,
the fractions of coevolved residues for the constrained, flexible, and non-conserved disorders
appear as 0.2808, 0.2536, and 0.2717, respectively. The flexible disorders show the smaller frac-
tion of coevolved residues than the constrained and non-conserved disorders with the p-values
of 2.2×10−5 and 6.5×10−3, respectively. We repeated the evolutionary classification by replac-
ing the sequence conservation measure with the maximum frequency of amino acids at aligned
sequence positions as following the previous study, but the result does not change much. The
fractions of coevolved residues for the constrained, flexible, and non-conserved disorders ap-
pear as 0.2799, 0.2457, and 0.2717, respectively, and the p-values of the flexible disorders
against the constrained and non-conserved disorders are 4.4 × 10−17 and 1.8 × 10−4, respec-
tively. The previous study has indicated that flexible and constrained disorders are different
in their functional characteristics, as flexible disorder usually presents short linear motifs and
performs in signaling,30 while constrained disorder is associated with the functions requiring
tight sequence constraint.15 Moreover, it has been suggested that contained disorder can often
adopt more strict conformations than flexible disorder, so its higher degree of coevolution may
come from the same constraint. Another high degree of coevolution observed in non-conserved
disorder can be explained with the high rate of ordered protein residue. The aligned protein
residues in the non-conserved disorder possibly have a high ratio of structured residues, and
thus the background coevolution signal may influence the high degree of coevolved residue in
the regions. It is important to note the evolutionarily different disorder groups have distinct
functionalities, and in our results, the degrees of coevolved residues differ in those groups.

Fig. 2. Degree distribution of coevolved residues in disordered and non-disordered regions. (A) Fraction of
coevolved residues to all residues with different ranges of number of aligned sequences. (B) Fraction of coevolved
residues to all residues with different ranges of sequence complexity. (C) Fraction of coevolved residues to all
residues with different ranges of sequence conservation score.



That is, the coevolution information can be a useful for understanding biological functions of
intrinsic disorder.

3.2. Relationship between coevolution and functions

Intrinsic disorders have been classified with the evolutionary conservation in the predicted
disorder and the sequence, and evolutionary conserved disordered regions have the frequently
occurred functions of intrinsic disorders.15 However, major functions of intrinsic disorder such
as signaling and regulation are not differentiated only by the sequence conservation infor-
mation. Here, we further investigate the relationship between coevolution information and
common functions of evolutionary conserved disorders in combination with sequence conser-
vation information.

The content of conserved and coevolved residues significantly differs according to the struc-
tural functional type. As shown in Figure 3, two main structural functional types, the disorder
that performs the function in disordered state and the disorder-to-order that undergoes struc-
tural transition from disordered to ordered state, have distinct frequencies of conserved and
coevolved residues. The disorder-to-order type has more conserved and coevolved residues than
disorder type, which implies the higher structural constraints upon the structural transition.
Additionally, this can support the association between constrained disorder and the struc-
tural transition that the previous study has speculated.15 On the other hand, the disorders
whose functions arise within the disordered state are less evolutionarily restrained. As con-
sequence, the structural functional types have distinct proportion of evolutionary conserved
and coevolved residues.

Each functional class differs in the ratio of conserved and coevolved residues as shown in
Figure 4. The effector class with permanent binding, that recognizes a partner molecule and
modifies the activity, shows the highest degree of coevolved residues among the six functional
classes. Another class with permanent binding, the assembly class, have relatively more con-
served residues than the effector class. The other class with permanent binding, the scavenger
class, has the highest ratio of conserved residues. Since the effector and assembly classes have
known as related to disorder-to-order transitions,31–33 their high degrees of conservation and
coevolution reflect the functionality. However, the preferred contents are different in combi-
nation of both evolutionary information. Specifically, the effector class prefers the coevolved
variable residues most. In the similar aspect, the modification site and the chaperone classes
share transient binding property,2,27 but are distinct from each other with the degree of conser-

Fig. 3. Relative frequency of conserved and coevolved residues in various structural functional types of
disordered residues.



vation and coevolution. The modification site class prefers conservation, while the chaperone
class does coevolution of variable residues. The entropic chain class has a large fraction of
variable and non-coevolved residues, which reflects the functionality arising from the disor-
dered state.2 The modification site and the entropic chain classes share a similar content of
conservation and coevolution information. Nevertheless, the use of coevolution information
reasonably differentiates the effector, the assembly, and the modification site classes, which
have almost similar proportions of conserved residues. That is, the degree of coevolution in
each functional class can reflect the function and uniquely discriminate the relevant functional
class in combination with the degree of conservation.

At the functional subclass level, each functional subclass has a distinct ratio of conserved
and coevolved residues as shown in Figure 5. The protein-DNA binding subclass has the
highest ratio of conserved residues. The substrate/ligand binding, intra protein interaction,
and transactivation subclasses commonly have a high degrees of conserved residues, but sig-
nificantly differ from each other with the fractions of coevolved residues. In particular, the
substrate/ligand binding subclass has a high fraction of coevolved residues, and the other
two subclasses have low fractions of coevolved residues. Importantly, various kinds of binding
subclasses, such as the protein-protein, protein-DNA, protein-rRNA, substrate/ligand, and
metal binding subclasses, are meaningfully separated with the combination of the ratios of
coevolved and conserved residues, despite their similarity with permanent binding.2,27,31–33

The phosphorylation subclass, that comprises a majority of the modification site class, and
the autoregulatory subclass, that frequently undergoes some kinds of modifications during
playing the role,2 similarly have a large fraction of variable and non-coevolved residues, but
their frequencies conserved and coevolved residues separate the functional subclasses. As at the
functional class level, some functional subclasses such as the metal binding, the protein-protein
binding, and the phosphorylation subclasses are differentiated by combining coevolution in-
formation, even though they have a common enrichment of conserved residues. Therefore, the
functional subclasses can be uniquely separated by the degree of coevolution and conservation,
likewise the functional classes.

Fig. 4. Relative frequency of conserved and coevolved residues in various functional classes of disordered
residues.



4. Discussion

We have demonstrated that coevolved residues are less populated in disordered region. The
lack of structural constraints for disordered regions would be the main reason for the degree
distribution, because of two reasons. The first reason is that the structural constraints such as
intra-molecular contacts are known as one of main factors that develop coevolution signals,34,35

and the second reason is that the degree of coevolution in disordered regions shows a negative
correlation with the degree of disordered residues. That is, unlike ordered residues, disordered
residues do not lie in strong structural constraints, lacking a well-structured fold and dynam-
ically changing the conformations, which consequently reduces the degree of evolutionarily
coupled residues.

The low degree of coevolved residues in disordered regions can be an effective indicator for
disorder prediction. To explore the usefulness of coevolution information for disorder predic-
tion, the enrichment of coevolved residues in neighboring residues within ±7 aa long has been
estimated as shown in Figure 6. For disordered residues, 44.4% of disordered residues have
zero or one coevolved residues among the neighboring residues. On the other hand, for ordered
residues, the number of coevolved residues are evenly distributed regardless of the secondary
structure elements, as 5.6–18.0%. Hence, the coevolution information can be useful for disor-
der prediction. Although some of currently available disorder prediction methods, categorized
to as contact-based method, implicitly incorporate coevolution information, those methods do
not fully exploit the effectiveness.36 Some of them just use contact potential without evolu-
tionary information of a target protein.37,38 Even though Ucons,39 that directly incorporates
contact predictions using evolutionary information,40 coevolutionary information are not in-
cluded in the contact prediction procedure. Therefore, the use of coevolutionary information

Fig. 5. Relative frequency of conserved and coevolved residues in various functional subclasses of disordered
residues.



can effectively improve the current methods for disorder prediction.
Even though disordered residues tend to be less coevolved than ordered residues, a relative

ratio of coevolved residues in a disordered region can be an effective indicator to the biological
function. When we have examined the proportions of conserved and coevolved residues for
various functional annotations at different levels and criteria, the functional annotations have
exclusively distinct proportional features. In particularly, many of those functional annotations
that share a similar sequence conservation degree can be differently classified in combination
with coevolution information. Therefore, the coevolution information can be useful for speci-
fying biological functions of disordered proteins as well as the disorder prediction.

According to Jeon et. al.’s study14 that explores the relationship between coevolution and
conformation changes, the degree of coevolution in flexible regions of ordered proteins encodes
the structural transitions. In addition, they have concluded that disordered proteins have a
low degree of coevolution, not reflecting the high flexibility. However, in the present study,
we have compared the degree distributions of coevolved residues to the overall distribution as
background statistics, and revealed the association between coevolution and dynamic behavior
such as structural functional types. Accordingly, structural transitions of disordered proteins
seem to be encoded as the coevolution signals like those of ordered proteins, but additional
studies are needed to clarify the functional association. Because disordered and ordered pro-
teins have different background degrees of coevolution, prior knowledge for the background
coevolution upon the structural disorder need to be investigated and incorporated to normal-
ize the coevolution signal, which can be critical to revealing the functional roles of coevolution
information.41

Coevolution information can be useful for understanding disordered proteins due to three
reasons. First, as we have demonstrated, the degree of coevolved residues is related with
functional classifications. For example, disordered residues whose function arises from the dis-
ordered state show a low degree of coevolution signal, and, on the other hand, disordered
residues whose function requires specific recognitions as in effector class show a high degree

Fig. 6. Distribution of the number of coevolved residues within neighboring positions for disordered and
ordered residues. Disorder indicates disordered residues. H, E, and C indicate ordered residues belonging to
helix, sheet, and coil by secondary structure, respectively.



of coevolution signal. Second, the coevolution information successfully compensates the con-
servation information. We have demonstrated a group of functional categories, similar to each
other with the degree of conservation but different with the degrees of coevolution signals.
Third, coevolution information describes evolutionary association between residues which can-
not be represented by conventional sequence analyses. Thus, coevolution analysis would be
beneficial to understanding the evolution of disordered proteins.

Although we have incorporated an advanced coevolution estimate with high reliability and
robustness, the analysis results are still dependent on multiple sequence alignments. Because
the alignment quality is usually estimated in comparison with structural alignment and most
of alignment methods are designed for ordered proteins,42 alignment quality of disordered
proteins are difficult to be estimated. Even though, in this study, we have used sequence
conservation score as an indirect measure of alignment quality, the effect of alignment quality
for disordered proteins needs to be examined more apparently. As a separately calculated
substitution matrix for disorder proteins has improved the alignments of them, similarly, a
development of multiple sequence alignment methods for disordered proteins would be useful
for an accurate coevolution analysis of them.

This study can be extended to a genome-scale analysis by combining disorder prediction
methodologies.43 In the present work, we have chosen only the experimentally determined
disordered proteins from DisProt database. Although the sequence redundancy has been re-
moved with sequence identity, the result statistics still depends on the content of the original
database. Thus, by incorporating disorder prediction methodologies and then applying the
present analysis procedures, more realistic knowledge about coevolution in disordered pro-
teins can be obtained as a lot of prediction-based studies.15,44–46 Moreover, various kinds of
biological information associated with intrinsic disorder can be easily combined and considered
in the analysis procedure.
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