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We report the development of a novel high performance computing method for the identification of 
proteins from unknown (environmental) samples. The method uses computational optimization to provide 
an effective way to control the false discovery rate for environmental samples and complements de novo 
peptide sequencing. Furthermore, the method provides information based on the expressed protein in a 
microbial community, and thus complements DNA-based identification methods. Testing on blind samples 
demonstrates that the method provides 79-95% overlap with analogous results from searches involving 
only the correct genomes. We provide scaling and performance evaluations for the software that 
demonstrate the ability to carry out large-scale optimizations on 1258 genomes containing 4.2M proteins. 

  

1. Introduction 
Peptide and protein identification from global proteomics studies of environmental samples is 
challenging because the standard approach used to identify peptides and proteins is difficult to 
effectively apply. The standard approach involves growing clonal cells in the laboratory, 
separating the proteins from other cellular components, digesting the proteins into smaller 
peptides (approximately 6-55 amino acids long), partially separating the peptides using liquid 
chromatography, and then introducing each peptide into a mass spectrometer.  

The peptides are then collided with an inert gas that vibrationally excites the peptide. The 
vibrational excitation leads to fragmentation of the peptide into smaller chemical components, 
which are often short sequences of amino acid residues. The most widely used method to identify 
the peptide from its mass spectrum is to compare a predicted fragmentation pattern of the peptide 
(a model spectrum) to the experimental spectrum. This approach involves a search of all possible 
peptides that can be generated from the protein sequences. There are a number of available 
analysis tools that perform these searches, including Sequest [1], X!Tandem [2], Crux [3], 
Mascot [4], OLAV [5], InsPecT [6], and MSPolygraph [7-9].  

Because the model spectra used in these searches are typically developed by training over 
diverse sets of peptide spectra, the resulting model spectra are often not good representations of 
the true spectrum, which can result in low sensitivity [9]. Given the high mass accuracy of many 
spectrometers, this would not be a problem except for the large number of peptides that can be 
generated from the protein sequences of a single microorganism, resulting in a high chance of a 



random match. This, of course, reduces the number of peptides that can be confidently identified. 
For instance, when controlling the false discovery rate at 5%, often only 15-20% of the spectra 
can be identified with a peptide. 
In an environmental sample, the problem is exacerbated because there may be several to 
hundreds of different microbes present. The vast number and diversity of possible peptides that 
have to be searched leads to a very low number of spectra that can be confidently identified at a 
reasonable false discovery rate.  
Approaches to identify peptides and proteins from environmental samples have generally taken 
one of two approaches for searching protein sequences. One approach is to search against all 
known protein sequences using sequence databases such as the NR database at NCBI or likewise 
the Swiss-Prot database at the Swiss Institute of Bioinformatics. However, this approach has not 
been favored because the large number of protein sequences leads to a high chance of a match 
simply by chance. Alternatively, recent environmental proteomics studies have sought to limit 
the number of potential candidate peptides by searching against metagenome sequences from the 
same environment [10-12]. This is a sensible approach, but it too has many challenges. First, it 
requires having metagenome sequences to begin with. If one is available, protein coding regions 
must be determined from the draft sequences, or spectra can be matched to all potential open 
reading frames from the draft sequences. However, the problem with the latter approach is 
similar to searching against large databases such as NR or Swiss-Prot: the chance of a random 
match is quite high due to the large number of candidates and the moderate specificity of the 
model spectra that are used for identification. 
Frequently, metaproteomics studies also supplement the analysis with de novo peptide 
identification, which seeks to determine the identity of the peptide responsible for the spectrum 
only from the peaks in the spectrum. Unfortunately, peptide MS/MS spectra most often do not 
provide enough information to obtain full-length peptide sequences and are challenging to apply 
to spectra from peptides with charges greater than +2. 

As an alternative, access to high performance computing resources allowed us to developed an 
optimization method for identifying peptides and proteins from fully sequenced microbial 
genomes. The method searches all fully sequenced genomes and optimizes proteome-spectra 
matches by iteratively eliminating microbes that are not likely to be in the sample. The method 
has been tested using samples containing blind mixtures of spectra from known microbes and 
samples containing unknown mixtures of microbes. In the case of five blind mixtures of varying 
complexity, the method has been able to identify the correct microbes reliably. In addition, the 
spectra identified with each microbe has a high overlap with spectra identified at a 5% FDR 
when searching only the protein sequences of the correct organisms.  
2. Methods 
The method evaluates which known genomes are appropriate for analysis of an environmental 
sample using the statistics based on the number of top hits observed for each genome in the 
MS/MS data. Specifically, a database search tool, MSPolygraph in this case, is used to evaluate 
matches between each spectrum and candidate peptides from the protein sequences of each of the 
fully sequenced genomes available. In the work here, we used the 1258 fully sequenced bacterial 
and fungal genomes available from NCBI on Oct 4, 2011. Each candidate peptide may 
correspond to one or more genomes, and genomes can have multiple candidate peptides for each 
spectrum.  However, for a particular spectrum only the highest scoring peptide from a genome is 



recorded.  If the genome has no candidates for the spectrum, the genome’s score for the spectrum 
is zero.  Spectra with no matches are removed.  The genome having the peptide with the highest 
score for a spectrum is referred to as the top hit for that spectrum. Also, for each genome, the 
total number of candidate peptides for that genome in each spectrum is recorded. The 
significance of each genome is then calculated based on a statistical likelihood. A large number 
of ties occur in this process, in which a peptide that is a top hit to a spectrum belongs to proteins 
from multiple genomes. The ties are broken in an iterative manner with an expectation-
maximization approach. Details on the method follow. 

2.1 Statistical Null Model 
The probability that a particular genome would appear as the top hit for a particular spectrum by 
chance is estimated as the number of peptide candidates generated from the protein sequences of 
the genome divided by the total number of candidates from all genomes for that spectrum. That 
is, the probability of a random top hit for a particular genome to a spectrum is proportional to the 
relative number of peptide candidates that can be derived from the protein sequences of that 
genome. From these probabilities, we estimate the number of top hits that would be expected to 
be observed for each genome. This is the number of spectra multiplied by the null probability. In 
addition, the information on the null probabilities is later used to generate a population of top hits 
that a genome would obtain by chance for each spectrum from a simulation.  

2.2 Sample likelihood ratio and significance 
For each genome, we calculate the sample likelihood ratio, which is the likelihood of observing 
the genome from the data relative to the likelihood of observing the genome by chance. 
Accordingly, the sample likelihood is calculated as the number of top hits observed from the data 
nobs,i relative to the number of top hits expected from the null probabilities nnull,i, 
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θ i =
nobs,i
nnull,i

. 

To estimate the significance of the sample likelihood ratios, the number of top hits expected by 
chance for each genome is estimated. As mentioned above, this is the number of spectra 
multiplied by the null probability. Next, using the null probabilities, a simulation is then used to 
generate a population of likelihood ratio values that would be expected to be observed by chance. 
The population of likelihood ratios is then fit to a generalized extreme value distribution. From 
the fit, the probability of observing the sample likelihood ratio by chance (p-value) is estimated. 
2.3 Iterative assessment of likelihood 
Initially, distribution of likelihood scores is obtained in which no particular genome stands out, 
in large part because many top-scoring peptides are shared among them. In this case, it is not 
clear which genomes are good proxies for the organisms contained in the environmental samples. 
Ideally, ties are broken by assigning each involved genome a fraction of the top hits proportional 
to the their abundance in the environmental sample. However, the proportion of each species in 
the sample is unknown, and the number of observed top hits is a conflation of hits due to the 
microbe actually being present and random hits to the genome of the microbe. Instead, ties are 
broken by assigning each genome a fraction of the top hits proportional to the sample likelihood 
ratio for the genome determined in the previous iteration and scaled by the probability that the 
sample likelihood ratio was not by chance (1- p-value). Specifically, the quantity Ci, as 
calculated below, is found for each top scoring genome i and normalized over all top scoring 
genomes for the spectrum, resulting in each genome’s share of the top hit, 
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Ci = θ i ∗ 1− pi( ). 

Here θi is the sample likelihood ratio for genome i from previous iteration, and pi is the p-value 
of the sample likelihood ratio for genome i, calculated using the results of simulation. New θ and 
p-values are calculated by totaling the fraction of top hits assigned to each genome and 
comparing the results to simulated results.  

This process is repeated for a predetermined number of iterations or until some convergence 
criterion is met.  (In our case, 150 iterations or until top 50 θ values changed by less than 
0.0001.)  After the last iteration, ties are reassigned if desired. For each spectrum, the tied 
genomes with the most top hits overall from the last iteration receives full credit for the hit.  This 
gives a simplified explanation in which the spectra are accounted for with as few genomes as 
possible. In most cases, this results in consolidation of hits from several closely related genomes 
(often species from the same genus), leaving one representative that best explains the observed 
hits.  This step is most useful when one expects only single representatives of each genus to be 
present and can be omitted if multiple species from a genus are expected to be present.   P-values 
are calculated for each genome based on the recalculated number of hits using results from a 
second simulation.    
2.4 False Discovery Rate Estimation 
Finally, genomes are determined to be appropriate or not based on a desired false discovery rate.  
The false discovery rate is estimated from the final set of p-values using a nonparametric 
estimation with the program qvality [13]. If a genome has posterior error probability less than 
1%, it is considered to be appropriate for use in the analysis.  If a genome fails to meet this 
requirement, it is considered to be inappropriate. 

2.5 Programming Model 
The statistical methods discussed herein were implemented in Matlab, and run on common 
workstations. The database search tool MSPolygraph had to be modified to handle protein 
sequences from thousands of genomes and to keep a list of only the top scoring peptides from 
each genome. As the number of genomes is constantly growing, high performance computing is 
required.  

The parallel version of the MSPolygraph is essentially a task-scheduling wrapper around the 
serial version of the code. In the serial code an input parameter file is read, along with the 
fragmentation model for generating model spectra, the protein sequences of all organisms to be 
searched, and the spectra file(s) to be analyzed. The code loops over the spectra scoring each 
spectrum against all peptides generated from the target protein sequences that are consistent with 
the observed mass-to-charge ratio of the observed, intact peptide, accumulating high scoring 
matches and printing them out in a sorted list, sorted by likelihood ratio score. The amount of 
work required to score a spectrum depends on a variety of factors which include its length 
(number of peaks), how many peptide candidates were generated from the target protein 
sequences, and how many peaks from each of those peptide candidates match peaks from the 
experimental spectrum peaks. The number of peaks from each peptide that will match the 
spectrum cannot be predetermined without doing 2/3 of the work required to actually score the 
spectrum, which makes an a priori determination of run time for a spectrum impractical. Hence, 
we use a dynamic scheduling scheme facilitated by a server/client process model. 



In the parallel version we use the MPI (Message Passing Interface) standard for communication. 
The input files are placed on a globally visible file system (mounted on all of the compute 
nodes). Each processor reads in to its own local memory the input files and we then use a 
dynamically scheduled server-client model to control which process (mpi rank) scores which 
spectrum. A processor's behavior is controlled by its mpi rank. One processor is the dedicated 
server process (mpi rank 0) and all others are considered client processors. 

After reading the input data, the server process issues a non-blocking receive to each client. It 
uses a simple counter to determine which task to send to a requesting client. It polls clients for 
responses indicating that a spectrum has been completed (or during the first pass that a client has 
initialized and is ready to start scoring), and replies with another index for a spectrum to be 
scored if there is one or a quit message if all tasks have been distributed. The manager utilizes 
non-blocking sends so as not to need to wait for the clients to receive their messages. A different 
buffer for each client is used. As the outgoing messages are only an index as to which spectra to 
score, and the incoming messages are a fixed length summary line, only a small amount of space 
is required even for a very large number of clients. Also, as the server hands out a new index to a 
"ready to start" or "completed spectrum" message from a client, no more than 1 message per 
client is ever in flight. After all tasks have been handed out, the server processor continues 
polling for responses till responses for all spectra have been received. 
The client process also reads the input files from the global file system, opens its own output file 
for printing scoring results for spectra assigned to it. It then issues a non-blocking receive for an 
index of the next spectra to be score and sends a "ready to start" message to the server processor. 
The client then enters a communication and scoring loop in which the client repeatedly: 

• waits	
  for	
  server	
  message	
  indicating	
  which	
  spectrum	
  to	
  process	
  (or	
  a	
  quit	
  message),	
  
• processes	
  the	
  spectrum	
  (or	
  exits	
  the	
  loop),	
  	
  
• writes	
  data	
  and	
  flushes	
  the	
  results	
  to	
  its	
  output	
  file,	
  
• issues	
  a	
  non-­‐blocking	
  receive	
  for	
  the	
  next	
  spectrum	
  index	
  and,	
  
• sends	
  a	
  summary	
  message	
  for	
  the	
  scored	
  spectrum	
  to	
  the	
  server.	
  

Scaling results are presented below.     
3. Results 
3.1 Optimization of Artificial Microbial Communities 
Five laboratory samples were prepared of varying complexity, ranging from 3 to 15 microbes. 
The samples were mixed in equal proportions based on estimates of total protein concentration. 
The results for the lowest complexity sample are shown in Table I. In this sample, three species 
were present, Anaeromyxobacter dehalogenans, Geobacter uraniumreducens  and Salmonella 
typhimurium. As shown in Table I, these three species were identified as the top three species by 
the optimization procedure and were the only species identified at a 1% false discovery rate (q-
value). For Salmonella typhimurium, however, a strain that is 98% identical to the cultured 
strain, Salmonella typhimurium LT2, was identified (Salmonella enterica serovar Typhimurium). 
For each of these species, the number of spectra associated with the species is shown in the 
second column of Table I. For comparison, the number of spectra found for each of the species 
using a standard identification procedure is also shown in the third and fourth columns of Table 
I. In the standard approach, only the proteomes of the known species are searched, and the 
number of spectra identified with each of the species at 5% and 10% false discovery rates is 
shown in these latter columns. Also shown in parentheses in columns three and four are the 
percent of peptide-spectrum matches occurring in the optimization approach that also are found 



in the standard approach. For this dataset, the overlap in peptide-spectrum matches between the 
optimization method and the standard search is remarkably high, 94-98%. That is, despite 
searching 1258 genomes containing over 4 million proteins and several orders of magnitude 
more peptides, the optimization approach on this data set contained nearly the same quality of 
identifications as a standard database search of only the proteins correct genomes. Of course, as a 
model of a microbial community found in the environment, three organisms would be a very 
simple microbial community. 
To test the ability of the method to analyze more complex samples, we also investigated four 
other datasets consisting of 6, 9, 12 and 15 microbes. The results for the highest complexity data 
set, derived from the mixture of batch cultures from 15 species, are shown in Table II. For this 
data set, each of the top 10 scoring species and 11 out of the top 12 scoring species were 
correctly identified. In all, 12 of the 15 species were identified at an estimated 1% false 
discovery rate. For these 12 species, the overlap in peptide-spectrum matches between the 
optimization method and the standard approach (identification using only the correct genomes) 
was 47-91%. For all 15 species, the weighted average of the overlap was a remarkable 79%. 
While this is less overlap than was seen in the data containing just three microbes discussed 
above (95% weighted average overlap), the performance was encouraging when the reasons for 
the decreases were examined. These are discussed are discussed next. 

Three species were not identified - Rhodopseudomonas Palustris CGA009, Saccharomyces 
cervisiae S288c, and Aspergillus carbonarius. For Aspergillus carbonarius, 62 peptide-spectrum 
matches were found for a species from the same genus, Aspergillus niger. It is possible that 
determining the likelihood at the genus level instead of at the genome level would identify the 
Aspergillus genus. However, the number of significant peptide-spectrum matches found for each 
of these species was also quite low when a standard approach (only the correct protein 
sequences) was used. For instance, for Aspergillus carbonarius only 49 and 103 significant 
peptide-spectrum matches were found at 5% and 10% false discovery rates. The most likely 
cause is that the protein samples that were prepared for these species were too dilute. For 
Aspergillus carbonarius, a confounding problem is that the protein sequences are only available 
from the initial draft genome of the organism. 

 

Table I. Optimization results for model microbial community containing three known 
microbes. 

!
Species Number of Identifications   

Target Species  
Other Species 

Optimiz
ation 

Overlap 
5% FDR 

Overlap 
10% 
FDR 

LR Posterior 
Error Prob 

Salmonella enterica serovar 
Typhimurium  

3145 3016 
96% 

3081 
98% 

289.20 0.03 

Anaeromyxobacter dehalogenans 2CP-C 1256 1199 
94% 

1249 
97% 

67.12 0.06 

Geobacter uraniumreducens Rf4 539 525 
95% 

533 
96% 

39.83 0.08 

Below 1% q-value cutoff: 
Salmonella typhimurium LT2 6 0 

0% 
8 

38% 
0.57 1 

!



Likewise, Rhodopseudomonas Palustris CGA009 was also not identified at a statistically 
significant level. In this case, 10 peptide-spectrum matches were found in the optimization, while 
23 and 43 matches were found when using a standard search of the known genomes only. This 
indicates that the sample was relatively dilute in peptides from this organism, but interestingly 43 
peptide-spectrum matches were also assigned to closely related Rhodopseudomonas species. In 
total, 53 matches were found to the Rhodopseudomonas species, which is more than found in the 

 

  Table II. Optimization results for model microbial community containing 15 known microbes. 

 Species Number of Identifications   
Target Species 
Related Species 
Other Species 

Optimization Standard run on 
known DBs 

  5% FDR 
10% 
FDR LR 

Posterior 
Error 

Probability 

Deinococcus radiodurans 1168 1048 
83% 

1191  
90% 165.92 1.79E-05 

Shewanella oneidensis 713 627 
85% 

714 
91% 76.94 1.32E-04 

Salmonella typhimurium LT2  482 495 
83% 

554  
90% 50.86 3.86E-04 

Synechococcus PCC 7002  247 230 
84% 

268 
90% 41.70 6.47E-04 

Arthrobacter FB24  323 299  
85% 

347 
89% 31.58 1.33E-03 

Heliobacterium modesticaldum Ice1  239 225  
79% 

269 
87% 30.74 1.43E-03 

Chloroflexus aurantiacus J 10 fl  226 208 
80% 

259 
89% 26.81 2.04E-03 

Desulfovibrio desulfuricans G20  177 153 
77% 

188  
86% 20.19 4.27E-03 

Anaeromyxobacter dehalogenans 2CP-C   265 243 
66% 

325 
76% 15.77 8.11E-03 

Geobacter uraniumreducens Rf  92 91   
70% 

119 
79% 7.37 5.83E-02 

Brucella melitensis bv  39   4.99 1.59E-01 
Candidatus Korarchaeum cryptofilum 21   4.50 2.08E-01 

Clostridium thermocellum ATCC 27405  40 41   
67% 

54   
76% 4.03 2.77E-01 

Beutenbergia cavernae DSM 12333  33   3.50 3.97E-01 

Rhodobacter sphaeroides KD131  38 46   
47% 

79   
52% 3.49 3.99E-01 

Burkholderia cenocepacia J2315  59   3.06 5.60E-01 
Acidovorax avenae citrulli AAC00-1  38   3.02 5.78E-01 
Frankia alni ACN14a 53   3.00 5.91E-01 
Desulfurivibrio alkaliphilus AHT2 21   2.88 6.51E-01 
Rhodococcus erythropolis PR4  36   2.82 6.83E-01 
Xylella fastidiosa 15   2.79 7.06E-01 
Below 1% q-value cutoff:      
Rhodopseudomonas palustris BisB18 27   2.05 1.00E+00 
Aspergillus niger CBS 513 88 62   1.31 1.00E+00 
Rhodopseudomonas palustris BisB5 14   1.18 1.00E+00 
Rhodopseudomonas palustris BisA53 12   0.91 1.00E+00 

Rhodopseudomonas Palustris CGA009 10 23     
5% 

43   
10% 0.79 1.00E+00 

Saccharomyces cervisiae S288c 15 17   
21% 

42   
36% 0.61 1.00E+00 

Aspergillus carbonarius 18 49     
7% 

103 
25% 0.48 1.00E+00 

!



standard search. This may indicate that the species grown in culture is no longer clonal with 
respect to the sequenced species Rhodopseudomonas Palustris CGA009. In this regard, the 
optimization approach may be useful for analyzing batch monocultures also against closely 
related genomes and would effectively allow for sequence variability in the peptide-spectrum 
matching process. 
The third species that was not identified was Saccharomyces cervisiae S288c. In this case, 15 
peptide-spectrum matches were found in the optimization, while only 17 and 42 matches were 
found at 5% and 10% FDR in a standard search of the known genome. However, even if the 
same number of matches were found in the optimization as was found at 10% FDR in the 
standard search against the known genome, this would not have been enough matches to be 
statistically significant. Again, the most likely explanation for this was that the sample simply 
did not contain enough proteins from this organism. 
The three other data sets varied in the number of species in the sample from 6 to 12. The trends 
in these three data sets mirrored that seen for the other two data sets. In two of the data sets, the 
related species Salmonella enterica serovar Typhimurium was identified instead of Salmonella 
typhimurium LT2. Aspergillus carbonarius was consistently missed in each data set while the 
related Aspergillus niger was positively identified in one of the three data sets. While Aspergillus 
niger was not identified in the other two data sets, it did consistently have more peptide-spectrum 
matches ( > 4-fold) than Aspergillus carbonarius. It is reasonable to expect that the number of 
Aspergillus peptide-spectrum matches could be significant at the genus level. 

 
3.2 Scaling 
As the processing time for a single processor job, T(1), takes longer to run on a single node than 
the job policy allowed at the time of these runs, we instead generate a weak scaling curve 
replacing T(1) by 128*T(128) shown in Figure 1. This amounts to taking the efficiency at 128 
processors to be 1 for comparison purposes. We note that T1/(128*T(128)) < 127/128 (0.992), as 
the master processor does no work. The fall off in efficiency shown in Figure 2 at 1024 
processors is an indicator that we are hitting inefficiency in the MPI infrastructure layer at scale, 
most likely due to too many messages being passed. This could also be also due to input/output 
bottlenecks if many processors are simultaneously writing output files. However, runtime  

 

Figure 1. Scaling of MSPolygraph. The time to 
solution was determined for running 1258 fully 
sequenced genomes against 18,929 spectra on the 
Chinook supercomputer at EMSL.

 

Figure 2.  Parallel efficiency of MSPolygraph on 
data in Figure 1. 
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monitoring doesn't indicate that the code is any where close to the I/O bandwidth limits on the 
machine, making it unlikely that an I/O bottleneck causes the efficiency loss.  

4. Discussion 
The method discussed here allows us to use high performance computing to potential identify 
proteins from complex environmental samples without necessarily having sequenced the 
microbes in the sample. Despite analyzing over 1000 genomes against a spectral dataset, the 
method resulted in a 79-95% overlap with identifications made using only the correct protein 
sequences. There are several caveats to this approach that must be kept in mind. First, a high 
scoring genome does not necessarily imply that the microbe is present, only that the genome of 
the microbe is appropriate for analyzing the data. That being said, the presence of multiple high 
scoring genomes from the same genus does imply the presence of a microbe from that genus. 
Second, the method will actually become more powerful as more genomes become sequenced. In 
this regard, projects such as the Genomic Encyclopedia of Bacteria and Archaea [14], which seek 
to provide greater breadth of our knowledge of microbial genomes, are invaluable.  At this time, 
there are approximately 1500 fully sequenced genomes of microbes available, and this number is 
increasing rapidly. At the same time, advances in instrumentation are resulting in a rapid increase 
in the number of spectra that are derived from a single sample. Currently, one sample may result 
in 10-30,000 spectra, but that number will continue to grow rapidly as the instrumentation 
technology develops. In summary, the statistical method described above combined with high 
performance computing offers a potentially significant break-through in the analysis of 
environmental samples.  
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