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Intrinsically disordered proteins (IDPs) are associated with a wide range of functions. We suggest that 
sequence-based subtypes, which we call flavors, may provide the basis for different biological functions. The 
problem is to find a method that separates IDPs into different flavor / function groups.  Here we discuss one 
approach, the (Charge-Hydropathy) versus (Cumulative Distribution Function) plot or CH-CDF plot, which 
is based the combined use of the CH and CDF disorder predictors. These two predictors are based on 
significantly different inputs and methods. This CH-CDF plot partitions all proteins into 4 groups: structured, 
mixed, disordered, and rare.  Studies of the Protein Data Bank (PDB) entries and homologous show different 
structural biases for each group classified by the CH-CDF plot. The mixed class has more order-promoting 
residues and more ordered regions than the disordered class. To test whether this partition accomplishes any 
functional separation, we performed gene ontology (GO) term analysis on each class. Some functions are 
indeed found to be related to subtypes of disorder: the disordered class is highly active in mitosis-related 
processes among others. Meanwhile, the mixed class is highly associated with signaling pathways, where 
having both ordered and disordered regions could possibly be important. 
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1. Introduction 

Unlike structured proteins folded into compact structures, intrinsically disordered proteins (IDPs) 
exist as flexible ensembles [1]. IDPs are very common. They comprise approximately 25% to 30% 
of eukaryotic proteomes [2]. Over 50% of eukaryotic proteins and 70% of signaling proteins have 
long disordered regions [3]. A wide range of biological activities are associated with IDPs, such as 
providing sites for post-translational modifications, providing sites for binding to partners via 
short linear motifs, acting as scaffolds by binding to multiple partners , etc. [4-6]. 

Studies of ordered proteins indicate that homologous proteins typically have conserved 3D 
structures [7-9]. Thus, structure similarity is used as an important criterion when examining 
related proteins. Most proteins with similar structure have a common evolutionary origin, and as 
a consequence their functions are typically closely related [7-9]. Databases such as SCOP [7] and 
CATH [8] have been constructed using this line of reasoning. These databases serve as a great 
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resource for understanding the nature of the various relationships between protein structure and 
function, and they are widely used in various molecular and biological areas of science [7,8]. 

Since IDPs lack 3D structure, unique structure can’t be used to partition IDPs into subtypes. 
We previously tried an approach based on disorder prediction to cluster IDP regions into different 
subtypes, which we called flavors, and some functions showed a weak partitioning among the 
different flavors [10].  Here our goal is to re-explore the overall idea of partitioning disordered 
proteins into subtypes, but using a different predictive approach. The previous approach used 
residue-by-residue order / disorder predictions over IDP regions of proteins [10], but a weakness 
of that approach was that the disordered regions varied markedly in length, which greatly 
complicated the interpretation.   

Using mus. musculus protein data, here we will test an approach in which the order / disorder 
predictions are binary for the whole protein, indicating that a given protein is more ordered or 
more disordered overall. The two binary prediction tools are the charge-hydropathy (CH) plot 
[12,13] and the cumulative distribution function (CDF) [14]. Applying both methods to a protein 
could have four possible outcomes: both methods predict order, both methods predict disorder, the 
CH predicts disorder while the CDF predicts order, and vice versa.  When both methods predict 
order, the protein is likely to be predominantly structured and to be found in the Protein Data Bank 
(PDB) [15].  When both methods predict disorder, the proteins are likely to be IDPs with high net 
charge and very little structure, and thus are likely to be more extended. If CDF predicts disorder 
and CH predicts order or vice versa, then these two sets of proteins have both order and disorder 
tendencies, but with different characteristics for each tendency.  Thus, overall, the CH-CDF plot 
separates proteins into 4 groups with differing order and disorder characteristics.   

The CH-CDF plot was previously used to compare the structure-disorder tendencies of the 
proteomes from several species within the phylum Apicomplexa, which include Plasmodia, 
Trypanosomes, and Giardia [16].  The CH-CDF plot has also been used to classify the 
transcription factors associated with the induction of pluripotent stem cells [17] and a collection of 
plant-specific developmental proteins as well as their distinctive domains [18].  In all three cases, 
the distributions of the various proteins and domains among the four outcomes provide overviews 
of similarities and differences between the different sets of proteins [16-18].  According to these 
prior studies, the CH-CDF plot appears to be useful for identifying overall structure-disorder 
trends for collections of proteins. Here we apply the CH-CDF plot to the mouse proteome and then 
investigate whether the four outcomes are associated with differences in structure and function for 
these proteins.   

2. Results 

2.1 CH-CDF plot  

First, let’s illustrate the overall development of the CH-CDF plot.  Figure 1A shows the placement 
of a disordered protein (red) and an ordered protein (blue) onto a CH plot, where the indicated 
linear discriminant (i.e., a linear classification boundary) was developed from a large training set 
of proteins [12, 13]. Note that disordered proteins have a higher net charge and lower hydropathy 
compared to ordered proteins. We use the vertical distances from each protein-representing point 



   

to the separation line as the Y-coordinate of that protein in the CH-CDF plot, so when Y is 
positive, the protein is indicated to be disordered.  Figure 1B shows the PONDR VSL2 [19] plots 
for the same pair of disordered (red) and ordered (blue) proteins. In Figure 1C, the data in 1B are 
plotted to produce the CDF plot, where the X-axis is the prediction score and the Y axis is the total 
fraction of sequence loci having that score or lower. Note the different shapes for the CDFs for the 
ordered (blue) and disordered (red) proteins.  An ordered protein’s CDF curve occupies the upper 
part of the graph, while an IDP’s CDF curve resides in the lower part of the graph. The optimal 
separation line, represented as a collection of 7 discrete points, was previously estimated for a 
large number of structured and disordered proteins [14].  The X-axis for the CH-CDF plot is 
calculated as the average of the vertical distances from the CDF curve to the seven boundary 
points.  Thus, the ordered proteins are given positive values and disordered proteins are given 
negative values with respect to the X-axis in the CH-CDF plot.   

The entire mouse (Mus.musculus) proteome is put onto the CH-CDF plot in Figure 1D.  The 
descriptions of the prediction characteristics for the proteins in each quadrant are included in this 
plot.   

 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. The CH-CDF Plot. A. An example of a CH graph, with a linear classification boundary (y=2.743x-1.109) and a 

hypothetical IDP and hypothetical structured protein. B. VSL2 prediction curve for an IDP (red) and a structured 

protein (blue). C. CDF curve of the two proteins in B. Vertical lines are the distance of to calculate CDF score. D. The 

entire mouse proteome is put onto a CH-CDF plot.  
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One rationale behind using CH-CDF plot in subclassification of disordered proteins is that 
CDF examines many more protein attributes than a CH plot, which only uses charge and 
hydropathy for prediction. Consequently, the CDF curve is more sensitive to disorder than the CH 
plot [11]. Proteins predicted to be ordered by the CH plot but disordered by CDF (as in Q3) are 
low in net charge and hydrophobic, but with other features resembling an unstructured protein. 
Therefore, we propose that such proteins could have both disordered and ordered regions, and we 
refer them as mixed proteins. Meanwhile, proteins predicted to be unstructured by both methods 
are referred as disordered (Q4) and proteins predicted to be ordered by both predictors are likely to 
be structured proteins (Q2). As for proteins in Q1, their number is very small compared to other 
three quadrants. We do have some assumptions about them, but we have not reached any refined 
conclusion yet. So here, we refer them as rare proteins. 

2.2 PDB coverage  

PDB contains protein structures, and thus PDB is biased more towards ordered proteins than 
disordered. Fig. 2 shows PDB coverage percentages of various proteins vs. their length for each 
quadrant.  By coverage percentage, we mean the percent of a given sequence that forms structure 
and is observed in PDB.  As expected, more of the proteins in Q2 have higher coverage.   
 

 

 

 

 

 

 

 

 

 

 

Fig.2. PDB coverage percentages of proteins classified into 4 quadrants. 

 

To quantitate the coverage data of Figure 2, histogram summaries for each quadrant were 
constructed (Figure 3).  When proteins are indicated to be disordered by the CDF (Q3 and Q4), the 
coverage summaries are similar and mostly show a small fraction of coverage.  When proteins are 



   

indicated to be structured by CDF (Q1 and Q2), the coverage summaries are similarly biased 
towards structure.  There are other factors to consider as shown below.   
 
 

 

 

 

 

 

 

                           

                       Fig.3 PDB coverage percentage histogram for all four quadrants 

Another important consideration is whether a protein has any structure at all in PDB. The 
structure quadrant (Q2) has the highest fraction of proteins identified with at least one PDB hit, 
whereas the disorder quadrant (Q4) has the lowest fraction (Figure 4). Note that the mixed 
quadrant (Q3) actually is the second highest. Its fraction is close to the structure quadrant (Q2), 
and much higher than the disorder quadrant (Q4). These data suggest that mixed proteins have 
more structured regions than disordered proteins. Recall Fig. 2 and Fig. 3, which have shown that 
the coverage percentages for proteins in Q3 are very low, around 20-30% only. Taken together, 
these mixed proteins are more likely to have structured local regions compared to the disorder 
quadrant (Q4), so that they have a higher fraction of PDB hits. 

 
 
 
 
 
 
 
 

 

 

                               

Fig.4. Fraction of protein identified with at least one PDB hit 
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2.3 Sequence window CH-CDF analysis 

  To learn more about the Q3 proteins, we dissected each protein sequence into a series of 
windows of 30 residues and carried out CH-CDF analysis on each segment. Table 1 summarizes 
results of this analysis. Proteins from the structure quadrant (Q2) have most of the windows in Q2, 
and the extended disorder quadrant (Q4) protein windows mostly localized in Q4. Interestingly, 
windows from mixed proteins (Q3) distribute mostly between quadrants Q2 Q3 and Q4, with the 
most hits in Q4 and slightly less hits in Q2 and Q3, suggesting that mixed proteins very likely 
contain a balanced distribution of ordered and disordered regions.  Proteins from Q1 distribute 
equally in Q1 and Q2 with slightly less in Q4, again suggesting the presence of disordered regions.   

                                     Table 1. Sequence window CH-CDF analysis results 
 Window quadrant localization 
 Q1 Q2 Q3 Q4 
Q1 sequence windows 35%  35%  4%  26%  
Q2 sequence windows 13%  68%  7%  11%  
Q3 sequence windows 7%  28%  28%  37%  
Q4 sequence windows 7%  13%  16%  64%  

2.4 Match PDB coverage to disorder prediction 

Since our analysis show that mixed proteins (in Q3) are predicted to have both disordered and 
ordered regions, here we attempt to verify that these predicted ordered regions are correlated with 
experimentally determined structures. To this end, we calculated the disorder content of the PDB 
covered and uncovered regions, respectively. Fig. 5 represents the results of this analysis of 
disorder content in all 4 quadrants.  
 

 
 
 
 
 
 
 
 
 
 
 
 

                            

 

 

 

Fig.5. Percentage of disorder in PDB covered and uncovered regions 
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The X-axis is the disorder content of the PDB covered regions, and the Y-axis is the disorder 
content on the non-covered region. Disorder higher than 50% means that the corresponding region 
is largely predicted as disordered, whereas the score of less than 50% suggests that the region is 
predicted to be structured. In all 4 plots, the majority of the points clustered above the 45 degree 
diagonal line. We interpret this as that the regions not covered by PDB have more disorder than 
the covered regions.  

The plot for the structure quadrant (Q2) has proteins clustered mainly to the left, both in the 
upper-left and lower-left corners. Those in the upper-left area could be disordered tails in these 
structured proteins. Those in the lower left correspond to structured regions that have not yet been 
crystalized. These segments are expected to be very common because many mouse proteins have 
multiple structured domains, and given the low percentage of PDB hits (Figure 4), it is likely that 
many of the structured domains of a given protein fail to make it into PDB.   

In contrast to the observations for (Q2), the mixed proteins (Q3) and disordered proteins (Q4) 
are clustered in the upper-left corner in this plot, meaning that the regions not covered by PDB are 
predicted to be mostly unstructured, and those regions covered by PDB are predicted to be 
ordered. This indicates that disorder prediction and PDB coverage are in good agreement. Since 
we also showed above that mixed proteins are predicted to have both disordered and ordered 
regions (Table 1), it is likely that the predictions represent the true status of the protein as partially 
disordered and partially ordered. If this is true, it explains the mixed proteins’ somewhat high 
fraction of PDB hits but low coverage percentages. The ordered regions are aligned to PDB 
sequences, but they are only a small fraction of the protein. 

2.5 Function analysis for each quadrant 

Previously we used a complicated prediction scheme to subdivide disordered protein regions into 
subtypes that we called flavors, and these different disordered flavors showed weak correlations 
with particular protein functions [10].  Given that the proteins in the four quadrants of the CH-
CDF plots have different characteristics, it seemed reasonable to test whether these different 
structural subtypes exhibit functional separation. Therefore, we analyzed the proteins in each 
quadrant for their associations with various Gene Ontology (GO) terms. 

Table 2 lists those Biological Processes GO terms found to be distinctive for each quadrant.  
For Q1, four of the five distinctive GO terms deal with RNA.  By the CH analysis, these proteins 
are highly charged, and this feature may be associated with RNA association. For the Q2 
structured proteins (Table 2B), most of their GO terms are related to metabolic processes and 
transporters. These functions are typical for structured proteins. For proteins in Q3, most of these 
GO terms are related to regulation or developmental pathways, including the Notch and Wnt 
pathways. As shown above, proteins in Q3 are likely to have both disordered and structured 
domains. Evidently these functions require both structured and disordered regions in the same 
proteins.  Proteins in disorder quadrant (Q4 and table 1D) are mostly mitosis related.  
 
 
 
 
 



  

Table 2. GO term analysis for four quadrants. Number of protein examples found for each GO term is listed on the 

right side.   
    
Table 2A                Table 2B 

Q1 Biological Process  Q2 Biological Process  

tRNA methylation    Homophilic cell adhesion   
tRNA wobble uridine modification    Glutamine metabolic process    
Translational termination    Phosphorylation   
Positive regulation of nitric oxide  Sterol biosynthetic process   
rRNA export from nucleus    Peptide transport   
  Isoprenoid biosynthetic process    
  Calcium ion transport   
  Nucleotide metabolic process    
  Proteolysis involved in cellular protein catabolic process   

Table 2C                           

Q3 Biological Process   

Regulation of transcription    Negative regulation of signal transduction    
Notch signaling pathway    Pancreas development    
Response to heat    Defense response to bacterium    
Osteoblast differentiation    Endocytosis    
Negative regulation of cell differentiation    Somitogenesis    
Regulation of cell proliferation    Actin filament organization    
Pituitary gland development    Wnt receptor signaling pathway    
Positive regulation of neuron differentiation    Intracellular signaling cascade    
Endoderm development    Epithelial cell differentiation    

Organ morphogenesis    
Transforming growth factor beta receptor signaling 
pathway    

Table 2D 

Q4 Biological Process  

G1/S transition of mitotic cell cycle    
chromosome organization    
establishment of cell polarity    
response to salt stress    
mRNA export from nucleus    

3. Discussion 

3.1 Overview 

IDPs may have subtypes and the different subtypes may have different functions.  One previous 
study indicated that such disordered subtypes may exist [10]. However, the effort to subclassify 
IDPs such that each class has its own functional features still remains a difficult task. 

Instead of relying on the training of existing data to build specific classifiers by machine 
learning methods, we took an alternative approach based on the hypothesis that different subtypes 
of IDPs should exhibit different biophysical features. Such features can be readily captured by 
applying two different prediction tools, CH and CDF, which use different biophysical 



   

characteristics for their evaluation of disorder content. We therefore developed a CH-CDF plot for 
IDP partition.  

3.2  Structural Partitioning by the CH-CDF plot  

Proteins partitioned by the CH-CDF plot show a very different PDB coverage rate. The structure 
quadrant (Q2) has many more proteins identified with at least one PDB entry than the disorder 
quadrant (Q4). The mixed quadrant (Q3) has a fraction of proteins with PDB hits almost 
comparable to those in the structure quadrant (Q2). However, their coverage rate percentages are 
typically in the 20%-30% range, while the coverage in the ordered quadrant (Q2) is often as high 
as 90%-100%. These data suggest that mixed proteins (in Q3) have more crystal-forming ordered 
regions than those in the disorder quadrant (Q4).  

Even though predicted to be structured, the proteins in the structure quadrant (Q2) have a 
significant fraction of cases with only 20% coverage (Figure 3, Q2).  As indicated by the data in 
Table 1 and Figure 5, this result likely reflects the fact that many mouse proteins have modular 
structure and contain multiple structured domains.  Thus, the entire protein is, overall, predicted to 
be structured by both the CH and CDF predictors, but if only one of the domains makes it into 
PDB, then such a protein could have a low coverage.   

Some proteins in the mixed quadrant (Q3) and those in the disorder quadrant (Q4) have 
coverage percentage almost as high as 100%. After examining them individually, some of them 
are found to bind to ions, DNAs, RNAs, small molecules, etc. Formation of specific complexes 
could potentially stabilize disordered proteins, and lead to the formation of a crystallizable 
structure. However, there are indeed cases where such predicted disordered proteins are monomers 
by themselves. These need further study. 

One of our early hypotheses was that proteins with relatively low net charge and high 
hydropathy, e.g. predicted to be structured by CH, and yet predicted to be disordered by CDF, e.g. 
located in (Q3), might undergo hydrophobic collapse yet remain lacking stable structure.  Such 
proteins would likely be native molten globules.  An alternative hypothesis is that proteins in (Q3) 
simply contain mixtures of structured and disordered regions.  

 We first found that Q3 proteins have many more locally ordered sequence windows, indeed 
far more than the disordered quadrant (Q4), but less than the structure quadrant (Q2) (Table 1). 
We then showed that the amino acid sequences in proteins are predicted as mostly ordered if a 
PDB hit is identified for this region (Figure 5). When the sequence region is not matched with a 
PDB hit, it is most likely predicted to be disordered. Together these observations suggest that the 
quadrant (Q3) is likely to contain proteins containing relatively balanced contributions of 
structured and disordered regions. For this reason here we have named the proteins in this 
quadrant mixed rather than collapsed disorder, a description that may have appeared in previous 
publications [16-18].  These observations don’t rule out the possibility that some of the proteins in 
(Q3) or even in (Q4) might be native molten globules.  Further analysis and experiments are 
needed to identify native molten globules and determine where they fall on the CH-CDF Plot.  



  

3.2 The rare protein quadrant (Q1) 

Proteins in this quadrant are predicted to be unstructured by CH plot, but ordered by CDF. The 
disordered prediction from CH plot implies that a protein has high charge and is hydrophilic.  
Such proteins should not be predicted to be structured by CDF, so it is no wonder that the proteins 
in this quadrant are rare.  

The density plot of PDB coverage percentage distribution for the proteins in (Q1) showed a 
similar pattern when compared to the structure quadrant (Q2) (fig.3). The proteins in (Q1) also 
have many more proteins identified with a PDB hit than those in the disorder quadrant (Q4) 
(fig.4). Therefore, one possibility is that these proteins are overall structured, with some high 
charged or hydrophilic residues, which is just the opposite of proteins in quadrant (Q3). The GO 
term analysis showed that 4 out of 5 of the significant GO terms are related to nucleotide 
processing.  Further analysis shows that many of the proteins in all four quadrants including (Q1) 
have net positive charges rather than net negative ones.  We are testing whether the positively 
charged proteins in (Q1) are associated with RNA binding.   

3.3 Disorder subtypes and IDP functions 

We tested whether the protein compartmentalization by subtypes resulted in function partition as 
well. For this test, we did an analysis of GO terms to determine if some terms are biased relative to 
others in the various quadrants (see Methods for details).  

Structured proteins exhibited significant biases towards enzymatic processes and transporters. 
Both of these processes are well known to be associated with structured proteins [4-6]. 
Meanwhile, the disorder quadrant (Q4) is mainly biased towards GO terms with mitosis-related 
functions, which again agrees with previous observations [4-6]. On the other hand, the mixed 
quadrant (Q3) is highly involved in regulation pathways, which are important in development and 
differentiation. The recent publication on pluripotent stem cell-inducing proteins, which must be 
heavily involved in gene regulation, showed that these proteins are mostly localized in the mixed 
quadrant (Q3) [17]. Interestingly, the plant developmental proteins called GRAS straddled the 
structure and mixed quadrant (Q2, Q3).  The N-domains of these proteins localized to the mixed 
and disordered quadrants (Q4, Q3), while almost all of the C-domains of these proteins localized 
to the structured quadrant (Q2) [18].  

The flexibility provided by disordered regions could be important in such signaling events. 
The disordered regions could act as linkers connecting function domains. These regions could also 
directly bind to partners, functioning as Molecular Recognition Features (MoRFs). Such binding is 
usually accompanied by a disorder  order transition. Because of their flexibility, they might be 
able to bind to multiple partners, acting as hub proteins in signaling networks. Their flexibility is 
also capable of fast but short time-span binding, which also may be crucial in signaling events.  

 

 



   

4. Methods 

4.1 Protein data 

The Mus. musculus proteome were gathered from Uniprot 15.0 [20]. A total number of 58881 
sequences were obtained. Blastclust (http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/ blast 

lab.html) with default settings were used to reduce redundancy.  

4.2 PDB Coverage 

PDB monomers data is downloaded from PDBe PISA. Gapped-BLAST algorithm was used to 
compare query sequences to PDB monomers, with default scoring matrix (BLOSUM 62). A hit 
was identified only when the hit region is larger than 85% of the PDB monomer sequence, and 
with more than 30% identity.  

4.2 GO term analysis 

We downloaded GO terms associated with each protein from GO Database.  To reduce protein 
redundancy, proteins were clustered into protein families by the Blastclust program. If sequence is  
was assigned to cluster )( isc , and in  is the total number of proteins assigned to this family, we 

define a weight )( isw  for this sequence as
i

i
n

sw
1

)(  .  

Our 509,214 proteins are in association with 10,703 GO annotations. Protein sequence is

grouped into a quadrant 4,3,2,1, kk  as group kg . And for 10703,...2,1, jGOj , there is a cluster 

of proteins related to jGO , as 10703,...2,1, jCj . Therefore, we calculate kjn , , the number of 

proteins related to jGO in quadrant k  by jkiikj Cgsswn  ,)(, . 

In the next step, we compare 1,jn , 2,, jn , 3,, jn and 4,jn for every specific GO term jGO to examine 

if jGO  has any bias towards certain quadrant. The expected value of protein frequency in quadrant 

k is calculated as 



4

1

,,

k

kjkkj npE , with kp being the proportion of numbers of proteins in 

quadrant k . Then we compute 2
jX , sum of expectancy, as                                          . 2

jX follows a 

chi-square distribution with 3 degrees of freedom, 2
jX ~ )3(2 .  

Under the null hypothesis that jGO distributed in 4 quadrants according to expectancy, we can 

derive jp as a p-value for jGO . Since multiple statistic tests are applied, we use the Bonferroni 

correction to adjust obtained p-value. It reduces the scale of significant results as well. A threshold 
of 0.05 is chosen, and GO terms with p-values lower than 0.05 are collected.  
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