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While the term ‘protein structure’ is commonplace, it is increasingly appreciated that proteins may
not possess a single, well-defined structure: some regions of proteins are intrinsically disordered. The
role these intrinsically disordered regions (IDRs) play in protein function is an area of significant
interest. In particular, because proteins containing IDRs are largely involved in processes related to
molecular recognition, the question arises whether IDRs are important in these recognition events.
It has been observed that IDRs are enriched in transcription factors (TFs) in comparison with other
proteins, and we sought to explore this enrichment more precisely, with an eye toward functional
dissection of the prevalence and locations of IDRs in different classes of TF's. Specifically, we con-
sidered the occurrences of 76 classes of DNA-binding domains (DBDs) within a comprehensive set
of 1,747 human, sequence-specific TFs. For each DBD class, we analyzed whether a significant level
of disorder was present within the DBD itself, the N-terminal or C-terminal sequence flanking the
DBD, or both flanking sequences. We found that although the DBDs themselves exhibit significant
order, the regions flanking the DBDs exhibit significant disorder, which suggests a functional role
for such IDRs in TF DNA binding. These results may have important implications for studies of
TF's not just in human but across all eukaryotes, and suggest future studies focused on testing the
roles of N- and C-terminal flanking regions in determining or modulating the DNA binding affinity
and/or specificity of the associated TFs.
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1. Introduction

The function of a protein is encoded in its amino acid sequence (i.e., primary structure).
However, protein activity typically depends on the protein being folded properly into its com-
ponent secondary structure elements (e.g., alpha helices, beta sheets) and the overall, global
conformation of the protein (i.e., tertiary structure). Protein structure can be determined
experimentally at high resolution either by X-ray crystallography or by nuclear magnetic res-
onance (NMR). X-ray crystallography is widely used, but cannot provide information on the
conformation of regions that are either highly dynamic or unstructured in the crystal. In con-
trast, while NMR can provide information about flexibility and dynamics in proteins, it is
currently limited to smaller proteins.

Through a combination of structural and biochemical studies, it has become increasingly
appreciated that a protein may not adopt a single, well-defined ‘structure’, a term connoting



a measure of rigidity. Rather, a protein may sample an ensemble of global conformations;
parts of the protein may be largely constantly structured across this ensemble, while other
parts may be quite variable or flexible across the ensemble. These latter regions are sometimes
termed ‘intrinsically disordered regions’ (IDRs), though they may adopt a more structured
conformation upon interaction with another molecule, whether a protein, DNA, or other lig-
and [1].

Proteins are largely involved in processes related to molecular recognition (e.g., binding,
signaling, complex formation, enzymatic catalysis), and IDRs may enable these recognition
events either directly (e.g., serving as the recognition domain of a protein) or indirectly (e.g.,
serving as a hinge that allows two ordered regions of a protein to come together to effect
recognition). For this reason, IDRs have been studied rather extensively over the past decade,
and a large number of computational methods have been developed for the prediction of IDRs
on the basis of amino acid sequence, though this remains an imperfect art (see [2] for a review).

In this study, we were interested in exploring the role(s) that IDRs might play in the
recognition tasks of transcription factors (TFs) in particular. Computational explorations
have found that IDRs are generally more prevalent in TFs than would be expected by chance,
especially in eukaryotes [3-5]. As a specific example, careful molecular studies have shown that
a region of fifteen amino acids within the DNA-binding domain (DBD) of the estrogen receptor
(ER) is disordered in solution, and makes contacts with DNA (and with another ER DBD
monomer), as shown in a co-crystal structure of the ER DBD bound to DNA [6]. Moreover,
IDRs outside the homeodomain DBD have also been found to impact the DNA-binding affinity
of the Drosophila TF Ubx [7]. In addition, the region N-terminal to the proximal accessory
region of the Saccharomyces cerevisiae C2H2 zinc finger TF Adrl is disordered in solution
(even after binding DNA) and increases the affinity for non-specific DNA, mainly by increasing
the DNA association rate; increased affinity for non-specific DNA might allow a protein to
find its specific sites more quickly after translocation from non-specific sites that are bound
initially [8]. Finally, DBDs often have N- or C-terminal extensions, referred to as ‘arms’ or
‘tails’, that bind DNA but are disordered when free in solution [9]. Intrigued by this ensemble of
findings pointing to the importance of IDRs in TFs and their interactions with DNA | we sought
to explore the connection between IDRs and TF function more precisely and systematically.
We were particularly interested in determining whether IDRs were more prevalent in the
regions flanking the DBDs that are responsible for the binding of sequence-specific TFs to
DNA.

2. Materials and Methods
2.1. Constructing the TF and non-TF control sets of proteins

We created two non-redundant datasets of human proteins: a TF set and a non-TF set for use
as a control. The procedure for constructing these sets and ensuring their non-redundancy is
described below and summarized in Figure 1A.

We assembled the TF set from a published repertoire of human TFs [10]. In their study,
Vaquerizas and colleagues manually curated and identified 1,987 TF-coding human genomic
loci in the Ensembl database [11]; the list includes 1,960 high-confidence entries and 27 entries
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Fig. 1. (A) A schematic of the pipeline for generating the TF set and the non-TF control set. (B) Sequence
length distributions of the TF set (nr TFs), the non-TF control set, and the set of all human TFs (with
redundancy). (C) The amino acid compositions of the TF set, the non-TF control set, and the set of all
human TFs. Amino acids are listed from most order-promoting to most disorder-promoting, according to [13].
It is apparent from the histogram that compared to proteins in general, TFs have fewer order-promoting
residues (e.g., W, F, Y, I, M, L, V) and more disorder-promoting residues (e.g., P, E, S, K, Q, H).

curated as probable. We cross-referenced these Ensembl loci against the RefSeq database
(release 47) [12] to obtain 2,362 protein isoforms associated with 1,747 genes. To reduce
sequence redundancy and thus potential bias, if multiple isoforms were associated with the
same gene, we selected only the longest. This resulted in a final total of 1,747 unique TF
protein sequences, and in subsequent analysis, we call this our TF' set.

We assembled our non-TF control set by downloading all human proteins from RefSeq, and
excluding the 2,362 TF-associated isoforms from above, which yielded a total of 32,567 non-
TF proteins. To match the size and sequence length distribution of our TF set, we randomly
sampled 1,747 proteins from the 32,567 according to the empirical sequence length distribution
of the TF set; to ensure non-redundancy during this process, at each iteration we required
that the sampled protein come from a locus not previously sampled. Therefore, the resulting
control set contains 1,747 unique non-TF protein sequences.

2.2. Comparing the TF and non-TF control sets of proteins

To ensure that the non-TF set represents a well-constructed control for the TF set, we com-
pared various properties of the two sets. First, we compared the sequence length distributions
of the TF set and the non-TF control set, in addition to the set of all human TFs (i.e.,
with redundancy). As shown in Figure 1B, no apparent differences exist between the sequence
length distributions in the TF set, the non-TF control set, and the set of all human TFs.
Next, we compared the amino acid compositions of the TF set, the non-TF control set,
and the set of all human TFs (Figure 1C). The amino acid composition of sequences in IDRs
has been shown to be significantly different from that in ordered regions [14], and IDRs have
been shown to have high prevalence in TFs [4], so we might expect compositional differences
between the TF sets and the non-TF control set. Indeed, compared to the non-TF control



set, both TF sets are enriched in disorder-promoting amino acids (e.g., P, E, S, K, Q, H),
and depleted in order-promoting amino acids (e.g., W, F, Y, I, M, L, V) [13, 14], as expected.
However, the amino acid compositions of our non-redundant TF set and the set of all human
TF's are nearly identical, suggesting that our procedure for removing redundancy introduces
no significant compositional bias.

2.3. Identifying DNA-binding domains (DBDs) and their locations within
proteins

Our goal is to investigate the prevalence and locations of IDRs within human TFs, and in
particular, the spatial relationships between IDRs and DBDs in TF's. To identify all sequence-
specific DBDs that occur within human TF's, we started with the entire set of human proteins
from RefSeq and identified every Pfam domain [15] that was contained in a human protein
with a p-value below 0.05. We manually filtered for those domains whose text descriptions
in the Pfam or InterPro [16] databases indicated that the domain mediates sequence-specific
DNA binding, resulting in 76 domains which we henceforth call Pfam DBDs.

Using HMMER [17] with default parameters, we searched for the locations of matches to
Pfam DBDs within our TF set. We found 71 of the 76 Pfam DBDs matched to proteins in
our TF set, with 32 DBDs appearing more than five times. Of the 1,747 proteins in our TF
set, 669 contained only a single DBD, while another 642 contained multiple DBDs; proteins
with multiple DBDs are typically those containing multiple zinc fingers, which are annotated
as separate domains even if they occur in tandem within a protein. Indeed, the TF with the
highest number of DBDs is zinc finger protein 91 (RefSeq: NP_003421), which contains 31
zf-C2H2 (zinc finger, C2H2-type) domains. The zf-C2H2 domain is interesting in its own right
as it is by far the most prevalent domain in our TF set, appearing a total of 4,154 times,
almost 20 times as often as the next most prevalent domain.

2.4. Predicting intrinsically disordered regions (IDRs) and their locations
within proteins using multiple existing methods

To perform our analysis, we first needed to predict the ordered and disordered regions within
proteins using existing computational tools. Since this remains a bit of an imperfect art,
we took care to ensure that our conclusions would not be overly dependent on the predic-
tions of any single choice of method. Consequently, we chose to use three distinct disorder
prediction tools, each demonstrated to perform with high accuracy [2]: PONDR VSL2 [18],
DISOPRED?2 [19], and PreDisorder 1.1 [20].

PONDR VSL2 (also called DisProt VSL2) was evaluated as the top-ranked disorder pre-
dictor in CASP7 in 2006 [21], and PreDisorder was ranked among the top methods in disorder
prediction during CASP8 in 2008 and CASP9 in 2010. These methods employ a variety of
techniques to analyze sequence and structural information for IDR prediction: PONDR VSL2
uses support vector machines (SVMs) to separately address prediction problems in short
versus long sequence regions, and then merges the results using a logistic regression model;
DISOPRED? is also based on SVMs, and compared to other prediction methods, the main
difference is that it is directly trained on the whole sequence using various combinations of



binary-encoded amino acid sequence, secondary structure predictions, and sequence profiles;
and PreDisorder 1.1 is based on an ab initio prediction method along with a meta-prediction
method.

2.5. Defining disorder features: spatial relationships of IDRs relative to
DBDs within TFs

Given the annotated DBDs and the predicted disorder regions in the TF set and the non-
TF control set, we sought to systematically analyze the association between TF DBDs and
predicted IDRs by testing for enrichment of IDRs at different locations relative to DBDs.
Specifically, we were interested in IDRs within the DBD itself, as well as the regions flanking
the DBD, and we developed five distinct ‘disorder features’: we say that a DBD is disordered
if at least a fraction f of its residues are predicted to be disordered; we say that the N-terminal
flank of a DBD is disordered if at least a fraction f of the 30 residues flanking the DBD in the
N-terminal direction are predicted to be disordered; analogously, we say that the C-terminal
flank of a DBD is disordered if at least a fraction f of the 30 residues flanking the DBD in
the C-terminal direction are predicted to be disordered; we say that both flanks of a DBD are
disordered if both the N-terminal and C-terminal flanks are disordered; and finally, we say
that an entire TF is disordered if at least a fraction f of all of its residues are disordered. We
wanted to be fairly stringent in identifying these disorder features, so that we could focus on
those with the highest confidence; therefore, we chose the value of 0.8 for f.

2.6. Calculating statistical significance of disorder features

To assess whether the prevalence of disorder features within and flanking DBDs was unusually
high or low, we needed to determine a suitable measure of significance. Moreover, since different
computational tools predict IDRs at different rates (see Section 3.2 below), our significance
measure needed to enable the comparison of results across methods, and not be biased by
methods that are systematically more or less likely to predict disorder within proteins.

We thus developed two different null models to test for the significance of our disorder
features (e.g., disordered DBD, N-terminal flank, or C-terminal flank). The first null model
pretended that the location of a DBD occurred uniformly at random within each sequence,
and was based on the TF set. The second null model also pretended that the location of a
DBD occurred uniformly at random in each sequence, but was based on the non-TF control
set. In summary, these two null models—in which the location of a DBD was chosen uniformly
at random—were designed to test whether the spatial relationships between IDRs and DBDs
were statistically significant or simply occurred by chance.

With each null model providing a baseline expectation for how often a disorder feature
might be found by chance, we could then compute a significance measure based on the p-
value from a hypergeometric distribution (i.e., Fisher’s exact test). For each disorder feature
we considered, we computed two separate p-values, one for each null model. Consistency of
significance across the two different null models thus gave us some confidence that our results
were robust to the specific choice of null model.
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proteins in (A) the TF set and (B) the non-TF control set.

Table 1. Statistics summarizing disorder predictions on all the residues of all the proteins in both the TF set
and the non-TF control set using three different disorder prediction tools.
TF set non-TF ctrl set
% of residues average length % of residues average length
predicted in IDRs of IDRs predicted in IDRs of IDRs
PONDR VSL2 83.2% 106 53.3% 39
DISOPRED2 47.4% 44 34.1% 36
PreDisorder 1.1 50.1% 19 38.3% 18

3. Results
3.1. Comparing the three methods for predicting IDRs within proteins

We used three different disorder prediction tools to predict IDRs in both the TF set and the
non-TF control set. Though the purpose of this paper is to make use of existing prediction
methods and not to evaluate them (which has already been done by others, for example [2, 21]),
it is important to have at least an overall sense of how each method is performing on our
protein sets. A summary of the results of the three methods is shown in Figure 2 and listed in
Table 1. In Figure 2, we compare the fraction of each protein’s residues predicted as disordered
by each method. In Table 1, we calculate the total percentage of protein residues predicted
as disordered by each method, along with the average length of each predicted IDR. The
figure and table reveal that all three methods consistently predict proteins in the TF set to
have a greater fraction of disordered residues, more disordered residues, and longer IDRs than
proteins in the non-TF control set, confirming earlier findings that IDRs are enriched in TF's.

As an aside, it is apparent that PONDR VSL2 is far more likely than the other two methods
to call a residue as disordered, in both the TF set and the non-TF control set, suggesting that
the method is probably operating at a different point on its receiver operating characteristic
(ROC) curve, with high sensitivity but also perhaps a relatively high false positive rate [21]. In
addition, the average length of IDRs predicted by PONDR, VSL2 is higher than the other two
methods, which may be related to the previous point, but may also be because the method
uses different SVMs to predict IDRs in short and long sequences separately.



3.2. Assessing significance of order or disorder within and flanking human
TF DBDs

To systematically study the associations between IDRs and DBDs, for each occurrence of a
DBD class within a human TF, we calculated 30 different p-values: the significance under two
different null models (based on the TF set and the non-TF control set) of five different kinds
of disorder features (DBD, N-terminal flank, C-terminal flank, both flanks, and entire TF) as
computed by three different prediction methods (PONDR VSL2, DISOPRED2, and PreDis-
order 1.1). For each combination of null model and feature, we say that the feature exhibits
significant disorder under that null model if at least two of the three prediction methods pre-
dict disorder at p-value < 0.005; on the other hand, we say that the feature exhibits significant
order under that null model if at least two of the three prediction methods predict disorder
at p-value > 0.995. Note that it is certainly possible for a feature to be neither significantly
ordered nor significantly disordered under a particular null model.

Although we computed whether features exhibited significant order or disorder across all
Pfam DBDs occurring in our TF set, to avoid artifacts due to small sample size, we restricted
our subsequent analysis to the 32 DBD classes with at least five occurrences in the TF set.
Many of the most frequent DBD classes, including the 10 most prevalent ones, are structurally
similar and can be roughly classified into two groups: (1) those containing zinc fingers, and
(2) those containing a basic helix-turn-helix type of domain, domains in which helices are
separated by loops (e.g., Homeobox, HLH, Fork_head, Ets). The enrichment analysis results
for these 32 DBD classes are listed in Table 2; at the bottom of the table, we also included
the Pfam domains Basic, AT hook, and P53 (Basic and AT _hook are included because we
mention them below in comparison to another study; P53 is a well-studied DBD included for
general interest).

The top 10 most frequently occurring DBD classes in human TF's all exhibit significant
order within the DBD itself, suggesting that structural flexibility within these domains is
rather limited. Strikingly, our results indicate that although the DBDs themselves exhibit
significant order, the regions flanking the DBDs are likely to exhibit significant disorder. Only
in the case of zf-C2H2 do the flanking regions exhibit significant order (this will be discussed
further in the next section). In contrast, 26 of the other 31 DBDs exhibit significant disorder
in either the N-terminal flank, the C-terminal flank, or both; and none of the other 31 DBDs
exhibit significant order in either flank under either null model. This is consistent with prior

studies in which it was found that DBDs are often separated by flexible linker regions, allowing
TF's to bind DNA with fine control over DNA binding affinity [22, 23].

3.3. Investigating detailed spatial relationships of IDRs relative to DBDs
within TFs

To further investigate the detailed spatial relationships of the IDR predictions of the three
different methods to protein DBDs, we generated a meta-plot of the average predicted or-
der/disorder in the vicinity of each Pfam DBD according to each prediction method. To do
this, we first identified all occurrences of a Pfam DBD in the TF set, and then across all those
occurrences, calculated the average (mean) order/disorder score predicted by each method at
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each residue within the DBD match and both of its flanks (up to 30 amino acids). In cases
where a TF contained only a partial DBD match and not a full domain according to the
HMMER alignment, we considered only the aligned region in our calculations. We normalized
the resulting scores for the purpose of comparison across methods, and for uniformity in scale
across plots for different DBD classes (Figure 3).

Figure 3 displays meta-plots for five of the ten Pfam DBDs most prevalent in human TFs.
Results from DISOPRED2 and PreDisorder 1.1 are fairly consistent across all five domain
classes. Moreover, all three methods are in good agreement in zf-C2HC and demonstrate
similar prediction trends in zf-C4, Homeobox, and HLH. Extended to all the DBDs listed in
Table 2, over 67.2% of the DBD classes that are found to exhibit either significant disorder or
significant order are identified as such by all three methods.

Nevertheless, some discrepancies in the results from the different methods are evident,
such as zf-C2H2. The C2H2-type zinc finger domain is the most prevalent DBD class found
in metazoan TFs, including in human [24]. Tt is also one of the most highly ordered DBDs;
however, the linker regions between these C2H2 zinc finger domains are often disordered [25].
As shown in Figure 3A, PONDR VSL2 reports that the C2H2 domain occurrences in human
TFs exhibit significant disorder in both the C2H2 domain itself and the adjacent N- and
C-terminal flanks; however, DISOPRED2 and PreDisorder both report the opposite, namely
that zf-C2H2 and its flanks exhibit significant order. Liu and colleagues carefully analyzed the
difficulties of predicting intrinsic disorder in the zf-C2H2 domains and their linker regions [4].
They concluded that because many linker regions between C2H2 zinc fingers are quite short,
the windowing procedures employed by some IDR prediction algorithms prevent them from
being detected as disordered; the result is an artifact in which linker regions between C2H2
zinc fingers are over-predicted as being ordered.

3.4. Analyzing spatial relationships for some DBD classes prevalent in
human TFs

3.4.1. Zinc fingers

Zinc fingers are small structural motifs whose folds are stabilized by coordination of one or
more zinc ions. Zinc fingers can be classified according to their zinc-coordinating residues and
folds. In Figures 3A-C, we show our IDR prediction results for the three major zinc finger
domain classes found in human TFs: zf-C2H2 (the most prevalent DBD class in human TFs),
zf-C4 (also referred to as nuclear receptors), and zf-C2HC. Although all three classes contain
zinc fingers, we find variability in their regions of order and disorder. As discussed above, the
C2H2 zinc finger domain is itself believed to be highly ordered, with individual ordered zinc
fingers separated by highly flexible linker regions [25]. We find that the C4 domain exhibits
significant order within the DBD itself, but significant disorder in flanking regions. In contrast,
we find that the C2HC domain exhibits significant disorder in both the DBD and flanking
regions.
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Fig. 3. Shown are meta-plots for five prevalent DBDs in human TFs. (A) zinc-finger C2H2-type (length:
~23 amino acids), (B) zinc-finger C2HC-type (length: ~31 amino acids), (C) zinc-finger C4-type (length: ~70
amino acids), (D) homeodomain fold (length: ~58 amino acids), and (E) helix-loop-helix (length: ~53 amino
acids).

3.4.2. Homeobox

Homeobox (homeodomain fold) is the second-most abundant DBD class within human TF's.
The homeodomain fold consists of an approximately 60 amino acid helix-turn-helix structure
in which three alpha helices are connected by short loop regions. Our results (Figure 3D)
extend the results of a prior study [7] that found multiple intrinsically disordered sequences
located outside the homeodomain DBD of the Drosophila TF Ubx, that allow Hox family
members (i.e., a subclass of TFs with Homeobox DBDs) to bind DNA with high affinity but
relatively low specificity [26, 27].

3.4.3. HLH

HLH (basic helix-loop-helix) is the third-most abundant DBD class within human TFs, and
is characterized by two a-helices connected by a loop. TF's that have this domain typically
bind DNA as either homo- or hetero-dimers, with each monomer contacting DNA through
a helix containing basic residues that facilitate DNA binding [28]. As shown in Figure 3E,
all three methods report that HLH exhibits significant order within the domain itself, but
significant disorder in both the N- and C-terminal flanking regions. Our results also indicate
that a short but highly disordered region may frequently occur in the middle of the HLH
domain, consistent with prior observations that the linker regions and the loop region of HLH



proteins are of higher flexibility, allowing dimerization by folding and packing one smaller
helix against the other one [28].

4. Discussion

In this study, we used three different computational disorder prediction methods to investigate
the prevalence of IDRs within DBDs and in their flanking regions across essentially the entire
repertoire of human, sequence-specific TFs and their associated Pfam DBDs. Our choice of
multiple prediction methods was motivated by a desire to be able to draw robust conclusions
that were not dependent on any one particular method.

Previously it was found that TFs are enriched for IDRs [3, 4]. At the same time, DBDs
responsible for TF binding did not seem themselves to be particularly enriched for IDRs. For
example, of the 25 DBDs studied in [4], only the Basic and AT _hook domains exhibited high
amounts of disorder; however, those domains are not particularly prevalent in human TFs,
occurring in our TF set just four times and one time, respectively.* We were intrigued by
the possibility that the enrichment of IDRs observed in TFs might be at least partly due to
disorder in the regions flanking DBDs; under such a hypothesis, DBDs can be thought of as
islands of order flanked by regions of disorder.

Our results support exactly such a hypothesis: the most prevalent DBDs in human TFs
exhibit significant order, but the flanking regions of these DBDs generally exhibit significant
disorder. Similarly, although DBDs of intermediate prevalence (occurring between 5 and 20
times in our TF set) do not appear often enough to exhibit either significant order or disorder
within the domains themselves, most of them still exhibit significant disorder in one or both
flanking regions.

The functional role played by the significant prevalence of disorder in the regions flanking
DBDs of human TFs is unclear. However, we can speculate that the increased flexibility
afforded by these flanking IDRs might contribute to the ability of TFs to 1) recognize target
sequences in the DNA appropriately, 2) bind to a wider diversity of DNA target sequences, 3)
be anchored with higher affinity to the DNA after recognizing target sequences, 4) bind to other
factors and complexes positioned on the DNA or involved in transcriptional regulation, or 5)
present activation domains to downstream transcriptional regulatory machinery. It should be
emphasized that these possibilities are speculative; however, the results of this study suggest
numerous testable hypotheses regarding the roles of N- and C-terminal regions flanking DBDs
for many frequently occurring DBDs in hundreds of human TFs. For example, the importance
of the predicted disorder in these flanking regions in determining or modulating the DNA
binding affinity and/or specificity of the associated TF's could be investigated with protein
binding microarrays (PBMs) [29, 30]. PBMs could assay the affinity and/or specificity of
proteins representing the DBDs with their flanking regions, as compared to either the DBDs
alone or the DBDs with mutant flanking regions predicted not to be significantly disordered.
If found to contribute to the DNA binding affinity and/or specificity of TFs, IDRs that flank
DBDs would broaden the scope of functional domains to be considered when evaluating the

#Though they do not occur often, where they do occur, they exhibit significant disorder in our results as well,
corroborating the results in [4]; see Table 2.



potential impact of mutations or natural polymorphisms within exomes, such as in medical
sequencing projects.

This study was focused on human TF's; however, since these DBD classes are the predomi-
nant DBD classes not just in human TFs but throughout eukaryotes, the results of this study
may have important implications for studies of TFs across all eukaryotes.
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