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Constructing an accurate model for the thermally accessible states of an Intrinsically Disordered Protein 

(IDP) is a fundamental problem in structural biology. This problem requires one to consider a large number 

of conformations in order to ensure that the model adequately represents the range of structures that the 

protein can adopt. Typically, one samples a wide range of structures in an attempt to obtain an ensemble that 

agrees with some pre-specified set of experimental data.  However, models that contain more structures than 

the available experimental restraints are problematic as the large number of degrees of freedom in the 

ensemble leads to considerable uncertainty in the final model. We introduce a computationally efficient 

algorithm called Variational Bayesian Weighting with Structure Selection (VBWSS) for constructing a 

model for the ensemble of an IDP that contains a minimal number of conformations and, simultaneously, 

provides estimates for the uncertainty in properties calculated from the model. The algorithm is validated 

using reference ensembles and applied to construct an ensemble for the 140-residue IDP, monomeric α-

synuclein.  

 

1.  Introduction 

Intrinsically Disordered Proteins (IDPs) are a class of polypeptides that populate diverse 

ensembles of conformations under physiological conditions.
1, 2

 It is believed that a number of 

IDPs play a critical role in the development of neurodegenerative disorders including Alzheimer’s 

and Parkinson’s – diseases that affect millions of people each year.
3, 4

 As a result, gaining an 

understanding of the conformational properties of these proteins is an important task, which could 

pave the way for the discovery of new therapeutics through structure based drug design.
5
   



 

 

 

 A model for the ensemble of an IDP consists of a set of structures  1, , nS s s  and a set of 

weights  1, , nw w w , where iw  corresponds to the equilibrium probability of conformation is . 

Typically, these structures and weights are chosen so that averages calculated from the ensemble 

agree with experimental observations;
2, 6, 7

 for example, so that the radius of gyration calculated 

from the ensemble is similar to its experimentally determined value. Previous studies have shown 

that agreement with experimental observations is not sufficient to ensure that an ensemble is 

accurate, because there may be many different ways of choosing the structures and weights to 

achieve a good fit to the experimental data.
8, 9

 Therefore, it is important to develop methods that 

can quantify the amount of uncertainty associated with a model of an IDP ensemble.  

We previously developed an algorithm, called Bayesian Weighting (BW), that uses Bayesian 

inference to construct an ensemble for an IDP that agrees with experimental observations, while 

simultaneously estimating the uncertainty associated with this model.
8
 The BW method calculates 

a ‘posterior’ probability distribution over all ways of weighting the structures in a pre-specified 

conformational library. Point estimates and error bars for various properties of the ensemble can 

be computed by calculating an average over this probability distribution. An important feature of 

the algorithm is that it provides a built-in error check in the form of an uncertainty parameter, or 

posterior uncertainty, which is related to the error in the estimated population weights. Our 

previous study suggests that this uncertainty parameter is a metric that assesses model 

correctness.
8
 When the uncertainty parameter is 0, one can be relatively sure that the model is 

correct. By contrast, a value of 1 suggests that the ensemble is inaccurate and values calculated 

from the ensemble will be associated with very large confidence intervals. 

  Of course, the quality of the structural library will also affect the accuracy of the resulting 

ensemble. The structural library must be diverse enough to capture the states populated by the 

IDP, but if it is too large then the problem will be under-restrained, leading to a large posterior 

uncertainty. One way to overcome this problem is to use variable selection techniques to identify 

an optimal subset of conformations from within a larger structural library.
10

 Such an algorithm 

might begin by estimating the population weights using a large conformational library and 

iteratively discarding lowly weighted conformations to improve the ensemble. In practice, 

performing this type of structure selection algorithm within a fully Bayesian framework would be 

computationally intractable because BW uses Monte Carlo methods to estimate the weights, and 

these calculations can take a long time to converge; therefore, we introduce an approximate 

algorithm called Variational Bayesian Weighting and Structure Selection (VBWSS) that can 

perform the calculations quite rapidly – providing a decrease in computational time of roughly 4 

orders of magnitude compared to BW. In this work we describe the VBWSS method and validate 

the approach using ‘reference’ ensembles.  Lastly we use the method to characterize the ensemble 

of the intrinsically disordered protein, α-synuclein (αS). 



 

 

 

2.  Theory 

2.1.  Optimal Structure Selection 

When constructing an ensemble for an IDP, it is necessary to use a structural library that is diverse 

enough to cover the entire range of accessible conformations. However, increasing the size of this 

library adds degrees of freedom to the model making the problem more underdetermined. In our 

prior work, we described a method for calculating a posterior distribution that assigns a probability 

to each possible choice of weights as a way of quantifying uncertainty in the ensemble.
8
 The 

posterior probability density function (PDF) is calculated using Bayes’ theorem:
8
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The specific forms for each of these terms will be given in section 2.2. Using eq. (1), the Bayesian 

estimate for the weight of structure is  is: 

  
,
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i i W M S
w w f w m S dw   (2)  

It may be possible to obtain a diverse ensemble that has a low uncertainty by considering different 

subsets, S  , of a heterogeneous structural library, , with n conformations.  

In order to use Bayesian variable selection techniques to identify an optimal set of 

conformations, 
*S  ,  we have to specify an a priori probability for each subset of structures. If 

we do not have a priori knowledge to guide this choice, it is reasonable to assume that every 

possible subset is equally probable; i.e.,   1Sf S  , where  Sf S  is the probability of subset S.  In 

this case, the posterior probability for a subset of conformations is: 

    M SS M
f S m f m S  (3)  
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is the vector of weights for the subset S   that contains l n  structures. 

Therefore, the optimal subset of structures is obtained by maximizing the ML,  M S
f m S . Note that 

it is usually not tractable to search through all subsets of structures, because the number of 

possibilities may very large. Instead, we begin with the entire structural library, where the weights 

are estimated using eq. (2) and the ML is calculated. Then, the lowest weighted structure is thrown 

out if its estimated weight is below a cutoff, cutw . The weights of the remaining structures are then 



 

 

 

recalculated along with the new value of the ML and, again, the lowest weighted structure is 

discarded if its weight is below cutw . The algorithm repeats this process until either the ML 

converges or all of the weights are greater than cutw . The set of structures that had the largest 

value of the ML is chosen for the final ensemble. In what follows, we develop a variational BW, 

or VBW, method to facilitate efficient calculation of the weights at each step. 

2.2.  Variational Bayesian Weighting  

At each iteration of the algorithm, after a set of structures has been chosen, an approximation to 

the ML can be calculated efficiently using ‘variational’ Bayesian inference.
11

 As stated above, the 

ML is proportional to the criterion for selecting a set of structures. In addition, by maximizing an 

approximate form of the ML we can arrive at an optimal set of weights for the structural subset 

under consideration. In variational Bayesian inference, the posterior PDF given by eq. (1) is 

approximated with a simpler PDF that allows one to easily calculate quantities of interest.
11

 Since 

we are interested in vectors of weights that are positive and sum to one, we choose our simple 

distribution to be a Dirichlet distribution with PDF:
12
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where     is the gamma function,  
1

0
l
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0 1

l
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Using this distribution, we can calculate a lower bound on the logarithm of the ML as follows: 
13
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We note that our overall goal is to maximize the ML; however, since equation (5) provides a lower 

bound for the ML, we instead maximize  L S , or equivalently minimize  L S . 

Furthermore, it is easy to show that  L S  is equal (up to an additive constant) to the Kullback-

Leibler (KL) distance
14

 between  ,g w S  and  
,

,
W M S

f w m S . Therefore, by finding the set of 

parameters that minimizes  L S  we also obtain an approximation to  
,

,
W M S

f w m S . 

The feature that makes the VBW algorithm computationally efficient is that the objective 

function can be obtained in closed-form for a suitable choice of prior distribution. Thus, one can 

apply a standard minimization protocol to find the set of parameters that minimize  L S . 

Before sketching the derivation, we need to define all of the terms in eq. (1).  

We denote the current set of structures under consideration as  
1

l

i i
S s


  and presume that we 

have a set of experimental measurements,  
1

k

i i
m m


 , which have experimental errors  exp

1

k

i i



. 

We assume that it is possible to calculate the i
th

 experimental observable in the j
th

 conformation, 



 

 

 

denoted as ˆ
ijm , with an accuracy pre

i . For example, if the Cα chemical shift for the first structure 

is calculated using SHIFTX, then 
1

pre  denotes the error reported for the calculation of a Cα 

chemical shift using SHIFTX, which is approximately 0.98 ppm.
15

 The total uncertainty that 

results from experimental error and inaccurate prediction algorithms is defined as 

   
2 2

exp pre

i i i    . We assume that the likelihood function for each experimental 

measurement follows a Gaussian distribution, such that the total likelihood function (assuming 

that the measurements are independent) can be written as follows:  
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Finally, for the prior distribution,  W S
f w S , we choose a Dirichlet distribution with PDF: 
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This choice of prior is a type of Jeffreys’ distribution – a class of non-informative prior 

distributions that are widely used in Bayesian inference.
16

 

Beginning with the definition of  L S  in eq. (5), we can rewrite the objective function as: 
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The first term is the KL distance between two Dirichlet distributions, i.e. the variational and the 

prior distributions, and has been previously reported.
17

 The second term is given by: 
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where C is a constant that depends on the experimental errors. The integral in eq. (9) can be 

calculated exactly giving an analytical expression for eq. (8): 
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where ij  is the Kronecker delta function,     is the digamma function and the constant from eq. 

(9) has been neglected because constant terms do not play a role in function minimization.  



 

 

 

Finally, suppose that we have used an optimization algorithm to identify the set of parameters, 

 
1

ˆ
l

i i



, that minimizes  L S  for the current set of conformations. The estimates for the 

population weights are given by the simple formula 
1

ˆ ˆ
lB

i i jj
w  


  .  

2.3.  Variational Bayes with Structure Selection 

The Variational Bayesian Weighting with Structure Selection (VBWSS) algorithm is: 

(1) Initialize the set of conformations to the entire structural library, i.e. set S  .  

(2) Use simulated annealing to find the set of parameters that minimizes  L S . 

(3) Remove the lowest weighted structure if it has B

i cutw w  and go to step 4, else go to step 5. 

(4) If  L S  has not improved for 10 iterations go to step 5, else return to step 2. 

(5) Exit the algorithm and return the set of structures and parameters that produced the smallest 

value of  L S . 

The simulated annealing algorithm in step 2 used a Gaussian cooling schedule 

      2
0 exp 5T t T t  , where t is the fraction of steps completed. For the first iteration with 

the entire structural library, the number of steps was set to 100 n  and the initial temperature was 

set to  0 2T  . Since each iteration of the structure selection algorithm involves throwing out a 

lowly weighted structure, we reasoned that the set of parameters identified in iteration j should be 

reasonable guess for the parameters for iteration j+1. Thus, each iteration after the first was 

initialized using the parameters identified in the previous iteration and run for 50 l  steps 

beginning from a temperature of  0 1T  . The step size was optimized during a short 

equilibration period at the start of each iteration to target a 50% acceptance ratio at 1T  . 

2.3.  Approximate Confidence Intervals 

The variational approximation to the posterior PDF can be used to calculate confidence intervals 

(CI) for parameters of the ensemble using a simple analytical approximation. Here, we suppose 

that our final set of conformations is  
1

l

i i
S s


  and the corresponding set of variational 

parameters is  
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i i
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formula for the variance of a linear combination and the covariance matrix of a Dirichlet 

distribution.
12

 Thus, an approximate 95% CI can be calculated using  1.96 varD D ; the 



 

 

 

1.96 is the number of standard deviations of a Gaussian distribution that corresponds to a 95% 

CI.
12

 

3.  Results and Discussion 

3.1.  Validation with Reference Ensembles 

The ultimate goal of the VBWSS algorithm is to construct an accurate, parsimonious 

representation for the conformational ensemble of an IDP using a minimum amount of 

computational effort while, simultaneously, estimating the uncertainty in the resulting model. 

Thus, there are a number of criteria by which the algorithm must be judged. First, we will address 

the 2 most important criteria: that the algorithm provides a means for accurately modeling 

conformational ensembles and for estimating their uncertainties. To address these questions, and 

to choose the weight threshold for structure selection, we used the method of reference ensembles.  

A reference ensemble is a pre-defined ‘truth’ for which both the set of conformations and their 

weights are known. The same 20 reference ensembles that were used to validate the previously 

reported BW algorithm were also used in this study to facilitate a comparison between BW and the 

new VBWSS algorithm.
8
 To review, each of the reference ensembles consisted of a set of 95 

conformations for the small peptide, met-enkephalin, and a set of weights. The different sets of 

weights were chosen so that the reference ensembles had different amounts of entropy.  Backbone 

NMR chemical shifts were calculated for each reference ensemble using SHIFTX and were 

randomly perturbed by 0.1 ppm to model experimental uncertainty.
15

  

The ensembles were compared by measuring the distances between the vectors of weights. For 

the measure of distance, we used the Jensen-Shannon divergence (JSD), which ranges from 0 to 1 

for identical and maximally different vectors of weights, respectively, and is given by:
18, 19
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For VBWSS, if a structure was not included in the ensemble then its weight was set equal to zero. 

The square root of the JSD can also be used to quantify the uncertainty in an ensemble by 

calculating the expected distance from the point estimate for the weights.
8
 It was shown previously 

that such an estimate,    2

,
, ,B

B

W M Sw
w w f w m S dw   , was strongly correlated to the 

distance between the ‘true’ weights of a reference ensemble and the estimated weights, 
Bw . This 

is an important feature of BW because it provides a built-in error check on the accuracy of the 

ensemble. To ensure that this feature was preserved in VBWSS, the weight cutoff for structure 

selection was chosen to maximize the correlation between Bw
 and  ,T Bw w  for the 20 



 

 

 

reference ensembles, yielding a value of 0.004cutw  ; this value of cutw  was used throughout the 

rest of the analysis.  

A comparison of the accuracy of the VBWSS and BW algorithms on the 20 reference 

ensembles is shown in Fig. 1. As shown in Fig. 1A, the estimates for the weights obtained from 

the VBWSS algorithm are similar in accuracy to those obtained from BW. In addition, the 

correlation between the uncertainty estimate, Bw
 , and the actual error in the estimated weights, 

 ,T Bw w , obtained from VBWSS is R = 0.9. The error in the weights is related to Bw
  by 

 , 1.54 B

T B

w
w w    . Thus, VBWSS obtained a similar level of accuracy as BW and maintained 

the ability to quantify the uncertainty in the ensemble.   

  

Figure 1. (A) The error between the true and estimated weights for the 20 reference ensembles. The solid and dashed 

lines indicate VBWSS and BW, respectively. The ensembles are ordered by increasing entropy. (B) The correlation (R 

= 0.9) between Bw
  and  ,T Bw w  obtained from VBWSS. The best fit, 1.54y x , is shown as a dashed line. 

It is also important to ensure that CIs calculated from VBWSS provide reasonable estimates of 

the errors in parameters of the ensemble. We assessed this feature of the algorithm by comparing 

ensemble averaged inter-atomic distances calculated from the VBWSS ensembles to their 

corresponding values in the reference ensembles. The approximate formula for a CI defined in 

section 2.4 should be fairly accurate if, on average,    
2

varrefD D D  ; here, refD  is the 

ensemble average value of the distance calculated from the reference ensemble.  In practice, we 

found that the standard deviation, calculated using VBWSS was too small, which is a problem that 

is known to affect variational approximations in Bayesian inference. To correct for the bias in the 

estimation of the standard deviations from VBWSS, we determined an empirical equation, 

 1.96 varD D   , that gave the CIs for the inter-atomic distances approximately 95% 

coverage frequency of their reference ensemble values. The best fit value was 1.54  , which 

was used for subsequent calculations of CIs.  



 

 

 

3.2.  α-Synuclein Ensemble 

αS is one of the most studied members of the IDP family. This 140 residue protein has been 

implicated in the pathology of a family of diseases known as synuclepathies.
20

 The most common 

among these is Parkinson’s disease, a neurodegenerative disorder characterized by intracellular 

aggregates known as Lewy bodies and the loss of dopaminergic neurons.
21

 While the exact 

relation between the aggregates and neuronal death remains a subject of debate, understanding the 

nature of the unfolded protein and its ability to aggregate may prove crucial to the design of new 

therapies.  Furthermore,  although it has been suggested that αS adopts a tetrameric structure with 

considerable helical content in the native cell environment
22

, the formation of aggregates likely 

involves the dissociation of these tetramers into disordered monomers that can form aggregates 

rich in cross-beta structure
22

. Consequently, there is still a need to understand the structure of the 

unfolded form of the disordered monomeric form of αS because such data may provide insights 

into the aggregation process.   

We applied the VBWSS algorithm to a previously generated structural library of αS that was 

created by pruning a large sample of ~10
5
 structures to a representative library of 299 

conformations. The exact same set of experimental measurements which was used to generate the 

BW ensemble was used here to generate the VBWSS ensemble. More specifically, we used C, 

Cα, Cβ and N chemical shifts,
23

 N-H RDCs
24

 and the radius of gyration from SAXS 

experiments
25

 along with the calculated values of chemical shifts using SHIFTX,
15

 RDC using 

PALES
26

 and radius of gyration through CHARMM.
27

 RDCs predicted from PALES are 

frequently scaled to account for uncertainty in predicting the magnitude of alignment.
8
 Here, the 

predicted RDCs were scaled by 0.25, which was found using a simple grid search to minimize the 

VBW objective function.  

We found that the VBW algorithm was extremely efficient compared to the BW algorithm. 

The VBW algorithm (without structure selection) took less than 30 seconds, compared to 

approximately 2 weeks for BW, running in parallel on eight 2.4 GHz Intel Xeon processors – a 

decrease in computational time of roughly 4 orders of magnitude. The increased computational 

efficiency of the variational approximation more than made up for the increase in computational 

effort due to structure selection, with the total VBWSS algorithm taking less than 30 minutes.  

Structure selection reduced the ensemble size from 299 to 78 non-zero weighted 

conformations, as shown in Fig 2A. The VBWSS ensemble also fits the experimental data well 

(Figs. 2B-C). In addition, the calculated ensemble average value of the radius of gyration was 

40.4Å with a 95% CI of [39.2-41.6]Å compared to the experimental value of 40±2Å.
25

 

We cross validated our ensemble by comparing inter-residue distances obtained from a 

recently published FRET experiment described in Grupi et al
28

 (Table 1). Our calculated 95% CIs 

for the ensemble average distances, measured between the C atoms, are in good agreement with 

the corresponding experimentally determined values. It is important to note, that we made no 

explicit use of any inter-residue distance data in the ensemble generation procedure. 



 

 

 

 

 

 

 

Figure 2. αS VBWSS algorithm. (A) Alignment of non-zero weighted structures. (B) Agreement of calculated and 

experimental C chemical shifts. (C) Agreement of calculated and experimental RDCs.  

Table1. Cross validation through inter-residue distances 

Probe pair  Experiment [Å]  Ensemble [Å]  

18,26  15.1  16.5-17.8 

26,39  21.8  20.2-22.7 

4,18  16.9  17.9-19.9 

18,39  29.4  30.0-33.6 

4,26  33.6  27.9-31.2 

66,90  29.6  36.5-40.1 

39,66  40.1  40.2-44.5 

4,39  43.0  39.5-44.3 

One of the most interesting features of αS is its ability to form aggregates that contain cross-

beta structure under the right set of experimental conditions.
29

 Because the formation of αS 

aggregates was shown to be involved in the pathology of Parkinson’s disease, it is of great interest 

to gain further knowledge about aggregation prone conformations within the disordered state. It 

was previously found that the minimal toxic aggregating segment is located in the NAC region of 

the protein, residues 68-78 or in reference to the NAC, NAC(8-18).
30

 Therefore, we focused on 

assessing regions with aggregation propensity within the ensemble. Because structures that place 

the segment in an extended and solvent exposed orientation may be aggregation-prone, we 

calculated the percentage solvent accessible surface area (%SASA) of the NAC(8-18) segment 

using CHARMM
27

 and the secondary structure content of each structure in the ensemble.  

Percentage solvent accessible surface area was calculated by dividing the SASA values for N-C-

C atoms by the SASA values of these atoms in a fully extended conformation. Results of this 

analysis are shown in Fig 4. Similar analysis can be found in Ullman & Stultz.
31

   

We found that approximately 12% (8-15% is the 95% CI) of the structures have the NAC(8-

18) segment in an extended (more than 3 extended residues) and solvent exposed (%SASA>40) 

orientation. These results are similar to those found using the BW algorithm
31

 and suggest that the 

ensemble of αS contains conformations that can readily form toxic, beta-sheet rich aggregates. 

 

 



 

 

 

 

 

 

 

 

Figure 4. Aggregation propensity in the ensemble. Colors represent the weight of each of structure. The star denotes a 

structure, shown to the right, with a relatively high weight.   

4.  Conclusions 

Constructing an ensemble for an IDP is a difficult task that requires reliable methods for 

estimating parameters from the ensemble and their associated uncertainties. Here, we introduced 

an algorithm for selecting an optimal set of conformations and implemented a variational 

approximation to the BW algorithm that provides a decrease in computational time of roughly 4 

orders of magnitude. The two methods were combined in the VBWSS algorithm, which provides a 

computationally efficient method for constructing IDP ensembles. The VBWSS algorithm was 

validated using reference ensembles, and was found to produce a similar level of accuracy as the 

BW algorithm. In addition, accurate estimates for the uncertainties in characteristics of the 

ensemble can be calculated from VBWSS using simple formulas.  

 In general, proteins with a larger amount of disorder result in VBWSS ensembles with a larger 

amount of uncertainty, all other things being equal. Nevertheless, certain characteristics of the 

ensemble may be well defined even when the other aspects are highly uncertain. This highlights 

the importance of using confidence intervals to make inferences about ensemble characteristics.  

We applied the VBWSS algorithm to construct an ensemble for αS and found that the 

ensemble agrees very well with experimental data. In addition to a dramatic decrease in 

computational time over BW, the VBWSS resulted in an improved fit to some experimental data. 

The BW algorithm obtains optimal structure weights for a given set of conformations while 

VBWSS obtains an optimal set of weights as well as an optimal set of conformations that fit the 

existing set of experimental data.  Given this extra degree of freedom, it is not surprising that, at 

least in the case of α-synuclein, VBWSS obtains slightly better fits to the experimental data.  In 

addition, we were able to reproduce experimentally measured inter-residue distances that were not 

included as restraints in the algorithm. The ensemble suggests that αS populates aggregation prone 

conformations in the disordered state. These results illustrate that the VBWSS algorithm provides 

an efficient, and accurate, method for constructing models of IDP ensembles.  

5.  Acknowledgements 

This work was supported by NIH Grant 5R21NS063185-02 



 

 

 

References 

1. A. Huang and C. M. Stultz, Future Medicinal Chemistry 1 (3), 467-482 (2009). 
2. C. K. Fisher and C. M. Stultz, Curr Opin Struct Biol 21 (3), 426-431 (2011). 
3. A. J. Lees, J. Hardy and T. Revesz, Lancet 373 (9680), 2055-2066 (2009). 
4. K. Blennow, M. J. de Leon and H. Zetterberg, Lancet 368 (9533), 387-403 (2006). 
5. S. J. Metallo, Curr Opin Chem Biol 14 (4), 481-488 (2010). 
6. L. Salmon, G. Nodet, V. Ozenne, G. Yin, M. R. Jensen, M. Zweckstetter and M. Blackledge, J Am 

Chem Soc 132 (24), 8407-8418 (2010). 
7. T. Mittag, J. Marsh, A. Grishaev, S. Orlicky, H. Lin, F. Sicheri, M. Tyers and J. D. Forman-Kay, 

Structure 18 (4), 494-506 (2010). 
8. C. K. Fisher, A. Huang and C. M. Stultz, J Am Chem Soc 132 (42), 14919-14927 (2010). 
9. D. Ganguly and J. Chen, J Mol Biol 390 (3), 467-477 (2009). 
10. L. Wasserman, Journal of Mathematical Psychology 44 (1), 92-107 (2000). 
11. J. T. Ormerod and M. P. Wand, American Statistician 64 (2), 140-153 (2010). 
12. J. A. Rice, Mathematical Statistics and Data Analysis: Third Edition. (Thomson Higher 

Education, Belmont, CA, 2007). 
13. J. Jensen, Acta Mathematica 30 (1), 175-193 (1906). 
14. S. Kullback and R. A. Leibler, Annals of Mathematical Statistics 22 (1), 79-86 (1951). 
15. S. Neal, A. M. Nip, H. Zhang and D. S. Wishart, Journal of Biomolecular NMR 26 (3), 215-240 

(2003). 
16. H. Jeffreys, Proceedings of the Royal Society of London Series a-Mathematical and Physical 

Sciences 186 (1007), 453-461 (1946). 
17. D. M. Blei, K. Franks, M. I. Jordan and I. S. Mian, Bmc Bioinformatics 7, - (2006). 
18. D. M. Endres and J. E. Schindelin, IEEE Transactions on Information Theory 49 (7), 1858-

1860 (2003). 
19. J. Lin, IEEE Transactions on Information Theory 37, 145-151 (1991). 
20. J. E. Galvin, V. M. Y. Lee and J. Q. Trojanowski, Archives of neurology 58 (2), 186 (2001). 
21. M. G. Spillantini and M. Goedert, Annals of the New York Academy of Sciences 920 (THE 

MOLECULAR BASIS OF DEMENTIA), 16-27 (2000). 
22. T. Bartels, J. G. Choi and D. J. Selkoe, Nature 477 (7362), 107-110 (2011). 
23. J. N. Rao, Y. E. Kim, L. S. Park and T. S. Ulmer, Journal of molecular biology 390 (3), 516-529 

(2009). 
24. C. W. Bertoncini, C. O. Fernandez, C. Griesinger, T. M. Jovin and M. Zweckstetter, Journal of 

Biological Chemistry 280 (35), 30649-30652 (2005). 
25. A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter, C. Griesinger, T. M. Jovin 

and C. O. Fernandez, Journal of the American Chemical Society 128 (30), 9893-9901 (2006). 
26. M. Zweckstetter and A. Bax, J. Am. Chem. Soc 122 (15), 3791-3792 (2000). 
27. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, 

Journal of Computational Chemistry 4 (2), 187-217 (1983). 
28. A. Grupi and E. Haas, Journal Of Molecular Biology 405 (5), 1267-1283 (2011). 
29. L. C. Serpell, J. Berriman, R. Jakes, M. Goedert and R. A. Crowther, P Natl Acad Sci USA 97 (9), 

4897 (2000). 
30. O. M. A. El-Agnaf and G. B. Irvine, Biochemical Society Transactions 30, 559-565 (2002). 
31. O. Ullman and C. M. Stultz, Submitted (2011). 


