
THE EXTRACTION OF PHARMACOGENETIC AND
PHARMACOGENOMIC RELATIONS –
A CASE STUDY USING PHARMGKB

EKATERINA BUYKO, ELENA BEISSWANGER, and UDO HAHN

Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universität Jena, Germany

E-mail: {surname.name}@uni-jena.de
http: // www. julielab. de

In this paper, we report on adapting the JReX relation extraction engine, originally developed
for the elicitation of protein-protein interaction relations, to the domains of pharmacogenetics and
pharmacogenomics. We propose an intrinsic and an extrinsic evaluation scenario which is based on
knowledge contained in the PharmGKB knowledge base. Porting JReX yields favorable results in
the range of 80% F-score for Gene-Disease, Gene-Drug, and Drug-Disease relations.
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1. Introduction

While molecular biology and clinical medicine have pursued their research agenda in a fairly
isolated manner for a long time in the past, this attitude has changed dramatically in the last
years and new research themes have been defined which combine the efforts of both scien-
tific camps. This change is mirrored in terms such as ‘translational medicine’, an area that is
explicitly devoted to bringing results from genetic research labs to the bedside in a clinical
environment, or ‘personalized medicine’ which aims at exploiting genetic data from an individ-
ual (or a genetically homogeneous cohort) for use in fine-tuned drug dosage recommendations
or highly individualized drug development and risk assessments.

Unfortunately, this thematic shift has not found parallels in the field of BioNLP, up until
now. Still, the overwhelming amount of work is concerned with proteins and genes (for named
entity tagging) and protein-protein interactions (for relation extraction). Although this re-
search has by no means become obsolete or irrelevant (quite the contrary is true given the
current performance ceilings of state-of-the-art recognition devices), we here argue for com-
plementing these activities by research efforts that are intended to support the collaborative
work of molecular biologists and clinical physicians in terms of suitable information extraction
technology. Our special targets are the domains of pharmacogenetics (studying the influence
of single genes on drug response) and pharmacogenomics (studying the influence of multiple
genes on drug response, typically using high-throughput techniques).

In order to contribute to this goal, we here consider possible association relations between
genes, drugs, and diseases as reported in the scientific literature. Accordingly, we no longer
focus on Protein/Gene-Protein/Gene relations but extend the scope of our investigations to
cover Gene-Drug, Gene-Disease, and Drug-Disease relations. Such a fundamental change in
the scope of entities and relations under scrutiny poses new problems. Both, for training (ma-
chine learning-based taggers) as well as testing suitable gold standards have to be provided.
Since it is not an easy task to set up such metadata, we here build on previous work, the Phar-



macogenomics and Pharmacogenetics Research Network and Knowledge Basea (PharmGKB)
(see Section 2 for a detailed description). Given this repository, we automatically generate
gold standard data out of the knowledge provided by PharmGKB (see Section 4.1), and use
it for two evaluation scenarios, an intrinsic and an extrinsic one (see Section 5.1). Based on
experiments using our relation extraction engine JReX (see Section 4.3), we have evidence
that the thematic extension of named entities as well as relations yields favorable results for
the three types of relations being gleaned on, in the range of 80% F-score for intrinsic settings
and up to 77.5% in an extrinsic configuration (see Section 5.2).

2. PharmGKB Database

The development of the PharmGKB repository represents a major step towards an interdis-
ciplinary biomedical information store. PharmGKB incorporates data on genetic variations
and associated phenotypic manifestations. The latter mainly concern the pharmacokinetics
of therapeutic drugs (how drugs are absorbed, metabolized and excreted by an organism)
and the pharmacodynamics of drugs (how drugs act in an organism). The repository also
covers certain non-pharmacological aspects of phenotypes, including susceptibility to disease.
Currently (as of May 2011) PharmGKB contains information about 27,000 pharmacogenes,
2,500 drugs, 3,200 diseases and 23,870 relations between them (amongst others) and it con-
tinues to grow as PharmGKB curators screen the scientific literature for new facts to be
inserted. Yet, keeping up with the large amount of articles published every day is virtually
impossible. Thus, the development of automatic support tools for the curation process might
be a rewarding endeavor. The key task will be to develop a system that is able to recognize
genes, drugs and diseases in text and to detect PharmGKB-relevant relations between them.

Other than common relation extraction tasks in the biomedical domain, such as the detec-
tion of protein-protein interactions or gene regulatory relations, PharmGKB-relevant relations
draw on much broader types of semantic relationships. This may be due to the fact that the
focus of interest in pharmacogenetics and pharmacogenomics lies on links between genetic
and phenotypic variations. Yet, evidence for these links can originate from different sources,
ranging from genetic research papers to clinical studies. Another reason might be that while
genes are referred to by a specific name or symbol in text, references to phenotypes are verbal-
ized much more loosely. At the same time, phenotype variation descriptions often mention the
drugs and diseases involved. Now, if Gene-Drug or Gene-Disease relations are extracted from
text, this opens up a wide range of interpretations of possible association types involved, from
a real physical interaction to correlation with clinical outcomes. In contrast, relations between
drugs and diseases often (but not always) adhere to some kind of treated-by relation. Given this
underspecification of PharmGKB semantic relationships, we consider PharmGKB relations
as coarse association relations, or merely relations, in the rest of this paper.

The following examples illustrate the association relations we here focus on:

• Gene-Drug — “It was found that the genotype of CYP2C19 had a significant effect
on the N-demethylation of citalopram.”

ahttp://www.pharmgkb.org/



• Gene-Disease — “The urocortin (UCN) gene resides at this interval, and its pro-
tein decreases appetite behavior, suggesting that UCN may be a candidate gene for
susceptibility to obesity.”

• Drug-Disease — “Decreased expression of BRCA2 mRNA predicts favorable response
to docetaxel in breast cancer.”

The first example contains a mention of the association between the CYP2C19 gene and
the demethylation process of the drug citalopram. In the second example, an assumption about
the impact of the UCN gene on obesity is made. The third example contains facts about the
role of the gene BRAC2 in response to the drug docetaxel related to breast cancer, thus we
encounter a relationship between a drug and a disease.

PharmGKB provides a hierarchically organized category system for different levels of ev-
idence that also classify the significance of the data. The lowest category is “Genotype” (com-
prising simple genetic variations), the highest “Clinical Outcome” (covering clinically relevant
data). In between are the categories “Pharmacodynamics and Drug Response”, “Pharmacoki-
netics”, and “Molecular and Cellular Functional Assays”. In our relation extraction approach,
we do not distinguish between those categories for relations but rather focus on the extrac-
tion of generic Gene-Drug, Gene-Disease and Drug-Disease relations for the evaluation of the
results on the available PharmGKB relationship data set.

3. Related Work

In BioNLP, research on (binary) protein-protein interactions (PPIs) was and still is predomi-
nant. This is reflected in lots of PPI-annotated corpora (e.g., LLL,1 AIMed,2 or BioInfer3),
but also the large variety of methodologies to tackle this problem (pattern-based (e.g.,4), rule-
based (e.g.,5), and machine learning-based approaches (e.g.,6)). Binary PPIs constitute a fairly
general abstraction from the complex interactions between genes and proteins, so requests for
finer-grained representations were issued. The Genia event corpus7 and the BioNLP 2009
Shared Task data8 contain such detailed annotations of PPIs (amongst others). The BioNLP
Shared Task was a first step towards the extraction of specific pathways with precise informa-
tion about the molecular events involved. The winner system, Turku,9 achieved with 51.95%
F-score the milestone result in that competition, but was outperformed in the BioNLP 2011
Shared Task with 56% F-score.10

Considering relation extraction (RE) in the pharmacogenetics and pharmacogenomics do-
main, to the best of our knowledge, there are only few studies which deal primarily with
phenotype-genotype-drug relations. This may be due to the fact that no large-scale anno-
tated corpora are available, up until now, for phenotype-genotype-drug relationships. Thus,
the developed systems mostly focused on named entity recognition (gene, drug, and disease
names) and on small-scale evaluations for RE. Rindflesch et al. developed the Edgar sys-
tem for the extraction of gene and drug names and gene-drug relations relevant for cancer.11

Edgar exploits underspecified syntactic parse trees and applies syntactico-semantic rules
for the extraction of relationships. An explicit evaluation for the Edgar system is missing
though. Chang and Altman’s system recognizes relations between genes and drugs in PubMed
abstracts with a co-occurrence-based approach.12 They further classify the relations into five



categories, as specified by PharmGKB, using a Maximum Entropy based machine learning
approach. The relation recognition step is evaluated against a small data set of 215 gene-drug
relations manually extracted from a review article, while the classification step is assessed
against human-curated articles from PharmGKB. Evaluation results for all five categories
range from 88% recall with 75% precision for the predictions of Pharmacokinetics, to 9%
recall with 27% precision for the Clinical Outcome category. The authors concede that the
selected PharmGKB data set was small, including 325 gene-drug pairs, and that the eval-
uation results heavily depend upon the size of training data. Chun et al. describe a system
for disease-gene relation extraction that is based on the co-occurrence of gene and disease
name mentions (found via dictionary look-up) and additional filtering of false positives with
a machine learning classifier.13 In the filtering mode, the system achieves 78.5% precision and
87.1% recall on a manually annotated corpus with 1,000 co-occurrences of gene and disease
names.

The most recent systems for the extraction of gene-drug relationships are Pharms-

presso14 and GenDrux.15 Pharmspresso builds on the Textpresso tool,16 a full-text
search engine for biological entities and facts such as PPIs. Pharmspresso has been ex-
tensively evaluated concerning the detection of gene and drug names, but with respect to
relationships it yields only 50% recall on gene-drug ‘association’ relations on 45 full-text ar-
ticles which contain 178 gene name mentions and 142 drug names mentions. GenDrux is
a web-based tool developed for the analysis of documents in the breast cancer domain. Its
document collection consists of 4,000 PubMed abstracts collected using gene and drug name
filters. GenDrux’s focus is on the retrieval of documents with gene and drug names related
to breast cancer, while RE is based only on the co-occurrence of relevant terms in the titles
of documents; an evaluation, however, is lacking. A first large-scale evaluation study was car-
ried out by Coulet et al. who extracted PharmGKB-relevant relationships using a lexicon of
key phramocogenomic entities and syntactic parses of 17 million Medline abstracts.17 The
extracted relationships are reported to have a precision up to 87.7%. Still this work does not
evaluate the recall of the presented relationship extraction.

With the exception of Coulet et al., we here provide the first large-scale evaluation study
of phenotype-genotype-drug relationship extraction for Gene-Drug, Gene-Disease and Drug-
Disease relations, using a high-performance relation extractor. We automatically gather a
large-scale gold standard based on human-curated texts from the PharmGKB database.
Furthermore, we provide two evaluation scenarios, an intrinsic one based on corpus cross-
validation and an extrinsic one based on PharmGKB relationship data.

4. Methods

4.1. PharmGKB as Gold Standard

Usually, manually annotated gold standard corpora are used to evaluate RE systems. Manual
annotation, however, is a time-consuming and costly process. In contrast, we here capitalize
on previous curation efforts and derive large-scale gold data for genes, drugs, diseases, and



binary relationships among them automatically from the PharmGKB knowledge base.b For
all relationships, PharmGKB specifies the two participants’ names and IDs and zero to
many references to PubMed abstracts that provide textual evidence for each relation. In total,
references to 5,241 different PubMed abstracts are given. We extracted all available abstracts
from the Medline Baseline Repository 2011 to form our initial corpus.c Next we limited our
focus to those PharmGKB relations that hold between entities of different semantic types
(Gene-Drug, Gene-Disease, Drug-Disease). For each entity involved in a relation we compiled
a list of its names and all alternative names, plus for genes its symbol and all alternative
symbols, as specified in PharmGKB. Finally, for each relation, we matched the names of its
participants (case-insensitively) against the abstracts from the referenced PubMed abstracts.
Matches covering partial tokens were skipped in this process to avoid false positives. If in
a sentence at least one name of the first participant and at least one name of the second
participant matched, we marked these sentences as containing a gold PharmGKB relation,
and incorporated the abstract as a gold corpus document. The numbers of the unique relations
we detected in this way are specified in Table 1.

Table 1. First line: The number of distinct binary Gene-Drug, Gene-Disease, Drug-Disease
relations as specified in PharmGKB. Second line: The subset of relations for which at least
one PubMed reference is given in PharmGKB. Third line: The fraction of relations with
PubMed reference that could be retrieved by our extraction machinery from at least one of
the specified PubMed abstracts.

# PharmGKB Relations Gene-Drug Gene-Disease Drug-Disease Total
all 11,476 8,028 2,639 22,143
with PubMed reference 6,628 7,163 2,634 16,425
retrieved from PubMed abstract(s) 1,686 1,711 673 4,070

The gold corpus we collected using PharmGKB references contains 1,980 PubMed ab-
stracts, where 522 abstracts incorporate Drug-Disease relations, 1,414 abstracts hold Gene-
Disease relations, and 1,262 abstracts contain Gene-Drug (see Table 2). In a later step, the
collected corpus of 1,980 abstracts, called here gold PharmGKB corpus, was used for the
evaluation of our relation extraction approach (see Section 5).

Table 2. Overvuew of gold relations in the gold PhramGKB corpus.

Relation Abstracts With Gold Relation Annotations Gold Relation Annotations
Gene-Drug 1,262 9,914
Gene-Disease 1,414 6,626
Drug-Disease 522 3,439
Total 1,980 19,979

bThe data files genes.zip, drugs.zip and relationships.zip were downloaded on May 17 and diseases.zip on May
18, 2011, from http://www.pharmgkb.org/resources/downloads_and_web_services.jsp.
cAll but six of the referenced PubMed abstracts could be retrieved from the Baseline Repository 2011.



4.2. Recognition of Relevant Named Entities (Relation Participants)

For each entity type (gene, drug, disease) we compiled dictionaries from PharmGKB exploit-
ing preferred names and alternate names of entities, as well as preferred symbols and alternate
symbols for genes. The drug dictionary was further extended by terms taken from the Or-
ange Book Dictionaryd extended with MeSHe term variants, while the disease dictionary was
also further extended by headings plus alternate entry terms from the MeSH disease branch
(starting with the top node “Diseases [C]”). For gene mention recognition, we used GeNo18

and for the remaining NER tasks we applied the Lingpipe Chunker.f

4.3. Extraction of PharmGKB-relevant Relations — JReX

The relation extraction experiments were run with the relation and event extraction system
JReX (Jena Relation eXtractor). Generally speaking, the JReX system classifies pairs of
genes in sentences as interaction pairs using various forms of syntactic and semantic evidence
(see Buyko et al.19 for a deeper account). JReX (under the name of JulieLab) scored on
2nd rank among 24 competing teams in the BioNLP 2009 Shared Task on Event Extraction,
with 45.8% precision, 47.5% recall and 46.7% F-score. After the competition, this system was
further streamlined and now peaks at 57.6% precision, 45.7% recall and 51.0% F-score (,2021),
and thus considerably narrowed the gap to the winner of the BioNLP’09 Shared Task who
scored at 51.95% F-score.g

As far as pre-processing is concerned, JReX uses JCore tools23 such as JulieLab’s
sentence splitter and tokenizer. For shallow syntactic analysis it applies the OpenNLP POS
Tagger and Chunker, both re-trained on the Genia corpus. For dependency parsing, the MST

parser24 was retrained on the Genia Treebank and the parses subsequently converted to the
CoNLL’07 representation.h

The JReX relation extractor accounts for two major subtasks – first, the structural trim-
ming of dependency graphs, and, second, the identification and ordering of arguments for the
relation under scrutiny. Trimming dependency graphs amounts to eliminating informationally
irrelevant and to enriching informationally relevant lexical nodes by concept overlays. For
example, JReX prunes auxiliary and modal verbs which govern the main verb in syntactic
structures such as passives, past or future tense. Accordingly, (see Figure 1), the verb “ac-
tivate” is promoted to the Root in the dependency graph and governs all nodes that were
originally governed by the modal “may”. An example of semantic enrichment is also given in
Figure 1, where the lexical item “TNF-alpha” is turned into the conceptual label Gene. This
abstraction avoids over-fitting of dependency structures for the machine learning mechanisms
on which JReX is based. For a more detailed explanation and evaluation of this approach to
syntactic simplification and semantic decoration, see Buyko et al.19 and.21

dhttp://www.accessdata.fda.gov/scripts/cder/ob/default.cfm
ehttp://www.nlm.nih.gov/mesh/
fhttp://alias-i.com/lingpipe/
gThe Turku system was also improved after the competition and now performs at 52.9 F-score.22
hWe used the Genia Treebank version 1.0, available from http://www-tsujii.is.s.u-tokyo.ac.jp. The
conversion script is accessible via http://nlp.cs.lth.se/pennconverter/.



Fig. 1. Trimming of dependency graphs.

The principal relation extraction step is argument detection and ordering. For argument
extraction, JReX builds sentence-wise pairs of putative arguments (named entities) and ap-
plies two machine learning approaches, one feature-based and the other one kernel-based. In
the feature-based classifier, three groups of features are distinguished: (1) lexical features (cov-
ering lexical items before, after and between the mentions of relation arguments; (2) chunking
features (concerned with head words of the phrases between two mentions; (3) dependency
parse features (considering both the selected dependency levels of the arguments, parents and
least common subsumer, as well as a shortest dependency path structure between the argu-
ments for walk features). For this feature-based approach, the Maximum Entropy (MaxEnt)
classifier from Mallet is used.i

The graph kernel classifier uses a converted form of dependency graphs in which each
dependency node is represented by a set of labels associated with that node. The dependency
edges are also represented as nodes in the new graph such that they are connected to the
nodes adjacent in the dependency graph. Subgraphs which represent, e.g., the linear order
of the words in the sentence can be added, if required. The entire graph is represented in
terms of an adjacency matrix which is further processed to contain the summed weights of
paths connecting two nodes of the graph (see Airola et al.6 for details). For the graph kernel
approach, the LibSVM Support Vector Machine is used as classifier.j

5. Experiments and Results

5.1. Experimental Settings

We established two evaluation settings, an intrinsic and an extrinsic one. In the intrinsic,
corpus-based scenario we used the gold PharmGKB corpus introduced in Section 4.1 for
a cross-validation of JReX. In the extrinsic scenario we used the PharmGKB relationship
data for evaluation of our relation extraction pipeline.

In the corpus-based evaluation scenario we performed a 10-fold cross-validation using
JReX. In order to analyze the corpus settings, we provide here further information on the
number of positive and negative instances (see Table 3).k The ratio of negative to positive
instances is different for genotype/phenotype-drug and for the genotype-phenotype relations.

ihttp://mallet.cs.umass.edu/index.php/Main_Page
jhttp://www.csie.ntu.edu.tw/~cjlin/libsvm
kInstances were generated sentence-wise. Positive instances contain pairs of entity mentions (in a sentence),
which were annotated to stand in a relation in PharmGKB, negative instances contain pairs of entity mentions
(in a sentence), which were not annotated to stand in a relation in PharmGKB.



Table 3. Positive and negative training instances in the gold PhramGKB

corpus.

Relation Positive Instances Negative Instances Total Instances
Gene-Drug 9,914 7,060 16,974
Gene-Disease 6,626 6,664 13,290
Drug-Disease 3,439 2,468 5,907

For example the ratio for Gene-Drug and Drug-Disease relations is 1.4, while for Gene-Disease
relations it is about 1.0. These are fairly low numbers in comparison with the ratio of nega-
tive to positive instances in the known relationally annotated corpora which provide protein-
protein or gene regulatory relations (the ratio here ranges between 5 and 10). This can be
explained by the fact that when entities such as drugs, diseases and genes are mentioned in
the same sentence they are likely to form a relation as well. Furthermore, our corpus, although
annotated with rich dictionaries and GeNo tools, contains a high number of gold PharmGKB
entities and thus PharmGKB relations. The distribution of positive and negative instances of
a corpus clearly influences the overall evaluation figures in terms of F-score. This is the reason
why we decided on an additional, extrinsic evaluation of JReX.

In the extrinsic approach, we extracted from the PharmGKB relationship subset data
as presented in Table 1 (4,070 unique relations) about one third of unique relations for each
relation type. For this set of relations, we collected the referenced abstracts from our gold
PharmGKB corpus. Thus, for every relation type we generated two splits of the Pharm-

GKB corpus, the training and the test part as depicted in Table 4. In contrast to the intrinsic
evaluation, we focused here on the extraction of unique relations from the test corpus. Further-
more, the training corpus was not allowed to contain the PharmGKB relations mentioned in
the test corpus. The training corpus subset was used for training JReX on the corresponding
relation type. The re-trained version of JReX was then used to predict relations on the test
part. We generated a list of detected unique relations and compared it against the test relation
subset. The figures for the test and training parts in terms of abstracts and unique relations
are presented in Table 4.

Table 4. Test and train parts of the gold PharmGKB corpus (unique relations only).

Relation Test Train Overall
Abstracts Relations Abstracts Relations Abstracts Relations

Gene-Drug 368 621 1612 1,068 1,980 1,686
Gene-Disease 513 673 1467 1038 1,980 1,711
Drug-Disease 169 198 1811 475 1,980 673

5.2. Evaluation on the complete gold PharmGKB corpus

The gold PharmGKB corpus of 1,980 abstracts was used for a 10-fold cross-validation of
our relation extraction machinery. As a lower bound to estimate performance, we selected
the common co-occurrence approach, i.e., if two entities of interest co-occur in a sentence,
they are marked to stand in a relation. In our case, it was particularly interesting to see the
baseline results as the ratio between negative and positive instances is lower as, for example, for
protein-protein interaction relations and, hence, has a potential to boost co-occurrence figures.



The results are presented in Table 5. The co-occurrence approach allows to extract Gene-Drug
and Drug-Disease relations with about 73.0% F-score, while Gene-Disease relations perform
at a lower 65.9% F-score.

Table 5. 10-fold cross-validation on PharmGKB corpus

Relation Co-occurrence JReX (FB) JReX (GK)
R P F R P F R P F

Gene-Drug 100 57.5 73.0 85.1 79.7 82.3 77.6 67.4 72.1
Gene-Disease 100 49.2 65.9 76.9 75.2 76.0 71.0 65.7 68.2
Drug-Disease 100 58.2 73.5 81.2 77.0 79.0 75.3 67.2 71.0
All relations 100 54.5 70.6 82.3 78.0 80.1 71.0 65.7 68.2

In the next step, we evaluated JReX in its feature-based (JReX FB) and its graph
kernel-based classifier variant (JReX GK). The results are also contained in Table 5. In the
feature-based approach, we achieve for Gene-Drug relation detection a performance of 82.3%
F-score, with 85.1% recall and 79.7% precision. For the Drug-Disease relations 79.0% F-score
with 81.2% recall and 77.0% precision were determined. The lowest results are achieved for
the Gene-Disease relation with 76.0% F-score. When JReX learns all relations in one step
and performs 3-types classification at once, the overall performance for all three relations
settles at 80.1% F-score. This means that learning all three relations in one step is advanta-
geous for achieving a good overall F-score result. The performance of the graph-kernel based
classifier (JReX GK) is lower than for the feature-based classifier with up to 10 percentage
points difference in F-score results. The feature-based classifier is shown to perform better for
all phenotype/genotype-drug relation types than the JReX GK classifier. While the main
source of information for the JReX GK classifier are dependency parse trees, the JReX FB

classifier considers a range of lexical, morpho-syntactic and syntactic information. It seems
that the extraction of phenotype/genotype-drug association relations cannot be captured by
considering dependency parse trees only and profits from richer sources of evidence.

Our intrinsic evaluation showed that the JReX based extraction of phenotype/genotype-
drug relations outperform significantly the co-occurrence based approach by up to 9.3 percent-
age points in terms of F-score (see Gene-Drug relation evaluation in Table 5). This indicates
that this type of relations can effectively be learned by the JReX tool.

5.3. Evaluation against the PharmGKB relation subset

In Table 4 we presented the figures of test and training parts for each relation type of interest.
As the feature-based classifier was shown in the intrinsic evaluation to outperform the graph
kernel classifier-based one, for the extrinsic evaluation we used only the feature-based JReX

variant. For each relation type, we retrained JReX FB on the training part and performed
relation extraction on the test part. The extracted list of unique entities was then compared
with the gold PharmGKB relation list as described previously. In this evaluation, we chose
the co-occurrence approach as the baseline, once again. The results are presented in Table 6.

The co-occurrence approach performs with a very low precision of 39.4% for the Gene-



Table 6. Evaluation against PharmGKB relation test sets

Relation Test Size (Unique) Co-occurrence JReX
R P F R P F

Gene-Drug 621 100 39.4 56.5 90.9 61.9 73.6

Gene-Disease 673 100 35.0 52.1 83.3 58.6 68.8

Drug-Disease 198 100 45.3 62.3 85.3 71.0 77.5

Total 1,492 100 39.9 59.9 86.5 63.8 73.3

Drug, 35.0% for Gene-Disease and 45.3% for Drug-Disease relations. The overall F-score
results range between 52.1% for the Gene-Disease relation and 62.3% for the Drug-Disease
relation. The co-occurrence approach is outperformed by JReX in the extrinsic evaluation as
in the intrinsic one. JReX peaks for the Drug-Disease relation at 77.5% F-score followed by
73.6% F-score for the Gene-Drug relation and 68.8% F-score for the Gene-Disease relation. In
all three extrinsic evaluation results for JReX we see that recall is much higher than precision.
This can be explained by the distribution of the positive and negative instances in the training
data. The lower the ratio between the positive and the negative mentions is, the higher is the
tendency of the classifier to classify an instance as a positive. Still, the precision and thus
the overall F-score results show that phenotype/genotype-drug relations can successfully be
extracted with JReX, with performance peaking up to 77.5% F-score in a real life extrinsic
evaluation on the PharmGKB relationship data.

5.4. Caveats – Putting Things in Perspective

The main concern with the approach above is clearly centred around the reliability and rep-
resentativeness of the semi-automatically generated gold standard. The collection of Pharm-
GKB referenced abstracts and the automatic mapping of relationship data in the text may
admittedly hide risks of running into bad gold standard data, which is not approved by hu-
man annotators. Still, the PharmGKB references to the abstract texts are a human-curated
highly reliable data source for relations that hold between entities of interest.

A manual analysis of selected texts revealed that the annotations seem to reflect the knowl-
edge represented by the PharmGKB. One student of biology analyzed 200 sentences ran-
domly extracted from the PharmGKB gold corpus, which should contain gold PharmGKB

relations (100 sentences for Drug-Disease, 50 sentences for Gene-Drug and 50 sentences for
Gene-Disease relations). The analysis revealed that 80% of the sentences for Drug-Disease
relations, and 90% of the sentences for the Gene-Disease as well as Gene-Drug relations,
in effect, contain descriptions of these relations. The figures of the distribution of positive
and negative training instances are also an indicator for the reasonable quality of the semi-
automatically generated gold standard. Furthermore, numerous previous studies on learning
relations from automatically generated corpora in a distant supervision model reinforce the
outcomes of our approach (see Mintz et al.25).

lA distant supervision approach produces a large automatically annotated corpus using relation mentions from
available databases, it considers all sentences containing those entities to stand in a relation in order to train
a relation classifier.25



To avoid the intricacies of an intrinsic corpus-based evaluation, we exposed our approach
to an extrinsic evaluation similar in spirit to the one we had already carried out on the Reg-

ulonDB database.26 The results, up to 77.5% F-score, are promising and reflect the fact that
the PharmGKB gold standard may indeed be representative for general genotype-phenotype-
drug relationships. But as the PharmGKB curation process seems to involve some automatic
preprocessing of the text data for named entity recognition and co-occurrence analysis, the
database may lack articles that will not pass the pre-selection step. Furthermore, the Phar-

mGKB database does not contain references to curated articles which do not contain Phar-

mGKB-relevant relations (those are dropped after the curation process). These restrictions
may explain the low ratio of negative to positive instances in the generated corpus.

6. Conclusions

While the BioNLP community’s focus is still almost exclusively gene/protein-centered, both in
terms of named entity and relation extraction (PPIs, in particular), this only partially matches
the most recent needs at the intersection of molecular biology and clinical/pharmacological
research. Our work reported in this paper aims at mitigating that mismatch.

Accordingly, we ported JULIE Lab’s high-performance JReX relation extractor from
the protein/gene interaction domain proper to the domains of pharmacogenetics and pharma-
cogenomics. Here, three novel types of relations, namely Gene-Drug, Gene-Disease, and Drug-
Disease relations had to be targeted. For these relations we achieved over-all F-scores on the
order of 80% in an intrinsic and 73% in an extrinsic evaluation. In both cases co-occurrence-
based baselines were clearly outperformed. Our approach crucially relies upon training and
test data that we automatically compiled from PharmGKB.

Despite these encouraging results, our experimental design needs further refinement. First,
our triple relation repertoire cannot be matched straightforwardly with the PharmGKB-
specific relation hierarchy (ranging from ‘Genotype’ to ‘Clinical Outcome’). However, such a
mapping is needed for directly supporting the curators of PharmGKB. Second, our internal
evaluation is not based on a real gold standard but on an automatically generated substitute
only. This requirement opens up the box of Pandora in that not only rarely dealt with entities
(diseases, drugs, etc.) but even worse rather underspecified, if not fuzzy relations (such as
‘Clinical Outcome’) have to be served by massive annotation efforts.
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