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The molten globule nuclear receptor co-activator binding domain (NCBD) of CREB binding protein
(CBP) selectively recruits transcription co-activators (TCAs) during the formation of the transcription pre-
initiation complex. NCBD:TCA interactions have been implicated in several cancers, however, the mecha-
nisms of NCBD:TCA recognition remain uncharacterized. NCBD:TCA intermolecular recognition has chal-
lenged traditional investigation as both NCBD and several of its corresponding TCAs are intrinsically disor-
dered. Using 40µs of explicit solvent molecular dynamics simulations, we relate the conformational diversity
of ligand-free NCBD to its bound configurations. We introduce two novel techniques to quantify the con-
formational heterogeneity of ligand-free NCBD, dihedral quasi-anharmonic analysis (dQAA) and hierarchi-
cal graph-based diffusive clustering. With this integrated approach we find that three of four ligand-bound
states are natively accessible to the ligand-free NCBD simulations with root-mean squared deviation (RMSD)
less than 2Å. These conformations are accessible via diverse pathways while a rate-limiting barrier must be
crossed in order to access the fourth bound state.

Keywords: intrinsically disordered proteins; NCBD; quasi-anharmonic analysis; graph-theoretic spectral clus-
tering

1. Introduction

Intrinsically disordered proteins (IDPs) play a vital role in regulating cellular processes in eukary-
otic cells.1,2 Structural studies have revealed that unlike well-folded globular proteins, IDPs exist as
highly dynamic ensembles even under equilibrium conditions, with diverse and constantly fluctu-
ating secondary/tertiary structure.3 The ability of IDPs to adapt their binding surface to recognize
various binding partners provides a novel means of regulating various cellular activities.4 Given
the abundance of IDPs in the human genome and their involvement in neurodegenerative, cardio-
vascular, and amyloid-related diseases,5,6 there is tremendous interest in understanding the basic
molecular mechanisms by which IDPs recognize their binding partners and facilitate their specific
functions. For example, some IDPs possess the remarkable ability to undergo synergistic folding
upon recognizing their binding partners.7 The contrasting ability of IDPs to achieve a high degree of
structural plasticity while retaining binding specificity presents a serious challenge in characterizing
their sequence-structure-function relationships.

The intrinsically disordered nuclear co-activator binding domain (NCBD) of the CREB bind-
ing protein (CBP) interacts with numerous transcription co-activator proteins (TCA), including the
steroid receptor co-activators (SRC),8 p53,9 p73,10 interferon regulatory factors (IRF)11 and the vi-
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ral protein Tax.12 As NCBD aids recruitment of the transcriptional machinery, its dysfunction (and
that of its binding partners) is implicated in several forms of leukemia13 and lung cancer.14 Circu-
lar dichroism (CD) and ultra-violet (UV) spectroscopic studies reveal that native NCBD adopts a
compact structure with a high degree of helicity but lacks the sigmoid unfolding curve character-
istic of folded proteins.15 Structural studies using nuclear magnetic resonance (NMR) and X-ray
crystallography indicate that NCBD adopts unique conformations when complexed with specific
partners15,16 and that synergistic folding facilitates the interdigitation of three helices, a feature com-
mon in NCBD’s bound topology (identified by α1 − α3; see Fig. 1).17,18 Increasingly, the specific
orientations of these three α-helices are thought to confer the specificity inherent to NCBD:TCA
intermolecular recognition.15–18

Fig. 1: Bound and unbound forms of NCBD.
NMR ensembles of the ligand-free structures:
2KKJ (A) and 1JJS (B); NCBD in complex with
(C) p53 trans-activation domain (TAD) (2L14:
TAD in pink); (D) interferon regulatory factor 3
(IRF3) (1ZOQ: IRF3 in pale blue); (E) steroid
receptor coactivator 1 (SRC1) (2C52: SRC1 in
magenta); (F) interaction domain of activator for
thyroid hormone and retinoid receptors (ACTR)
(1KBH: ACTR in cyan). In all panels, the three
helix bundle of NCBD is highlighted in orange
(α1), yellow (α2) and gray (α3), while the speci-
ficity loop (PSSP) is in green.

While a number of studies point to the be-
havior and structure of NCBD in its bound
state,15–18 the conformational heterogeneity
of apo-form NCBD has been challenging to
characterize. Emerging evidence from NMR
experiments16 suggest that native NCBD can
adopt conformations that largely resemble
the SRC/ACTR-bound conformation. How-
ever, that study also revealed that ligand-
free NCBD does not sample states that re-
semble the IRF-bound conformations. More-
over, Fraenkel et al.19 have determined the
apo-form of NCBD to be quite different
from Poulsen et al.16 Based on the cur-
rent insights gained from experimental stud-
ies, the biophysical mechanisms underlying
NCBD:TCA recognition process remain un-
clear. Likewise, a quantitative description
of disorder-to-order transitions between the
ligand-free or ligand-bound NCBD ensem-
bles is lacking.

In this paper, we address the aforemen-
tioned issues and outline an integrated exper-
imental and computational strategy to ana-
lyze disorder-to-order transitions in NCBD’s
conformational landscape. Our aims are to:
(a) obtain insights into the nature of intrinsic
fluctuations accessible to ligand-free NCBD, (b) identify regions within NCBD that are implicated
in its disorder-to-order transitions and (c) elucidate whether ligand-free NCBD can access confor-
mations that resemble the ligand-bound conformations. To this end, we exploit recent advances in
molecular simulation technologies to extensively sample ligand-free NCBD. Using graphics pro-
cessing units (GPUs), we accelerate conventional all-atom explicit solvent molecular dynamics sim-



ulations to microsecond time-scales. The aggregate dataset constitutes 40µs of MD simulation and
required approximately two months of total clock-time.

Long time-scale simulations challenge conventional trajectory analysis methods. In particular,
biophysically relevant events within such trajectories are often difficult to detect.20,21 Likewise, ex-
perimental techniques also present modeling challenges; results from small-angle neutron scattering
(SANS) experiments on NCBD suggest a distinctly long-tail (or anharmonic) behavior in the dis-
tributions of radius of gyration and end-to-end distance values.22 This long-tailed behavior implies
that atomic fluctuations in NCBD involve significant higher-order correlations, which are commonly
overlooked with typical trajectory analysis tools.23 Recently, we introduced quasi-anharmonic anal-
ysis (QAA) as an effective computational model to quantify these higher-order correlations which
emerge prominently within long simulations.24 QAA provides insights into the inherent anharmonic-
ity in atomic fluctuations and is thus ideal for quantifying the disorder-to-order transitions in NCBD
observed from both experiments and simulations. Furthermore, QAA organizes the conformational
heterogeneity in NCBD fluctuations into a small set of conformational sub-states that share structural
and energetic homogeneity.

Markov state models (MSMs) and their variants also provide organizational principles for molec-
ular simulations. These methods exploit the kinetic connectivities27 or structural similarities26 be-
tween conformational sub-states and have been useful for determining transition pathways between
conformational sub-states.20,25 As a comparison to QAA, MSMs discretize conformation space into
a network or graph of sub-states rather than projecting it into a low-dimensional, continuous rep-
resentation. A central contribution of the work here is an approach which exploits both the dimen-
sionality reduction (and visual interpretability) of QAA and rigorous graph theoretic methods to
determine a hierarchy of transitions between sub-states. With this integrated approach, we deter-
mined that ligand-free NCBD can indeed access conformations representative of the ligand-bound
form. Within our simulations, NCBD’s α1 and α2 helices in the ligand-free and ligand-bound con-
formations are largely similar; α3 however, can exhibit a wide degree of flexibility and does not
generally sample conformations that are similar to the ligand-bound state.

2. Approach

We performed ten 4µs all-atom explicit solvent MD simulations of apo-NCBD (Section 3). To iden-
tify biophysically relevant motions within these simulations, we developed a novel, broadly extensi-
ble, dimensionality reduction framework based on quasi-anharmonic analysis in the dihedral angle
space, called dihedral QAA or dQAA (Section 4). To validate our simulations we used two order
parameters: radius of gyration (Rg) and helicity (H; defined here as the percentage of NCBD that
adopts α-helical structure as assigned by STRIDE28), which can be measured experimentally via
SANS22 and circular dichroism16 experiments respectively.

To determine meta-stable conformational states, we invoke a multi-scale Markov diffusion ap-
proach (Section 5) to group similar conformations in the dQAA space. Iterative diffusion-based
clustering in the dQAA space results in a hierarchical description of the NCBD conformational
landscape. Each level of the hierarchy provides a set of increasingly broad (or inclusive) meta-
stable states, allowing the conformational landscape of NCBD to be viewed as a collection of nested
sub-states. As we demonstrate, dQAA coordinates provide a natural framework for organizing the
conformational heterogeniety of the apo-NCBD ensemble and help identify disordered or compact



conformational states. In addition, the Markov diffusion approach captures meta-stable states that
provide insight into the nature of structural changes that NCBD must undergo in order to sample
conformations close to the ligand-bound state (Section 6).

3. Molecular Simulations for NCBD

A total of six NMR and X-ray NCBD structures are available in ligand-free and ligand-bound form.
Fig. 1 shows the variation in the orientation of the three α-helices between these structures. While
NCBD adopts very similar helical orientations when binding ACTR, SRC1 and p53, the interfaces
and helical turns of NCBD when complexed to each ligand are quite different. Furthermore, NCBD
adopts a radically different orientation for interacting with IRF3; α3 twists and rests on a very dif-
ferent axis from that in the ACTR interaction.

In the interest of sampling the large conformational space of ligand-free NCBD, we initiated a
4µs long simulation for each of the 10 conformations in the NMR ensemble (2KKJ) that is repre-
sentative of the ligand-free state. We used the AMBER suite of tools29 and the ff99SB30 force-field
to model the proteins. Each of the ten conformations was immersed in a cubic box of SPC water
molecules such that the solvent box boundary was never less than 10Å from the protein. Counter-
ions consisting of 10 Cl− were added to ensure system neutrality. The box sizes were approximately
90 × 90 × 90 Å3 (with slight variations for each of the ten simulations). Using the protocol high-
lighted in our previous work,31 each of the simulation systems was subjected to energy minimization
and equilibration. A final MD equilibration of 1.0ns duration was run to ensure the systems reached
a stable conformation. All the simulations were carried out at 300K using the NVE ensemble. Each
of the ten systems had between 9,000 and 12,000 water molecules, resulting in system sizes varying
between 18,000 and 22,000 atoms.

Production runs were carried out using the recently developed ACEMD (accelerated MD) code
specifically for graphics processing unit (GPU) systems.32 In order to accelerate the MD simulations
to reach microsecond time-scales, the systems were simulated using a time-step of 4fs using a hydro-
gen mass-partitioning scheme.33 The alteration to the dynamics due to the mass-partitioning scheme
is minimal since individual atom masses do not appear explicitly in the equilibrium distribution.32

Ten production runs sampling 4µs per simulation were performed. Coordinates were saved every
200 ps, resulting in about 20,000 conformations per simulation or an aggregate total of 200,000
conformations for all simulations (40µs total).

Comparison with NMR: To compare our production runs with NMR data, we used SPARTA34

to predict the 1H, 13C, and 15N chemical shifts for the ensembles generated from MD simulations.
SPARTA uses backbone φ and ψ torsion angles, side-chain χ1 angles, and sequence information
to predict backbone chemical shifts of protein structures.34 We found that the simulations show
reasonable agreement with the chemical shifts from the experimental ensembles (2L14, 1KBH and
2KKJ). In particular, the correlation coefficients between the mean MD and the experimental 15N
shifts are 0.74, 0.78, and 0.88, respectively, for the 2L14, 1KBH and 2KKJ data. We note that
computed 1H and 13C chemical shifts are less consistent with respective experiments presumably
due to force-field inaccuracies and the 4 fs MD integration time-step.35 While the agreement between
experiments and computations is a cursory check on the quality of data obtained, we must also note
that the chemical shifts from the experimental ensembles may not be fully representative of the
conformational heterogeneity of apo-NCBD.



Comparison with SANS: We next compare simulation results with experimentally derived Rg
values from small-angle neutron scattering (SAS) experiments. The distribution of Rg values from
MD simulations is observed to be more constrained than that obtained from SANS, possibly due to
MD sampling deficits (Fig. 2a panel B, blue: aggregate simulations; red dash: single simulation; red:
SANS data). This is in part because MD trajectories are strongly biased by the chosen starting pose,
which is commonly an energy-minimized X-ray or NMR ensemble structure.36,37 We note that the
range of SANS-derived Rg values suggests that NCBD may undergo disorder-to-order motions on a
larger scale than observed in the present simulations.

From a molten globule state to a near ACTR-bound form: To quickly overview significant
conformational events in the MD trajectory, we track Rg on-line along a subset of one of the simula-
tion trajectories using two different exponential window smoothing timescales (Fig. 2b). We observe
that NCBD changes from a molten-globule form (high Rg) to a near ACTR-bound form (gray car-
toon for comparison, shown along with RMSDs). The pathway chosen by this trajectory is highly dy-
namic, involving several significant rearrangements of the α1-α2 (PSSP) loop and α3. Interestingly,
the conformational changes persist across the timescales of the exponential window, confirming the
evolution of NCBD from a molten globule state to a near ACTR-bound form. In this particular tra-
jectory, generated from model 2 of the NMR ensemble (2KKJ), NCBD adopts a form that is about
4.27 Å (Cα-RMSD) from the bound form; however, other trajectories adopt conformations that are
much closer to the ACTR-bound form (see Section 5).

4. dQAA: Quasi-anharmonic analysis in the dihedral angle space

The conformational heterogeneity we observed in long timescale simulations of NCBD motivated us
to eliminate the sensitivity to Cartesian alignment by analyzing the NCBD ensemble in the dihedral
angle space. For a N residue protein there are a total of 2N backbone φ and ψ angles, φ = {φi}1,...,N ,
ψ = {ψi}1,...,N . Each backbone dihedral angle pair (φi,ψi) can be converted into a Euclidean rep-
resentation by xi−3 = cos(φi); xi−2 = sin(φi); xi−1 = cos(ψi); xi = sin(ψi), yielding a 4N vector
x. We first considered dihedral PCA (dPCA), where a covariance matrix is generated from this data
and is diagonalized to obtain a low-dimensional representation of the conformational ensemble.45–47

We observed that NCBD conformers projected into low-dimensional dPCA space lacked coherency
(or homogeneity) with respect to the Rg values, indicating that dPCA is unable to fully describe the
disorder-to-order motions of NCBD (data not shown).

Protein motions are anharmonic; therefore, capturing the conformational diversity of protein
fluctuations requires effective models that quantify anharmonic motional signatures.23,38–42 Anhar-
monicity is best summarized by higher-order statistics.38,39 Our previously developed framework,
quasi-anharmonic analysis (QAA), exploits these higher-order statistical signatures of protein mo-
tions.24 When applied to µs time-scale simulation data of proteins involved in molecular recognition
and enzyme catalysis, QAA revealed (i) functionally relevant, hierarchically-organized conforma-
tional sub-states and (ii) a set of on-pathway intermediates between these sub-states. This result is
consistent with the understanding that proteins sample from a hierarchical, multilevel energy land-
scape with minima and maxima separated by energy barriers.43,44 We observed that the sub-states
determined with QAA were energetically coherent, indicating that our low-dimensional representa-
tion appropriately depicts energetically-related conformers as neighbors. We emphasize, however,
that the resultant energy coherence within observed sub-states is an emergent property of QAA,



(a) Comparing simulations with experiments (b) Online tracking of Rg

Fig. 2: Disorder-to-order transitions in NCBD ligand-free ensemble (a) A comparison of sim-
ulated NCBD ensembles with NMR (A) and SAS (B) experimental data, illustrating qualitative
agreement. Chemical shift data is taken from three ensembles, 2KKJ (16363cat.bmrb, red), 2L14
(17071cat.bmrb, brown), 1KBH (5228cat.bmrb, cyan), and compared to computed mean chemical
shifts from the simulations. (B) Rg is shown for SANS data (tan, solid), aggregated MD data (blue,
normalized), and a single MD trajectory (2KKJ, model 3)(dashed red, normalized). Not all of the
conformational landscape is sampled by MD, as is evident from the second SANS peak. (b) Rg dur-
ing first 400ns of a single MD trajectory (2KKJ, model 2), with 1ns (blue) and 5ns (red) exponential
smoothing showing disorder-to-order transitions. Conformations at six timepoints are aligned to
crystal structure 1KBH.

indicating that our higher-order statistical approach selects meaningful reaction coordinates.
With the intention of capturing anharmonic disorder-to-order motions, we pursued anharmonic-

ity as an informative statistic in the form of dihedral QAA (dQAA), basing our technique on the di-
agonalization of a tensor of fourth-order statistics in the dihedral angle space. This tensor describes
dihedral angle fluctuations and their couplings and can be efficiently diagonalized with a technique
called joint-diagonalization of cumulant matrices (JADE), a well known machine learning algorithm
for analyzing multi-variate data.48 To begin with, second-order correlations are removed from the
dihedral angle fluctuation data. Next, a fourth order cumulant tensor K is computed consisting of
both auto- and cross-cumulants. The cumulant tensor will have a total 4N × (4N + 1)/2 matrices
each of size 4N × 4N accounting for auto- and cross-cumulant terms. Finally, the fourth order de-
pendencies denoted by the sum of the cross-cumulant terms are minimized, a procedure equivalent
to diagonalizing K. No closed form solution exists for diagonalizing a tensor, however an approx-
imate solution can be found using efficient algebraic techniques such as Jacobi rotations.49 Just as
an eigenbasis diagonalizes a covariance matrix, a matrix U is found to approximately diagonalize
the cumulant tensor. The basis matrix U represents anharmonic modes of motion derived by mini-
mizing the fourth-order dependencies in dihedral angle fluctuations, in addition to eliminating the
second-order correlations as is the case with dPCA. Unlike in dPCA, the column vectors of U (sorted



(a) Radius of gyration (b) Helicity percentage

Fig. 3: dQAA identifies a hierarchy of disorder-order promoting motions and homogeneous
clusters in 2KKJ µs timescale ensemble. MD trajectory frames are projected along the top three
dQAA modes and colored by (a) Rg and (b) Helicity. (a) Level 1 of the dQAA hierarchy reveals two
compact, low Rg clusters (II and III). Cluster IV has high Rg values (red) indicating a more open
conformation. Mean conformers in each cluster (I: yellow, II: green, III: maroon, IV: blue) are super-
imposed on the bound conformer of NCBD-ACTR (orange) and the respective RMSDs are given.
Successive application of the dQAA analysis to heterogenous clusters (Level 2 and 3) highlight a
rich conformational diversity when painted with Rg values values. (b) In level 1, dQAA clusters I
and III are predominantly low in helicity (blue) and dQAA clusters II and IV are predominantly
high in helicity (pink). The ability to separate ordered (high helicity) from disordered (low helicity)
conformers improves as dQAA is applied recursively to subsets of conformers.

decreasingly by amplitude (‖Ui‖)) can be non-orthogonal and hence intrinsically coupled.
Results: Using 40 µs simulations of NCBD, we performed dQAA to reduce 232-dimensional

input data (from 58 dihedral angles in each conformer) to a 50-dimensional subspace. For visualiza-
tion, we projected the conformers along the top three QAA modes as shown in Fig. 3. To assess if the
projected conformers share any structural similarities, we colored the conformations using two bio-
physically relevant order parameters: (a) Rg and (b) H (helicity). The dQAA space colored with Rg
revealed two compact (homogeneous) clusters with low Rg values, one open conformation cluster
with high Rg and one heterogeneous cluster. Thus, dQAA modes can reveal disorder-to-order mo-
tions, an ability that can be further tested by recursively applying dQAA on the heterogeneous clus-
ter. The results from a recursive decomposition highlight the rich conformational diversity present in
the simulated NCBD ensemble and illustrate the ability of dQAA to capture meaningful conforma-
tional transitions. Although dQAA cannot directly compensate for the deficiencies of MD sampling,
the determined anharmonic modes suggest functionally relevant disorder-to-order transitions. Simi-
lar results can be seen by coloring the dQAA space with helicity values, showing that the sub-states
involve transitions in NCBD from a more extended form to a more helically compact form. This
emergent homogeneity in dQAA space suggests a new strategy to identify metastable states in the
MD trajectory, which we discuss next.



5. Hierarchical clustering in the dQAA-space to identify meta-stable states

Fig. 4: A hierarchy of conformational sub-states
in the disorder-to-order transitions of NCBD
conformational landscape. A total of 6 levels are
found by the hierarchical clustering. For hierarchy
levels 3-6, the log of the affinity between each sub-
state pair is shown.

Observing that neighboring conformers in
dQAA-space have similar Rg and H values,
and noting that this coherence is an emergent
property of dQAA representation, we hy-
pothesize that nearest neighbors in dQAA-
space are dynamically and kinetically re-
lated. We use the conformational coordi-
nates returned by dQAA to build long-lived
metastable states using graph-theoretic spec-
tral clustering approaches. To this end, we
consider each frame in the trajectory as a
node in an undirected graph and connect
each node to 10 of its nearest Euclidean
neighbors in the three-dimensional dQAA
space. The edges are assigned weights in-
versely proportional to the difference in their
radius of gyration values, thus merging both
the dynamic and emergent properties of the
dQAA space into the edge weights. We
then cluster this network using a hierarchi-
cal Markov diffusion framework.50 This ap-
proach is an adaptation of our earlier work
developing spectral graph partitioning algo-
rithms for segmenting natural images,50 understanding protein dynamics and allosteric propaga-
tion,51 relating signal propagation on a protein structure to its equilibrium dynamics,52 and finally
discovering metastable states in MD trajectories.53

We begin hierarchical clustering by constructing a Markov transition matrix using an affinity
matrix of edge weights between conformer pairs in the dQAA space. We then initiate a Markov
chain (or random walk) on the weighted undirected network. As Markov transition probabilities
homogenize through diffusion, an implicit clustering emerges from the network. First, a set of nodes
representing the putative clusters are identified. The number of clusters chosen is determined by the
algorithm so that every node in the network has some Markov probability of transitioning into at
least one of the clusters. Then, a Markov transition matrix is newly constructed using this reduced
representation. The important principle behind this construction is that upon reaching a stationary
distribution at the coarsest hierarchy level, the Markov chain has also converged at finer (more
local) network levels. This consistency regulates the overall topology of the network and helps build
a multi-resolution representation of metastable states.

We expect that fine-grained hierarchy levels will produce many small clusters containing close
neighbors in the QAA space; that is, within each such cluster most members will be drawn from
the same, narrow time-window. As Markov diffusion progresses (fine-grained to coarse-grained),
conformers that are more distant neighbors will be connected by edges in the diffused network



and will therefore be assigned to the same cluster. Thus, the hierarchical clustering can highlight
dynamical connections between conformers at different timescales.

Results: The affinity matrix hierarchy derived by the clustering algorithm is shown in Fig. 4. The
affinity matrices show several regions of high cross-talk at lower levels of the hierarchy. Iterative
diffusion of the Markov chain derived from the initial affinity matrix (200000 × 200000), results
in six hierarchy levels (Table 1). The mean Cα-RMSD to cluster center at the bottom hierarchy
level is 3.2Å, indicating that clustering in dQAA-space also captures structural similarity between
trajectory frames in Cartesian-space. Clusters with low mean RMSDs to the four experimental bound
conformations and the two experimental unbound conformations occur at each hierarchy level. At
the finest level of the hierarchy, the clusters representing the bound conformations are very small,
but as the hierarchy progresses, they are found in more dominant sub-states, indicating that the
bound conformations are energetically accessible. As seen in Table 1, the alignment to 1ZOQ is
poor. However, if only helices α2 and α3 are considered, the RMSD is very low (data not shown).
In contrast, for the three other ligand bound states, α1 and α2 align well to the simulations. Thus, a
barrier involving the repositioning of this helix may need to be crossed in order to access the IRF-3
bound state.

PDB ligand-free ACTR IRF3 SRC1 ligand-free p53
1JJS 1KBH 1ZOQ 2C52 2KKJ 2L14

rank/ rank/ rank/ rank/ rank/ rank/ Total number
Level RMSD(Å) RMSD(Å) RMSD(Å) RMSD(Å) RMSD(Å) RMSD(Å) of clusters

3 895/5.3 928/1.8 313/7.3 928/1.9 928/1.4 910/5.2 928
4 49/6 110/1.9 122/7.3 168/2.0 81/1.5 132/5.2 172
5 10/6.3 30/1.9 25/7.4 30/2.1 30/1.5 30/5.3 30
6 1/6.4 3/2.0 5/7.4 3/2.2 3/1.6 3/5.3 6

Table 1: Conformational similarity between determined sub-states and extant structural models. Sub-
states are ranked according to membership, 1 being the largest. For the coarsest hierarchy levels, sub-
state rank and RMSD from sub-state center to experimental conformation is given for the sub-state
with lowest RMSD to the experimental conformation.

6. Intermediate states of ligand-free NCBD access ligand-bound conformations

The organization of the ligand-free NCBD ensemble indicates the presence of six large conforma-
tional sub-states that interconvert between each other. One can visualize the six sub-states from the
coarsest hierarchy level as illustrated in Fig. 5(a). Of the six sub-states, sub-states 4 and 5 con-
stitute over 88% of the entire ligand-free ensemble, consisting of 98,143 and 79,672 conformers
respectively. The remaining sub-states (1, 2, 3 and 6) represent rare transitions in the landscape.
It is interesting to observe that sub-states 1 and 6 are somewhat isolated from the conformational
states, however a sizable population of conformations exist in each state (see affinity map in 5(a)).
Although one may attribute the isolation to the MD sampling protocol, it is important to note that
descending through the various levels of the hierarchy (Level 5 through Level 2) indicates that both
sub-states 1 and 6 are connected via extremely lowly populated states (see Fig. 4), indicating that



multiple paths exist through which states 1 and 6 can be reached. We also note that while certain
pairs of sub-states (such as [2,3] and [4,5]) freely interconvert between each other, sub-state 3 alone
can access conformations that are similar to that of sub-state 5. Therefore, sub-state 3 acts as an
intermediate state from which conformations in sub-states 2, 4 and 5 interconvert.

Sub-state 1 (rank 3) represents the state closest to the bound conformations observed experimen-
tally (Table 1). As illustrated in Fig. 5(b), a representative structure from sub-state 1 is compared
with two ligand-bound structures, namely 1KBH (panel A) and 2C52 (panel B). Sub-state 1 repre-
sents the third least populated state of all sub-states (9,488 or 4.7% of conformers). However, when
compared with the bound structures, on an average, it exhibits smaller RMSD values to the bound
1KBH (RMSD: 2.0 Å) and 2C52 (RMSD: 2.2 Å) conformers. This observation indicates that the
ligand-free state of NCBD can access sub-states resembling the bound state.

It may be tempting to conclude that sub-state 1 is isolated from other conformational sub-states.
However, as noted above, closer examination of the cluster hierarchy (Fig. 4, Level 4) reveals that
concerted structural changes along a complex pathway are required for NCBD to adopt a binding
competent conformation. By descending through the hierarchy, one can observe from Level 4 that
a small subset of states (indicated by arrows on Fig. 4) closely resemble conformations in sub-state
1. This conformational state arises out of a rare state mostly consisting of conformers similar to
sub-states 2 and 3 in level 6 of the hierarchy. Note that sub-state 2 in level 6 of the hierarchy consists
of just 938 (or less than 0.05%) of the overall conformers, representing a rare transition. In this sub-
state, the α3 helix adopts a conformation that is more extended and hence represents an intermediate
state that mediates a transition from sub-states 4 and 5 to the bound sub-state 1.

The observed clusters and conformational changes also provide a hypothesis for inter-
conversions necessary for facilitating NCBD-ligand binding. For one, if NCBD is relatively com-
pact, as in sub-states 4 and 5, then α3 must initially undergo partial unfolding, seen in sub-states 2
and 3, to allow for the ligand to bind. Only then can α3 adapt itself to form a full α-helix, as seen
from experimental ensembles. Since we have not performed a comparison of our simulations with
the ligand-bound state of either 1KBH or 2C52, we cannot provide a quantitative picture about the
nature of changes that are required. However, based on the structural information available from
experiments, such a partial unfolding-refolding pathway may indeed be responsible for facilitating
NCBD’s recognition of its binding partners. A similar scenario can also be proposed for α1, which
twists when binding with IRF3 (seen in Fig. 1D), although these experiments will be pursued in the
future.

7. Conclusions and Future Work

As part of pursuing further work in the area, we propose to incorporate simulations from a second
NMR ensemble (1JJS) as well as several ligand-bound conformations to map out the conformational
landscape of NCBD. Furthermore, by extending the Markov diffusion framework, we will elucidate
the kinetic rates of significant conformational transitions.

The methodologies we have put forward yield the following insights: (a) ligand-free NCBD
can indeed access conformations representative of the ligand-bound form and (b) structural changes
required for ligand-free NCBD to access states that resemble ligand-bound conformations require
concerted changes throughout the protein. We show that within our simulations, ligand-free α1 and
α2 orientations largely resemble those of ligand-bound conformations; α3 however, can exhibit a



(a) Sub-states at level 6 (b) Rate limiting structural changes

Fig. 5: Intermediate states of ligand-free NCBD enable access to ligand-bound conformations
Intermediate states of ligand-free NCBD enable access to ligand-bound conformations (a) Log affini-
ties between sub-states at hierarchy level 6 are shown. For each of the 6 clusters, an ensemble of
random conformers within that cluster are shown, and the percent of total frames within the cluster is
given. High affinity (red) between two clusters indicate that those clusters are similar in dQAA space.
Low affinity (blue - white) indicates that clusters have low similarity in dQAA space. (b) Compar-
ing NCBD ensembles with the bound ligands (A) ACTR (1KBH; cyan) and (B) SRC1 (2C52; cyan)
showing the orientations of α3 indicated by red arrows.

wide degree of flexibility and does not generally sample conformations that are similar to ligand-
bound states.
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