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Department of Mathematics and Statistics, University of Reading,
Reading RG6 6BX, UK

E-mail: d.a.w.bohning@reading.ac.uk

HEATHER ALLEN

Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, Ames, Iowa, 50010, USA

E-mail: heather.allen@ars.usda.gov

JAMES A. FOSTER

Department of Biological Sciences, University of Idaho,
Moscow, ID 83844, USA
E-mail: foster@uidaho.edu

We consider the classical population diversity estimation scenario based on frequency count data
(the number of classes or taxa represented once, twice, etc. in the sample), but with the proviso
that the lowest frequency counts, especially the singletons, may not be reliably observed. This arises
especially in data derived from modern high-throughput DNA sequencing, where errors may cause
sequences to be incorrectly assigned to new taxa instead of being matched to existing, observed
taxa. We look at a spectrum of methods for addressing this issue, focusing in particular on fitting a
parametric mixture model and deleting the highest-diversity component; we also consider regarding
the data as left-censored and effectively pooling two or more low frequency counts. We find that these
purely statistical “downstream” corrections will depend strongly on their underlying assumptions,
but that such methods can be useful nonetheless.
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1. Introduction

Classical population diversity estimation is based on the assumption that the observed data
counts — so many taxa observed once, twice, etc., in the sample — are correctly recorded.
One then uses these “frequency count” data (i, fi), i = 1, 2, 3, . . ., where fi is the number of taxa
occurring i times in the sample, to estimate the total number of taxa in the population. There
is a substantial literature on this problem, which can be framed either in terms of taxa or
species, or in terms of the number of individuals in the population. In the latter case we have
the capture-recapture situation, where one wishes to estimate the population size. Here we



will take diversity to be the total number of taxa or classes, denoted by C, but our discussion
is equally applicable to the capture-recapture problem.

It may be argued that “bounds on this quantity [C] may be highly uncertain because a
small fraction of the environment could be composed of a vast number of different species.”1 We
will proceed nonetheless under the assumption that such estimation is in principle statistically
feasible;2 in this case, however, the quality of the observed data counts is crucial to the accuracy
and precision of the diversity estimate. Ordinarily one assumes that the sample consists of an
(approximately) random selection of individuals from the population; the sampled individuals
are then sorted or divided into classes, and the sizes of the sample classes are recorded.
The numbers of sample classes of various sizes constitute the frequency count data. In some
situations, though, the initial identification of the sampled individuals may be at fault, or
the classification into sample classes may be questionable. This is the case, for example, when
dealing with high-throughput DNA sequencing data, which are prone to errors of various types.
These errors may arise at various stages, in particular the identification of the sequences and
the clustering algorithms used to combine sequences into clusters or taxa may be questionable.
The end result is that the number of low frequency counts — especially the singletons (f1)
— may be “artificially” inflated compared to what would be obtained by a data-collection
process with a lower error rate.

The question then arises: Is it possible to statistically discount or down-weight the low
frequency counts in the data (which are quite influential in estimating total diversity)? Could
such a procedure be based solely on the available data, without knowledge of the mechanisms
that produced the errors? Put this way the answer would seem to be No; and certainly the
best procedure would be to correct the errors at the source before they enter the data stream.
However, there are some ex post facto statistical analyses that are worth considering, if not
as a complete fix then at least as a benchmark, to provide diversity estimates under different
sets of assumptions. Such adjustments could also provide lower bounds for the total diversity
that are comparatively insensitive to the errors in question. In this paper we describe the
spectrum of available statistical approaches to this issue, examining two in detail: fitting
a model with several diversity components and deleting the component corresponding to
highest diversity; and declaring the low frequency counts uncertain in measurement and “left-
censoring” the data. We examine these methods using a high-diversity dataset derived from a
phage metagenome, and we compare numerical results based on this dataset. We conclude that
some of these procedures may be useful, but that the investigator must take careful account
of their underlying assumptions and the implications thereof.

2. Error correction at the source

The ideal way to deal with uncertain low frequency counts is to render them certain; i.e., to
correct any errors in the counts before they are analyzed. This would naturally take place at
the initial data collection or generation stage. In the case of high-throughput sequencing, there
have been remarkable recent developments in this regard such as the programs PyroNoise and
AmpliconNoise, which aim at “separately removing 454 sequencing errors and PCR single
base errors.”3 It is arguably true that corresponding advances, or at least standardization, are



also needed at the computational processing stage (alignment and clustering of sequences).
These matters are non-statistical and hence we do not pursue them further here, but they are
the subject of current research in bioinformatics.

3. Lower bounds

One conceptually simple approach is to require only lower bounds for the total diversity. Indeed
since the beginning of statistical population diversity estimation, long before the appearance of
high-throughput sequencing, researchers have been interested in comparing formal estimates
of diversity (based on frequency count data regarded as error-free) with lower bounds or
benchmarks for the total diversity. In fact, it has been argued mathematically that under the
least restrictive nonparametric assumptions, only lower bounds (as opposed to estimates or
upper bounds) are possible. Here we assume that we are willing to make the minimal structural
modeling assumptions required to estimate C (and we do not enter further into this particular
mathematical issue). However, it is possible to define a maximally biased model, namely, the
equal-class-sizes model, i.e., the assumption that the population is equally subdivided into
taxa or classes C. It is known that estimates of C made under this assumption are maximally
biased downward, in a certain sense.4 At least two such estimates are available: parametric,
which is the maximum likelihood estimator of C under the unmixed Poisson model (each
class contributes a Poisson number of representatives to the sample, and the mean number of
representatives is equal across classes); and the nonparametric Good-Turing estimate, which
is derived differently but still falls under the equal-sizes assumption. These estimates are
typically reported along with the standard errors that would be appropriate under the equal-
sizes assumption. It may be of some value to consider these downwardly-biased estimates
when the low frequency counts are questionable, even though they are based on different
modeling assumptions (correct data, equal class sizes). We look at numerical results below for
our example dataset.

4. Deleting the high-diversity component of a mixture model

A promising but potentially rather extreme approach to the problem of uncertain low fre-
quency counts consists of statistically reducing the lowest-abundance counts. This is based
on a finite mixture model for estimating C, i.e., a model consisting of a convex combina-
tion (weighted average) of several components, which correspond to several different levels
of diversity in the population.2 A three-component model, for example, is more flexible than
a simple one-component model, because it essentially allows for three categories or levels of
diversity. Each class in the population contributes representatives to the sample according to
one of three (mean) rates: the lowest rate corresponds to the rarest or smallest classes and the
highest rate to the largest or most abundant classes. (Some mathematical details for the par-
ticular finite mixture model used here are given in the Appendix.) Such a model can be fitted
directly to frequency count data by maximum likelihood, and each of the three components
(in this example) is then identified by its mean rate and by the proportion of the population
to which it corresponds. If the low frequency counts are supposed to be uncertain, one can
then delete (mathematically subtract) the highest diversity or lowest abundance component



from the fitted model, and base the projection of total diversity on the remaining, lower diver-
sity components. This is mathematically straightforward, but as we will see in the numerical
example below, the resulting reduction in the estimate of total diversity may be as much as
two orders of magnitude, leading to conceptual questions about what exactly is the target of
estimation under the reduced (highest diversity component deleted) model.

5. Left-censored data

The final approach we considered is left-censoring the frequency count data, as follows. Suppose
we assume that the number of classes observed in the sample is correct, but that there is
uncertainty regarding the exact values of the counts for certain classes, especially the low
frequency counts. That is, for each observed class in the sample we declare the possibility of
“measurement error,” so that a singleton could perhaps have been a doubleton, or a doubleton
a singleton. In other words, we separate the observed frequency counts at some level L into a
pooled or total low frequency count, say f∗L = f1 +f2 + . . .+fL, vs. the higher frequency counts
fL+1, fL+2, fL+3, . . .. In general statistical terms this is called left-censored data (at L). Under
this scenario the observed number of classes in the sample, say c, is preserved exactly, but we
suppose that (for sample class sizes L and below) the number of individuals contributing to the
observation of a given class is uncertain. This has the effect of essentially reducing the apparent
diversity of the sample, because although there are still c classes, the number of counts of size
L and below are combined. In particular, the number of singletons is no longer “known” and
contributes only to the total f∗L. This seems not unreasonable, but on the other hand it has the
effect of rendering the total number of “individuals,” namely 1f1 + 2f2 + 3f3 + . . ., uncertain,
which may or may not be logical in a given application. Maximum likelihood estimation of C
based on left-censored data is relatively straightforward in this problem, although it does not
admit a closed-form formula but requires numerical optimization (see the Appendix for a brief
mathematical outline under the single exponential model). Robb and Böhning5 dealt in detail
with a closely related version of this problem for the capture-recapture setting. The reduction
in the estimate of total diversity is less dramatic relative to the unadjusted estimate than
under the previous approach (deleting the high-diversity component). However, the structural
assumptions underlying this procedure may or may not be reasonable from the investigator’s
point of view.

6. Possible Bayesian extensions

It is possible to lower the estimate of total diversity by establishing a prior distribution on
the population diversity C. This is (part of) the Bayesian approach, and there are two basic
viewpoints. Some investigators prefer a method that puts minimal constraints on C, and in
fact mathematically minimizes the prior information assigned to C. Such a method is called
noninformative or objective Bayesian, and has been studied in this context by Barger and
Bunge,6 Farcomeni and Tardella,7 and others. We do not pursue this further here because in
our present setting we are interested in specifying prior information (also, no relevant com-
puter software is readily available). The alternative, then, is an informative or even subjective
Bayesian approach, in which the investigator specifies more or less strong prior assumptions



regarding C. Perhaps the simplest version of this is to set an upper bound Cmax for C, which
can sometimes be done on the basis of biological or chemical considerations; for example, the
taxonomic diversity of a microbial population cannot exceed the number of cells in it. The
prior distribution of C is typically taken to be approximately flat, meaning that all values up
to Cmax are equally likely a priori. This has been explored by Manrique-Vallier and Fienberg8

and others. Alternatively one may opt for an informative or even subjective prior distribu-
tion on C with no upper bound. This may decrease rapidly, for example, meaning that the
larger the value of C, the less likely it is thought to be a priori. In this case the influence of
the prior on the final diversity estimate may be considerable, and corresponding sensitivity
analysis is called for. Again such methods have been dealt with to some extent in theory,6

but no software is readily available. A further extension would be to apply an informative
prior to the components of a mixture model, partially but not entirely downweighting the
high-diversity component. This remains to be explored. In summary, the Bayesian approach
may be promising in terms of controlling the estimate of C, but it is an open area for research
in this regard and is beyond our scope here.

7. Example, numerical results and remarks

Our sample dataset is based on a phage metagenome.9 More specifically, the frequency counts
were derived from a contig spectrum from a swine fecal metagenome; the contig spectrum
was generated using Circonspect via the CAMERA pipeline.10 For the purpose of discussion
here we can assume that we are interested in estimating the taxonomic diversity of this
metagenome. The frequency counts are given in Table 1. The total number of observed taxa

Table 1. Phage metagenome frequency
count data

i fi i fi i fi i fi
1 4736 12 8 23 2 34 1
2 521 13 7 24 3 35 1
3 152 14 6 25 3 36 1
4 69 15 5 26 1 37 1
5 46 16 4 27 2 38 1
6 27 17 4 28 1 39 1
7 21 18 3 29 2 40 1
8 18 19 3 30 2 41 1
9 16 20 3 31 1 43 1

10 10 21 3 32 1 45 1
11 9 22 2 33 1 52 1

is c = 5703. It is clear even without graphing the data that the sample diversity is high: for
instance, the number of singletons is almost an order of magnitude higher than the number of
doubletons. There is some basis to believe that the experimental and bioinformatic procedures
that generated these data are prone to erroneous inflation of the low frequency counts,3 so
this dataset is a good test-bed on which to compare the damping approaches described above.
The output from the program CatchAll v.3.011 that is relevant for our purposes is shown
in Table 2. (Here for simplicity we analyze the full dataset, i.e., all frequency counts up to



and including the maximum f52, rather than checking for right-hand outlier cutoff values τ
as discussed elsewhere.11) Note first that the best estimate selected by CatchAll, under the

Table 2. Phage data analysis. Est Div = estimated total diver-
sity; SE = standard error; LCB/UCB = lower/upper 95% confi-
dence bounds

Method Est Div SE LCB UCB

Poisson 8730 103 8535 8938
GoodTuring 11690 346 11050 12407

ThreeMixedExp 67792 8656 53009 87195
Discounted: TwoMixedExp 1727 221 1410 2305

assumption that the data are error-free, is the (finite) mixture of three exponentially-mixed
Poisson components, or equivalently a mixture of three geometric distributions. This yields an
estimated total diversity of 67792 (SE 8656). This value is believed on scientific grounds to be
too high, resulting from an unknown number of possibly artifactual or erroneous singleton (and
perhaps doubleton and tripleton) counts. Considering lower bounds as discussed in Section
3 above, Table 2 displays the results for the Poisson maximum likelihood estimate (MLE)
and the Good-Turing nonparametric estimate. Both of these are based on the structural
assumption of equal class sizes in the population, but the Poisson estimate is the formal MLE
under that model and the Good-Turing estimate is a simple nonparametric approximation
thereof (which may possess certain robustness properties under mild departures from the
equal-class-sizes model). Both of these estimators assume that (all of) the frequency count
data are correct, but are maximally biased downward if the true population does not have
equal class sizes — which it certainly does not, irrespective of the correctness of the data.
Thus they constitute lower bounds for the total diversity if the data are correct, and the same
is true a fortiori if the sample diversity is incorrectly inflated. It is interesting to note that
the two estimates do not agree exactly; this is due to the different assumptions of the two
estimators (parametric/nonparametric), and also to the very high number of singletons in this
particular dataset. (The SE’s and 95% confidence intervals associated with these estimates
are not too meaningful in this case: they are values obtained under the assumption of equal
class sizes in the population.)

The best parametric model selected for the phage data by CatchAll’s selection routine
is the mixture of three components. Figure 1 shows the frequency count data and the fitted
model. This model specifies three levels of abundance in the population: high, with mean sam-
pling rate 9.66 and proportion 0.004; medium, with mean sampling rate 1.160 and proportion
0.022; and low, with mean sampling rate 0.076 and proportion 0.975. This means that the
highest abundance classes enter the sample at approximately 9.66/0.076 ≈ 127 times the rate
of the lowest abundance classes on average. The high-abundance classes account for 0.4% of
the population, the medium-abundance classes 2.2%, and the low-abundance classes 97.5%
(allowing for rounding error). Figure 2 shows these three components with a logarithmic ver-
tical axis for frequencies 0–10 (f0 is the estimated zero count, i.e., the estimated number of
unobserved taxa). If we delete the low-abundance (high diversity) component of the fitted



Fig. 1. Observed phage frequency count data vs. best fitted model.

Fig. 2. Three components of fitted mixture model, logarithmic vertical axis, frequencies 0–10.

model (component 3 in Figure 2) and project the total population diversity based on the two
remaining components, we obtain the results shown in the last row of Table 2. The estimated
total diversity is now 1727, corresponding to the (sum of) the two higher-abundance com-
ponents of the model, a reduction of 97.5% from the original unadjusted estimate, or more
than an order of magnitude. This reduction may be too severe, since it deletes the entire low-
abundance component, but there is no way, based on the data alone, to distinguish between



real and erroneous low frequency counts.
Finally we consider left-censoring. No general software has yet been developed for this so

for simplicity in exploring the procedure we use a single-component exponential (geometric)
parametric model, as the computational complexity for the higher-order mixture models is
considerable. This is a low but not minimum diversity model for the frequency count data, so
it produces estimates that are above the Poisson and Good-Turing values; however like those
models it tends to fit real data poorly (because it allows for insufficient diversity), and produces
estimates below those of the best selected model (the three-component mixture in this case).
It is however sufficient for our demonstration here. Table 3 shows the estimated total diversity
at several different censoring points. As noted above f∗L = f1 + f2 + . . .+ fL, so for L = 1 there

Table 3. Estimated total diversity at different left censor-
ing points under single geometric model. L = censoring
point, Est Div = estimated total diversity.

L 1 2 3 4 5 10
Est Div 14880 12693 11267 10339 9712 8202

is no censoring; for L = 2 the singletons and doubletons are pooled, for L = 3 the singletons,
doubletons and tripletons are pooled, and so on. The unadjusted estimate under the single
geometric model (14880) is between those derived from the equal-abundance (8730) and the
selected three-component mixture models (67792), as expected. Also as expected the estimate
declines as the censoring point L increases, i.e., as low frequency information is removed from
the data. Figure 3 displays the fitted values for the first 10 frequency counts (f1, . . . , f10)
for the best model (mixture of three exponentials/geometrics), the single geometric with no
censoring, the single geometric with censoring point L = 2, and the equal-abundance unmixed
Poisson models.

Fig. 3. Best fitted vs. discounted models, frequencies 1–10.



It is tempting to look for convergence of the estimates as L increases, and this is logical in
a sense since if L is set to its maximum (the maximum frequency in the data, here 52) then
all of the data are pooled into a single class. However it is not clear how we would interpret
such convergence statistically. Thus this method presents us with the need to choose a cutoff
L more or less arbitrarily. Furthermore it is not obvious that this method is reasonable in
the microbial diversity application, even though it does damp the estimate of total diversity
(as a function of L), because it essentially declares that every observed taxon does exist, and
that in fact the low sample frequency classes might have been observed with higher frequency
had the data been correctly recorded. On the other hand the censoring approach might be
reasonable in the capture-recapture setting, where one might suppose that apparent singletons
(say) should have been recorded more often but were inadvertently missed. In summary, this
method is intriguing but presents conceptual and statistical difficulties at present, especially
for microbial diversity estimation.

In summary, then, it is not surprising that any proposed ex post facto statistical approach
to compensate for incorrect or uncertain low frequency counts will depend strongly on its
underlying structural assumptions. Another approach, which has not yet been attempted,
would be to construct a probabilistic model for the process by which errors in the low frequency
counts are generated, and to incorporate this in diversity estimation. However, in models of this
type any error-generation process parameter, say p := P (incorrect generation of a singleton),
will typically be statistically confounded with the parameters of the model used to estimate
diversity (the mean sampling rates, etc.), leading again to the problem of being unable to
separate true from spurious counts. Still, it is not impossible that progress could be made,
either in the Bayesian direction mentioned in Section 3, or via error-process modeling, or by
some combination of these, and this is a topic for further research. The gold standard remains,
however, to obtain correct data at the outset, or to correct it at the source.
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Appendix A. Some mathematical details

Deleting the high-frequency component. The three-component mixture model used in the nu-
merical example is

P (X = j; θ) = θ4

(
1

1 + θ1

(
θ1

1 + θ1

)j
)

+θ5

(
1

1 + θ2

(
θ2

1 + θ2

)j
)

+(1−θ4−θ5)

(
1

1 + θ3

(
θ3

1 + θ3

)j
)
,

j = 0, 1, 2, . . . ,, θ1, θ2, θ3 > 0, 0 < θ4, θ5 < 1, where X is the number of representatives contributed
to the sample by an arbitrary species. Assuming without loss of generality that the highest-
diversity component is the first listed, then the discounted estimate of diversity is (1 − θ̂4)Ĉ,
with associated standard error equal to (1 − θ̂4)SE, where θ̂4 is the MLE of θ4, Ĉ is the
unadjusted (conditional) MLE of C, and SE is the unadjusted SE of Ĉ.11

Left-censoring. The single geometric model discussed in the text is P (X = j; p) = (1− p)pj,
with j and X as above, 0 < p < 1. The zero-truncated version of this is P (Y = j; p) = (1−p)pj−1,
j = 1, 2, . . .. The likelihood of a dataset f1, f2, . . . censored at L is then

`(p) :=
(
(1 − p)p0 + (1 − p)p1 + . . .+ (1 − p)pL−1

)f1+f2+...+fL
∏
j>L

(
(1 − p)pj−1

)fj
,

and the estimates given in the example are derived by maximizing ` with respect to p for the
given dataset.


