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Two genes in an organism have a Synthetic Sickness Lethality (SSL) interaction, if their joint deletion
leads to a lower than expected fitness. Synthetic Gene Array (SGA) is a technique that helps in
identifying SSL values for pairs of genes in a given set of genes. SSL interactions are useful to discover
the co-expressed gene groups in the regulatory and signaling networks. Also, they are used to unravel
the pair of pathways (subset of physically interacting genes) that substitute the functions of each other.
Generating an SGA entry is costly as it requires producing and monitoring a double mutant (a progeny
with two mutated genes). Generating a comprehensive SGA can be very expensive as the number of
gene pairs is quadratic in the number of genes of the corresponding organism.

In this paper, we develop a new method SSLPred to predict the SSL interactions in an organism.
Our method is built on the concept of Between Pathway Models (BPM), where majority of the SSL pairs
span across the two functionally complementing pathways. We develop a regression based approach that
learns the mapping between the gene expressions of single deletion mutant to the corresponding SGA
entries. We compare our method to the one by Hescott et al. for predicting the GI (Genetic Interaction)
score of Saccharomyces cerevisiae (S. cerevisiae) on four benchmark datasets. On different experimental
setups, on average SSLPred performs significantly better compared to the other method.
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1. Introduction

Analysis of gene essentiality is a crucial problem to understand the roles of different genes at
the molecular and genetic levels. A gene is defined essential if it is required for proper growth and
sustenance of that organism. Essential genes have been thoroughly investigated using techniques
such as single gene deletion screening for some low level organisms such as Escherichia coli (E.
coli).1 Though identification of essential genes enlightens us about the functions of individual
genes in an organism, it provides little conclusive information about the nature of their genetic
relationships in gene regulatory and signaling networks. Recently, studies on Synthetic Sickness
Lethality (SSL) opened up new directions in the areas of functional genomics. Two non-essential
genes follow an SSL interaction if their joint deletion leads to a less than expected fitness for
the organism. Here fitness denotes the growth and sustenance rate of an organism. An expected
fitness corresponds to that of a double mutant when the two knocked out genes are not in an
SSL interaction. Note that the fitness of an organism due to an SSL interaction can be less
than (aggravating) or more than (alleviating) the expected fitness.2 A genome wise catalog of
SSL interactions enables in-depth molecular analysis, by creating a functional map of the cell,
predicting functions and relations of the genes and deciphering complex regulatory relations
from the global genetic network.3

The Synthetic Genetic Array (SGA)4 and diploid-based synthetic lethality analysis on mi-
croarray (dSLAM)5 are two pioneering approaches that enable systematic identification of SSL
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Fig. 1. Figure 1(a) illustrates the concepts of synthetic sickness and lethality. A double mutant produced from
the cross of two single mutants can have a specific fitness in a range of GI scores based of the relationship between
the two genes. The single and double circles represent single and double mutants respectively. Here, the size of
a circle corresponds to the observed fitness of the corresponding mutant. Based on whether the two genes have
a epistatic, neutral of SSL interaction, the observed fitness of the double mutant can have more than, equal
to or less than the expected fitness. In those cases, the GI score can be a significantly large positive, close to
zero or significantly large negative number, respectively. Figure 1(b) depicts the concept of Between Pathway
Models (BPM). The hypothetical BPM consists of two sub-networks (also called pathways) GA and GB who
are functionally independent and complementing. The solid lines denote physical interactions, while the dashed
directed lines stand for the SSL interactions. It is evident that the number of SSL edges between GA and GB is
higher compared to the ones within the two groups.

interactions. Both methods require generation of double mutant strains and monitoring their
growth. Each entry of SGA is a triple that consists of two genes and a GI (genetic interaction)
score for those two genes. A score close to zero indicates that there is no SSL interaction between
the two genes. For a gene-pair, a negative GI with a large magnitude indicates an aggravating
SSL interaction. A significant large positive number denotes a higher chance of being alleviating
relationship.2 Figure 1(a) illustrates the concepts of synthetic sickness and lethality relationship.
The EMAP strategy exploits the SGA technique by enabling colony sizes to be measured in an
array format, thus quantifying genetic interactions in a high-throughput fashion.

Both SGA and dSLAM are costly techniques as for a pair of genes they require creation of
two single mutant strains and crossing between them to produce a double mutant strain. For an
organism with N genes, we need to generate and monitor the growth of N(N−1)

2 different double
mutants. As a result, millions of double mutants need to be produced to tabulate all the genetic
interaction scores for an organism that consists of thousands of genes. Creating such double
mutants in wet-lab is an expensive and time consuming process. Therefore, we need an efficient
method to predict whether there exists a synthetic lethality relation between two genes. Briefly,
we can describe the problem considered in this paper as follows: given two genes gA and gB what
is the GI score between them?

In order to predict the GI score between two genes, we incorporate the genetic profile of
single mutant strains. This is a promising strategy for the number of single mutants can not
be more than the number of genes. First, we elaborate on the term genetic profile. Consider
single gene knockout dataset (also termed as single gene mutant data). Here, in each experiment
a non-essential gene is knocked out from an organism. For each gene, expressions are obtained



before and after the knock-out and ratio of this after to before expression is calculated. Finally,
the logarithm of that ratio is computed and tabulated. If the magnitude of a logarithm is large, it
indicates that the expression of the corresponding gene changed significantly after the knockout
of the non-essential gene under consideration. The genetic profile for a single mutant or a single
gene knockout experiment consists of entries for all genes computed in the way described above.

In this paper our objective is to learn the GI scores of gene pairs with the help of genetic
profile of single mutants. Formally we solve the following problem.

Problem Let V = {g1, g2, · · · , gM} denote the set of genes in an organism. Assume that we
are given the genetic profiles of K single mutant genes. X is a K ×M matrix, where each row
corresponds to the genetic profile of a single mutant. Let us represent the GI score of gene pairs
ga and gb with ta,b. Let T denote the set of all the available GI scores for that organism. For any
gene pair (gi, gj) such that gi ∈ V, gj ∈ V, we would like to predict the GI score.

Before discussing our contribution in this paper, we summarize the Between Pathway Models
(BPM), which is a building block of our model.6 A BPM consists of two gene subnetworks (also
called pathways) GA and GB, such that there are few SSL interactions within GA and within GB,
but many of those between GA and GB. The opposite holds for the physical interaction edges.
That is, many physical interactions exist within GA and GB, but few of them exist between
GA and GB. Figure 1(b) depicts a hypothetical BPM. According to Kelley and Ideker, the two
pathways in a BPM are functionally compensating due to the orientation of genetic and physical
edges.6 Now that we have introduced all the relevant building blocks, we discuss our contribution
in this paper.

Contribution In this paper, we develop a new method SSLPred to predict the GI scores. To
our knowledge, our method is the first one to predict GI scores using a mathematical machine
learning based technique.

In accordance with the concept of BPM, we propose the following conjecture. If there is an
SSL interaction between two genes and if these two genes belong to two pathways of a BPM,
then knocking out one of them will change the expressions of most of the genes in both of
the pathways in that BPM. The pathway containing the mutated gene is directly affected and
dysfunctional as most of the consisting genes have a direct connection with the mutated gene
through physical edges. The other pathway compensates for its affected pair, and due to the
additional activities the genes in it change their expressions noticeably.

In our regression based method SSLPred, we develop a mapping between the genetic profiles
of single mutants and the corresponding GI score. For every genetic interaction entry (ga, gb, ta,b),
such that either of ga and gb has been mutated in a single mutant gene experiment and ta,b is
the GI score for ga and gb, we create a training sample. As we have already conjectured in the
previous paragraph, if this genetic interaction entry represents an SSL, the mutated gene affects
the expressions of all the genes in the corresponding BPM. Thus, we use the gene expression
changes only from the pathways of that BPM to extract the features of the training point and
correlate it with the corresponding GI score ta,b using a regression model. After we estimate the
parameters of SSLPred, we are able to predict the GI score for a new pair of genes.

We compare our method to the one by Hescott et al.7 in their ability to identify BPMs in
the gene networks of S. cerevisiae on four benchmark datasets. On average SSLPred performs
significantly better compared to the other method. We summarize our contribution as follows:



(1) According to our knowledge, SSLPred is the first predictive method to predict the GI score
for a pair of genes. All other relevant computational methods are descriptive.

(2) The GI scores predicted by SSLPred assume a real value. This is more useful than a binary
prediction, since it enables to conduct statistical analysis such as permutation tests and
p-Value generation associated with the validation of benchmark BPMs.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3
describes our method SSLPred. Section 4 presents the experimental results. Finally, Section 5
concludes the paper.

2. Background

Recent studies on synthetic sickness and lethality analysis opened up new directions in the
areas of functional genomics. These works can be classified into two categories, namely ex-
perimental and computational. Experimental methods include Synthetic Gene Array (SGA),4

dSLAM (diploid-based synthetic lethal analysis with microarrays)5 and EMAP (epistatic mini-
array profile).8 We describe them in detail in Section 1. We summarize the computation methods
next.

Kelly and Ideker introduced Between Pathway Models (BPM) by combining synthetic sick-
ness and lethality informations from EMAP data with information on protein-protein, protein-
DNA or metabolic networks.6 Hescott et al.7 proposed a new method to validate BPMs using
single gene deletion microarray data. They evaluated the quality of the BPMs from four dif-
ferent studies and described how their methods might be extended to refine BPM pathways.
Kelley and Kingsford developed a new method called Expected Graph Compression to identify
compensatory pathways (BPMs) by clustering genes into modules and establishing relationships
between those modules.9

Though researches in these two avenues enriched our understanding of gene interactions and
gene networks, we did not find any predictive model to predict the GI scores. In this paper, we
proposed a new regression based method SSLPred to predict GI scores.

3. Methods

In this section, we discuss our method in detail. Section 3.1 describes the notation and
formulates the problem. Section 3.2 explains our conjectures which guide our model and the
rationale behind it. Section 3.3 discusses the feature extraction and regression model.

3.1. Problem Formulation and Notation

In this section, we mathematically formulate the problem, and for that purpose, we describe
the relevant notation. We group our notation in three classes based on three related entities.
These are gene network, single mutant data and SGA. Here, gene network stands for gene
interaction network, specifically the union of gene regulatory and signaling network.

(1) Gene network. The gene network is a union of gene regulatory and signaling networks
that can be modeled as a set of genes and the directed edges (i.e., interactions) connecting
these genes. Here, an edge between two genes denotes different kinds of genetic interactions
such as activation, inhibition and phosphorylation. Let us denote the set of all M genes by
V = {g1, g2, · · · , gM}. We denote the set of all edges in the gene network by W = {(gi, gj)|gi ∈
V, gj ∈ V}, where (gi , gj) implies a directed interaction from gi to gj. thus, G = (V,W) defines



the gene network.
(2) Single mutant dataset. In a single mutant, one gene is mutated in an organism and gene

expression is obtained before and after the mutation. Single deletion mutant (also known as
single gene knockout) is an important kind of gene mutant, where one gene is knocked out
from an organism. In a single mutant dataset, each entry contains the logarithm of the ratio
of the expressions of a gene after the gene knockout to that of the same gene before the gene
knockout.10

Let e′h,j and eh,j denote the expressions of the gene gj after and before the mutation of
gh respectively. We define the genetic profile of the organism when gene gh is mutated by
Xh = {xh,j |xh,j = ln(e′h,j/eh,j), j ∈ {1, 2, · · · ,M}}. LetH ⊆ G be the set of genes that have been
mutated in total. We define the single mutant genetic profile of N genes as X = {Xh|gh ∈ H}.

(3) Synthetic Gene Array. An SGA is a set of triples, T = {(gi, gj , ti,j)|i, j ∈ {1, 2, · · · ,M}, i ≤
j}, where ti,j is a real number that corresponds to the ratio of the observed fitness to the
expected fitness when the organism has both gene gi and gj knocked out. A value with a
large magnitude implies a potential SSL edge. A positive and a negative value stand for
alleviating and aggravating relations, respectively.

Problem Formulation Given a gene network G, the single mutant dataset X and the SGA
dataset T , find the mapping Υ : X ,G −→ T which minimizes a predetermined risk function.

Risk function is a measure of expected miss prediction rate. In this paper, while estimating
the mapping function Υ, we minimize least square error in order to minimize expected miss
prediction rate. Based on the mapping learned, we would predict the GI score ti,j for a new
double mutant whose two genes gi and gj haven been mutated.

3.2. Between Pathway Conjectures

In this section, we describe our two conjectures that are central to SSLPred and the rationale
for them. These two conjectures are built on the concepts of BPMs. Incorporating the structure
and properties of BPMs into our model to improve its prediction accuracy was the motivation
behind these conjecture.

Conjecture 1. Let B denote a BPM, consisting of two pathways GA and GB. Also, consider
an SSL edge S = {ga, gb} such that ga ∈ GA and gb ∈ GB. Then, mutating ga will significantly
alter the expressions of many genes in GA and GB.

Since, ga is connected to most other genes in GA through physical interactions, altering the
expression level of ga will affect the expression of all the genes connected to ga as they regulate
each other. This effect will propagate through the gene network and eventually may change the
expressions of many genes in GA. Eventually ga will severely affect GA and prohibit it from
working properly. Since GA and GB constitute a BPM, GB will compensate this loss by changing
the expression of the genes in GB. Thus, mutating ga eventually changes the expressions of the
genes in both GA and GB.

From this conjecture, we conclude that there is a mapping between an SGA entry (ga, gb, ta,b)

and the corresponding single mutant dataset Xh, gh ∈ {ga, gb}. This implies a non-trivial mapping,
if the SGA entry corresponds to an SSL or epistatic relationship and we have a higher chance
to find both ga and gb embedded in two pathways of a BPM. In that case, most of the genes in
that BPM are supposed to have their expression changed in the single mutant dataset and an



appropriate regression method can correlate the changes in the single mutant gene expressions
and the corresponding GI score.
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Fig. 2. This figure depicts the layered neighbor structure around
a gene interaction edge (ga, gb). NIN (gh, r) denotes the set of in-
coming neighbors of gene gh at layer r. The set outgoing neighbor
NOUT (gh, r) is defined similarly. The example contains only up to
2 layers for each direction and gene. The dotted rectangles denote
the putative BPM (GA, GB) around the gene interaction edge.

Before stating the second con-
jecture, we define a relevant term,
neighbor. We say that, gene gb is
an rth layer incoming neighbor of
gene ga in the directed gene net-
work, if the shortest path from gb
to ga consists of r directed edges.
In that case, ga is a rth layer out-
going neighbor of gb. Figure 2 de-
picts the incoming and outgoing
neighbors for the two genes in a
genetic interaction.

Conjecture 2. Let B denote a
BPM, consisting of two pathways
GA and GB. Consider an SSL edge
S = {ga, gb} such that ga ∈ GA and
gb ∈ GB. If the expression of ga
changes significantly, then in GA

expression change is most promi-
nent in the first layer of neighbors of ga and gradually decreases with increasing layers. Similarly,
in GB the effect is most prominent for gb and gradually decreases with increasing layers of
neighbors.

In brief, our conjecture is that the effect of a gene knockout eventually wanes away through
the gene network. The rationale behind this is that the neighbors that are close to ga and
gb have a higher chance of being connected only to the nodes of B. The genes in the distant
neighborhood have a greater possibility to take part in other pathways. Hence, the closer nodes
are more susceptible to undergo a major effect, while the distant neighbors are supposed to be
partially screened from that affect due to their activity in the other pathways. Based on these
two conjectures, we build a regression based model that we describe in the next section.

3.3. Regression based solution

This section describes the customized regression based approach that we developed to build
the mapping Υ : X ,G −→ T , where X , G and T denote the single mutant gene expression, gene
network and GI score, respectively. Based on the two conjectures in Section 3.2, we extract a set
of features for training and testing samples.

We start from the SGA and for each entry (ga, gb, ta,b), we create a sample point provided
either ga or gb has been mutated in the single mutant dataset available to us, otherwise we discard
that SGA entry. Without losing the generality, assume that ga has been mutated in this case.
Thus, we extract the feature functions from the single mutant data Xa = {xa,1, xa,2, · · · , xa,M}. In
designing the set of features, we leverage the information from gene networks by incorporating
the two conjectures in our solution. According to the first conjecture, the mutated gene is suppose
to perturb only the genes in the host BPM. Thus, while processing the SGA entry (ga, gb, ta,b),



Table 1. The table summarizes the feature functions of the regression model and the corresponding
parameters. Feature function represents the set of different features for the regression. A parameter
quantifies the strength of the corresponding feature function.

Feature Function Parameter Description
ΨIN (NIN (g, r)) wIN (g, r) For incoming neighbors of rth layer for gene g.
ΨOUT (NOUT (g, r)) wOUT (g, r) For outgoing neighbors of rth layer for gene g.
Ψ(gb) w For gene gb when considering (ga, gb), ga is knocked out.

w0 A constant representing the bias of the regression.

we consider only the genes from GA and GB and discard the ones from G − (GA ∪ GB). We use
the GI score ta,b as the label of the training sample.

Note that while we create the features for a training point, all the data we have is the single
mutant data, GI scores and the gene networks. However, for a specific pair of genes (ga, gb) we do
not know the set of genes that consists of the putative BPM B = (GA, GB) around the gene pair.
Rather, we are suppose to validate that information using our model. In fact, if the SGA entry
does not correspond to an SSL, there may not be a real BPM for the pair (ga, gb). To circumvent
this problem, we assume the BPM as part of our model rather an input to the model.

Specifically, we use the concept of rth layer neighbors, introduced in Section 3.2. Let R

represent the maximum number of layers to construct GA and GB. (Usually, R will be set by the
user.) Let us denote the rth layer incoming and outgoing neighbors of gene gh by NIN (gh, r) and
NOUT (gh, r) respectively. Figure 2 demonstrates the layered structure of incoming and outgoing
neighbors for a pair of genes. We define the putative BPM pathway for gh as the union of the
sets of incoming and outgoing neighbors of gh up to the layer Rth given by,

GH =

R⋃
r=1

(NIN (gh, r) ∪NOUT (gh, r)) (1)

In a comprehensive SGA data each GI score is a real valued number that varies in the range
of two small numbers such as -5 to +5. However, if the score ta,b has a small magnitude (close to
zero), the gene pair (ga, gb) may not have an SSL/epistatic interaction and may not be part of
a BPM. Since the GI score ta,b, which is the label of the regression model is real valued, we still
shall use this sample point to train our model. However, the regression model is expected not to
discover any interesting pattern of a BPM in the gene expression, and will adjust its parameters
accordingly.

To incorporate the second conjecture, we design the features of the regression in a layered
approach that directly depends on the concept of layered neighbors introduced in Section 3.2.
We denote the feature function associated with the incoming neighbors of layer r of gene g by
ΨIN (NIN (g, r)) and the corresponding regression parameter by wIN (g, r). Similarly, the feature
function and parameters for the rth layer outgoing neighbor are given by ΨOUT (NOUT (g, r)) and
wOUT (g, r), respectively. Thus, for J ∈ {IN,OUT} we state that the feature function ΨJ(NJ(gc, r))

corresponds to neighbors of gene gc in direction J at layer r. Given that gh has been knocked
out and we are considering the neighborhood of gc, ΨJ(NJ(gc, r)) can be defined as follows,

ΨJ(NJ(gc, r)) =

∑
gi∈NJ(gc,r) |xh,i|
|NJ(gc, r)|

(2)

We define another feature function for gb by Ψ(gb) and the corresponding parameter by w.



However, we do not create any feature function to capture the expression of ga, since ga is mutated
and its expression may not be available for inspection. Finally, we create the last parameter w0

that acts as a bias constant in the model. Table 1 summarizes the feature functions and the
corresponding parameters. By aggregating all these feature functions, we can fit the SGA entry
(ga, gb, ta,b), where ga is knocked out in the single mutant data as,

ya,b = w0 + wΨ(gb) +
∑

r ∈ {1,2,··· ,R},
J ∈ {IN,OUT}, c ∈ {a,b}

wJ(gc, r)ΨJ(NJ(gc, r)) (3)

Parameter Estimation. When the ratio of number of samples to that of the parameters is
small (typically less than 20), the estimated value of the parameters experience high variance due
to overfitting of data.11 To alleviate this problem, we augment a regularization term on top of the
regression model. Specifically, we aim to minimize the difference between the parameter values
at neighbor levels r and r+1, to smoothen the decaying of gene expression change. Formally, the
regularization term can be written as,

Q =
∑

r ∈ {1,2,··· ,R−1},
J ∈ {IN,OUT}, c ∈ {a,b}

|wJ(gc, r + 1)− wJ(gc, r)| (4)

We augment this regularization term with the objective function when estimating the pa-
rameters. Using least square error approach, we estimate the parameters of the regression by
minimizing the following,

E =
∑

a,b∈{1,2,··· ,M}, a<b

(ta,b − ya,b)2 + λQ (5)

A detailed discussion on the simplification of the regularization term can be found in Section
3 of Tibshirani et al.12 We use the interior-point method to solve this parameter estimation
problem.13 The value of λ is estimated using five fold cross validation.

After the parameter estimation step of the regression method is complete, SSLPred is pre-
pared to predict the GI score for a test sample. For a pair of test genes, we extract the set of
features in the same way as that of a training point. Plugging those extracted features and the
estimated parameters in Equation 3, we obtain the predicted GI score.

4. Experiments

In this section, we describe the experiments and discusses the results. Section 4.1 describes the
datasets we used for the experiments. Section 4.2 demonstrates SSLPred with another relevant
method recently published by Hescott et al.7,14

4.1. Datasets

As implied in Section 3.1, we classify the datasets into three different categories, namely,
single gene mutant data, SGA data and gene networks. We decided on collecting datasets for S.
cerevisiae, since this is a well researched organism of yeast with extensive datasets available for
all these three categories.3,10,15 We extracted BPMs from four studies, which were also used by



Hescott et al. to validate their method.14 We employed these BPMs as gold standards in this
paper. Next, we describe these datasets in detail.

(1) Gene network BioGRID. The dataset maintains one of the most comprehensive gene
networks for S. cerevisiae.15 We collected 155,287 the genetic interactions in total from this
database.

(2) Single mutant data. In this paper, we collected 287 single gene knockout experiments
from the compendium of expression profile of S. cerevisiae developed by Hughes et al.10

Each experiment contains 6,316 entries. Every entry contains the the logarithm of after to
before ratio of expressions of a gene as described in Section 3.1.

(3) SGA data. Costanzo et al. generated a genome scale SGA profile for S. cerevisiae with
neatly 5.4 millions of genetic interactions out of nearly 75% genes.3 Out of this comprehensive
profile, we selected GI scores for 370,913 interactions such that for every edge, at least one
of the two consisting genes was knocked out in the gene knockout experiments.

(4) BPMs. We obtained four sets of BPMs, all are of S. cerevisiae, itemized in the following –
Kelley-Ideker,6 Ulitsky-Shamir,16 Brady et al.,17 and Ma et al.18 We denote a dataset using
the authors’ names of the corresponding paper. The numbers of BPMs that contain three
or more genes in each pathway in these datasets are 160, 36, 959 and 54 respectively.

4.2. Comparison with Hescott’s Method

This section describes the comparison between SSLPred and the method proposed by Hescott
et al.7,14 Hescott et al. employs microarray expression data of single gene knockout experiments
to identify BPMs. Though their method does not predict GI score, according to our knowledge,
this is the only published method that integrates the concept of single gene mutants and between
pathway motifs.

Before coming to the main discussion, we describe how we create a matrix of predicted GI
scores using five-fold cross validation. We divide the 287 knockout experiments into nearly equal
five groups, each of them being a 57 × 6316 matrix. For each fold of cross validation, we use four
out of five groups to create sample training points along with the corresponding GI scores as
described in Section 3.3. If for a gene pair the corresponding GI score is not available, we discard
the that sample point. After training, we create test points from the left-out one group and
predict the test scores for them. Repeating this process in a five fold cross validation fashion, we
predict GI scores for all possible pairs of genes from the 287 × 6316 matrix. Now that we have
the predicted GI matrix which we denote by TP , we discuss how we employ it for comparison
between SSLPred and the one proposed by Hescott et al.

Consider a BPM B = (GA, GB) obtained from a known sets of BPMs. Now, consider a gene
gx ∈ GA. Hescott et al. ranks all the genes G of the organism with respect to gx. Let us denote
that rank by GΦ(gx). Then, from that rank, it retrieves GB and calculate the quality of retrieved
GB by a scoring method called ClusterRankScore. We now describe ClusterRankScore which is
adapted from Gene Set Enrichment Analysis.19

ClusterRankScore accepts an ordered list of genes L and another set C as input. Then, it
explore the distribution of C along L. Intuitively, if C appears at the head or tail of L, it is
enriched with the specific properties represented by the ordered list L. In the current context,
consider a BPM B = {GA, GB}. Let us knock out a gene ga from GA and measure the change
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(b) Ulitsky Dataset
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(c) Brady Dataset
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(d) Ma Dataset

Fig. 3. Comparison of SSLPred with the method from Hescott et al. SSLPred and SSLPred(2) denote variants
of SSLPred with at most one or two layers of neighbors, respectively. The X axis that ranges between zero and
one represents the p-Values of the permutation tests. The Y axis represents the frequencies of the BPMs at a
particular p-Value of the permutation test. The four sub-figures demonstrate that apart from on Ma dataset,
SSLPred outperforms Hescott’s method, as it maintains a higher frequency at the p-Value ranges between zero
and 0.1.

Table 2. BPMs with p-Values less than 0.l [%]

Method
BPMs

Kelley-Ideker Ulitsky-Shamir Brady et al. Ma et al.
SSLPred 8.74 11.71 9.95 7.02
SSLPred (2) 11.4 8.55 8.64 11.89
Hescott et al. 6.65 5.85 9.75 13.51

of expressions for all the other genes. Hescott et al. now arrays the genes according to its own
criteria. Here, this ordered list is L and the pathway GB is C. Thus, a correlation between the
ordered gene list and the pathway GB implies that the BPM B is validated by Hescott et al.

Using SSLPred we create a similar rank as follows. We obtain the predicted GI score of all
the gene pairs (gx, gy), gy ∈ G from the predicted GI matrix TP . Then we sort G in increasing
value of the retrieved GI scores of (gx, gy). Let us denote the sorted list of genes by GΨ. After this
we calculate the ClusterRankScore of GB based on GΨ. Let us denote the ClusterRankScore of
GB with respect to Hescott et al. and SSLPred by CRSΦ(gx, GB) and CRSΨ(gx, GB), respectively.

To calculate the statistical significance of the two ClusterRankScore, we design separate per-
mutation tests for each of them and calculate p-Values with respect to those permutation tests.
Here the null hypothesis can be stated as B is not a BPM. A detailed account of ClusterRankScore
and the permutation test can be found at Hescott et al.7,14
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Fig. 4. Comparison of SSLPred with the method from Hescott et al. SSLPred and SSLPred(2) denote variants
of SSLPred with at most one or two layers of neighbors, respectively. The X axis, that ranges between zero
and 0.l, represents the p-Values of the permutation tests. The Y axis represents the frequencies of the pathways
at a particular p-Value of the permutation test. We display histograms for the very two datasets for which
our method performs similar or worse in Figure 3. The two sub-figures demonstrate that on these two specific
datasets, SSLPred maintains a higher frequency at the p-Value ranges between zero and 0.01.

Consider a BPM B = (GA, GB). For all the combinations, (gx, GB), gx ∈ GA and (gy, GA), gy ∈
GB we calculate the p-Values using the procedure described above. For every dataset, we plot the
histograms of those p-Values. Since all the BPMs have been obtained from published literature,
we assume them to be equivalent to a gold standard. Hence, in the histogram, an increased
frequency of the BPMs with lower p-Values corresponds to a better quality of the BPM retrieval
method.

Figure 3 compares SSLPred with the other method. SSLPred and SSLPred (2) denote variants
of SSLPred with at most one or two layers of neighbors, respectively. The X axis, that ranges
between zero and one, represents the p-Values of the permutation tests. The Y axis represents the
frequencies of the BPMs at a particular p-Value of the permutation test. SSLPred outperforms
Hescott et al. by 100%, 31%, 2% for Ulitsky, Kelley and Bradly dataset when the p-Value is
equal to or smaller than 0.1. For SSLPred (2) the corresponding numbers are 46%, 71% and -12%
respectively. For Dataset Ma, Hescott et al. is better by 48% and 12% than SSLPred and SSLPred
(2) respectively. If we relax the p-Value to 0.3 we observe that SSLPred (2) performs better than
Hescott et al. by 24%, 12%, 10% and 48% for Ulitsky, Brady, Ma and Kelley respectively. It
can be concluded that that apart from on Ma dataset, SSLPred outperforms Hescott’s method,
since it maintains a higher frequency at the p-Value ranges between zero and 0.1. For Kelley and
Ulitsky dataset SSLPred outperforms with a high margin between 0 to 0.1 p-Value range. For
Ma and Brady datasets, the two methods perform very competitively on an average. Also, its
is difficult to compare between two variants of SSLPred. Though these two variants are in close
competition, SSLPred (2) has a slightly better advantage over SSLPred. Table 2 summarizes the
results in Figure 3 by tabulating the percentage of BPMs with p-Values less than or equal to
0.1.

Figure 4 highlights a special case of the frequency distribution when the p-Value is restricted
to be less than or equal to 0.01. We are specifically interested in the very two datasets Brady and
Ma for which our method performs similar or worse when we restrict the p-Values to 0.1. Since
a lower p-value implies a lower chance of false positive detection, these results are important



in determining the superiority of the competing methods. Here also we observe that SSLPred
(2) has a better accuracy compared to Hescott et al. in identifying larger number of small p-
Value BPMs. For Brady dataset SSLPred (2) outperforms the other method by 177%. For Ma
dataset both of them detect two BPMs. This concludes that, our method demonstrates superior
accuracy in validating more BPMs with very low p-Values (≤ 0.01). We also conducted a third
set of experiments SSLPred (3) with highest layer of neighbors R = 3. However, SSLPred (3)
performed poorly compared to Hescott et al. We believe that most BPMs are of small sizes with
a diameter of less that equal to four edges as indicated in Kelley et al.9 Hence, assuming a bigger
size BPMs with R = 3 compromises the accuracy of our method.

Code. All the code developed in this paper is available from http://bioinformatics.cise.

ufl.edu/projects/SSLPred.html.

5. Conclusion

In this paper, we developed a new method SSLPred to predict SSL interactions in an or-
ganism. Our method is built on the concept of Between Pathway Models, where majority of the
SSL pairs span across the two functionally complementing pathways. We developed a regression
based approach that learns the mapping between the gene expressions of single deletion mutant
to the corresponding synthetic gene array.

We compared our method to the one by Hescott et al. for predicting the GI scores of S.
cerevisiae on four benchmark datasets. On different experimental setups, on average SSLPred
performed significantly better compared to the other method.
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