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Proteins usually do not act isolated in a cell but function within complicated cel-
lular pathways, interacting with other proteins either in pairs or as components
of larger complexes. While many protein complexes have been identified by large-
scale experimental studies 7'8, due to a large number of false-positive interactions
existing in current protein complexes 19, it is still difficult to obtain an accurate un-
derstanding of functional modules, which encompass groups of proteins involved
in common elementary biological function. In this paper, we present a hyper-
clique pattern discovery approach for extracting functional modules (hyperclique
patterns) from protein complexes. A hyperclique pattern is a type of association
pattern containing proteins that are highly affiliated with each other. The anal-
ysis of hyperclique patterns shows that proteins within the same pattern tend to
present in the protein complex together. Also, statistically significant annotations
of proteins in a pattern using the Gene Ontology suggest that proteins within the
same hyperclique pattern more likely perform the same function and participate in
the same biological process. More interestingly, the 3-D structural view of proteins
within a hyperclique pattern reveals that these proteins physically interact with
each other. In addition, we show that several hyperclique patterns corresponding
to different functions can participate in the same protein complex as independent
modules. Finally, we demonstrate that a hyperclique pattern can be involved in
different complexes performing different higher-order biological functions, although
the pattern corresponds to a specific elementary biological function.

1 Introduction

Complex cellular processes are modular and are accomplished by proteins in
complex multi-protein assemblies. Often these multi-protein complexes act
as highly efficient protein machines and perform activities related to complex

*These authors contributed equally to the work reported in this paper



biological phenomena, such as DNA replication, transcription, metabolism,
and signal transduction. A variety of experimental and computational ap-
proaches have been employed to deduce the constituents of protein macro-
molecular complexes. Experimental approaches such as the yeast two-hybrid
genetic screen 149 yield binary interaction data while more recent large-scale
methods "® combine tagged “bait” proteins and protein-complex purification
schemes with mass spectrometric measurements to identify protein complexes
that contain three or more components.

While proteomic studies "® have generated large amount of interesting
protein complex data, much remains to be learned before we have a com-
prehensive knowledge of functional modules - groups of proteins involved in
common elementary biological function. Along this line, an important issue is
the effective extraction of functional modules. Previous research on this topic
can be grouped into two approaches. One approach is targeted on extraction
of densely connected subgraphs from the protein interaction network, such as
fully connected subgraphs (cliques)!® and almost fully connected subgraphs
(k-cores)?. However, algorithms for finding cliques and k-core are typically
quite expensive. Another approach for detection of functional modules is
through clustering analysis 5'?, which divide proteins into groups (clusters)
in the way such that similar proteins are in the same cluster and dissimilar
proteins are in different clusters.

In this paper, we present a hyperclique pattern discovery approach for
identifying functional modules (hyperclique patterns) from protein complex
data. A hyperclique pattern is a type of association pattern containing pro-
teins that are highly affiliated with each other; that is, every pair of proteins
within a hyperclique pattern is guaranteed to have the cosine similarity (un-
centered Pearson correlation coefficient T) above certain level. As a result,
our method is more robust than related approaches in the presence of large
number of false-positive protein interactions. Indeed, a significant number of
false-positive protein interactions are present in current experimentally iden-
tified protein complexes. Gavin et al. 7 estimate that 30% of the protein
interactions they detect may be spurious, as inferred from duplicate analyses
of 13 purified protein complexes. Finally, please note that clustering analysis
finds related proteins with a global constraint, while hyperclique patterns cap-
ture relationships among proteins on a local level and thus are more compact
representations of proteins.

Hyperclique pattern discovery is especially effective on protein complex
data, because protein complex data can be viewed as a bipartite graph® (a ma-

fWhen computing Pearson correlation coefficient, the data mean is not subtracted.



trix in which rows represent protein complex and column represents proteins).
In contrast, previous approaches are usually based on a graph of pairwise sim-
ilarities. A bipartite graph representation of protein complexes allows us to
efficiently compute hyperclique patterns, much faster than finding cliques or
k-cores in a graph.

The analysis of discovered hyperclique patterns from protein complexes
using the Gene Ontology suggests that proteins within the same hyper-
clique pattern more likely perform the same function and participate in the
same biological process. For example, all proteins of an identified pattern
{Pre2, Pre4, Pre5, Pre6, Pre8, Pre9, Pup3, Scll} corresponds to the
same function annotation “endopeptidase activity” and the 3-D structural view
of these proteins reveals that they physically interact with each other. Fur-
thermore, we show that several hyperclique patterns with different functions
can participate in the same protein complex as independent modules. Finally,
we demonstrate that a hyperclique pattern can be involved in different protein
complexes performing different higher-order biological functions, although the
pattern corresponds to a specific biological function.

2 Hyperclique Pattern Discovery

In this section, we describe the concept of hyperclique patterns !5 after first
introducing the concept on which it is based: the association rule !.

2.1 Association Rules

We present the concept of association rules ! within the context of biology.
Let P = {p1,p2,---,pn} be a set of proteins and C = {cy, ca, ..., c;} be the set
of protein complexes, where each complex ¢; is a set of proteins and ¢; C P.
A pattern is a set of proteins X C P, and the support of X, supp(X), is
the fraction of protein complexes containing X. For example, in Table 1, the
support of the pattern {p3, ps} is 3/56 = 60%, since three protein complexes
(c2, ¢3, c4) contain both p; and py.

An association rule is of the form X — Y, which means the presence of
pattern X implies the presence of pattern Y in the same protein complex,
where X C P, Y C P,and X NY = ¢. The confidence of the association
rule X — Y is written as conf(X — Y) and is defined as conf(X = Y) =
supp(X UY)/supp(X). For instance, for protein complex data shown in Table
1, the confidence of the association rule {ps} — {p4} is conf({ps} — {ps}) =
supp({ps, pa})/supp({p3s}) = 60% / 80% = 75%. In biology domain, there are
many interesting patterns occuring at low levels of support, such as the ones



Table 1. A Sample Protein Complex Data Set.

Protein Complex Proteins

cl P1, P2

c2 p1, P3, P4, P5
c3 P2, P3, P4, P6
cd P1, P2, P3, P4
ch P1, P2, P3, P6

identified in this paper. However, existing association-rule mining algorithms
often have difficulties in finding patterns at low levels of support. Also, many
patterns discovered by association-rule mining algorithms contain proteins
which are poorly correlated with each other.

2.2 Hyperclique Patterns

A hyperclique pattern is a new type of association pattern that contains pro-
teins that are highly affiliated with each other; that is, every pair of proteins
within a pattern is guaranteed to have the cosine similarity (uncentered Pear-
son correlation coefficient) above a certain level. Indeed, the presence of a
protein in one protein complex strongly implies the presence of every other
protein that belongs to the same hyperclique pattern. The h-confidence mea-
sure is specifically designed to capture the strength of this association.

Definition 2.1 The h-confidence of a pattern X = {p1,p2, -*-,Pm}, de-
noted as hconf(X), is a measure that reflects the overall affinity among
proteins within the pattern. This measure is defined as min(conf({p1} —

{p27 ey pm})7 Conf({p2} — {p17p37 . 7pm})a ey conf({pm} — {pla
--yPm—1})), where conf is the confidence of association rule as given above.

Example 2.1 For the sample protein complex data set shown in Table 1,
let us consider a pattern X = {po2,ps,pa}. We have supp({p2}) = 80%,
supp({ps}) = 80%, supp({ps}) = 60%, and supp({p2, ps,ps}) = 40%. Then,

conf({p2} = {p3,pa}) = supp({p2, p3, pa})/supp({p2}) = 50%
conf({ps} — {p2,pa}) = supp({p2,p3,pa})/supp({ps}) = 50%
conf({ps} = {p2,p3}) = supp({p2,p3,ps})/supp({ps}) = 66.7%

Therefore, hconf(X) = min(conf({p2} — {ps,pa}), conf({ps} — {p2,p4}),
conf({pa} = {p2,p3})) = 50%.

Definition 2.2 A pattern X is a hyperclique pattern if hconf(X) > h,,
where h. is a user-specified minimum h-confidence threshold. A hyperclique
pattern is « maximal hyperclique pattern if no superset of this pattern is
also a hyperclique pattern.
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Figure 1. Gene Ontology annotations of pattern {Pre2, Pre4, Preb, Pre6, Pre8, Pre9, Pup3,
Scll}. Figure on the left shows subgraph of the function annotation. Figure on the right
shows subgraph of process annotation. Proteins are shown in square box and significant
nodes are labeled with the number of proteins annotated directly or indirectly to that term
and the p-value for the term.

Table 2. Examples of Hyperclique Patterns from Yeast Protein Complex Data.

Yeast Protein Complex Data
Hyperclique patterns Supp Hconf
{Cus1, Msl1, Prp3, Prp9, Smel, Smx2, Smx2, Smx3, Yhcl} 1.25% | 100%
{Pre2, Pred4, Pre5, Pre6, Pre8, Pre9, Pup3, Scll} 1.7% | 66.7%
{Cwc2, Ecm2, Hsh155, Prp19, Prp21, Snt309} 1.7% 100%
{Emg1, Imp3, Imp4, Kre31, Mpp10, Nop14, Sofl, Utpl5, Noc4} | 1.25% | 100%

Let us consider the sample protein complex data in Table 1. For the
h-confidence threshold 0.5, the pattern {p2, ps,ps} is a hyperclique pattern.
Furthermore, since no superset of this pattern is a hyperclique pattern at the
threshold 0.5, this pattern is also a maximal hyperclique pattern.

Table 2 shows some hyperclique patterns identified from a yeast protein
complex data set 7. One hyperclique pattern in that table is {Pre2, Pred,
Pre5, Pre6, Pre8, Pre9, Pup3, Scli}. Figure 1 shows the function and
process subgraphs of the Gene Ontology corresponding to this pattern. One
observation is that all proteins in this pattern perform the same biological
function, endopeptidase activity. Also, all proteins in the pattern involve in
the same biological process, ubiquitin-dependent protein catabolism. In other
words, proteins in the same hyperclique pattern are highly-affiliated with each
other. Indeed, the following Theorem 2.1 guarantees if a hyperclique pattern



has an h-confidence value above the h-confidence threshold, h., then every
pair of proteins within the pattern must have a cosine similarity (uncentered
Pearson correlation coefficient) greater than or equal to h,.

Theorem 2.1 Given a hyperclique pattern X = {p1,p2,...,DPm} at the h-
confidence threshold h., for two proteins p; and py such that {pi,pr} C X, we

have cosinesim(py, p) > h., where cosinesim(p;, px) = \/su:;’;;ig’sf;j(){pk}) ,

which is the cosine similarity between p; and pg.

2.8 Computation Algorithm

In a nutshell, the process of searching hyperclique patterns can be viewed as
the generation of a level-wise pattern tree. Every level of the tree contains
patterns with the same number of proteins. If the level is increased by one,
the pattern size (number of proteins) is also increased by one. Every pattern
has a branch (sub-tree) which contains all the superset of this pattern. Our
algorithm for finding hyperclique patterns is breath-first. We first check all
the patterns at the first level. If a pattern is not satisfied with the user-
specifed support and h-confidence thresholds, the whole branch corresponding
to this pattern can be pruned without further checking. This is due to the
the anti-monotone property of support and h-confidence measures. Consider
the h-confidence measure, the anti-monotone property guarantees that the h-
confidence value of a pattern is greater than or equal to that of any superset of
this pattern. Following this manner, the pattern tree is growing level-by-level
until all the patterns have been generated. This algorithm is very efficient for
handling large-scale datasets '°.

3 Protein Complex Data and Analysis Tools

Protein Complex Data: Two datasets "® summarizing large-scale exper-
imental studies of multi-protein complexes are available for the yeast Sac-
charomyces Cerevisiae. Coupling different purification (immunoprecipitation
and tandem affinity purification (TAP)) and labeling schemes with mass spec-
trometry (MS), both studies used bait proteins to identify physiologically in-
tact protein complexes. Independent research®!! showed that the TAP-MS
dataset by Gavin, et al. 7 has a relatively better accuracy for predicting pro-
tein functions, therefore we take this dataset to illustrate our method. In
this TAP-MS dataset, there are a total of 1,440 distinct proteins within 232
multi-protein complexes, and the data format is illustrated in Table 1.
Analysis Tools: The Gene Ontology (http://www.geneontology.org)
was used to annotate the proteins of hyperclique patterns identi-



fied in the TAP-MS dataset. @ A graph drawing package GraphViz
(http://www.research.att.com/sw/ tools/graphviz/) was used to produce the
graph representation of the annotation. The functional description of each
protein (if available) was obtained from the Saccharomyces Genome Database
(SGD)®. The 3-D structure information of yeast proteins was obtained from
the Protein Data Bank (PDB) (http://www.rcsb.org/pdb), and PyMOL? was
used for visualizing the 3-D structure of proteins within a hyperclique pattern.

4 Analysis of Hyperclique Pattern using Gene Ontology

@cal process
RNA metabolism

nuclear mRNA splicing
via spliceosome
8/8.21e-15

molecular function

RNA binding
8/4.97e-10

mRNA binding

Cus1 Msll1 Prp9 5/2.70e-08

pre-mRNA splicing
factor activity
4/2.33e-07

Yhel

Cus1 Msll Prp3 Prp9

Prp3 Smel Smx2 Smx3 Smel Smx2 Smx3 Yhel

Figure 2. The Gene Ontology annotations of pattern {Cusl, Msll, Prp3, Prp9, Smel,
Smx2, Smx3, Yhcl}. Figure on the left shows subgraph of function annotation of the
pattern. Figure on the right shows subgraph of process annotation. Proteins are listed in
square box. Significant nodes are labeled with the number of proteins annotated directly
or indirectly to that term and the p-value for the term.

Setting a support threshold to be 0 and an h-confidence threshold to be
0.6, we obtained 60 maximal hyperclique patterns. Limited by space, we



analyze some of the patterns obtained. Detailed results are available at our
project web site f .

The proteins within the same hyperclique pattern have strong associa-
tion with each other. To investigate this, we analyze the annotations of the
patterns using the terms from the Gene Ontology. Figure 2 shows the sub-
graphs of the Gene Ontology corresponding to pattern {Cus1l, Msl1, Prp3,
Prp9, Smel, Smx2, Smx3, Yhcl}. The left subgraph in the figure is the
molecular function annotation of the proteins in the pattern. Note that all
8 proteins from this pattern are annotated to the term RNA binding with
p-value 4.97e-10. The p-value is calculated as the probability that n or more
proteins would be assigned to that term if proteins from the entire genome
are randomly assigned to that pattern. The smaller the p-value, the more sig-
nificant the annotation. Among the pattern, 4 proteins {Prp3, Smel, Smx2,
Smx3} are annotated to a more specific term pre-mRNA splicing factor ac-
tivity with p-value 2.33e-07. The annotation of these proteins confirms that
each pattern form a module performing specific function. The right subgraph
in Figure 2 shows the biological process this pattern is involved. The pro-
teins are annotated to the term nuclear mRNA splicing via spliceosome with
p-value 8.21e-15 which is statistically significant.

Table 3. The Hyperclique pattern {Pre2, Pre4, Pre5, Pre8, Pup3, Pre6, Pre9, Scll} con-
tained in four protein complexes. All proteins in the pattern are in bold.

CID Protein Complexes Function Category
106| Blm3 Daml Dbp9 Ecm29 Est3 Gfal Ino4 Kap95 | Protein Synthesis
Lys12 Mds3 Nudl Pdal Pdbl Prel0 Pre2 Pre3 Pred4 | and Turnover

Pre5 Pre6 Pre8 Pre9 Psel Pup3 Rgrl Rpt3 Rpth
Scll Spa2 Srpl Ulpl YFLOO6W YGRO081C YMR310C
YPL012W Yral

148| Cdc6 Ecm29 Gfal Mlh2 Nas6 Pgkl Prel Pre2 Pre3 | Protein Synthesis
Pre4 Pre5 Pre6 Pre7 Pre8 Pre9 Pup3 Rpnl0 Rpnll | and Turnover
Rpnl2 Rpnl3 Rpn3 Rpn5 Rpn6 Rpn7 Rpn8 Rpn9 Rptl
Rpt2 Rpt3 Rpt4 Rpt5 Rpt6 Scll Ubpb

157 Blm3 Cdc6 Ecm29 MIh2 Pgkl Prel Prel0 Pre2 Pre3 | Protein Synthesis
Pre4 Pre5 Pre6 Pre7 Pre8 Pre9 Pup3 Rgrl Rpnl0 | and Turnover
Rpnll Rpnl2 Rpnl3 Rpn3 Rpn5 Rpn6 Rpn7 Rpn8 Rpn9
Rptl Rpt2 Rpt3 Rpt4 Rpt5 Rpt6 Scll Ubp6 YFLOO6W
151| Blm3 Cdc55 Cinl Ergl3 Hhf2 Hos2 Imll Kap95 Kell | Signalling
Ltel Myob5 Pfkl Pph21 Pph22 Prel Prel0 Pre2 Pre4
Pre5 Pre6 Pre7 Pre8 Pre9 Pupl Pup2 Pup3 Rrd2
Rtsl Scll Sif2 Srpl Tdh2 Tdh3 Tef4 Tpd3 YBL104C
YCRO033W YGL245W YGR161C YIL112W YKR029C
Yef3 Yorl Yral Zdsl Zds2

thttp://www.cs.umn.edu/~huix/pfm/pfm.html



Figure 3. The 3-D structure of the yeast proteasome including all proteins in the hyperclique
pattern {Pre2, Pre4, Pre5, Pre8, Pup3, Pre6, Pre9, Scll}. In the figure, (a), (b), and (c)
show 3-D structures of proteins only in the pattern. (Pre2(blue), Pre4(red), Pre5(yellow),
Pre6(brown), Pre8(green), Pre9(pink), Pup3(magenta), Scll(cyan)). In contrast, (d) shows
3-D structures of all proteins in the proteasome complex.

5 Hyperclique Patterns as Functional Modules

Gene Ontology annotations reveal that proteins in the same hyperclique pat-
tern tend to perform a common function and be involved in the same biological
process. In this subsection, we describe the role of hyperclique patterns as
functional modules.

Consider the hyperclique pattern {Pre2, Pre4, Pre5, Pre6, Pre8,
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Figure 4. Subgraph of the Gene Ontology (function) corresponding to the protein complex
151. Proteins within a pair of < > form a hyperclique pattern.
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Pre9, Pup3, Scli}. All proteins in this pattern are components of the pro-
teasome complex which destroys the proteins no longer in use or the failures
of the translation products. The proteasome constitutes nearly 1% of cellular
proteins. The 3-D structure of this complex (PDB ID: 1fnt) is available in
the Protein Data Bank (PDB). Figure 3 (d) shows the 3-D structure of all
proteins in the proteasome. Figures 3 (a), (b), and (c) show the 3-D structure
of all proteins in the hyperclique pattern from different view angles. As can
be seen, proteins in the pattern have physical interactions with each other.
This is compelling physical evidence implying that proteins in the same hyper-
clique pattern tend to physically interact together to form a compact structure
and perform a common molecular function. Figure 1 illustrates the molecu-
lar function and biological process of this pattern. It is also interesting to
observe that this hyperclique pattern is contained in four protein complexes
in the TAP-MS data set, as shown in Table 3. According to Gavin’s func-
tion category, these four protein complexes belong to two different function
categories: protein synthesis and turnover and signalling. In other words,
this hyperclique pattern acts as a functional module participating in protein
complexes which perform different high-order functions.



Furthermore, we observed that three identified hyperclique patterns are
contained in the protein complex 151 (refer to Table 3). Figure 4 shows the
subgraph of the Gene Ontology (function) corresponding to the protein com-
plex 151. As can be seen, three hyperclique patterns correspond to three differ-
ent functions: the pattern {Pre2, Pre4, Pre5, Pre6, Pre8, Pre9, Pup3,
Scl1} corresponds to the function endopeptiase activity, the pattern {Hos2,
Hos4, Sif2, Sntl, Set3} corresponds to the function histone deacetylase
activity, and the pattern {Cdc55, Php21, Php22, Rtsl, Rts3, Tpd3} cor-
responds to the function Protein phosphatase type 2A activity. This indicates
that hyperclique patterns can serve as different functional modules to partic-
ipate in a common protein complex.

6 Discussion

In this paper, we describe a hyperclique pattern discovery approach to iden-
tify functional modules in protein complex data. The tight threshold in the
definition of hyperclique patterns ensures the strong associations among the
proteins in the same functional module. Analysis using the Gene Ontology
indicates that the computationally discovered hyperclique patterns are bio-
logically significant. Our approach can not only effectively identify the basic
functional modules in protein complexes, but also is robust in the presence of
large number of false-positive protein interactions, due to the strong associa-
tions among the constituent proteins.

Our work discovered several interesting protein functional mod-
ules. For example, one discovered protein functional module {Pre2,
Pre4, Pre5, Pre8, Pup3, Pre6, Pre9, Scli} focuses on the function
endopeptidase activity by the Gene Ontology. This hyperclique pattern with
specific function is also found to exist in four experimentally determined pro-
tein complexes performing different higher level biological functions.
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