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As evolutionary models for single-nucleotide polymorphisms (SNPs) become available, 
methods for using them in the context of evolutionary information and expert prior 
information is a necessity.  We formulate a probability model for SNPs as a Bayesian 
inference problem.  Using this framework we compare the individual and combined 
predictive ability of four evolutionary models of varying levels of specificity on three 
SNP databases (two specifically targeted at functional SNPs) by calculating posterior 
probabilities and generating Receiver Operating Characteristic (ROC) curves.  We 
discover that none of the models do exceptionally well, in some cases no better than a 
random-guess model.   However, we demonstrate that several properties of the Bayesian 
formulation improve the predictability of SNPs in the three databases, specifically the 
ability to utilize mixtures of evolutionary models and a prior based on the genetic code.  

1. Introduction 

Interest in single-nucleotide polymorphisms (SNPs) has exploded in recent 
years.  This interest is evident from the large number of SNP databases publicly 
available on the web: NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP), 
Human SNP database (http://www.broad.mit.edu/snp/human/), hemoglobin 
database (http://globin.cse.psu.edu), SNP Consortium Ltd. (http://snp.cshl.org/), 
and many others.  The compilation of SNPs is vital to studying important 
biological problems such as the identification of biomarkers for disease and 
evolution at the molecular level.  High-throughput technologies, such as 
proteomics via mass spectrometry (MS) hold promise to identify SNPs rapidly 
at a global scale, but identification by these approaches using brute force is 
computationally unattractive.  Thus, accurate methods to assign probabilities to 
potentially polymorphic sites are necessary. 

Evolutionary information is generally captured by estimating model 
parameters associated with a set of biosequences, DNA [1-5] or proteins [6-7], 
from one or multiple organisms.  These models are then used in the context of 
some specific framework, for example phylogenetics [8-9] or sequence 
alignment [10-12].  Limited evolutionary models have been developed for 



 

SNPs, capturing information at the amino acid [13] and codon [14] levels.  No 
framework for assigning probabilities to individual polymorphic events exists 
and thus little comparison of both SNP specific and general evolutionary models 
has been performed. 

This paper presents the general framework for SNP identification in the 
context of Bayesian inference through the use of evolutionary models to assign 
probabilities to all possible SNPs (confined by an application to MS).  The 
Bayesian framework allows both individual and mixtures of evolutionary 
models to be used.  Additionally, it allows for the injection of additional 
information in the form of a prior.  We demonstrate the Bayesian framework by 
comparing four specific evolutionary models (one SNP specific [13], two 
nucleotide evolutionary rate matrices [1,4], and one inter-species amino acid 
model [7]) on three SNP databases. The first two are databases of disease 
causing or enhancing SNPs for the human proteins hemoglobin [15-17] and p53 
[18-19]. The third is a set of genes that characterize SNPs in eight inbred mouse 
strains [20]).  Lastly, we explore the benefits observed from the Bayesian 
formulation related to the use of mixtures of evolutionary models and the use of 
the genetic based prior in comparison to a neutral based prior. 

2. Methods 

Bayesian statistics is an attractive approach for making probabilistic inferences 
from biological data because it supports the injection of information related to 
the data, for example, expert opinion or evolution constraints based on sequence 
composition or length [21-22].  Due to the uncertainty associated with 
biological data and the frequent availability of expert opinion, many biological 
problems can be more easily modeled by Bayesian methods than by other 
approaches. 

The Bayesian framework for SNPs attempts to quantify the belief that a 
nucleotide at a given position in a genetic sequence underwent a polymorphism.  
We model the problem at the codon level to observe both individual nucleotides 
and amino acids.  In a Bayesian formulation both the observed and unobserved 
data are treated as random variables.  The general formulation defines the 
annotated genomic data (G) as the observed data.  The unobserved data are the 
codons (S) and two types of background information – an evolutionary model 
(Ψ) and a mutational descriptor (M). 

2.1. Background Information 

Evolutionary information is depicted by matrices at either the amino acid or 
nucleotide level describing the likelihood of one residue being substituted by 



 

another.  In this study four evolutionary models (Ψ) are evaluated for 
comparative value.  We first describe each of these four models; two amino acid 
and two nucleotide.  Subsequently, we describe the SNP mutation variable (M). 

Amino Acid Matrices.  The first model is from the BLOSUM [7] series of 
scoring matrices commonly used in sequence alignment.  This series is 
generated from a large set of sequences from multiple species at various levels 
of sequence identity and thus represents a complex ancient history over 
speciation.  It is believed to be inappropriate for intra-species evaluation so a 
less divergent matrix, BLOSUM80 (referred to as BL80), is included for 
comparative value.  The second model is a newly developed substitution matrix 
by Majewski and Ott [13] (referred to as M-O).  It is based on identified SNPs 
in the human genome and thus captures recent evolutionary changes. 

Nucleotide Matrices.  The last two models are based on continuous-time 
Markov chain models that describe the evolutionary rate of substitution between 
two nucleotides [9].  A fully parameterized model, a 4x4 rate matrix, requires 
the estimation of 12 parameters (16 possible substitutions minus the four 
changes to the same nucleotide).  To reduce the parameterization several nested 
evolutionary models have been developed based on possible transitions between 
purines and pyrimidines at various levels [1-4].  The number of parameters 
estimated and their estimation values are dependent upon two factors – the data 
selected and the model.  We use the parameter values estimated by Suchard et 
al. [9] for two models reflecting different levels of evolution.  The first of these 
is the Tamura and Nei model (TN93) [4], parameterized into three rates based 
on data from the “Tree of Life”, representing organisms across all living 
kingdoms.  The last model is the Hasegawa et al. model [1], which calculates 
the rate matrix for each codon position using two parameters based on primate 
data, resulting in a less general model. 

Mutation Variable.  The background information (M) is a binary variable 
that describes a detectable SNP event; defined as a mass changing substitution.  
Undetectable SNPs include silent mutations (SNPs resulting in no change at the 
amino acid level) and mutations between leucine (L) and isoleucine (I) (whose 
mass is indistinguishable by MS).  Additionally, we define mutations to and 
from STOP codons as invalid, assuming that such mutations are typically 
detrimental to the protein.  Additionally, we assume that an observed amino acid 
change is the result of one SNP per codon and not from double mutations.  
Thus, given two codons, ci and cj, where a(i) and a(j) define their respective 
amino acids, a valid SNP is expressed explicitly as, 
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where m(a(i)) and m(a(j)) are the masses associated with a(i) and a(j), respectively.  
There are several benefits of defining the mutation variable in this manner.  For 
example, in lieu of a binary definition, probabilities could be defined for SNP 
events based on mass difference.  Also, multiple types of peptide variants could 
be defined, for example M1 for SNPs, M2 for frameshifts, and M3 for multiple 
nucleotide polymorphisms.   

2.2. Bayesian Formulation 

In our basic Bayesian formulation (1) the genomic data (G) consists of I codons, 
(2) the codon substitution (S) represents a mutation to a codon j, j=1,…,64 (sj), 
(3) the evolutionary model (Ψ) describes the probability ratio or rate of mutation 
between two residues, and (4) the mutation variable (M) describes the 
probability of a substitution between two codons.  The Bayesian formulation is 
described as the joint distribution of the observed and unobserved data: 
P(G,S,M,Ψ).  This is the product of the likelihood (L) and the prior (P): 

 ( ) ( ) ( )ΨΨ=Ψ ,,;,,,,, MSPGMSLMSGP . 

The likelihood is the probability of the observed data given the unobserved data: 

 ( ) ( ) ( )ΨΨ=Ψ ,,,,|,,, MSPMSGPMSGP . (2) 

The prior P(S,M,Ψ) can be decomposed into easily calculable probabilities.  The 
evolutionary model Ψ does not change based on the genetic code or the type of 
mutation being observed.  Thus, we assume independence from S and M: 
P(S,M,Ψ)=P(S,M)P(Ψ).  Lastly, returning to the genetic code, we observe that 
the probability of observing a given codon is dependent on M, and given that 
there is only one type of mutation event in this case: P(S,M)P(Ψ)=P(S|M)P(Ψ).  
Hence the Bayesian formulation observed in Eq. 2 can be expressed as: 

 ( ) ( ) ( ) ( )ΨΨ=Ψ PMSPMSGPMSGP |,,|,,, . (3) 

The calculations for implementation occur at the individual codon level.  
Thus, the above general representation can be given in terms of the individual 
elements of the observed and unobserved data.  The joint distribution of a 
specific mutation in the genome, observing codon j at the ith position in the 
genome given a specified evolutionary model, ψk, is defined as: 
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The joint distribution in Eq. 4 allows easy calculation of posterior probabilities 
of interest; for example, specific SNPs describing the probability of observing a 
SNP in the form of codon sj at the ith position in the genome.  Given a specific 
evolutionary model, ψk, this is formulated in terms of Bayes theorem: 
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Additionally, the Bayesian formulation allows the probability of observing a 
specific SNP independent of the evolutionary model to be calculated: 
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To obtain these values of interest, the likelihood and priors much each be 
calculated. 

The Likelihood.  There is no loss in information by transforming 
evolutionary models in the form of symmetric 4x4 or 20x20 matrices into 64x64 
codon matrices.  We perform this conversion for consistency to make the 
likelihood calculation straight forward.  Accordingly, ψk describes the 
probability ratio or rate of substitution between two codons gi and sj.  The 
likelihood also includes the mutation event variable, Eq. 1, which allows only 
valid SNPs to have non-zero probabilities.  Thus, the likelihood can be 
described as: 

 ( ) ( ) ( )jijikkji sgMsgMsgP ,*,,,| ψψ = . 

The Prior.  There are two prior in Eqs 3-6, where P(ψk) is the prior belief 
that the codon mutation model ψk fits the data and P(sj|M) is the probability of 
observing a given codon sj (independent of the genomic data) given a mutation 
of type M.  The prior on the evolutionary model can be either defined by the 
user or a priori.  We assume a priori – all models are equally likely.  By 
assuming that mutations at all positions in the genome are equally likely, the 
prior P(sj|M) can be defined directly from the genetic code.  Because there are 
64 codons, there are 576 possible SNPs between all codons, 385 of these are 
valid as described by M, Eq. 1.  The prior probabilities are calculated for each 
codon, observing that a given codon, P(sj|M), can only result from a SNP to 
nine other possible codons.  As illustrated in Figure 1 [14], of the nine possible 



 

SNPs that could result in the codon AGA, two are products of silent mutations 
and one is a STOP codon.  Thus, in this example, the probability of observing 
AGA given M (all possible valid SNPs) is P(AGA|M)=6/385.  Alternatively Bayes 
theorem can be used to arrive at this answer in perhaps a more intuitive manner:  
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The benefit of this approach is that it incorporates prior information on the 
probability of observing a given codon, P(sj).  For instance, codon frequency 
information on a specific species could be incorporated. 
 

 
 

Figure 1. A schematic of the nine possible codons and corresponding amino acids from a SNP to 
codon AGA.  In this case there are 6 nonsynonymous SNPs (resulting in an amino acid change), 2 
synonymous SNPs, and 1 SNP from a STOP codon. 

3. Results and Discussion 

The human ability to treat disease has developed man beyond a simple ‘survival 
of the fittest’ species.  Accordingly, due to the potential for identifying 
biomarkers to treat disease, the majority of SNP data is human focused.  We 
focus on two of these compilations for the proteins hemoglobin [15-17] and p53 
[18-19].  These SNPs are functionally important SNPs as they are disease 
causing or enhancing.  Additionally, we observe a third database that 
characterizes observable SNPs in eight inbred mouse strains [20].  We first 
discuss the specifics of each SNP databases.  Secondly, we evaluate the 
predictive ability of each individual evolutionary model using the Bayesian 
framework.  Lastly, we assess the benefits of the Bayesian formulation, 



 

specifically the inclusion of the genetic code based prior and the posterior based 
on mixtures of evolutionary models. 

3.1. The SNP databases 

Hemoglobin is a protein that transports oxygen from the lungs to the peripheral 
tissues to maintain the viability of cells.  It has been largely studied because 
diseases such as sickle cell anemia have been linked to variants of the protein.  
The genomic sequence (including the α and β chains) consists of 287 codons, 
resulting in 1871 valid SNPs.  The “Syllabus of Human Hemoglobin Variants” 
[15] is a comprehensive listing of all known human hemoglobin variants.  
Approximately 541 (29%) of the possible 1871 SNPs are represented in this 
databases (http://globin.cse.psu.edu).  

The p53 protein is the result of a tumor suppressor gene located on human 
chromosome 17.  The p53 gene has been largely studied because mutations of 
this gene are often accompanied by cancer.  This protein is 393 codons in length 
and has 2559 valid SNPs.  From the database, 776, or approximately 30%, of 
the 2559 SNPs are represented (http://p53.curie.fr/).  

The Mouse database contains SNPs identified in eight inbred strains of 
mice.  Although its generation is quite different than that of freely mating 
populations, it is included for comparative value to determine if any of the 
defined evolutionary models hold predictive power despite the forced 
inbreeding.  This database covers a much larger genomic space than the human 
protein-specific databases.  The database contains 1307 sequences with 71,798 
codons yielding 439,202 possible valid SNPs.  Only 1822 SNPs, or 0.4%, of the 
valid SNPs are represented (http://www.broad.mit.edu/snp/moue).  

 
3.2.  Predictive Ability of Individual Evolutionary Models 

Each database has one or more genes associated with it; from these genes all 
valid SNPs can be calculated.  Each database consists of a list of observed SNPs 
(a subset of all valid SNPs), which are presumed to be true positives.  All the 
remaining SNPs not represented in a database are assumed to be true negatives.  
The hemoglobin, p53, and mouse databases have 541, 776, and 1881 true 
positives and 1330, 1783, and 437,380 true negatives, respectively.  To observe 
the predictive capability of each evolutionary model with the Bayesian 
framework we use it as a classifier.  Given the probabilities assigned to each 
SNP from the Bayesian model, the true positives and negatives can be used to 
generate Receiver Operating Characteristic (ROC) curves [23] for each 
database. 



 

The ROC curve gives a graphical representation of the trade-off between 
sensitivity and specificity.  The plot displays the false positive rate (ratio of false 
positive to total negatives) versus the true positive rate (ratio of true positives to 
total positives) at all possible cut-off values.  A completely random predictor 
would give a straight line at a 45° angle – TP rate equal to FP rate.  This is the 
Baseline model.  Figure 2 shows ROC curves generated from the individual 
SNP posterior probabilities (Eq. 5) obtained for each of the four described 
evolutionary models.  Since there are many SNPs with the same posterior 
probability we generate points on the ROC curve by randomly shuffling the 
order of the SNPs within any given probability 100 times and display the 
average. 

 

 
 

Figure 2. The ROC curves for the (a) hemoglobin, (b) p53, and (c) mouse databases to assess the 
evolutionary models (1) BL80, (2) M-O, (3) TN93, and (4) HKY85. 

 
At first glance, Figure 2 appears to show that the M-O model performs the 

best for both of the disease databases and the HKY85 model performs best for 
the mouse database.  None of the evolutionary models are exceptionally good 
classifiers, however it is of interest to compare and contrast these models.  The 



 

area under the ROC curve is the most common measure used to compare the 
discriminative effectiveness of classifiers.  DeLong et al. [24] is a standard 
statistical test for comparing correlated ROC curves that have a large sample 
size.  Tables 1-3 display the area under the ROC curve for each of the 
evolutionary models and the associated p-values.  The largest of each database 
is highlighted in bold.     
 

Table 1. The area under the ROC curves (in parentheses) and p-values 
for primary model comparison for the hemoglobin SNP database. 

 BL80 (0.461) M-O (0.639) TN93 (0.571) HKY85 (0.528) 
Baseline (0.500) 0.0111 <0.0001 <0.0001 0.0586 
BL80 (0.461)  <0.0001 <0.0001 0.0008 
M-O (0.639)   0.0001 <0.0001 
TN93 (0.571)    0.0074 

 
 

Table 2. The area under the ROC curves (in parentheses) and p-values 
for primary model comparison for the p53 SNP database. 

 BL80 (0.507) M-O (0.580) TN93 (0.550) HKY85 (0.561) 
Baseline (0.500) 0.5563 <0.0001 <0.0001 <0.0001 
BL80 (0.507)  0.0001 0.0045 0.0009 
M-O (0.580)   0.0518 0.2177 
TN93 (0.550)    0.4230 

 
 

Table 3. The area under the ROC curves (in parentheses) and p-values 
for primary model comparison for the mouse SNP database. 

 BL80 (0.527) M-O (0.577) TN93 (0.609) HKY85 (0.646) 
Baseline (0.500) 0.0005 <0.0001 <0.0001 <0.0001 
BL80 (0.524)  <0.0001 <0.0001 <0.0001 
M-O (0.577)   0.0006 <0.0001 
TN93 (0.609)    <0.0001 

 
Applying a standard threshold of 0.05, all models are significantly different 

than the Baseline model, except HKY85 for hemoglobin and BL80 for p53.  
Additionally, the low p-value observed for BL80 on hemoglobin is a result of 
this model performing significantly worse than Baseline (Figure 2a).  The most 
surprising result is that the human amino acid model does not outperform either 
of the nucleotide models on mouse despite many mouse genes being 
orthologous to human.  In fact the global TN93 model has a consistent 
performance on all three databases.  It has the second largest area under the 
ROC curve for both hemoglobin and mouse.  This is significant since in practice 
evolutionary models specific to the organism under study may not be available.  
The parameters for TN93 were generated from species drawn from eukaryotes, 
eubacteria, halobacteria, and eocytes. 



 

3.3. Assessing the Benefits of the Bayesian Formulation 

The Bayesian formulation has several benefits, specifically the ability to obtain 
a posterior probability using multiple evolutionary background information 
parameters and the ability to define priors.  It has been shown in sequence 
alignment that sensitivity can be improved by summing over multiple 
substitution matrices [12].  We assess the improvement in sensitivity observed 
from mixtures of evolutionary models, as well as when the codon defined prior 
is used in lieu of a neutral defined prior.   

Inclusion of Multiple Evolutionary Models.  ROC curves were 
constructed using posterior probabilities calculated for the eleven possible 
model combinations (Eq. 6).  The areas under the ROC curves were compared 
to the best individual model using DeLong et al. [24].  Table 4 gives these 
results for p53 and mouse – no model combinations gave an area under the ROC 
curve greater than M-O for hemoglobin.  Not surprisingly, the predictability of 
the M-O model, tuned specifically to human SNP data, is not improved for 
hemoglobin or p53 by including additional models.  For mouse, two mixture 
models perform significantly better than the best individual model; (1) M-O and 
HKY85, and (2) BL80, M-O, and HKY85.  It appears that the decision to utilize 
multiple models may be subjective to the evolutionary distance between the 
organism being studied and the organisms used to generate the models. 
 

Table 4. Comparison of the area under the ROC curve for each model 
combination that had a larger area than the best individual model and 
the corresponding p-values. 

p53 (M-O = 0.580) Mouse (HKY85 = 0.646)  
 ROC area p-value ROC area p-value 

M-O/TN93 0.586 0.6241 0.634  
M-O/HKY85 0.588 0.5284 0.655 0.0001 
BL80/M-O/HKY85 0.586 0.6244 0.654 0.0008 
M-O/TN93/HKY85 0.594 0.2166 0.650 0.3222 
All 0.592 0.3139 0.647 0.7798 

 
The Prior.  The Bayesian SNP model includes a prior on the probability of 

a codon given a valid SNP, P(sj|M).  This prior is based on the genetic code 
(Figure 1).  Table 5 gives the area under the ROC curve for the genetic code 
defined prior and for a neutral prior (all codons are equally likely to undergo 
mutation), as well as the p-value comparing the ROC area difference.  The 
results are startling.  In all cases the area under the ROC curve for the neutral 
prior is less than or equal to the genetic code prior, in most cases returning 
significant p-values.  Of the twelve generated p-values, nine have a p-value of 
less than 0.1.  Thus, the inclusion of this prior is beneficial to the overall 
predictability of the model. 



 

 
Table 5. The area under the ROC curve generated from the genetic 
code (C prior) and the neutral (N prior) and associated p-values. 

Hemoglobin p53 Mouse  
C 

Prior 
N 

Prior 
p-

value 
C 

Prior 
N 

Prior 
p-

value 
C  

Prior 
N 

Prior 
p-

value 
BL80 0.461 0.437 <0.01 0.507 0.486 <0.01 0.524 0.525 0.72 
M-O 0.639 0.627 <0.01 0.580 0.563 <0.01 0.577 0.577 0.34 
TN93 0.571 0.540 <0.01 0.550 0.514 <0.01 0.609 0.597 <0.01 
HK85 0.528 0.525 0.21 0.561 0.544 <0.01 0.646 0.645 0.40 

 

4. Conclusions 

We propose a Bayesian methodology for assigning posterior probabilities to 
individual SNPs.  We evaluate the model using posterior probabilities associated 
with one or more evolutionary models on three databases of functional SNPs.  
These probabilities were used to classify the SNPs represented in each database 
and observe the sensitivity versus specificity (ROC curves).  We observe that 
none of the models hold strong predictive power (Figure 2).  Not surprisingly, 
the best single model for hemoglobin and p53 is M-O, which was generated 
from human SNP data (Tables 1 and 2).  Surprisingly, both nucleotide models 
outperform the amino acid M-O model for mouse; the largest area under all 
ROC curves for the individual models was 0.646 on HKY85 for mouse (Table 
3).    

We also demonstrate that two properties unique to the Bayesian framework 
improve SNP identification.  First, the Bayesian formulation allows inference to 
be made over mixtures of evolutionary models.  Given the specialty of M-O to 
hemoglobin and p53 no improvement in specificity was observed, but for the 
mouse database two mixture models found an area under the ROC curve that 
was significantly better than the best individual model HKY85 (Table 4).  
Finally, we focus on the prior, a special feature of the Bayesian model.  We 
define our prior as the probability of observing a specific codon given the SNP 
model from the genetic code.  We compare the results of applying our prior to 
the results using the neutral prior.  We observe that the area under the ROC 
curve for the neutral prior is always smaller than or equal to the genetic code 
based prior.  Furthermore, 75% of the time the area under the curve is 
significantly smaller for the neutral prior at a p-value of 0.05 (Table 5).  
Although none of the evolutionary models were highly accurate predictors, the 
Bayesian formulation gives a framework under which prior knowledge or more 
advanced evolutionary models can be incorporated to assign probabilities to 
individual polymorphic sites. 
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