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Abstract. We present an efficient algorithm for generating a small set of coarse alignments be-
tween interacting proteins using meaningful features on their surfaces. The proteins are treated
as rigid bodies, but the results are more generally useful as the produced configurations can
serve as input to local improvement algorithms that allow for protein flexibility. We apply our
algorithm to a diverse set of protein complexes from the Protein Data Bank, demonstrating the
effectivity of our algorithm, both for bound and for unbound protein docking problems.

1. Introduction

Protein-protein docking is the computational approach to predicting interactions
between proteins. In this paper, we contribute to this field by describing an algo-
rithm for generating a small set of coarse alignments between protein structures.

Motivation. Highly organized transient or static assemblies of proteins control
most cellular events. A better understanding of the protein-protein interactions
involved in these assemblies would help elucidate how individual proteins form
complexes and dynamically function in concert to generate the cell circuitry and
its time-dependent responses to external stimuli. Protein structures determined
at atomic resolution by X-ray crystallography, nuclear magnetic resonance, and
increasingly by computer modeling provide one basis for the study of protein in-
teractions. However, given the relative wealth of structural details for monomeric
proteins compared to multimeric protein complexes, there exists a need for com-
putational tools and thus for the field of protein docking.

Prior work. Current research on protein-protein docking focuses on either bound
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docking (the reassembly of known complexes from their constituents), or unbound
docking (the assembly of as yet unknown complexes under the assumption of only
small protein conformational changes). Most approaches to unbound docking
consist of two stages20: the rigid docking stage produces a set of potential docking
configurations by considering only rigid motions, and the refinement stage locally
improves the docking configuration, possibly allowing for a limited amount of
flexibility. The two essential components in both stages are: a scoring function
that discriminates near-native from incorrect docking configurations and a search
algorithm to find (approximately) the best configuration for the scoring function.

Approaches to the rigid docking stage rely mainly on geometric complemen-
tarity. Some are based on uniform discretizations of the space of rigid motions,
which they search exhaustively3. This approach has been accelerated using the
fast Fourier transform (FFT)16, which forms the basis of the docking software
FTDock13, 3D-Dock18, GRAMM21, and ZDock6. Others sample a small number
of rigid motions non-uniformly from the space by aligning feature points found on
the molecular surfaces14�17. This idea goes back to Connolly11, who proposed to
use the minima and maxima of a function related to mean curvature, now known
as the Connolly function. An example of this method has been described by Fis-
cher et al.12, who use geometric hashing to align critical points of a variant of
the Connolly function. The refinement stage is usually modeled as an energy
minimization problem, with the scoring function focusing on the thermodynamic
aspects of the interaction. The difficulty of the problem increases with the di-
mension of the search space or, equivalently, the degree of freedom, which is
large even if we keep the back-bone rigid and consider only side-chain flexibil-
ity. Recently, Vajda et al. have proposed a hierarchical, progressive refinement
protocol4�5, which seems to reliably converge to a near-native docking configura-
tion starting with initial configurations up to ���̊ root-mean-square-distanceaway
from the native configuration. Little success has been reported on including back-
bone conformational changes19. Since each step in the refinement stage is costly,
it is essential that the set of potential configurations generated in the rigid docking
stage is small and reliably contains configurations not too far from the native con-
figuration. Current solutions to the rigid docking stage fall short on at least one of
the two requirements.

New work. In this paper, we present an efficient algorithm for the rigid docking
stage. We use geometric complementarity to guide the search for a small set of
rigid motions so that the two proteins fit loosely into each other. Such a set of
potential configurations can be further refined to obtain more accurate docking
predictions5�9. We remark that for the case of unbound docking, it is especially



September 22, 2004 15:0 Proceedings Trim Size: 9in x 6in psb-2005

important to start with coarse (not tight) fits between proteins to take advantage of
flexibility in the later refinement stage.

We describe our algorithm in Section 2. It relies on a novel approach to de-
scribe protrusions and cavities on molecular surfaces using a succinct set of point
pairs computed from the elevation function1. We then align such pairs and evalu-
ate the resulting configurations using a simple and rapid scoring function. Com-
pared to similar approaches that align feature points12�17, our algorithm inspects
orders of magnitude fewer configurations. This is made possible by using slightly
more complicated features that contain information useful in assessing their sig-
nificance. We exploit this extra information twice, first to ignore insignificant fea-
tures and second to be more discriminant in matching up features from different
proteins. In Section 3, we demonstrate the efficacy of our approach by testing a set
of 25 bound protein complexes from the Protein Data Bank 2. We demonstrate that
a combination of our algorithm with the local improvement procedure described
in9 efficiently finds near-native docking positions for all but two cases without
creating false positives. In addition, we test our algorithm on the unbound protein
docking benchmark7. In particular, we demonstrate that the algorithm generates
poses sufficiently close to the native configuration such that refinement methods
that take into account protein flexibility will succeed in bringing them within an
acceptable neighborhood of the correct solution. We conclude and discuss future
work in Section 4.

2. Methods

We represent each protein by a set or union of finitely many balls in three-
dimensional Euclidean space, which we denote by �� . Specifically, we are given
two proteins, � � ���� ��� � � � � ��� and � � ���� ��� � � � � ���, where �� is
the ball with center �� � �

� and van der Waals radius �� � � and �� is the
ball with center �� and van der Waals radius �� . We fix � in �� and describe an
algorithm that finds a small set of candidate transformations for �. Each transfor-
mation is a rigid motion � that produces a candidate configuration (�� ����). We
begin by describing the scoring function that assesses the fit between two proteins.

Scoring function. A good scoring function favors near-native configurations over
configurations that are far from the native. Letting 	 �� � ��� � ��� � �� � �� be
the distance between the balls �� and �� , we define

���	
�	�
� ��� ����
�
���
� �� �

��
�
��� � if 	�� � ��

�� � if � � 	�� � 
�

�� � if 
 � 	�� �

where 
 is a constant we refer to as the contact-threshold. The score of �����
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is based on the total number of contacts,����	����� �
�

��� ���	
�	�
� ��, and
the total number of collisions, ���������� �

�
��� ����
�
���
� ��� We call the

configuration ����� valid if ���������� � �, where the constant collision-
threshold � defines the maximum number of collisions we tolerate. The score
ignores invalid configurations and equals the number of contacts for valid con-
figurations. This notion of score is similar to the ones in3�6 but different because
our score penalizes collisions twice, first by counting them toward a possibly in-
valid configuration and second by reducing the contact number. The reason for
this difference is that we aim at coarse alignments and thus are more tolerant to
collisions, using � � �� rather than � � �, as in3. The second penalty counteracts
the usual increase in contact number that goes along with an increase in collision
number. In other words, it seeks to avoid a bias toward configurations with higher
collision number without unfairly discriminating against them.

Features. Our algorithm generates rigid motions from feature sets �� and ��
obtained by analyzing the shapes of the two proteins. We compute these features
from (approximately) smooth surfaces representing the two shapes 8�10. Letting �
be the surface representing�, we briefly review the function����
	
�� � � � �

that underlies our definition of feature. To first approximation, it resembles the
elevation on Earth, which is the height difference of a point and the mean sea level
at that point. This definition makes sense on Earth, where we have a natural choice
of origin (the center of mass) and mean sea level (a level set of the gravitational
potential), neither of which exists for general surfaces. In the absence of both
concepts, we associate each point � � � with a canonically defined partner
� � � , with same normal direction �� � ��, and define ����
	
����� as the
absolute height difference between � and � in that common direction. For more
details, in particular on how to define the canonical pairing, we refer to 1. Loosely
speaking, � is the top of a protrusion or the bottom of a cavity in the direction
�� and the pairing partner � is the saddle point that marks where the protrusion
or cavity starts. It is also possible that the roles of � and � are reversed. For
the purpose of protein docking, we are interested in points with locally maximal
elevation, as they represent locally most significant features. Almost all points �
on � have exactly one partner �, but most maxima arise at positions where the
partner is ambiguous. More specifically, for a generic surface there are four types
of maxima describing different types of features, as illustrated in Figure 1.

By definition, a feature consists of two points, � and its partner �, with
common surface normal, �	 � �
, and common elevation, ����
	
����� �
����
	
�����. Its length is the Euclidean distance between the two points,
��� ��. Each maximum of the elevation function is defined by � � ��� �� ��
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x x x x

Figure 1. Left: a one-legged maximum characterized by � having a unique partner. Middle left: a
two-legged maximum in which � has two partners, both with the same normal direction and the same
height difference to �. Middle right: a three-legged maximum in which � has three partners, again
sharing the same normal direction and the same height difference to �. Right: a four-legged maximum
in which � has two partners and both partners have the same two partners each.

points and gives rise to
�
�
�

�
features in ��. For example, the 3-legged maximum

(third from the left in Figure 1) consists of � � � points defining
�
�
�

�
� � point

pairs each forming a feature in ��. The length and elevation of a feature are used
to estimate its importance, and both together with the normal direction are used to
pair up features from the sets �� and �� .

Coarse alignment. Given two proteins � and � together with their feature sets
�� and �� , our algorithm computes a set of potential coarse alignments �:

for every � � �� and every � � �� do
if �� � form a plausible alignment then
� � ��
����� ��;
compute the contact and collision numbers for ��� �����;
if ��� ����� is valid then add � to � endif

endif
endfor; sort � by contact number.

The rationale behind the algorithm is that good fits between the input proteins
have aligned features, such as a protrusion of� fitting inside a cavity of�, or vice
versa. If we pair up all features of � with all features of �, we surely cover all
good fits. On the other hand, the information that comes with each feature can be
used to discriminate between pairs and gain efficiency by filtering out alignments
we deem not important or implausible. Specifically, we introduce an importance
filter that eliminates features from �� and �� whose lengths or elevations are
below threshold. The remaining features form pairs ��� �� which pass the plau-
sibility filter provided � and � are not too different in length and they represent
complementary types (a protrusion and a cavity). The constants used in the im-
portance filter are given in the caption of Table 1.

Assuming ��� �� passes the importance and the plausibility filters, we com-
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pute an aligning rigid motion � as follows. Writing � � ��� ����� and � �

��� ���
� for the points and normals, we define the bi-normals �� � �� �

�	
�
�	�

and �
 � �
 �
���
����� . We obtain the rigid motion in three steps:

1. translate � so that the two midpoints coincide: 	�

�
� ���

�
;

2. rotate � about the common midpoint so that �� �� �� � are collinear;
3. rotate � about the common line so that �� � �
 .

We note that there is an ambiguity in Step 2, allowing for two different alignments
distinguished by having ��� and ��� point in the same or in opposite directions.
We are interested in both but simplify the description by pretending that Function
��
�� returns only one rigid motion, instead of two as it really does. Observe that
Step 3 positions the two features to maximize the angle between the two normal
vectors. Given �, we compute the score and the number of collisions using a
hierarchical data structure storing � and �. Letting � and � be the number of
balls in the two sets, this takes time O������ ���������.

3. Results

In this section, we present the results of testing our algorithm on twenty-five bound
docking problems obtained from the Protein Data Bank 2 and on forty-nine un-
bound docking problems from the benchmark in 7. We begin with a detailed study
of a well known protein complex.

A case study. We use the barnase/barstar complex (pdb-id 1BRS, chains A and
D, with 864 and 693 atoms) as a sample system to introduce the capabilities of
our algorithm. We generate molecular surfaces of the two chains with the MSMS

software (available as part of the VMD software distribution15) and obtain trian-
gulations with 8,959 and 7,248 vertices. In Table 1, we show the total number

chain A, # legs chain D, # legs
2 3 4 2 3 4

total # of features 1,044 696 156 828 510 154
#s after importance filter 112 205 50 68 160 49

Table 1. Compare the total number of features obtained from two-, three- and four-legged maxima
for chains A and D of 1BRS with the number of features that pass the importance filter, having length
at least ����̊ and elevation at least ����̊. (There are no one-legged maxima for this data set.)

of features generated from the maxima of the elevation function and the num-
ber of features that survive the importance filter. The latter form the input to our
coarse alignment algorithm. We note that a substantially larger number of features
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obtained from 3-legged maxima are retained than features obtained from 2- and
4-legged maxima.

Given the two sets of input features, our algorithm takes about three minutes
on a single processor PIII 1GHz computer to generate a family � of 5,021 valid
configurations with contact number larger than or equal to 150. Each configura-
tion in � corresponds to a transformation � for chain D. We use the root-mean-

before local improvement after local improvement
rank #cont #coll RMSD rank #cont’ RMSD

12 327 24 3.23 1 359 0.54
5 342 48 2.42 2 338 0.80
1 427 23 1.59 3 328 0.72
4 353 49 3.57 4 314 0.80
2 391 39 1.70 5 311 0.91

59 269 12 2.84 6 310 0.78
3 373 29 2.32 7 307 1.50

11 339 18 3.07 8 281 1.47
15 318 16 3.00 9 251 2.09
76 263 29 39.39 10 213 39.96

Table 2. Top ten configurations after local improvement and their ranks before local improvement.
The first nine have small RMSD and may be considered near-native configurations. We use different
definitions for the number of contacts before and after the local improvement: #cont is defined as in
Section 2, and #cont’ is as computed by the local improvement algorithm, which is the number of
non-overlapping spheres at distance at most ����̊.

square-distance (RMSD) between the centers of the matching atoms in D and
��D� to measure how close the configuration is to the native one. Ranking by
score, the top configuration in � has an RMSD of �����̊, and six of the top ten
configurations have RMSD smaller than or equal to ����̊. Letting �� be the subset
of top � � ��� configurations, we refine each one using the local improvement
heuristic of Choi et al.9 We then re-rank the configurations in �� based on the new
scores, limiting ourselves to configurations with collision number at most five.
The results in Table 2 show that our algorithm generates multiple coarse align-
ments that are useful, in the sense that the local improvement heuristic succeeds
in refining them to near-native configurations.

More bound protein complexes. We extend our experiments to a collection of
twenty-five protein complexes obtained from the Protein Data Bank. Each com-
plex consists of two chains, and we generate a set of features for each. For a
typical chain, the number of features that survive the importance filter is on the
same order of magnitude as the number of atoms. In Table 3, we show a low-
RMSD configuration for each protein complex, as well as its rank in the list of
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configurations output by our algorithm (using contact-threshold 
 � ��� �̊ and
collision-threshold � � ��). With only one exception (1JAT), we have at least
one low-RMSD configuration ranked among the top one hundred. The last col-
umn shows the running time for the coarse alignment algorithm, which does not
include the time to compute the triangulated surface and the maxima of the eleva-
tion function.

pdb-id chains rank #coll RMSD time

1A22 A, B 2 23 2.75 20
1BI8 A, B 12 43 2.48 26
1BRS A, D 1 11 1.52 3
1BUH A, B 5 14 1.85 2
1BXI B, A 3 34 2.54 8
1CHO E, I 1 14 2.71 3
1CSE E, I 2 22 2.21 9
1DFJ I, E 78 11 3.09 27
1F47 B, A 15 1 1.49 1
1FC2 D, C 5 49 4.13 6
1FIN A, B 11 44 3.70 41
1FS1 B, A 1 29 1.62 5
1JAT A, B 522 20 1.20 9
1JLT A, B 8 23 3.64 10
1MCT A, I 1 27 3.49 3
1MEE A, I 1 23 1.33 9
1STF E, I 1 43 1.18 8
1TEC E, I 9 54 3.07 7
1TGS Z, I 1 46 2.61 6
1TX4 A, B 2 4 3.35 14
2PTC E, I 1 18 4.55 6
3HLA A, B 1 19 1.87 16
3SGB E, I 1 38 3.21 5
3YGS C, P 6 7 1.07 6
4SGB E, I 10 33 2.33 4

Table 3. For each protein complex, we show data for the highest ranking configuration with RMSD
at most ����̊. The running time of the coarse alignment algorithm is given in minutes.

Next, we apply the local improvement heuristic9 to the top � � ��� con-
figurations of each complex (except 1JAT, for which we need � � ��� to get a
near-native configuration) and re-rank them based on the new scores. Eliminat-
ing all configurations with more than 5 collisions, Table 4 shows before and after
data for the configuration that is ranked at the top after local improvement. In all
but two cases, the top ranked configuration is near-native, and in one of the two
exceptional cases, the second ranked configuration is near-native. In the remain-
ing exceptional case (1BI8), we can obtain a near-native configuration by relaxing



September 22, 2004 15:0 Proceedings Trim Size: 9in x 6in psb-2005

the threshold of allowed collisions to eight. In summary, for 23 of the 25 test
complexes, our coarse alignment algorithm combined with the local improvement
heuristic9 predicts a near-native configuration without false positives.

before local improvement after local improvement
pdb-id rank #cont #coll RMSD rank #cont’ RMSD

1A22 2 363 23 2.75 1 475 1.08
1BI8 62 324 10 30.00 1 234 29.88
1BRS 12 327 37 3.23 1 349 0.54
1BUH 5 311 14 1.85 1 256 0.61
1BXI 16 261 21 5.59 1 289 0.63
1CHO 1 375 14 2.71 1 305 0.99
1CSE 23 276 36 2.57 1 317 0.82
1DFJ 78 273 11 3.09 1 220 1.28
1F47 15 238 1 1.49 1 221 0.56
1FC2 5 323 49 4.13 2 200 1.33
1FIN 34 361 54 9.94 1 413 0.61
1FS1 2 402 27 1.59 1 326 0.89
1JAT 522 203 21 1.20 1 288 0.87
1JLT 3 362 14 6.17 1 310 1.77
1MCT 84 280 34 3.57 1 322 0.32
1MEE 1 542 23 1.33 1 372 0.57
1STF 1 444 43 1.18 1 314 0.79
1TEC 10 334 51 4.51 1 304 1.28
1TGS 2 373 13 2.71 1 348 0.44
1TX4 80 296 25 4.34 1 355 0.36
2PTC 1 346 18 4.55 1 314 0.66
3HLA 1 402 19 1.97 1 416 0.70
3SGB 1 364 38 3.21 1 257 2.24
3YGS 6 315 7 1.03 1 209 0.85
4SGB 10 298 33 2.33 1 266 2.50

Table 4. For each protein complex, we locally improve the � top ranked configurations and show
the data for the highest re-ranked configuration with small RMSD. After local improvement we admit
only configurations with at most five collisions, as usual. The number of contacts before and after the
improvement, #cont and #cont’, are computed as described in the caption of Table2.

It is interesting to compare the data in Tables 3 and 4 and notice that the high-
est ranked configuration after local improvement is the highest ranked configura-
tion with small RMSD before the local improvement in only slightly more than
half the cases. Consider for example 1FIN, which has a configuration at ���� �̊
RMSD with 44 collisions but the one that leads to the best final configuration has
RMSD � �����̊ and����� � ��.

Unbound docking benchmark. We further test our algorithm on the protein-
protein docking benchmark provided in 7. We omit the seven complexes classified
as difficult in7 because they have significantly different conformations in the un-
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bound vs. bound structures. We also omit complexes 1IAI, 1WQ1 and 2PCC for
which we had difficulties to generate surface triangulations of required quality.
Of the remaining forty-nine complexes, twenty-five are so-called bound-unbound

bound-unbound unbound-unbound
C-id #hits min* rank size min C-id #hits min* rank size min

1ACB 20 3.70 3,951 14,426 1.75 1MLC 7 3.71 6,949 29,747 3.32
1AVW 8 5.51 4,698 23,565 5.42 1WEJ 3 6.27 4,659 18,194 5.86
1BRC 35 4.66 1,629 12,770 4.66 1BQL 11 6.98 10,388 23,308 4.39
1BRS 7 1.60 426 11,607 1.60 1EO8 1 2.31 11 45,512 2.31
1CGI 5 3.04 695 10,135 3.04 1FBI 8 6.49 11,783 26,036 2.30
1CHO 27 2.35 92 11,815 2.35 1JHL 18 3.47 14,185 32,091 2.61
1CSE 7 3.15 15,271 21,068 2.74 1KXQ 2 5.99 1,495 37,218 5.99
1DFJ 2 6.44 1,433 35,231 6.44 1KXT 12 4.52 153 39,240 4.52
1FSS 2 7.65 10,721 25,609 5.15 1KXV 7 2.48 321 46,368 2.48
1MAH 4 2.78 1,561 25,402 2.78 1MEL 8 2.21 73 17,741 2.21
1TGS 18 5.27 543 11,383 5.27 1NCA 7 1.75 621 49,600 1.75
1UGH 3 7.95 8,268 14,656 7.16 1NMB 7 7.18 14,202 42,066 2.72
2KAI 26 6.55 2,560 13,478 3.41 1QFU 4 1.97 12 47,693 1.97
2PTC 32 4.55 4,983 13,929 4.16 2JEL 19 3.46 115 34,072 3.46
2SIC 27 4.04 76 20,065 4.04 2VIR 11 1.08 1 40,813 1.08
2SNI 10 6.34 4,894 15,830 4.58 1AVZ 8 4.06 4,243 7,895 3.52
1PPE 10 4.13 37 7,660 4.13 1L0Y 2 2.75 1,136 34,044 2.75
1STF 8 1.41 1 15,082 1.41 2MTA 40 2.91 19,167 36,903 2.07
1TAB 3 3.78 48 8,296 3.78 1A0O 3 5.95 3,950 9,113 4.35
1UDI 3 4.50 1,124 21,133 4.50 1ATN 8 1.52 1 50,729 1.52
2TEC 5 1.42 6 21,134 1.42 1GLA - - 25,307 33,879 2.82
4HTC 2 5.94 396 14,032 5.94 1IGC 3 2.48 3,260 25,303 2.06
1AHW 1 9.38 2,781 32,919 4.37 1SPB 3 2.83 617 13,728 2.83
1BVK 5 1.95 1,189 24,611 1.95 2BTF 2 5.02 10,132 33,480 3.28
1DQJ 7 4.59 710 28,694 4.59

Table 5. Twenty-five bound-unbound cases on the left plus twenty-four unbound-unbound cases on
the right. From left to right: the complex identification, the number of configurations in �� with
RMSD* less than or equal to �����̊, the smallest RMSD* value of any configuration in �� (min*),
the rank of this configuration within �, the number of configurations in �, and the smallest RMSD*
value of any configuration in � (min).

cases, in which one of the components is rigid. For each complex, we fix one
chain as A, which is the rigid chain for each bound-unbound case and the receptor
for each unbound-unbound case. We generate �, a set of the potential configura-
tions, each corresponding to a rigid motion � applied to the other chain, B. For
each �, we measure the root-mean-square-distance between the matching inter-
face �� atoms of B and ��B�, and refer to it as RMSD*. Similar to the bound
docking case, this value is a good estimate for the distance to the native config-
uration since the benchmark provides the unbound structures superimposed onto
their corresponding crystallized bound structures. For each complex, we let � �

be the subset of top � � �� ��� configurations in �. We show the results of our
experiments in Table 5, demonstrating a number of favorable characteristics of
our coarse alignment algorithm:

1. Within the relatively small set of 2,000 top-scoring configurations, � �,
about �� of the complexes yield a configuration below ����̊ RMSD and
about �� yield a configuration below the �����̊ cut-off needed as input
for the hierarchical, progressive refinement protocol in 4�5.
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2. For most complexes, our algorithm generates multiple hits, implying that
a local refinement is not likely to get trapped in a local minimum and
instead find a near-native configuration.

3. Within the set of all generated configurations, �, about �� of the com-
plexes yield a configuration below ����̊, typically within the top 10,000
scores. All 49 complexes generate at least one configuration below ��� �̊
within the top 25,000 scores.

We remark that there are at least two ways to further improve the results: use a
different ranking mechanism that moves more low-RMSD configurations into the
top ranks, and reduce the size of � by clustering similar configurations 12.

4. Discussion

We conclude this paper with a brief comparison of our results with prior work
on bound and unbound docking. We classify the bound docking methods by how
they sample the search space of rigid motions. Methods that sample densely and
more or less uniformly predict more accurate rigid docking configurations, but at
a high computational cost. To adapt these methods to unbound docking, we may
run the algorithms at low resolution or select a small set of promising candidate
configurations for further refinement. As of today, neither approach has produced
a workable solution to the problem of unbound docking. Methods that sample the
space of rigid motions in a biased manner rely on some sort of shape analysis,
aimed at detecting locally complementary configurations. All prior work is based
on point features marking protrusions and cavities. Alignments are created by
matching the points, e.g. all pairs from one set with all pairs from another. The
running time is often improved using geometric hashing, as in 12.

Our algorithm belongs to the second class of methods but differs from prior
work in the nature of the features, which are point pairs with extra information
useful in estimating the scale level and in finding promising matches. Using this
information, we generate significantly sparser samples of the search space. Our
experiments provide evidence that despite the lower density, we always get candi-
dates that can be refined to near-native configurations. The algorithm is reasonably
fast and improvements are still possible.

Acknowledgement. The authors would like to thank Vicky Choi for the local
improvement software used in our experiments.
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