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We present a novel method for clustering short protein segments having strong sequence-
structure correlations, and demonstrate that these clusters contain useful structural 
information via two applications.  When applied to local tertiary structure prediction, we 
achieve ~60% accuracy with a novel dynamic programming algorithm.  When applied to 
secondary structure prediction based on Support Vector Machines, we obtain a ~2% gain 
in Q3 performance by incorporating cluster-derived data into training and classification.  
These encouraging results illustrate the great potential of using conserved local motifs to 
tackle protein structure predictions and possibly other important problems in biology. 

1 Introduction  

A major obstacle for protein tertiary structure prediction lies in the complexity of 
modeling protein 3D conformations due to the large degree of structural freedom 
and complicated interactions among residues.  Previous models of computation 
include a number of lattice as well as off-lattice models [1].  A recently emerging 
model treats a protein as a composition of small local structural motifs, a concept 
inspired by the conjecture that a newly created polypeptide forms local folds in 
parts before settling to its final fold [2].  This model manages to reduce the size 
of protein conformational space to a point where many search-based prediction 
strategies finally become feasible.  As a result, extraction of local motifs through 
classification of protein segments has always been a subject of intense study.   

We initially created RAPTOR [3], an innovative protein tertiary structure 
predictor based on optimal threading by linear programming.  This development 
has stimulated our interest in ab initio structural prediction and led us to 
investigate local fold information through clustering.  The current results to be 
presented include a novel method for clustering protein segments with strong 
sequence-structure correlations, and two applications of the resultant clusters to 
structural predictions for demonstrating their usefulness. 

2 Clustering of Short Protein Segments 

Methods for clustering short protein segments are generally divided into two 
groups: a) those with clustering based on structure alone [4, 5], and b) those with 



  

clustering based on both sequence and structure [6, 7].  Methods in the former 
omit sequence information, thus using the clusters they produce in ab initio 
structural prediction requires external guidance such as a global energy function.  
Since this study depends on sequence information to do prediction, we need a 
clustering method in the second group instead.  Existing methods in this group 
perform clustering in two stages.  Some of them first classify segments into 
clusters solely by sequence similarity and then sub-classify members in each 
cluster by structural similarity [6], while others did the reverse [7].  A problem 
associated with the two-stage approach is that segments with similar sequence 
patterns and folds might not as clearly reveal such a relationship when one looks 
at sequence and structure as separate entities.  Those segments are likely to get 
misclassified in either or both stages.  In this paper, we present a one-stage 
method, which will eliminate the deficiency by considering both sequence and 
structure together throughout the whole clustering process. 

2.1 Segment Distance 

For each residue i, its tertiary structure is represented by its phi (φi) and psi (ψi) 
angles in degrees, and its sequence information by frequency profiles comprising 
fij for amino acid j.  Given segments x and y of length L, their distance D(x, y) is:  
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Symbol ∆ denotes the absolute difference in the associated quantity.  Value θ 
restricts the largest dihedral angle difference permitted, and is L-dependent so as 
to allow higher leniency for longer segments.  Eq. (1) has two ideal properties.  
First, it encompasses differences in both sequence patterns and structures, hence 
allowing one-stage clustering.  Second, it is the Euclidean distance between two 
points so it satisfies the triangular inequality, a qualifying condition for use in 
clustering [4].  Note that the validity of Eq. (2) justifies the assumption that 
contributions from differences in structure and in sequence have equal weights. 
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2.2 Cluster Radius 

Besides a distance function, we need a threshold, called cluster radius, to tell if 
two segments are sufficiently close to be grouped together.  The choice of cluster 



 

radius is crucial:  being too small yields a handful of clusters capturing only the 
most conserved motifs, while being too large yields coarse clusters contaminated 
with irrelevant segments.  A systematic way exists to determine a suitable radius 
for a given segment length.  First, segments of that length are extracted from a 
large database of non-redundant proteins whose structures are known.  An ideal 
database is PDB Select 25 [8].  The set of all segments are then divided in half, 
and distances between segments in different halves are computed.  The resultant 
figures form a normal distribution with mean µ and standard deviation σ.  The 
radius is set to µ – 3σ, corresponding to a confidence interval of 99.73%.  This 
choice of radius is found to consistently deliver clusters of reasonable quality. 

2.3 Segment Preparation 

Eq. (1) requires sequence profiles for both segments showing the frequency for 
each amino acid at each position.  The profiles in this study are generated from 
multiple alignments in the HSSP database [9], and post-processed with the 
Voronoi Monte Carlo algorithm [10] to correct for unequal representations.  
Aside from profiles, secondary structure labels are also gathered, and for that the 
DSSP secondary structure labeling [11] is chosen due to its popularity.   

2.4 Clustering Algorithm 

The novel clustering algorithm is derived from the famous k-means algorithm 
[12], modified to allow a variable number of clusters [13].  It makes use of a 
special cluster called the residue cluster to hold segments failing to get classified 
due to their unique sequence patterns or shapes.  The residue cluster is initially 
empty.  Note that once a segment is placed into the residue cluster, it may no 
longer be used to start a new cluster.  The algorithm is outlined below. 

 
Protein Segment Clustering Algorithm 

Input:  cluster radius r, minimum size m, segment set S, maximum trial count t 

1. Create empty residue cluster Cres 

2. Repeat until no changes or t trials have been exhausted 

3. For each segment s ∈S do    

4. Find cluster closest to s, or set distance to ∞ if none exists yet 

5. If distance ≤ r then move s to new cluster and update old cluster 

6. Otherwise, if s ∉Cres then create new cluster with s as centroid 

7. Merge all nearby clusters (with distance < 0.5r) 

8. For each cluster smaller than m do 

9. Eliminate cluster and transfer all its segments to Cres 

10. Return the final set of clusters 



  

2.5 Experiments and Results 

This section presents results on clustering a set of 396 non-redundant protein 
peptides referred to as CB396 [14].  Segment length L was set to 8, a value small 
enough to allow clusters of reasonable size but large enough to capture local 
residue interactions.  In fact, it has been shown that segments of length 8 are very 
effective at preserving local sequence-dependent information [2].  The cluster 
radius was set to 1.2 based on the method described in Section 2.2.  Both the 
minimum cluster size and maximum trial count were set to 5.  Value of symbol θ 
in Eq. (1) was set to 120o, a reasonable limit for length-8 segments [6]. 

The output comprised 357 clusters, but the number of distinct structural 
motifs was much less since many clusters either had the same fold, or were 
overlapping images of the same motif.  For instance, 89 clusters were helices, 
showing the motif’s abundance and its variety in sequence patterns.  In summary, 
all motifs in the I-sites library [6] had been discovered together with some new 
ones.  Examples of new motifs are shown in Figure 1.  The motif in Figure 1(a) 
is characterized by a strong preference for hydrophobic residues at position 3 
followed by a strong preference against them at the next position, indicating a 
possible emergence from inside the protein to the surface.  The motif in Figure 
1(b) is characterized by a GLY at position 3, a conserved hydrophobic residue at 
position 4, and finally an ASN or ASP at position 5.  Descriptions for the motif 
in Figure 1(c) and the rest are omitted due to space limitation. 

3 Ab Initio Local Tertiary Structure Prediction 

The first application of motif clusters is aimed at the ab initio prediction of local 
tertiary structures – the prediction of tertiary structures of short protein segments 
based solely on the sequence information contained in the segments.  Success in 
resolving local structure prediction will be a major milestone in fold recognition, 
homology detection, and understanding of the protein folding process.  

3.1 Assigning Clusters to Protein Segments 

Scoring function Kc(s), shown in Eq. (3), computes the likelihood of a length-L 
segment s belonging to cluster c based on sequence composition.  Symbols sij 
and cij denote the frequency of amino acid j at position i on s and c’s centroid 
respectively.  Symbol bj denotes the background frequency for amino acid j.   
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Figure 1. Structural information and log-odds profiles for three novel motifs not listed in the I-sites 
database.  Dot (·) represents background frequency. 

 
A cluster assignment, or assignment, refers to an instance when a cluster is 

assigned to a segment based on a score computed via Eq. (3).  The assignment is 
said to “cover” the segment and its residues.  Each assignment has three basic 
attributes:  the cluster being assigned, the segment being covered, and the score 
associated with the pair.  Finally, a cluster assignment rank, denoted by R, 
means that each segment is assigned the R clusters yielding the R highest scores.  
The highest scoring assignment is at rank 1, the second highest at rank 2, etc. 

3.2 Evaluating Local Structure Prediction  

The evaluation scheme for local tertiary structure prediction was invented by 
Lesk [15].  It takes two parameters, a window size w and a RMSD threshold t.  
Given a true structure and its prediction, the scheme computes the percentage of 
residues found in length-w segments whose predicted structures are within t from 
the true structure after superposition.  In this study, we use the same settings as 
Bystroff and Baker [6] to facilitate comparison (i.e. w = 8, t = 1.4 Å).   

3.3 Eliminating Noise Clusters 

In a large cluster set, some weak clusters capturing rare motifs possess similar 
sequence profiles as do the significant clusters capturing more common motifs.  
Those weak clusters tend to compete with the significant clusters for sequence 
similarity with target segments during cluster assignment, degrading prediction 
accuracy.  Since they create “noise” that disturbs prediction, those weak clusters 
are called noise clusters and should be eliminated. 



  

Clusters produced by the algorithm described in Section 2.4 are of minimum 
size m.  If m is set too small, many noise clusters result.  If it is set too large, 
significant clusters are lost.  To determine m maximizing the predictive power 
for a set of clusters, the following empirical method is used: 

 
Noise Cluster Elimination 

Input:  cluster set C, protein set P, minimum size bound [ml, mh] 

1. For each m in range [ml, mh] 

2. Remove clusters of size less than m from C to get C’ 

3. Get average prediction accuracy for P using C’ as follows: 

4. For each protein p ∈P do 

5. Assign highest scoring cluster to each overlapping segment in p 

6. Sort all assignments by score 

7. Assign structures to p from highest scoring assignments 

8. Evaluate prediction as described in Section 3.2 

9. Return m and C’ resulting in highest average prediction accuracy 

 
Figure 2 shows the fluctuation in prediction accuracy as m increased from 5 

to 25 inclusive.  While the accuracy remained rather constant in the middle 
stretch, it rose and fell sharply at both ends.  Prediction was compromised by the 
presence of noise clusters for small m (< 8) and the absence of significant 
clusters for large m (> 20).  The optimal minimum cluster size was m = 16, 
yielding a prediction accuracy of 54.66%.  
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Figure 2.  Fluctuation in prediction accuracy as minimum cluster size m increases from 5 to 25. 

3.4 Improving Cluster Likelihood Function 

Eq. (3) has been extended with the addition of a new term, as shown below: 
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The new term basec represents the basal cutoff score specific to cluster c.  The 
old version (i.e. Eq. (3)) assumes a cutoff of 0 for all clusters, an intuitive choice 
for log-odds but nonetheless a crude assumption.  The derivation procedure of 
cluster-specific cutoffs is based on a simple observation.  Clusters capturing rare 
motifs are likely to introduce false positive (F+) assignments, thus requiring a 
higher cutoff to avoid high a F+ rate.  On the other hand, clusters capturing 
common motifs are likely to introduce false negative (F–) assignments and a 
lower cutoff is needed to suppress the F– rate.  The actual procedure for deriving 
the cutoffs is relatively unimportant and hence omitted due to space limitation. 

3.5 Predicting Local Structure using Dynamic Programming (DP) 

The algorithm to be presented is inspired by two observations.  First, the cluster 
assignment most appropriately capturing the shape of a segment might not be the 
optimal (i.e. highest-scoring) one but a sub-optimal one.  Second, if overlapping 
assignments have serious structural conflicts, then they should not be adopted 
together.  We propose here an objective function for measuring the quality of a 
set of assignments when used together to form a prediction, and a DP approach 
for maximizing it.  The objective function for a target protein p of length n is: 
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Function F(X) returns the objective score for a set of cluster assignments X.  
Symbol q is a non-negative constant for balancing the two parts representing the 
total score and conflict induced by X.  It is set to 70 in this study, a value found 
empirically to yield one of the best predictions.  Function score(X, i) is: 

 




=
iX

iX
iX

 residue  covers in  assignment no if 0

or , residue covering in  assignment scoringhighest  of score
  ) ,score(   

And function conflict(X, i) is: 

 






 ∆+∆

=

iX

i

Xψφ
iX

 residue  covers in  assignment 1most at  if 0

or , residue covering positionsat      

 in  sassignment of pairs allbetween    

  ) ,conflict(  

Symbols ϕ∆  and ψ∆  denote the mean absolute difference in phi and psi angles 
respectively.  Let L be the segment length and R be the assignment rank.  To 
setup for the DP algorithm, the R highest-scoring assignments are made to each 
overlapping length-L segment along p.  Let air denote the assignment at rank r 
starting at position i, where 1 ≤ r ≤ R and 0 ≤ i ≤ n–L.  Define Ai = {air∀ r} and 



  

A = {air}.  The algorithm is to find an assignment set X*⊆ A such that X* covers 
all residues in p and is optimal (i.e. maximizing objective function F).  

Each assignment set is built progressively starting from the first residue by 
appending to the end one adjoining assignment at a time.  Note that simply 
extending the current optimal set by adding to its tail the best available adjoining 
assignment does not guarantee optimality for the resultant set.  The assignment 
just added may overlap with existing assignments in the set, introducing new 
conflicts that must be fixed by replacing those assignments, which in turn may 
cause more new conflicts with their prior overlapping assignments and 
necessitate further replacements.  To avoid such propagation of conflicts, a more 
involved DP algorithm is needed. 

When an assignment α ∈  Ai is appended to the end of assignment set X, it 
would come in contact with one or more trailing assignments in X.  The 
arrangement of these trailing assignments and their ranks collectively form the 
tail configuration for X with respect to α ∈  Ai, denoted by taili(X).  We define 
taili(X) to be an empty tail configuration if X is too short to reach any assignment 
in Ai.  For formulation purposes, we allow tailj(X) for j > n–L, in which case it is 
treated as if Aj actually existed.   

For each position i starting from zero, the algorithm computes Vi, the 
collection of all optimal assignment sets X each having a unique non-empty 
taili+1(X).  The following recurrence ensures the optimality for each V(i+1)t’, and 
the uniqueness and non-emptiness of the associated tail configuration t’, so the 
inductive hypothesis holds for position i+1.  Finally, we assign dihedral angles to 
residues in p by back-tracking the creation of X*. 

 
DP Recurrence for Local Tertiary Structure Prediction 

Initial condition: 

V0 = {{α}∀ α ∈A0} 

Inductive hypothesis for position i, 0 ≤ i ≤ n – L: 

Vi = {All optimal assignment sets w each having a unique non-empty taili+1(w)} 

Recurrence: 

Let Vi’ = {w U{α}∀ w ∈Vi and α ∈Ai+1} 

For each unique non-empty tail configuration t’  

V(i+1)t’ = X ∈{w ∈Vi U Vi’ | taili+2(w) = t’} s.t. F(X) is maximized 

Vi+1 = {V(i+1)t’} 

Final solution: 

X* = X ∈{w ∈Vn–L | w has an assignment in An–L} s.t. F(X) is maximized 

 
Note that |Vi| is bounded by (R+1)L – 1, the number of all possible unique 

non-empty tail configurations.  For each position i, the algorithm calculates the 



 

objective value for |Vi|*R new assignment sets, where each calculation is O(L3) if 
done carefully.  Hence, the total runtime is O(n |Vi| R L3) = O(n L3 (R+1)L+1) for 
all n positions.  Fortunately, typical values for R and L are small enough to make 
the runtime acceptable (e.g. R = 3 and L = 8 in this study). 

3.6 Experiments and Results 

A jackknife test was performed on CB396 [14], a set of 396 peptides selected 
through a very stringent procedure to ensure non-redundancy between members.  
The entire test consisted of 10 iterations, each of which involved splitting CB396 
into two disjoint subsets in 80/20 ratio by residue count.  The larger subset was 
then used for training and the smaller one for testing. 

Note that testing sets containing more helices tend to yield higher accuracies 
than those containing more coils.  Consequently, for results to be consistent, all 
testing sets should contain similar proportions of each secondary structure (SS).  
To guarantee such condition, the background proportion of each SS was first 
estimated from the whole CB396.  Each repetition of the jackknife test then 
produced 50 pairs of training and testing sets, and used the pair whose testing set 
exhibited SS proportions most closely resembling the background ones. 

Results for rank R = 3 are listed in Table 1.  Overall, an average of 58.21% 
of all residues was found in a length-8 segment within 1.4 Å of the true structure, 
measured in RMSD.  This is significant considering that the prediction relied 
solely on sequence information, without taking into account global forces such 
as disulfide bridges, hydrophobic effects, inter-group charges, and so on.  The 
result is also a great improvement over that published by Bystroff and Baker [6], 
which was 50%.  A breakdown in overall prediction accuracy by SS states 
reveals the real strengths and weaknesses of prediction using clusters.  Helices 
were by far the most accurately predicted because they were the most conserved 
and abundant local motifs.  Strands, albeit well conserved, were a lot harder to 
predict as their formation involved long-range residue interactions, something 
not captured by local motif clusters.  Coils were the most difficult to predict 
since most of them lacked virtually any kind of detectable conserved patterns. 

 
Table 1.  Prediction accuracy of the DP algorithm obtained from a ten-iteration jackknife test on 
CB396 and evaluated using the scheme described in Section 3.2. 

 
Helix 
(%) 

Sheet 
(%) 

Coil 
(%) 

Total 
(%) 

1 86.22 44.91 40.58 58.51 
2 84.54 39.61 40.52 56.19 
3 84.27 44.71 41.07 58.03 
4 84.65 43.22 40.19 57.45 
5 86.12 43.63 42.87 59.15  

 
Helix 
(%) 

Sheet 
(%) 

Coil 
(%) 

Total 
(%) 

6 88.11 42.92 43.05 59.69 
7 84.83 44.35 40.99 57.76 
8 84.94 43.98 42.90 58.83 
9 86.09 43.22 42.78 58.86 

10 83.68 45.30 40.61 57.62 
Mean 85.35 43.59 41.56 58.21  



  

4 Secondary Structure Prediction 

The second application of clusters deals with enhancing secondary structure (SS) 
prediction.  The target predictor [16] is the one based on Support Vector 
Machines (SVM) [17], so selected because it is one of the best available.  As an 
overview, the procedure involves building a Secondary Structure Confidence 
Profile (SSCP) and using it as additional data for training and classification. 

4.1 Secondary Structure Confidence Profile (SSCP) 

The SSCP of a protein shows the confidence of each residue being in each of the 
three SS states, namely helix (H), strand (E), and coil (C).  Given assignment 
rank R and target protein p, the method for creating SSCP first makes the R 
highest-scoring assignments to each length-L overlapping segment in p.  Then, 
for each residue i and SS label s ∈{H, E, C}, it computes scoreis by summing the 
scores of all assignments covering i with label s at the covering position.  The 
value scoreis is then normalized to obtain sscis, the SS confidence for i belonging 
to state s.  That is, sscis = scoreis / (scoreiH + scoreiE + scoreiC).  The set of all 
sscis constitutes the SSCP for protein p. 

4.2 Training of SVM Binary Classifiers 

Fix a window half-width h such that each residue is represented by the sequence 
profile spanning (2h + 1) columns, with the said residue in the middle.  Each 
column is coded using 21 entries, where the extra entry is set when the window 
is extended beyond the ends of a protein.  Together, each residue is coded by a 
total of (2h + 1) * 21 entries.  When SSCP is incorporated into training, each 
column is coded with four additional entries.  Each of the first three holds the 
SSCP confidence value for a different SS state, and the last is again set for the 
case when the window is extended beyond the ends of a protein.  Hence, each 
residue is now coded by a total of (2h + 1) * 25 entries. 

4.3 SVM Predictor Construction 

Han and Sun [16] have demonstrated that different arrangements of SVM binary 
classifiers contribute to varying performance for the resultant SS predictor.   One 
of the most effective configurations found in their study is called SVM MAX, 
which comprises three SVM binary classifiers, namely H/~H, E/~E, and C/~C.  
Each target residue is fed in parallel to all three classifiers, and assigned the SS 
label corresponding to the one giving the largest value.  For optimal prediction, 
the half-width h for the three classifiers is set to 5, 4, and 3 respectively.     



 

4.4 Experiments and Results 

Three metrics were used to measure the quality of SS prediction.  They were the 
Q3, the Matthew’s Correlation Coefficients (MCC) [18], and the Segment 
Overlap measure (SOV) [19].  The jackknife test and the target data set were as 
described in Section 3.6, except that each training set was also used to generate 
SSCP and train SVM in addition to creating motif clusters.  Assignment rank R 
was set to 6.  Parameters for SVM binary classifiers were 1.5 for error trade-off 
and 0.1 for γ in the radial basis function used as the kernel [16]. 

 
Table 2.  Prediction accuracy of SVM MAX trained without SSCP (top values) and trained with 
SSCP (bottom values) in a ten-iteration jackknife test on CB396.  A positive delta on the last row 
indicates an average improvement with SSCP (delta = mean bottom value – mean top value). 

 QH (%) QE (%) QC (%) Q3 (%) CH CE CC SOV (%) 

1 
74.30 
76.34 

55.44 
60.90 

78.49 
78.60 

72.15 
74.10 

0.63 
0.68 

0.51 
0.55 

0.53 
0.55 

68.57 
70.63 

2 
79.03 
78.85 

57.33 
63.39 

79.07 
79.86 

74.44 
75.97 

0.66 
0.69 

0.56 
0.59 

0.57 
0.58 

69.77 
71.58 

3 
80.36 
81.57 

50.26 
55.77 

76.87 
78.58 

71.94 
74.35 

0.64 
0.69 

0.51 
0.56 

0.53 
0.55 

69.50 
70.15 

4 
76.37 
76.92 

52.78 
58.07 

77.18 
77.99 

71.61 
73.29 

0.62 
0.65 

0.51 
0.54 

0.53 
0.54 

68.37 
70.52 

5 
77.21 
79.13 

52.96 
58.54 

78.32 
78.10 

72.36 
74.23 

0.65 
0.68 

0.51 
0.55 

0.54 
0.55 

70.23 
71.43 

6 
79.72 
81.89 

56.68 
61.96 

77.05 
77.79 

73.57 
75.84 

0.65 
0.71 

0.55 
0.59 

0.55 
0.57 

71.58 
73.01 

7 
78.23 
79.25 

52.07 
55.06 

77.62 
78.65 

72.09 
73.56 

0.64 
0.67 

0.51 
0.53 

0.53 
0.55 

70.11 
71.61 

8 
76.23 
77.50 

51.23 
56.07 

76.56 
77.80 

70.81 
72.86 

0.62 
0.66 

0.50 
0.53 

0.51 
0.53 

66.54 
68.57 

9 
76.25 
77.82 

56.36 
62.51 

79.52 
79.33 

73.13 
75.01 

0.64 
0.68 

0.55 
0.59 

0.55 
0.56 

70.78 
72.92 

10 
74.93 
77.24 

50.48 
56.39 

77.72 
77.72 

70.70 
72.86 

0.61 
0.65 

0.49 
0.53 

0.52 
0.54 

66.34 
67.97 

Mean 
77.26 
78.65 

53.56 
58.87 

77.84 
78.44 

72.28 
74.21 

0.64 
0.68 

0.52 
0.56 

0.53 
0.55 

69.18 
70.84 

Delta 1.39 5.31 0.60 1.93 0.04 0.04 0.02 1.66 

 
The results are listed in Table 2.  By combining SSCP with sequence profile 

for training and classification, SVM MAX predictor showed improvements in all 
Q3, MCC and SOV measures.  Specifically, SSCP contributed to an average Q3 
improvement of 1.93% by boosting the accuracy for helixes and strands, the 
latter in particular.  In other words, SSCP helped the predictor be more certain 
when determining if a residue was part of a helix or strand.  Moreover, the use of 
SSCP also resulted in visible improvements in all aspects of MCC and SOV.  
Unfortunately, improvements to QC and CC were only minimal.  After all, motif 
clusters could only identify regions with strong sequence-structure correlations, a 



  

condition excluding most coils.  Consequently, assignments made to segments in 
coil regions were mostly incorrect, producing unreliable SS confidence values. 

5 Conclusion and Future Work 

Motivated by the substantial improvement to secondary structure prediction [20], 
a repeat of this study using sequence profiles generated by PSI-BLAST [21] is 
currently underway.  In the longer run, we are going to investigate another kind 
of sequence-structure motifs for capturing long-range inter-residue interactions.  
Our current sequence-structure motifs can only capture local interactions, so they 
are not very helpful for beta sheet prediction.  Nevertheless, the partition of short 
protein segments into clusters of local sequence-structure motifs does have 
profound applications.  These motif clusters achieve discretization of protein 
conformational space and provide an effective mapping between sequence and 
structure, all contributing to the success of their employment to both secondary 
and local tertiary structure prediction.  The promising results obtained could 
mark the beginning of a wide range of potential applications for motif clusters, 
which include fold recognition, domain detection, and functional annotation.   
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