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Comprehensive analysis of expansive pharmacogenomic datasets is a daunting challenge.  
A thorough exploration of experimental results requires both statistical and annotative 
information.  Therefore, appropriate analysis tools must bring a readily-accessible, 
flexible combination of statistics and biological annotation to the user’s desktop.  We 
present the Exploratory Visual Analysis (EVA) software and database as such a tool and 
demonstrate its utility in replicating the findings of an earlier pharmacogenomic study as 
well as elucidating novel biologically plausible hypotheses.  EVA brings all of the often 
disparate pieces of analysis together in an infinitely flexible visual display that is 
amenable to any type of statistical result and biological question.  Here, we describe the 
motivations for developing EVA, detail the database and custom graphical user interface 
(GUI), provide an example of its application to a publicly available pharmacogenomic 
dataset, and discuss the broad utility of the EVA tool for the pharmacogenomics 
community. 

1. Introduction  

1.1. Visualizing results 

Recent years have seen an explosion in the sheer volume of data generated by 
modern experimental methods.  Analysis of pharmacological results can be a 
maze of complex spreadsheets and arbitrary statistical significance thresholds.  
Visualization is a proven solution to this challenge of scale.  In his work on 
visualizing quantitative information, Tufte states that “the most effective way to 
describe, explore, and summarize a set of numbers—even a very large set—is to 
look at pictures of those numbers.  Furthermore, of all methods for analyzing 
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and communicating statistical information, well-designed data graphics are 
usually the simplest and at the same time the most powerful” [1].  In what would 
otherwise be a sea of numbers, analysis tools must organize and display results 
so that readily distinguishable patterns emerge.     

1.2. Other analysis tools currently available 

Other analysis tools have been developed in recent years, such as DAVID [2], 
FatiGO [3], GoMiner [4], GoSurfer [5], GOTree Machine [6], and Onto-
Express [7].  Each of these tools fills a specific niche in the community of 
genomic analysis methods.  However, there are significant limitations that must 
be addressed.   

While the tree-like representations common to many of the aforementioned 
tools are suited to the hierarchical structure of the Gene Ontology, such a 
display cannot present the volume of simultaneous information necessary to see 
otherwise hidden patterns emerge.  Many current applications are designed for a 
single type of input (e.g. only GenBank Accession IDs), rather than 
compatibility across multiple platforms.  The sluggishness of many of the 
available web-based applications can make exploratory analysis frustratingly 
slow.  Many of the current applications take raw data as input, which leaves the 
user dependent on the statistical tests built into the package, rather than having 
the flexibility to perform any sort of analysis.  This is fundamentally different 
from a results-based tool that gives the user freedom to implement any type of 
analysis.  Another major concern with exploratory tools is the lack of 
mechanisms to replicate findings.  These gaps in the functionality of other tools 
currently available leave a critical void in genomic analysis. 

1.3. The motivation for developing EVA 

The Exploratory Visual Analysis software (EVA) was developed to address the 
limitations of other approaches to analysis of genomic results.  Combining 
flexibility, speed, and visualization of both statistical and annotative information 
into a single package, EVA fulfills a crucial role in comprehensive 
pharmacogenomic analysis. 

From its inception, EVA was intended to be flexible across a wide range of 
research goals—allowing a truly exploratory analysis.  The software can take as 
input any kind of statistical result(s) for any number of experiments.  The user is 
thus free to use any statistic of choice or to define a custom statistic, rather than 
be limited by those implemented in the software.  EVA’s graphical results 
display can be organized into nested groupings for any combination of six 
biological categories:  Gene Ontology (GO) [8], Biopath [9], Domain [10], Map 
Location [11], Chromosome [11], and Phenotype [12].  The statistical 



 

significance of particular subsets of categories or particular genes within a 
category can be assessed through permutation testing.  To complement the 
statistical analysis, EVA links to multiple annotation sources via Locus Link 
[11].  This aspect affords immediate evaluation of the pharmacological 
relevancy of candidate genes or groups of genes.  To ensure that the user can 
replicate findings, EVA incorporates a printable command log feature.      

The speed of the EVA tool enhances its interactive flexibility.  Because all 
of the data and links are loaded into memory upon opening the software, the 
user can switch seamlessly between annotative groupings, statistics, significance 
levels, and display modes.  The permutation testing and reporting features 
provide an immediate complement to visual exploration.  

Visualization is the aspect that binds the various components of EVA into a 
single coherent exploratory tool.  Color choices, sliding significance scales, 
category display thresholds, and other display parameters are modifiable in real-
time according to user preferences and/or analysis goals.  EVA can be adjusted 
to display highly significant genes, marginally significant genes, or both, with 
cut-offs decided by the user.  Most importantly, the graphical nature of EVA 
facilitates interpretation of multitudes of information simultaneously.  This is 
because the human eye is acutely trained to identify pictorial patterns, while 
digesting tables of lifeless numbers is a taxing exercise.  EVA translates 
numbers into pictures and vice-versa. Thus, graphical discoveries can be 
verified statistically, and statistical significance can be verified graphically.  
Famous examples such as Anscombe’s Quartet [13] validate the notion that both 
types of information are essential for confident analysis.  The ability of graphics 
to rationally condense vast amounts of information is essential for evaluating 
biological systems in which the concerted action of numerous contributing 
factors is the final determinant of phenotype.         

Taken together, the diverse abilities of EVA allow the kind of 
comprehensive analysis necessary to answer complex pharmacological 
questions.  Because pharmacological phenotypes are the product of myriad 
interacting factors, the annotative groupings and immediate expert-knowledge 
links provided by EVA are essential to understanding biological questions of a 
systemic nature [14].  The synergistic pieces of EVA coalesce into an analysis 
tool wherein the visual, numerical, and annotative components are mutually 
complementary.  EVA takes analysis beyond spreadsheets of flat statistical 
results and into the realm of integrated analysis.    

1.4. Application of EVA to a pharmacogenomic dataset 

To demonstrate the power of EVA, we apply the software to the leukemia drug 
response dataset published by Cheok et. al [15].  The study measured the 



  

expression of 9,600 genes in leukemia cells using oligonucleotide microarrays 
before and after in vivo treatment with methotrexate and mercaptopurine given 
alone or in combination.  The gene expression changes induced by these two 
widely-used antimetabolites are important for understanding the 
pharmacological action—including side-effects—of common chemotherapy 
agents, as well as for identifying potential treatment targets.  The original 
authors’ conclusions were based upon a number of statistical approaches. 

 Using only the results of three simple statistical tests as input, we 
demonstrate the ability of EVA to not only replicate but also extend the findings 
of the original authors, and to draw new biologically plausible conclusions.  By 
grounding the entire exploratory analysis in biological relevancy, EVA renders 
moot the usual analytical step of constructing a pharmacologically relevant 
explanation from a collection of statistical significance values after the fact.  
Additionally, because EVA displays information graphically, we can see 
unifying patterns in the results, rather than a list of disjointed significance 
levels.  This lends greater confidence to our conclusions, as correlated patterns 
are more robust than thousands of measurements taken individually [16].  The 
exploratory capabilities of EVA allow pharmacological discovery with or 
without a priori hypotheses—giving the user increased power to elucidate novel 
mechanisms or target pathways.  Details of our analysis are given in Section 2.3, 
and the results are described in Section 3.   

2. Methods 

2.1. Details of the EVA database 
The EVA database was designed with versatility, speed, and user-friendliness in 
mind.  The user downloads the client, which provides a portal to the EVA web 
server via the custom GUI.  The web server accesses the EVA database (stored 
on an Oracle server).  This architecture provides ease of security, 
distributability, and expandability.  Changes made by the database administrator 
pass seamlessly to the user through the EVA web service.  Thus, once the user 
has downloaded the client, updates or expansions of the EVA modules are 
transparent from the user’s perspective.  For speed considerations, everything is 
stored in memory upon loading a particular experiment so that performance is 
not limited by demand on the web server.  This aspect negates the query lag 
time typical of other analysis packages.     

The EVA database schema is available upon request.  Briefly, the gene 
identifier chosen by the user (Affymetrix ID, GenBank ID, or user/custom-
defined gene number) links particular genes to the various EVA modules.  At 
present, these modules are Locus Link, Wormbase (C. Elegans), and Linkage.   



 

2.2. Details of the EVA GUI  
The GUI is the portal through which the user manipulates the components of the 
EVA package (see Figure 1).  Presently, the interface is written in Visual Basic, 
with a platform-independent Java version in production.  A brief overview of 
features is provided here, and a comprehensive, illustrated help menu is 
included with the software.  Upon opening the software, the user supplies a 
username and secure password.  Login grants the user access to interfaces for 
various administrative tasks, including creating, updating, deleting, or loading 
experiments and results.  Defining a new experiment involves deciding upon a 
descriptive name, choosing the type of gene identifier (Affymetrix, Locus Link, 
Wormbase, or Linkage), selecting the statistical tests used, and uploading the 
text file of results.  Once a new experiment has been defined or an existing 
experiment selected, all of the results and links for that experiment are loaded 
for viewing on the user’s desktop. 

EVA displays genes organized according to the selected biological category 
(Chromosome, Biopath, Domain, Map Location, GO, or Phenotype).  Each time 
a relevant parameter is changed, EVA dynamically resizes all boxes displayed to 
provide the most efficient use of screen space possible.  Additionally, the 
categories can be re-organized by a second biological group, which will re-
partition the results into new group boxes based upon the intersection of the two 
categories.  The differential color display is a function of the significance 
threshold selected for a particular statistical test.  The threshold range is 
modified via a slider.  In order to customize the display, the user can alter both 
the color palette and number of colors into which the chosen range is divided.     

The volume of information displayed on the screen can be modified in a 
number of ways.  The display threshold sets the minimum number of results a 
group box must contain for it to appear in the display panel.  Only groups 
exceeding this threshold are shown.  Additionally, the ‘Filter’ tool will restrict 
the categories displayed to those containing the search text.   

The ‘Find’ tool will search the currently selected biological group for the 
text in question.  Once found, the title bar of that results box will be highlighted 
in yellow, and the display panel will scroll to that box.  Clicking ‘Find Next’ 
will zoom to subsequent boxes containing the search text.   

Hovering over any individual gene square with the mouse brings up a text 
box containing summary annotation for that gene.  Right-clicking accesses a 
wealth of biological annotation for the selected gene through Locus Link.  

EVA includes command log and reporting features.  The log can be cleared 
or saved to file at any time.  The reporting feature generates reports listing all 
results from a single group, from all groups currently on display, or from all 



  

groups in the current biological category.  The ‘Preferences’ menu includes tabs 
for ‘Log,’ ‘Reports,’ and ‘Web Service’ options.  The log options govern which 
types of information are stored in the log.  The reports options determine the 
organization of the printable analysis reports and the type of file to which they 
are saved.  The web service tab stores the EVA web service URL.  Taken 
together, these features allow findings and/or the accompanying EVA 
parameters to be written to external files for further study.  They also afford a 
mechanism for replicating findings, which is a vital quality in an exploratory 
analysis tool.      

EVA uses a permutation testing strategy to assess the significance of the 
statistical results for a biological group.  This feature complements visual 
inspection and provides statistical validation for the relative enrichment of 
particular groups.  A permutation testing significance range can be selected by 
one of three methods:  clicking on a particular gene in a particular group, 
selecting a range of significance colors for a particular group, or running a batch 
permutation on a selected significance range for all visible groups.  The 
procedure is as follows:       
 
1. Count the actual number of results within the selected significance range 

for a particular category. 
2. Determine the total number of genes in that category. 
3. Fill a box of the same size as that category with a randomly selected set of 

results. 
4. Increment a total counter every time the number of randomly assigned 

results within the selected significance range is greater than or equal to the 
actual count from Step 1 above. 

5. Perform 1,000 iterations of Steps 3 and 4. 
6. Calculate the final p-value by dividing the total counter from Step 4 by 

1,000. 
 

This p-value represents the probability of obtaining the observed number of 
genes within the selected significance range in a given category by chance 
alone.  In the current implementation, it is left to the user to account for multiple 
testing and the fact that certain annotation categories (e.g. GO) may have the 
same genes appear within several groups.  The permutation testing result(s) can 
be saved in the log and written to an external file for resorting.  

2.3. Details of the application to a pharmacogenomic dataset 

The pharmacogenomic dataset to which we applied EVA is described fully 
in [15].  Affymetrix oligonucleotide arrays measured the expression levels of 



 

9,600 human genes in acute lymphoblastic leukemia cells isolated from patients 
both before and after treatment with common chemotherapy agents.  Patients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Details of the EVA graphical user interface.  Each colored square represents a single gene.  
Visible features include:  (A) – Biological group categories, (B) – Group boxes, (C) – Significance 
threshold color sliders, (D) – Number of color intervals displayed, (E) – Display threshold, (F) – 
Log, (G) – Significance range selector for permutation testing,  (H) – Permutation testing results 
(also shown in log), (I) – Analysis types, (J) – Description of current experiment.  In addition to 
options under the File, Display, View, and Help menus, right-clicking accesses a number of features 
not illustrated here.

were treated with either methotrexate (n = 22), mercaptopurine (n = 12), or a 
combination of both drugs (n = 10).  This dataset provides the rare opportunity 
to measure the in vivo gene expression response of human patients to treatment 
with pharmacological agents. 

The original authors’ analysis involved a battery of statistical methods, 
including principal components analysis, hierarchical clustering, linear 
discriminant analysis , analysis of variance, support vector machines, and 
Fisher’s exact test (for enrichment of selected GO groups).  This approach, 



  

while grounded in statistical rigor, leaves the researcher to bridge the usual gap 
between statistical results and biological interpretation.  This is exactly the role 
EVA was designed to fulfill.   

We chose to demonstrate the power of EVA by feeding it the results of 
three basic statistical tests on the aforementioned dataset:  the Student’s t-test, 
the Wilcoxon Rank-Sum test, and the modified t-test implemented in the 
Significance Analysis of Microarrays (SAM) procedure.  It would also have 
been possible to give EVA results from more complex statistical tests, such as 
those used in the original authors’ analysis.  Instead, we wanted to demonstrate 
the ability of EVA to translate widely-understood statistical results—of the type 
that do not require a thorough mastery of complex statistics—into plausible 
biological conclusions.  For each of the three statistical tests, EVA was given 
the list of resultant p-values for all genes on the array.  The p-values indicate the 
probability of obtaining the observed value of the test statistic for the given gene 
by chance alone.  The statistical analyses were programmed in R version 1.8.1 
[17].  The modified SAM t-test was implemented using the “siggenes” package, 
freely available from Bioconductor (www.bioconductor.org).  Figure 2 depicts 
our statistical analyses and the treatment groups compared using EVA, which 
were:  1. methotrexate alone versus methotrexate plus mercaptopurine, 2. 
mercaptopurine alone versus methotrexate plus mercaptopurine, and 3. 
methotrexate alone versus mercaptopurine alone.         

 
 
 
 
 
 
 
   

  

3. Results 

3.1. Replication of original au
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Figure 3.  Visual inspection of statistical results for the treatment comparisons (A) – mercaptopurine 
versus combination and (B) – methotrexate versus combination.  For each comparison, colored 
squares indicate p-values at or below the 0.05 (red) or 0.10 (orange) significance levels.  The relative 
paucity of colored squares in (A) contrasted with the abundance in (B) indicates that there are fewer 
differentially expressed genes when statistically comparing mercaptopurine chemotherapy to 
combination chemotherapy. 

The global patterns of gene expression were readily discernible between the 
three treatment groups, and the methotrexate plus mercaptopurine combination 
treatment exhibited an expression profile distinct from that of either agent given 
alone.  

Demonstrating EVA’s flexibility to incorporate any type of result into the 
analysis, we also took the list of genes highlighted by the original authors as 
input for the methotrexate alone versus combination chemotherapy comparison.  
Because EVA organized these genes into their annotation categories, we could 
instantly see where these individual genes fit into the broader biological picture.  



  

EVA’s reporting feature and links to the public annotation databases afforded 
one-stop evaluation of the biological relevancy of the genes in our list.       

3.2. Novel findings using EVA 

Drawing on exploratory visual, statistical, and annotative abilities of EVA 
enabled us to draw new biologically credible conclusions.  Representative 
findings reached by starting at each of these three exploratory avenues are 
outlined below. 

Upon visual inspection in EVA, it was immediately apparent that the gene 
expression pattern of the methotrexate alone treatment differs markedly from the 
combination chemotherapy, whereas the mercaptopurine alone treatment shows 
a gene expression pattern that was relatively closer to the combination 
chemotherapy (Figure 3).  Corroborating visual evidence was provided by 
comparing the two treatments alone, where the global gene expression pattern 
resembled that of the methotrexate versus combination chemotherapy 
comparison.  The next step called upon EVA’s ability to back this conclusion 
statistically, and we found no genes significant at the 0.05 level and only a 
sparse few significant at 0.10 by any of the three statistical tests for the 
mercaptopurine versus combination comparison.  This suggests that changes in 
gene expression induced by the combination chemotherapy are dominated by 
the action of mercaptopurine. 

Starting with EVA’s statistical capabilities, permutation testing for 
enrichment of biological categories with respect to the differences in gene 
expression patterns comparing methotrexate versus the combination treatment or 
mercaptopurine alone revealed a number of relevant biological findings.  For 
example, there was a marked difference in expression of genes involved in 
cytoskeletal function.  Statistically significant categories included the GO 
groups “epidermal differentiation” and “structural molecule activity,” the 
Domain groups “kinesin like protein,” “spectrin,” “tubulin,” and “gamma 
tubulin,” and the Map Location 12q13, on which many of the genes in these 
categories are found.  Keratins, a major component of hair follicles, are found 
throughout these annotative groups, which makes pharmacological sense 
because hair loss is one of the characteristic symptoms of methotrexate 
chemotherapy, though not mercaptopurine. 

Incorporating expert-knowledge into the analysis, EVA’s straightforward 
links to annotative information shed light on more interesting connections.  For 
instance, because chemotherapy drugs affect the cell cycle, it is logical to look 
into that Biopath group.  Sure enough, permutation testing showed the “cell 
cycle” group to be significantly enriched with respect to the number of genes 
differentially expressed at the 0.05 level of significance (Figure 4).  Many of 



 

these genes also appear in the Domain groups “DNA topoisomerase,” “G-
protein beta subunit,” and “NERF transcription factor,” as well as the GO 
groups “DNA binding,” “DNA topological change,” “GTP binding,” “GTPase 
activator activity,” “kinase activity,” and “nucleotide excision repair,” all of 
which are significant or near-significant by permutation testing.  Importantly, 
these relevant biological groups near the significance borderline would have 
been missed by a purely statistical analysis. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Permutation testing for significant enrichment of the Biopath group ‘Cell cycle’.  The 
Find tool was used to highlight the ‘Cell cycle’ group box.  The permutation testing results are 
shown in the permutation testing results display and the log (see Figure 2).  The probability of 
observing the given number of differentially expressed genes significant at the 0.05 level by chance 
alone is less than 0.001 for this group box. 

4. Discussion 

4.1. Utility of EVA for pharmacogenomics 

As demonstrated by our results, EVA is adept at integrating multiple types of 
information to build cohesive biological conclusions supported by a variety of 
sources.  This is vital in a field such as pharmacogenomics, where the cost of 
following false leads is prohibitively high.  With EVA, the exploration of results 
can start down any of three avenues—visual, statistical, or annotative—to 
reflect the expertise or prior notions of the user.  The various aspects of EVA 
are mutually complementary, and the flexibility, speed, and user-friendliness of 
the EVA interface allow users to move effortlessly between these three avenues. 

EVA bridges the gap between raw statistical output and biological 
discovery, empowering the researcher to biologically validate statistical findings 
and to statistically test biological findings.  The researcher can then plan the 
next experimental step by linking results to bodies of literature for particular 
genes. 



  

4.2. Future directions 

The development of EVA is an ongoing process.  Future studies will incorporate 
results from machine learning and multivariate statistical methods.  There are 
plans to integrate the tool with other publicly available data sources, including 
those for model organisms.  Additionally, while EVA was developed for 
genomic applications, it can be naturally extended to genetic or proteomic 
analyses.  A command line interface will allow programmable analyses and 
provide a mechanism to combine EVA with output from other analysis tools, 
such as sequence homology engines or alternative permutation testing strategies 
that address the issues of multiple testing and non-independence across tests.  
The new platform-independent Java version of the EVA GUI will be available 
at no cost to academic users.  Contact the authors for distribution information.   
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