
Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple
Sources

Y. Qi, J. Klein-Seetharaman, and Z. Bar-Joseph

Pacific Symposium on Biocomputing 10:531-542(2005)

RANDOM FOREST SIMILARITY FOR PROTEIN-PROTEIN
INTERACTION PREDICTION FROM MULTIPLE SOURCES

YANJUN QI
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

JUDITH KLEIN-SEETHARAMAN
Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA

15213, USA

ZIV BAR-JOSEPH
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

One of the most important, but often ignored, parts of any clustering and classification
algorithm is the computation of the similarity matrix. This is especially important when
integrating high throughput biological data sources because of the high noise rates and the
many missing values. In this paper we present a new method to compute such similarities for
the task of classifying pairs of proteins as interacting or not. Our method uses direct and
indirect information about interaction pairs to constructs a random forest (a collection of
decision tress) from a training set. The resulting forest is used to determine the similarity
between protein pairs and this similarity is used by a classification algorithm (a modified kNN)
to classify protein pairs. Testing the algorithm on yeast data indicates that it is able to improve
coverage to 20% of interacting pairs with a false positive rate of 50%. These results compare
favorably with all previously suggested methods for this task indicating the importance of
robust similarity estimates.

1 Background

Protein-protein interactions play key role in many biological systems. These involve
complex formation and various pathways which are used to carry out biological
processes. Correctly identifying the set of interacting proteins can shed new light on
the functional role of various proteins within the complex environment of the cell.

High throughput methods including two-hybrid screens [3,4] and mass
spectrometry [5,6] have been used in an attempt to characterize the large set of
interacting proteins in yeast. While some promising results were generated from
these large scale experiments, these data sets are often incomplete and exhibit high
false positive and false negative rates [1]. In addition to the high throughput
experimental datasets that specifically look for protein interaction, other datasets
provide indirect information about interaction pairs. For example, it has been shown
that many interacting pairs are co-expressed [1] and that proteins in the same
complex are in some cases bound by the same transcription factor(s) [18]. Sequence

data was also be used to infer such interactions (for example by relying on domain-
domain interactions [14]). Each of these datasets provides partial information about
the interacting pairs and thus, in order to reliably infer protein-protein interactions
one needs to integrate evidence from these different biological sources. Deriving
such an accurate and complete set of interactions from these data sources is an
important computational and biological problem.

When combining these disparate datasets one needs to solve a number of
computational problems. First, the data is noisy and contains many missing values
(for example, for two-hybrid (Y2H) system, the interactions involving membrane
proteins may be undetectable and the system also suffers from high false positive
rate due to factors like fortuitous activation of reporter genes [3,4]). In addition,
some of these data sources are categorical (for example, synthetic lethal [1]) while
others are continuous (for example, mRNA co-expression). Finally, there is the
issue of weighting the different data sources. Some should have more weight than
others (for example, intuitively the direct information should be weighted higher
than the indirect information).

In this paper we present a method that overcomes the above problems by using
random forest [19] to compute similarity between protein interaction pairs. We
construct a set of decision trees such that each tree contains a random subset of the
attributes. Next, protein pairs are propagated down the trees and a similarity matrix
based on leaf occupancy is calculated for all pairs. Decision trees and the
randomization strategy within random forest can handle categorical data and can
automatically weight the different data sources based on their ability to distinguish
between interacting and non interacting pairs. Because the trees are generated from
random subsets of the possible attributes, missing values can be handled by filled in
by an iterative algorithm. Finally, a weighted k nearest neighbor algorithm, where
distances are based on the computed similarity, is used to classify pairs as
interacting or not.

Our method was tested on yeast. We used several direct and indirect data
sources and compared our results to previously suggested algorithms and to many
other classification algorithms. As we show in Results, the method described above
outperformed all other methods.

2 Related work

von Mering [1] is one of the first to discuss the problem of accurately inferring
protein interactions from high throughput data sources. In that paper they have
relied on the intersection of four direct experiments to identify interacting pairs.

While this method resulted in a low false positive rate, the coverage was also very
low. Less than 3% of interacting pairs were recovered using this method compared
to a reference set.

In order to improve coverage, Jansen et al. [11] combined direct and indirect
data sources using naïve Bayes and a fully-connected Bayesian network. Unlike our
method naïve Bayes assumes conditional independence between the attributes,
which is clearly a problem for these datasets (for example, co-expression and co-
binding are clearly correlated attributes). Indeed, as we show in section 4 (results),
our method outperforms naïve Bayes for this task.

Gilchrist et al. [13] proposed a Bayesian method to integrate information from
direct high-throughput experiment [5, 6]. However, while their method works well
it requires a large number of direct measurements for each protein pair. Such data is
not available for most pairs. In contrast, by integrating indirect information our
method can correctly detect interacting pairs if only limited direct information is
available.

Lan et al. [12] constructed a decision tree to predict co-complexed protein pairs
by integrating direct and indirect genomic and proteomic data. While our method
also relies on decision trees, it constructs many such trees and not one. This is
important when missing values are an issue. Consider two (dependent) attributes A
and B that are both useful for the classification task. Assume A is slightly better
than B. In that case A can be chosen as the root node of the tree and since B is
highly correlated with A, it will not be used at a high level in the tree. Now, if a
protein pair lacks a measurement for A but has a value for B it might not be
classified correctly based on the low weight assigned to B. In contrast, when using
the random forest approach, B will be selected by many trees as a high level split
(see Methods). This allows our method to deal more effectively with these noisy
datasets.

3 Method

We use multiple high throughput datasets to construct a d -dimensional vector Xi for
every pair of proteins. Each item in this vector summarizes one of these datasets
(for example, are these two proteins bound by the same transcription factor? what is
their expression correlation? see [21] for a complete list of attributes in each vector).
Given these vectors the task of protein interaction prediction can be presented as a
binary classification problem. That is, given Xi does the ith pair interact (Yi=1) or
not (Yi= -1).

Note that there are a number of unique characteristic to this classification task.
First, the number of non interacting pairs is much larger than the number of

interacting pairs (as much as ~600 to 1 [section 4.2]) and so false negatives may be
more costly than false positives. Second, there is no negative training dataset
available for this task. Third, the features are of different types. Some of the entries
in Xi are categorical while others are numerical. Finally, many entries in each of
these vectors are missing.

In order to overcome these difficulties we divide the classification task into two
parts (see Figure 1). We first compute a similarity measure between genes pairs
(overcoming noise, missing values and the different types of data) and then use this
similarity to classify protein pairs taking into account the skewed distribution of
positives and negatives. Below we discuss in detail each of these two parts.

 Experiment Interaction

 Gene Ontology Info

Other Genomic Info

Random Forest

RF
Similarity Weighted kNN

 GeneExpress

TAP

Y2H

GOProcess N HMS_PCI N

GeneOccur Y GOLocalization Y

 ProteinExpress GeneExpress

 GeneExpress

GeneExpress

Domain

Y2H HMS-PCI SynExpress ProteinExpress

3

W
f
b
tr
s

Figure 1. Classification process. To generate the random forest we select for each tree a subset of
training data. Next, for every node in these trees a random subset of the attributes is chosen and
the attribute achieving the best division is selected. Once trees are grown, all protein pairs
(remaining training and test sets) are propagated down the trees and similarity is computed based
on leaf occupancy (see text). Using the computed similarity a weighted KNN algorithm is used to
rank pairs by the resulting interaction score.
.1 Random Forest (RF) and RF Similarity

e use random forest [19] to determine the similarity of protein pairs. Random
orest (RF) was initially introduced as a classification algorithm, though it can also
e used to compute similarities. RF constructs a large set of independent decision
ees (see below). Results from these trees are combined for the classification or
imilarity calculation task.

Decision tree: A decision tree is a binary tree with nodes corresponding to
attributes in the input vectors. Tree nodes are used to determine how to propagate a
given attribute set down the tree. Nodes can either be threshold nodes or categorical
nodes. Decision trees also contain terminal (or leaf) nodes that are labeled as -1 or
1. In order to classify a protein pair as interacting or not, this pair is propagated
down the tree and decision is made based on the terminal node that is reached.
Decision trees are grown using a training set. At each node the algorithm searches
for an attribute that best separates all instances in that node. If the attribute perfectly
classifies all instances so that all instances in one of the two descendent nodes have
the same label then this node becomes a terminal node with the appropriate label.
Otherwise, the above process is repeated until all instances are at terminal nodes.
 Random forest: Random forest [19] uses a collection of independent decision
trees instead of one tree. Denote by Θ the set of possible attributes (or variables on
which nodes can be split) and by),(Θxh a tree grown using Θ to classify a vector
x. Using these notations a random forest f is defined as:

f = Kkxh k ,...,2,1)},,({ =Θ (1)
Where Θ⊆Θk . That is, a random forest is a collection of trees, where each

tree is grown using a subset of the possible attributes. For the kth tree is
randomly selected, and is independent of the past random vectors 11

kΘ
,..., −ΘΘ k . In

order to classify, using each of the trees ‘votes’ for one of the classes and the most
popular class is assigned to input x.

One of the main reasons random forests perform better than a single decision
tree is their ability to utilize redundant features and the independence of the
different classifiers (trees) used. This is also important in our case since if a pair has
values for one redundant feature but not the other, we can still use this feature for
the similarity calculation process.

Specifically we have grown the random forest in the following way: Each tree
is grown on a bootstrap sample of the training set (this helps in avoiding
overfitting). A number m << M (M is the total number of attributes) is specified, and
for each node in the tree the split is chosen from m variables that are selected at
random out of the total M attributes. Once the trees are grown, they can be used to
estimate missing values and to compute similarities as follows.

Handling missing values: Random forest can be used to estimate missing
values. For training data missing values are first assigned the median of all values
in the same class (or the most frequent value for categorical data). Next, the data
vectors are run on the forest, and missing data is re-estimated based on pairs that
share the same terminal leaves with this pair. This process can be iterated until these
estimates converge.

For test data, we first replicate the attribute vector and then apply a similar
procedure to each of the two replicas. Initially, missing values in the first and
second replicas are set to the mean values of the positive and negative classes,
respectively. Next, these two replicas are propagated down the trees and the values
for each are re-estimated based on neighboring pairs. This process is iterated and the
final values are determined from the class that receives the most number of votes in
the different trees.

Random Forest Similarity: For a given forest f, we compute the similarity
between two pairs of proteins pairs X1 and X2 in the following way. For each of the
two pairs we first propagate their values down all trees within f. Next, the terminal
node position for each pair in each of the trees is recorded. Let Z1 = (Z11 , …, Z1K) be
these tree node positions for X1 and similarly define Z2. Then the similarity between
pair X1 and X2 is set to: (I is the indicator function.)

∑
=

===
K

i
ii ZZI

K
XXS

1
2121)(1),((2)

As we discuss in Results, we partition our training set to two parts. The first is
used to generate the random forest. The second is used to train the kNN algorithm.
In order to compute similarities efficiently, the following algorithm is used. Given a
random forest with K trees and up to N terminal nodes in each tree we first generate
a N*K vector V where each entry in V contains a linked list of the kNN training set
pairs that reside in that node. Given a new test pair we first propagate it down all
trees (in O(N*K) time) and for each of the terminal nodes it arrives at we find the
corresponding set of training pairs from V. For each such pair we increase their
similarity count by one. Thus, for a given test pair it takes only O(|Strain|+N*K) to
compute its similarity to all the training points, where Strain is the training set and |S|
represents the number of elements in S.

3.2 Classifying protein pairs

We use a weighted version of the k-Nearest Neighbor (kNN) algorithm to classify
pairs as interacting or not. While we have tried a number of classifiers for this data
(see Results) the main advantage of kNN for this task is its ability to classify based
on both, similarity and dissimilarity (as opposed to similarity alone). As can be seen
in Figure 2, while non interacting pairs are similar to each other, the main
distinguishing feature of interacting pairs is their distance from (or dissimilarity
with) non interacting pairs. Due to the highly skewed distribution of interacting and
non interacting pairs, it is likely that the closest pair to an interacting pair will be a
non interacting pair (though their similarity might not be high). Decision trees (or
RF) may use these to incorrectly classify an interacting pair as non interacting.

However, kNN can take into account the magnitude of the similarity, and if it is too
weak can still classify the pair as an interacting pair.

Figure 2. The pairwise RF similarity. Three histograms of pairwise similarities between all
positive pairs (left) all random pairs (center) and between all positive and all random pairs. Note
that while the random set is fairly tight, the positive set exhibits a greater diversity and is also far
(on average) from most random samples. kNN can utilize this fact by relying on the actual
distance to the closest neighbors (see text for details).

Specifically, given a set of training examples (Xi ,Yi), and a query Xq , we
calculate the interaction score for q using the weighted mean of its neighbor’s Yi
values, where the weight depends on the similarity of each of training pairs to q:

∑
=

=
k

p
pneighborpneighborq YXXSqf

1
)()(*),()((3)

Here S(Xi, Xq) is the similarity between i and q as computed by RF and
. The test set can then be ranked by the f(q) interaction scores. A cutoff

t can be derived using a training set to threshold this ranking list such that q is
classified as interacting if f(q)>t. In particular, t does not have to be equal to 0. In
fact, in our case t<0 meaning that even though this pair is (on average) closer to non
interacting pairs, since it is not close enough, it is classified as an interacting pair.

}1,1{ −∈Y

4 Results

We first discuss the biological features we used for the attributes vectors. Next we
present results for applying our classification method for determining protein
interaction pairs in yeast.

4.1 Attribute set

As mentioned in the introduction, there are many high throughput biological data
sources related to protein-protein interaction. The method described in this paper is
general and can be used with any type of biological data. Thus, while we have tried
to use as much data sources as we could, when a new data source (such as protein
expression arrays) becomes available, the method discussed in this paper can take
advantage of that data as well. For the results presented in this section we used a

total of 15 attributes for each protein pair (see website [21]). Overall, these data
sources can be divided into three categories: Direct experimental data sets (two-
hybrid screens and mass spectrometry), indirect high throughput data sets (gene
expression, protein-DNA binding etc.) and sequence based data sources (domain
information, gene fusion etc.). In addition to combining these data sources, our
method can also indicate which of the different data sources is better for predicting
protein interactions as discussed below.

4.2 Reference set

We need a reference set to train/test the algorithm. For the positive set (or the
interacting pairs) ~4000 yeast protein pairs are derived from the database of
interacting proteins (DIP [17]). This set is composed of interacting protein pairs
which have been experimentally validated, and thus can serve as a reliable positive
set. Unlike positive interactions, it is rare to find a confirmed report on non
interacting yeast pairs. Here we follow [12] which have used a random set of
protein pairs as their negative set instead. This selection is justified because of the
small fraction of interacting pairs in the total set of potential protein pairs. It is
estimated Supplementary [21] that only ~1 in 600 possible protein pairs actually
interact [10, 13] and thus, over 99.8% of our random data is indeed non interacting
which is probably better than the accuracy of most training negative data. Actually
this extremely unbalanced class distribution of our reference set motives the
weighted kNN ranking step in our algorithm.

4.3 Important attributes

Biologically, it is of particular interest to identify the attributes and data sources that
contribute the most to our ability to classify protein pairs. Such an analysis can help
uncover relationships between different data sources which are not directly
apparent. In addition, it can help identify what data sources should be generated for
determining interaction in other species (for example, in humans). One way to
determine such a set using random forest is to score attributes based on the levels of
nodes that use them to split the data. Since each node splits the data using the best
available attribute, attributes used in higher levels in the tree contribute more than
those used in lower levels.

As a rough estimate for the contribution of each attribute we have counted the
percentage of nodes that use this attribute in the top four levels of all trees in our
trained random forest model. Of the 15 features we used, gene co-expressed had the
highest score with 18% of top nodes using it to split the input data. Next came three
features: protein co-expression, domain-domain interaction and GO co-process,
each with ~11% of the nodes. These were followed by TAP mass spectrometry data
(8%) GO co-localization (6%), Y2H screens (4%) and HMS-PCI (4%). (see

Supplementary [21] complete list). Interestingly, indirect information played a very
important role in the decision process though it is likely that this results from the
fact that direct experiments cover less than 30% of all protein pairs. However, mass
spectrometry data are clearly more significant than Y2H data, consistent with the
notion that mass spectrometric identification of protein-protein interaction is less
prone to artifacts than Y2H experiments. It is particularly encouraging that co-
expression and GO features contribute such strong components to the prediction,
clearly supporting the notion that a large amount of indirect data that measures
biologically relevant information is helpful in predicting interaction partners.

4.4 Performance Comparison

We use precision vs. recall curve to perform the comparisons completely.
Precision: Among the pairs identified as interacting by the classifier, what is the
fraction (or percentage) that is truly interacting?
Recall: For the known interaction pairs, what is the percentage that is identified?

Let d be the number pairs identified as interacting by the classifier, T be the
number of pairs labeled as interacting, and c be the number of pairs correctly
identified as interacting, then precision and recall are defined as:

Tcdc / Recall/Precision == (4)
In other words, precision is the accuracy of our predictor whereas recall is the

coverage of the classifier. Note that even 50% precision can useful. For example,
biologists studying a specific protein can extract a list of potential interacting
partners computationally first and carry out further experiments knowing that on
average 50% of their experiments will identify true interacting pair. This is a much
better ratio than if the set of potential pairs was randomly selected.

For our algorithm, in each cross validation run, we divided our training set into
two equal parts. The first was used to construct the random forest and the second
was used by kNN algorithm. Thus, our algorithm uses the same amount of training
data as the other algorithms we compare to (see below).

In order to generate a precision / recall curve we use different thresholds as
discussed above. For the other classification methods, we generate the curve in a
similar manner. For instance, for the naïve Bayes classifier, we can use the naïve
Bayes prediction probability of a test point to arrive at a ranked list.

Figure 3 shows a comparison between our method and a number of other
classification algorithms. The figure on the left compares our method with a
weighted kNN that uses Euclidean distance instead of the random forest similarity,
with the naïve Bayes method and with a single decision tree. In general, for a wide
range of high precision values our method outperforms the other methods. It is

especially interesting to compare our method with the kNN method using Euclidian
distance. As can be seen, using the robust similarity estimates from the random
forest results greatly improves the classification results. We have also compared our
algorithm to a classification method that only uses the resulting random forest
(based on popular vote) to classify protein pairs and to a number of other popular
classifiers including Support Vector Machine (SVM), logistic regression and
Adaboost (right figure). In all cases our algorithm performed better for precision
values that are higher than 0.32. Specifically, holding precision fixed at 0.5 (or
50%) our algorithm achieved a recall rate of 20% while logistic regression achieved
14% recall, random forest and SVM achieved 11% and Adaboost had a 7% recall
rate. Finally, we note that while the methods we have used to compare our
algorithm with were inspired by previous work (such as single decision tree [12]
and naïve Bayes [11]), we have used a slightly different feature set and a different
training set compared to each of these two papers. Thus, the results reported for
these methods here are different from the ones reported in these papers. See website
[21] for details about the implementation of the other classification methods.

Figure 3. Precision vs. Recall curves. Left: Comparison of weighted kNN using random forest
similarity, weighted kNN using Euclidean distance, naïve Bayes and a single decision tree (J48);
Right: Comparison of weighted kNN using random forest similarity, logistic regression, support
vector machine, Adaboost and random forest classifier.

4.5 Predicting interactions for the yeast pheromone response pathway

To analyze the results for their utility in the design of new experiments, we
compared the predictions of our method to their labels for one specific pathway, the
yeast pheromone pathway. The yeast mating factors MATα/a bind to their cognate
membrane receptors, Ste2/3, members of the G protein coupled receptor family.

Subsequent binding and activation of the G protein induces a MAP kinase signaling
pathway via the G protein βγ subunit. We selected 25 proteins that are known to
participate in this pathway. We applied our algorithm (using a different training set)
to classify the 300 (25*24/2) potential interacting pairs. Our algorithm classified 44
of these pairs as interacting. 31 of these pairs (70.45%) were known to interact
while only 2 (4.55%) are verified to be wrong predictions. The remaining 11 pairs
(25%) are new predictions that are reasonable and would functionally make sense.
They form two clusters: The first involves the possible interaction between the
STE5 anchor protein and the receptors. The receptor would then make additional
interactions due to STE5s’ anchoring function. The second cluster is a possible
interaction between the most downstream components of the signaling cascade
including BEM1, BNI1 and FUS1, mediating cell fusion (see website [21] for
details). These new biological hypothesis can be used to design future lab
experiments.

5 Discussion and future work

In this paper we presented a method for predicting protein-protein interactions by
integrating diverse high-throughput biological datasets. Our method works in two
steps. First, a similarity measure is computed between protein pairs. Then a
classification algorithm uses the computed similarities to classify pairs as
interacting or not. We have applied our algorithm to the task of classifying protein
pairs in yeast. As we have shown, our algorithm outperforms previous methods
suggested for this task and can also derive meaningful biological results for known
pathways.

In this paper we have used random forest to learn a similarity function between
protein pairs. Recently, a number of methods have been suggested for learning
distance matrices [22]. We would like to test some of these methods and see if they
can improve our classification accuracy. Specifically, it will be challenging to apply
these methods to datasets with missing values, as is the case here.

Interestingly, many of the features determined to be important using our
method are indirect measurements. This opens the possibility of extending this
method to determine interacting pairs in organisms where little high throughput
direct information is available, such as humans.

Acknowledgements This research work is supported by National Science Foundation
Information Technology Research grant number 0225656.

References

1. Von Mering C, et al., Comparative assessment of large-scale data sets of
protein-protein interactions. Nature 417:399-403, 2002

2. Bader GD, Hogue CWV. Analyzing yeast protein-protein interaction data
obtained from different sources. Nature Biotechnology 20:991-997, 2003

3. Uetz P, et al., A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature. 403(6770):623-7, 2000

4. Ito T, et al., A comprehensive two-hybrid analysis to explore the yeast
protein interactome., Proc Natl Acad Sci, 10;98(8):4569-74, 2001

5. Gavin AC, et al., Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature. 415(6868):141-7, 2002

6. Ho Y, et al., Systematic identification of protein complexes in
Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 2002

7. Enright AJ, et al., Protein interaction maps for complete genomes based on
gene fusion events. Nature. 402(6757):86-90, 1999

8. Huh WK, et al, Global analysis of protein localization in budding yeast.
Nature. 425(6959):686-91, 2003

9. Ghaemmaghami S, et al., Global analysis of protein expression in yeast.
Nature. 425(6959):737-41, 2003

10. Tong A.H.Y. et al. Global Mapping of the Yeast Genetic Interaction
Network. Science. 303: 808-813, 2004

11. R Jansen, et al., A Bayesian networks approach for predicting protein-
protein interactions from genomic data, Science 302: 449-53, 2003

12. Lan V. Zhang, et al., Predicting co-complexed protein pairs using genomic
and proteomic data integration, BMC Bioinformatics. 5 (1): 38, 2004

13. Gilchrist MA, et al. A statistical framework for combining and interpreting
proteomic datasets. Bioinformatics. 20(5):689-700, 2004

14. Deng M, et al., Inferring domain-domain interactions from protein-protein
interactions. Genome Res. 12(10):1540-8, 2002

15. Lee et al., Transcriptional Regulatory Networks in Saccharomyces
cerevisiae, Science 298:799-804, 2002

16. Gene Ontology: tool for the unification of biology. The Gene Ontology
Consortium (2000), Nature Genet. 25: 25-29, Dec. 2003

17. Xenarios I, et al., DIP: The Database of Interacting Proteins: 2001 update,
Nucleic Acids Res. 29(1):239-41, 2001

18. Bar-Joseph Z, et al., Computational discovery of gene modules and
regulatory networks, Nat Biotechnol. (11):1337-42, 2003

19. Breiman, L.Random Forests, Machine Learning, 45, 5-32, 2001
20. Elion, E.A. Ste5: a meeting place for MAP kinases and their associates,

Trends Cell Biol. 5, 322-7, 1995
21. Supporting and supplementary information for this paper is available at

http://www.cs.cmu.edu/~qyj/psb05_PPI.html
22. E.P. Xing, et al. Distance Metric Learning, with application to Clustering

with side-information, NIPS, 2002

