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One of the most important, but often ignored, parts of any clustering and classification 
algorithm is the computation of the similarity matrix. This is especially important when 
integrating high throughput biological data sources because of the high noise rates and the 
many missing values. In this paper we present a new method to compute such similarities for 
the task of classifying pairs of proteins as interacting or not. Our method uses direct and 
indirect information about interaction pairs to constructs a random forest (a collection of 
decision tress) from a training set. The resulting forest is used to determine the similarity 
between protein pairs and this similarity is used by a classification algorithm (a modified kNN) 
to classify protein pairs. Testing the algorithm on yeast data indicates that it is able to improve 
coverage to 20% of interacting pairs with a false positive rate of 50%.  These results compare 
favorably with all previously suggested methods for this task indicating the importance of 
robust similarity estimates. 

1 Background 

Protein-protein interactions play key role in many biological systems. These involve 
complex formation and various pathways which are used to carry out biological 
processes. Correctly identifying the set of interacting proteins can shed new light on 
the functional role of various proteins within the complex environment of the cell.  

High throughput methods including two-hybrid screens [3,4] and mass 
spectrometry [5,6] have been used in an attempt to characterize the large set of 
interacting proteins in yeast. While some promising results were generated from 
these large scale experiments, these data sets are often incomplete and exhibit high 
false positive and false negative rates [1]. In addition to the high throughput 
experimental datasets that specifically look for protein interaction, other datasets 
provide indirect information about interaction pairs. For example, it has been shown 
that many interacting pairs are co-expressed [1] and that proteins in the same 
complex are in some cases bound by the same transcription factor(s) [18]. Sequence 

 



data was also be used to infer such interactions (for example by relying on domain-
domain interactions [14]). Each of these datasets provides partial information about 
the interacting pairs and thus, in order to reliably infer protein-protein interactions 
one needs to integrate evidence from these different biological sources. Deriving 
such an accurate and complete set of interactions from these data sources is an 
important computational and biological problem.  

When combining these disparate datasets one needs to solve a number of 
computational problems. First, the data is noisy and contains many missing values 
(for example, for two-hybrid (Y2H) system, the interactions involving membrane 
proteins may be undetectable and the system also suffers from high false positive 
rate due to factors like fortuitous activation of reporter genes [3,4]).  In addition, 
some of these data sources are categorical (for example, synthetic lethal [1]) while 
others are continuous (for example, mRNA co-expression). Finally, there is the 
issue of weighting the different data sources. Some should have more weight than 
others (for example, intuitively the direct information should be weighted higher 
than the indirect information).  

In this paper we present a method that overcomes the above problems by using 
random forest [19] to compute similarity between protein interaction pairs. We 
construct a set of decision trees such that each tree contains a random subset of the 
attributes. Next, protein pairs are propagated down the trees and a similarity matrix 
based on leaf occupancy is calculated for all pairs. Decision trees and the 
randomization strategy within random forest can handle categorical data and can 
automatically weight the different data sources based on their ability to distinguish 
between interacting and non interacting pairs. Because the trees are generated from 
random subsets of the possible attributes, missing values can be handled by filled in 
by an iterative algorithm. Finally, a weighted k nearest neighbor algorithm, where 
distances are based on the computed similarity, is used to classify pairs as 
interacting or not.  

Our method was tested on yeast. We used several direct and indirect data 
sources and compared our results to previously suggested algorithms and to many 
other classification algorithms. As we show in Results, the method described above 
outperformed all other methods.   

2 Related work 

von Mering [1] is one of the first to discuss the problem of accurately inferring 
protein interactions from high throughput data sources. In that paper they have 
relied on the intersection of four direct experiments to identify interacting pairs. 

 



While this method resulted in a low false positive rate, the coverage was also very 
low. Less than 3% of interacting pairs were recovered using this method compared 
to a reference set.  

In order to improve coverage, Jansen et al. [11] combined direct and indirect 
data sources using naïve Bayes and a fully-connected Bayesian network. Unlike our 
method naïve Bayes assumes conditional independence between the attributes, 
which is clearly a problem for these datasets (for example, co-expression and co-
binding are clearly correlated attributes). Indeed, as we show in section 4 (results), 
our method outperforms naïve Bayes for this task. 

Gilchrist et al. [13] proposed a Bayesian method to integrate information from 
direct high-throughput experiment [5, 6]. However, while their method works well 
it requires a large number of direct measurements for each protein pair. Such data is 
not available for most pairs. In contrast, by integrating indirect information our 
method can correctly detect interacting pairs if only limited direct information is 
available. 

Lan et al. [12] constructed a decision tree to predict co-complexed protein pairs 
by integrating direct and indirect genomic and proteomic data. While our method 
also relies on decision trees, it constructs many such trees and not one. This is 
important when missing values are an issue. Consider two (dependent) attributes A 
and B that are both useful for the classification task. Assume A is slightly better 
than B. In that case A can be chosen as the root node of the tree and since B is 
highly correlated with A, it will not be used at a high level in the tree. Now, if a 
protein pair lacks a measurement for A but has a value for B it might not be 
classified correctly based on the low weight assigned to B. In contrast, when using 
the random forest approach, B will be selected by many trees as a high level split 
(see Methods). This allows our method to deal more effectively with these noisy 
datasets. 

3 Method 

We use multiple high throughput datasets to construct a d -dimensional vector Xi for 
every pair of proteins. Each item in this vector summarizes one of these datasets 
(for example, are these two proteins bound by the same transcription factor? what is 
their expression correlation? see [21] for a complete list of attributes in each vector). 
Given these vectors the task of protein interaction prediction can be presented as a 
binary classification problem. That is, given Xi does the ith pair interact (Yi=1) or 
not (Yi= -1). 

Note that there are a number of unique characteristic to this classification task. 
First, the number of non interacting pairs is much larger than the number of 

 



interacting pairs (as much as ~600 to 1 [section 4.2]) and so false negatives may be 
more costly than false positives. Second, there is no negative training dataset 
available for this task. Third, the features are of different types. Some of the entries 
in Xi are categorical while others are numerical. Finally, many entries in each of 
these vectors are missing.  

In order to overcome these difficulties we divide the classification task into two 
parts (see Figure 1). We first compute a similarity measure between genes pairs 
(overcoming noise, missing values and the different types of data) and then use this 
similarity to classify protein pairs taking into account the skewed distribution of 
positives and negatives.  Below we discuss in detail each of these two parts. 
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Figure 1. Classification process.  To generate the random forest we select for each tree a subset of 
training data. Next, for every node in these trees a random subset of the attributes is chosen and 
the attribute achieving the best division is selected. Once trees are grown, all protein pairs 
(remaining training and test sets) are propagated down the trees and similarity is computed based 
on leaf occupancy (see text). Using the computed similarity a weighted KNN algorithm is used to 
rank pairs by the resulting interaction score. 
.1 Random Forest (RF) and RF Similarity 

e use random forest [19] to determine the similarity of protein pairs. Random 
orest (RF) was initially introduced as a classification algorithm, though it can also 
e used to compute similarities. RF constructs a large set of independent decision 
ees (see below). Results from these trees are combined for the classification or 
imilarity calculation task. 



Decision tree:  A decision tree is a binary tree with nodes corresponding to 
attributes in the input vectors. Tree nodes are used to determine how to propagate a 
given attribute set down the tree. Nodes can either be threshold nodes or categorical 
nodes. Decision trees also contain terminal (or leaf) nodes that are labeled as -1 or 
1. In order to classify a protein pair as interacting or not, this pair is propagated 
down the tree and decision is made based on the terminal node that is reached. 
Decision trees are grown using a training set. At each node the algorithm searches 
for an attribute that best separates all instances in that node. If the attribute perfectly 
classifies all instances so that all instances in one of the two descendent nodes have 
the same label then this node becomes a terminal node with the appropriate label. 
Otherwise, the above process is repeated until all instances are at terminal nodes.  
       Random forest: Random forest [19] uses a collection of independent decision 
trees instead of one tree. Denote by Θ  the set of possible attributes (or variables on 
which nodes can be split) and by ),( Θxh  a tree grown using Θ  to classify a vector 
x. Using these notations a random forest f is defined as:  

f = Kkxh k ,...,2,1)},,({ =Θ  (1) 
Where Θ⊆Θk . That is, a random forest is a collection of trees, where each 

tree is grown using a subset of the possible attributes. For the kth tree  is 
randomly selected, and is independent of the past random vectors 11

kΘ
,..., −ΘΘ k . In 

order to classify, using each of the trees ‘votes’ for one of the classes and the most 
popular class is assigned to input x.  

One of the main reasons random forests perform better than a single decision 
tree is their ability to utilize redundant features and the independence of the 
different classifiers (trees) used. This is also important in our case since if a pair has 
values for one redundant feature but not the other, we can still use this feature for 
the similarity calculation process.  

Specifically we have grown the random forest in the following way: Each tree 
is grown on a bootstrap sample of the training set (this helps in avoiding 
overfitting). A number m << M (M is the total number of attributes) is specified, and 
for each node in the tree the split is chosen from m variables that are selected at 
random out of the total M attributes. Once the trees are grown, they can be used to 
estimate missing values and to compute similarities as follows. 

Handling missing values: Random forest can be used to estimate missing 
values. For training data missing values are first assigned the median of all values 
in the same class (or the most frequent value for categorical data). Next, the data 
vectors are run on the forest, and missing data is re-estimated based on pairs that 
share the same terminal leaves with this pair. This process can be iterated until these 
estimates converge.  

 



For test data, we first replicate the attribute vector and then apply a similar 
procedure to each of the two replicas. Initially, missing values in the first and 
second replicas are set to the mean values of the positive and negative classes, 
respectively. Next, these two replicas are propagated down the trees and the values 
for each are re-estimated based on neighboring pairs. This process is iterated and the 
final values are determined from the class that receives the most number of votes in 
the different trees. 

Random Forest Similarity: For a given forest f, we compute the similarity 
between two pairs of proteins pairs X1 and X2 in the following way. For each of the 
two pairs we first propagate their values down all trees within f. Next, the terminal 
node position for each pair in each of the trees is recorded. Let Z1 = (Z11 , …, Z1K) be 
these tree node positions for X1 and similarly define Z2. Then the similarity between 
pair X1 and X2 is set to: (I is the indicator function.) 
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As we discuss in Results, we partition our training set to two parts. The first is 
used to generate the random forest. The second is used to train the kNN algorithm. 
In order to compute similarities efficiently, the following algorithm is used. Given a 
random forest with K trees and up to N terminal nodes in each tree we first generate 
a N*K vector V where each entry in V contains a linked list of the kNN training set 
pairs that reside in that node. Given a new test pair we first propagate it down all 
trees (in O(N*K) time) and for each of the terminal nodes it arrives at we find the 
corresponding set of training pairs from V. For each such pair we increase their 
similarity count by one. Thus, for a given test pair it takes only O(|Strain|+N*K) to 
compute its similarity to all the training points, where Strain is the training set and |S| 
represents the number of elements in S.  

3.2 Classifying protein pairs 

We use a weighted version of the k-Nearest Neighbor (kNN) algorithm to classify 
pairs as interacting or not. While we have tried a number of classifiers for this data 
(see Results) the main advantage of kNN for this task is its ability to classify based 
on both, similarity and dissimilarity (as opposed to similarity alone). As can be seen 
in Figure 2, while non interacting pairs are similar to each other, the main 
distinguishing feature of interacting pairs is their distance from (or dissimilarity 
with) non interacting pairs. Due to the highly skewed distribution of interacting and 
non interacting pairs, it is likely that the closest pair to an interacting pair will be a 
non interacting pair (though their similarity might not be high). Decision trees (or 
RF) may use these to incorrectly classify an interacting pair as non interacting. 

 



However, kNN can take into account the magnitude of the similarity, and if it is too 
weak can still classify the pair as an interacting pair. 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. The pairwise RF similarity. Three histograms of pairwise similarities between all 
positive pairs (left) all random pairs (center) and between all positive and all random pairs. Note 
that while the random set is fairly tight, the positive set exhibits a greater diversity and is also far 
(on average) from most random samples. kNN can utilize this fact by relying on the actual 
distance to the closest neighbors (see text for details).

Specifically, given a set of training examples (Xi ,Yi), and a query Xq , we 
calculate the interaction score for q using the weighted  mean of its neighbor’s Yi 
values, where the weight depends on the similarity of each of training pairs to q: 

∑
=

=
k

p
pneighborpneighborq YXXSqf

1
)()( *),()(  (3) 

Here S(Xi, Xq) is the similarity between i and q as computed by RF and 
. The test set can then be ranked by the f(q) interaction scores. A cutoff 

t can be derived using a training set to threshold this ranking list such that q is 
classified as interacting if f(q)>t. In particular, t does not have to be equal to 0. In 
fact, in our case t<0 meaning that even though this pair is (on average) closer to non 
interacting pairs, since it is not close enough, it is classified as an interacting pair. 

}1,1{ −∈Y

4 Results 

We first discuss the biological features we used for the attributes vectors. Next we 
present results for applying our classification method for determining protein 
interaction pairs in yeast.  

4.1 Attribute set 

As mentioned in the introduction, there are many high throughput biological data 
sources related to protein-protein interaction. The method described in this paper is 
general and can be used with any type of biological data. Thus, while we have tried 
to use as much data sources as we could, when a new data source (such as protein 
expression arrays) becomes available, the method discussed in this paper can take 
advantage of that data as well.  For the results presented in this section we used a 

 



total of 15 attributes for each protein pair (see website [21]). Overall, these data 
sources can be divided into three categories: Direct experimental data sets (two-
hybrid screens and mass spectrometry), indirect high throughput data sets (gene 
expression, protein-DNA binding etc.) and sequence based data sources (domain 
information, gene fusion etc.). In addition to combining these data sources, our 
method can also indicate which of the different data sources is better for predicting 
protein interactions as discussed below.  

4.2 Reference set 

We need a reference set to train/test the algorithm. For the positive set (or the 
interacting pairs) ~4000 yeast protein pairs are derived from the database of 
interacting proteins (DIP [17]). This set is composed of interacting protein pairs 
which have been experimentally validated, and thus can serve as a reliable positive 
set. Unlike positive interactions, it is rare to find a confirmed report on non 
interacting yeast pairs. Here we follow [12] which have used a random set of 
protein pairs as their negative set instead. This selection is justified because of the 
small fraction of interacting pairs in the total set of potential protein pairs. It is 
estimated Supplementary [21] that only ~1 in 600 possible protein pairs actually 
interact [10, 13] and thus, over 99.8% of our random data is indeed non interacting 
which is probably better than the accuracy of most training negative data. Actually 
this extremely unbalanced class distribution of our reference set motives the 
weighted kNN ranking step in our algorithm.  

4.3 Important attributes 

Biologically, it is of particular interest to identify the attributes and data sources that 
contribute the most to our ability to classify protein pairs. Such an analysis can help 
uncover relationships between different data sources which are not directly 
apparent. In addition, it can help identify what data sources should be generated for 
determining interaction in other species (for example, in humans). One way to 
determine such a set using random forest is to score attributes based on the levels of 
nodes that use them to split the data. Since each node splits the data using the best 
available attribute, attributes used in higher levels in the tree contribute more than 
those used in lower levels.   

As a rough estimate for the contribution of each attribute we have counted the 
percentage of nodes that use this attribute in the top four levels of all trees in our 
trained random forest model. Of the 15 features we used, gene co-expressed had the 
highest score with 18% of top nodes using it to split the input data. Next came three 
features: protein co-expression, domain-domain interaction and GO co-process, 
each with ~11% of the nodes. These were followed by TAP mass spectrometry data 
(8%) GO co-localization (6%), Y2H screens (4%) and HMS-PCI (4%). (see 

 



Supplementary [21] complete list). Interestingly, indirect information played a very 
important role in the decision process though it is likely that this results from the 
fact that direct experiments cover less than 30% of all protein pairs. However, mass 
spectrometry data are clearly more significant than Y2H data, consistent with the 
notion that mass spectrometric identification of protein-protein interaction is less 
prone to artifacts than Y2H experiments. It is particularly encouraging that co-
expression and GO features contribute such strong components to the prediction, 
clearly supporting the notion that a large amount of indirect data that measures 
biologically relevant information is helpful in predicting interaction partners.  

4.4 Performance Comparison 

We use precision vs. recall curve to perform the comparisons completely.  
Precision: Among the pairs identified as interacting by the classifier, what is the 
fraction (or percentage) that is truly interacting?  
Recall: For the known interaction pairs, what is the percentage that is identified? 

Let d be the number pairs identified as interacting by the classifier, T be the 
number of pairs labeled as interacting, and c be the number of pairs correctly 
identified as interacting, then precision and recall are defined as: 

Tcdc /    Recall/Precision ==  (4) 
In other words, precision is the accuracy of our predictor whereas recall is the 

coverage of the classifier.  Note that even 50% precision can useful.  For example, 
biologists studying a specific protein can extract a list of potential interacting 
partners computationally first and carry out further experiments knowing that on 
average 50% of their experiments will identify true interacting pair. This is a much 
better ratio than if the set of potential pairs was randomly selected. 

For our algorithm, in each cross validation run, we divided our training set into 
two equal parts. The first was used to construct the random forest and the second 
was used by kNN algorithm. Thus, our algorithm uses the same amount of training 
data as the other algorithms we compare to (see below).  

In order to generate a precision / recall curve we use different thresholds as 
discussed above. For the other classification methods, we generate the curve in a 
similar manner. For instance, for the naïve Bayes classifier, we can use the naïve 
Bayes prediction probability of a test point to arrive at a ranked list.  

Figure 3 shows a comparison between our method and a number of other 
classification algorithms. The figure on the left compares our method with a 
weighted kNN that uses Euclidean distance instead of the random forest similarity, 
with the naïve Bayes method and with a single decision tree. In general, for a wide 
range of high precision values our method outperforms the other methods. It is 

 



especially interesting to compare our method with the kNN method using Euclidian 
distance. As can be seen, using the robust similarity estimates from the random 
forest results greatly improves the classification results. We have also compared our 
algorithm to a classification method that only uses the resulting random forest 
(based on popular vote) to classify protein pairs and to a number of other popular 
classifiers including Support Vector Machine (SVM), logistic regression and 
Adaboost (right figure). In all cases our algorithm performed better for precision 
values that are higher than 0.32. Specifically, holding precision fixed at 0.5 (or 
50%) our algorithm achieved a recall rate of 20% while logistic regression achieved 
14% recall, random forest and SVM achieved 11% and Adaboost had a 7% recall 
rate. Finally, we note that while the methods we have used to compare our 
algorithm with were inspired by previous work (such as single decision tree [12] 
and naïve Bayes [11]), we have used a slightly different feature set and a different 
training set compared to each of these two papers. Thus, the results reported for 
these methods here are different from the ones reported in these papers. See website 
[21] for details about the implementation of the other classification methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Precision vs. Recall curves. Left: Comparison of weighted kNN using random forest 
similarity, weighted kNN using Euclidean distance, naïve Bayes and a single decision tree (J48); 
Right: Comparison of weighted kNN using random forest similarity, logistic regression, support 
vector machine, Adaboost and random forest classifier. 

4.5 Predicting interactions for the yeast pheromone response pathway   

To analyze the results for their utility in the design of new experiments, we 
compared the predictions of our method to their labels for one specific pathway, the 
yeast pheromone pathway. The yeast mating factors MATα/a bind to their cognate 
membrane receptors, Ste2/3, members of the G protein coupled receptor family. 

 



Subsequent binding and activation of the G protein induces a MAP kinase signaling 
pathway via the G protein βγ subunit. We selected 25 proteins that are known to 
participate in this pathway. We applied our algorithm (using a different training set) 
to classify the 300 (25*24/2) potential interacting pairs. Our algorithm classified 44 
of these pairs as interacting. 31 of these pairs (70.45%) were known to interact 
while only 2 (4.55%) are verified to be wrong predictions. The remaining 11 pairs 
(25%) are new predictions that are reasonable and would functionally make sense. 
They form two clusters: The first involves the possible interaction between the 
STE5 anchor protein and the receptors. The receptor would then make additional 
interactions due to STE5s’ anchoring function. The second cluster is a possible 
interaction between the most downstream components of the signaling cascade 
including BEM1, BNI1 and FUS1, mediating cell fusion (see website [21] for 
details). These new biological hypothesis can be used to design future lab 
experiments.

5 Discussion and future work 

In this paper we presented a method for predicting protein-protein interactions by 
integrating diverse high-throughput biological datasets. Our method works in two 
steps. First, a similarity measure is computed between protein pairs. Then a 
classification algorithm uses the computed similarities to classify pairs as 
interacting or not. We have applied our algorithm to the task of classifying protein 
pairs in yeast. As we have shown, our algorithm outperforms previous methods 
suggested for this task and can also derive meaningful biological results for known 
pathways.  

In this paper we have used random forest to learn a similarity function between 
protein pairs. Recently, a number of methods have been suggested for learning 
distance matrices [22]. We would like to test some of these methods and see if they 
can improve our classification accuracy. Specifically, it will be challenging to apply 
these methods to datasets with missing values, as is the case here.  

Interestingly, many of the features determined to be important using our 
method are indirect measurements. This opens the possibility of extending this 
method to determine interacting pairs in organisms where little high throughput 
direct information is available, such as humans. 
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